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Abstract

String similarity models are vital for record
linkage, entity resolution, and search. In this
work, we present STANCE–a learned model
for computing the similarity of two strings.
Our approach encodes the characters of each
string, aligns the encodings using Sinkhorn It-
eration (alignment is posed as an instance of
optimal transport) and scores the alignment
with a convolutional neural network. We eval-
uate STANCE’s ability to detect whether two
strings can refer to the same entity–a task we
term alias detection. We construct five new
alias detection datasets (and make them pub-
licly available). We show that STANCE (or
one of its variants) outperforms both state-of-
the-art and classic, parameter-free similarity
models on four of the five datasets. We also
demonstrate STANCE’s ability to improve
downstream tasks by applying it to an instance
of cross-document coreference and show that
it leads to a 2.8 point improvement in B3 F1
over the previous state-of-the-art approach.

1 Introduction

String similarity models are crucial in record link-
age, data integration, search and entity resolu-
tion systems, in which they are used to deter-
mine whether two strings refer to the same en-
tity (Bilenko and Mooney, 2003; McCallum et al.,
2005; Li et al., 2015). In the context of these
systems, measuring string similarity is compli-
cated by a variety of factors including: the use
of nicknames (e.g., Bill Clinton instead of
William Clinton), token permutations (e.g.,
US Navy and Naval Forces of the US)
and noise, among others. Many state-of-the-art sys-
tems employ either classic similarity models, such
as Levenshtein, longest common subsequence, and
Jaro-Winkler, or learned models for string similar-
ity (Levin et al., 2012; Li et al., 2015; Ventura et al.,
2015; Kim et al., 2016a; Gan et al., 2017).

While classic and learned approaches can be ef-
fective, they both have a number of shortcomings.
First, the classic approaches have few parameters
making them inflexible and unlikely to succeed
across languages or across domains with unique
characteristics (e.g. company names, music album
titles, etc.) (Needleman and Wunsch, 1970; Smith
and Waterman, 1981; Winkler, 1999; Gionis et al.,
1999; Bergroth et al., 2000; Cohen et al., 2003).
Classic models also assume that each edit has equal
cost, which is unrealistic. For example, consider
the names Chun How and Chun Hao–which can
refer to the same entity–and the names John
A. Smith and John B. Smith, which can-
not. Even though the first pair differ by 2 edits
and the second pair by 1, transforming ow to ao
in the first pair should cost less than transforming
A to B in the second. Learned string similarity
models address these problems by learning dis-
tinct costs for various edits and have thus proven
successful in a number of domains (Bilenko and
Mooney, 2003; McCallum et al., 2005; Gan et al.,
2017). Some learned string similarity models, such
as the SVM (Bilenko and Mooney, 2003) and CRF-
based (McCallum et al., 2005) approaches, use edit
patterns akin to insertions/swaps/deletions, which
may lead to strong inductive biases. For example,
even when costs are learned, two strings related by
a token permutation–e.g., Grace Hopper and
Hopper, Grace–are likely to have high cost
even though they clearly refer to the same entity.
Gan et al. (2017), on the other hand, provide less
structure, encoding each string with a single vector
embedding and measuring similarity between the
embedded representations.

In this paper, we present a learned string sim-
ilarity model that is flexible, captures sequential
dependencies of characters, and is readily able to
learn a wide range of edit patterns–such as token
permutations. Our approach is comprised of three
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components: the first encodes each character in
both strings using a recurrent neural network; the
second softly aligns the two encoded sequences by
solving an instance of optimal transport; the third
scores the alignment with a convolutional neural
network. Each component is differentiable, allow-
ing for end-to-end training. Our model is called
STANCE–an acronym that stands for: Similarity
of Transport-Aligned Neural Character Encodings.

We evaluate STANCE’s ability to capture
string similarity in a task we term alias detec-
tion. The input to alias detection is a query
mention (i.e., a string) and a set of candi-
date mentions, and the goal is to score query-
candidate pairs that can refer to the same en-
tity higher than pairs that cannot. For example,
an accurate model scores the query Philips
with candidates Philips Corporation and
Katherine Philips higher than with M.
Phelps. Alias detection differs from both corefer-
ence and entity linking in that neither surrounding
natural language context of the mention nor ex-
ternal knowledge are available. A similar task is
studied in recent work (Gan et al., 2017).

In experiments, we compare STANCE to state-
of-the-art and classic models of string similarity
in alias detection on 5 newly constructed datasets–
which we make publicly available. Our results
demonstrate that STANCE outperforms all other
approaches on 4 out of 5 datasets in terms of
Hits@1 and 3 out of 5 datasets in terms of mean
average precision. Of the two cases in which
STANCE is outperformed by other methods in
terms of mean average precision, one is by a vari-
ant of STANCE in an ablation study. We also
demonstrate STANCE’s capacity for supporting
downstream tasks by using it in cross-document
coreference for the Twitter at the Grammy’s
dataset (Dredze et al., 2016). Using STANCE im-
proves upon the state-of-the-art by 2.8 points of B3

F1. Analyzing our trained model reveals STANCE
effectively learns sequence-aware character similar-
ities, filters noise with optimal transport, and uses
the CNN scoring component to detect unconven-
tional similarity-preserving edit patterns.

2 STANCE

Our goal is to learn a model, f(·, ·), that measures
the similarity between two strings–called mentions.
The model should produce a high score when its
inputs are aliases of the same entity, where a men-

tion is an alias of an entity if it can be used to refer
to that entity. For example, the mentions Barack
H. Obama and Barry Obama are both aliases
of the entity wiki/Barack_Obama. Note that
the alias relationship is not transitive: both of
the pairs Obama-Barack Obama and Obama-
Michelle Obama are aliases of the same en-
tity, but the pair Barack Obama-Michelle
Obama are not.

In this section we describe our proposed model,
STANCE, which is comprised of three stages:
encoding both mentions and constructing a cor-
responding similarity matrix, softly aligning the
encoded mentions, and scoring the alignment.

2.1 Mention Encoding Similarity Matrix
A flexible string similarity model is sequence-
aware, i.e., the cost of each character transfor-
mation should depend on the surrounding charac-
ters (e.g., transforming Chun How to Chun Hao
should have low cost). To capture these sequen-
tial dependencies, STANCE encodes each men-
tion using a bidirectional long short-term memory
network (LSTM) (Hochreiter and Schmidhuber,
1997; Graves and Schmidhuber, 2005). In particu-
lar, each character ci in a mention m is represented
by a d-dimensional vector, hi, where hi is the con-
catenation of the hidden states corresponding to ci
produced by running the LSTM in both directions.
The encoded representations of the characters are
stacked to form a matrix H(m) ∈ RL×d where L
(a hyperparameter) is the maximum string length
considered by STANCE.

Given a query m and candidate m′, STANCE
computes a similarity matrix of their encodings via
an inner product: S = H(m)H(m′)T. Each cell
in the resultant matrix represents a measure of the
similarity between each pair of character encodings
from m and m′. Note that for a mention q only the
first |q| (i.e., length of the string q) rows of H(q)

contain non-zero values.

2.2 Soft Alignment via Optimal Transport
The next component of our model computes a soft
alignment between the characters of m and m′.
Aligning the mentions is posed as a transport prob-
lem, where the goal is to convert one mention into
another while minimizing cost. In particular, we
solve the Kantorovich formulation of optimal trans-
port (OT). In this formulation, two probability mea-
sures, p1 and p2 are given in addition to a cost
matrix, C. This matrix defines the cost of moving
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Figure 1: STANCE Model architecture: Character Similarities (§2.1), soft alignment (§2.2), and scoring (§2.3)

(a) Similarity Matrix (b) Transport Matrix (c) Similarity × Transport

Figure 2: Three Heatmaps: in all three heatmaps, brighter cells correspond to higher similarity. Figure 2a
visualizes the character similarity matrix for two mentions: Three Doors Down and 3 Doors Down. Figure
2b visualizes the transport matrix and Figure 2c visualizes the element-wise product of the similarity and transport
matrices. Many of the characters are highly similar. Multiplying by the transport matrix amplifies the alignment
of the mentions while reducing noise, resulting in a clean alignment for the CNN scoring component.

(or converting) each element in the support of p1 to
each element in the support of p2. The solution to
OT is a matrix, P̂ , called the transport plan, which
defines how to completely convert p1 into p2. A
viable transport plan is required to be non-negative
and is also required to have marginals of p1 and
p2 (i.e., if P̂ is summed along the rows then p1 is
recovered and if it is summed along the columns
p2 is recovered). The goal is to find the plan with
minimal cost,

P ? = argmin
P∈P

|p1|∑
i=0

|p2|∑
j=0

CijPij

P = {P ∈ RL×L+ | P1L = p1, P
T1L = p2}

where | · | is the number of elements in the support
of the corresponding distribution and P is the set
of valid transportation plans. In this sense, a trans-
portation plan can be thought of as a soft alignment
of the supports of p1 and p2 (i.e., an element in
p1 can be aligned fractionally to multiple elements
in p2). A transportation plan can be computed
efficiently via Sinkhorn Iteration exploiting paral-
lelism using GPUs (empirically it has been shown
to be quadratic in L) (Cuturi, 2013). The transport
plan is defined as P = diag(uuu)Kdiag(vvv) where
K := e−λC , uuu and vvv are found using the itera-
tive algorithm, λ is the entropic regularizer, and
diag(·) gives a matrix with its input argument as
the diagonal (Cuturi, 2013). We specifically use

the regularized objective that has been shown to be
effective for training (Cuturi, 2013; Genevay et al.,
2018).

Optimal transport has been effectively used in
several natural language-based applications such
as computing the similarity between two docu-
ments as the transport cost (Kusner et al., 2015;
Huang et al., 2016), in measuring distances be-
tween point cloud-based representations of words
(Frogner et al., 2019), and learning correspon-
dences between word embedding spaces across
domains/languages (Alvarez-Melis and Jaakkola,
2018; Alvarez-Melis et al., 2019).

In our case, p1 represents the mention m and
p2 represents m′. The distribution p1 is defined as
a point cloud consisting of the character embed-
dings computed by the LSTM applied to m, i.e.,
H(m). Formally, it is a set of evenly weighted Dirac
Delta functions in Rd where d is the embedding di-
mensionality of the character representations. The
distribution p2 is defined similarly for m′. The cost
of transporting a character, ci of m to a charac-
ter cj of m′ has cost, Ci,j = Smax − Si,j where
Smax = maxi′,j′ Si′,j′ and Si,j is the inner product
of hi and hj . The resulting transport plan is mul-
tiplied by the similarity matrix (Section 2.1) and
subsequently fed as input to the next component
of our model (Section 2.3). Despite being a soft
alignment, this step helps mitigate spurious errors
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by reducing the similarity of characters pairs that
are not aligned.

2.3 Alignment Score

The transport plan, P̂ ∈ RL×L+ describes how the
characters in m are softly aligned to the characters
in m′. We compute the element-wise product of
the similarity matrix, S, and the transport plan:
S′ = S ◦ P̂ . Cells containing high values in S′

correspond to similar character pairs from m and
m′ that are also well-aligned.

Note the distinction between this alignment and
the way in which the transport cost can be used as
distance measure. The alignment is used as a re-
weighting of the similarity matrix. In this way, the
transport plan is closely related to attention-based
models (Bahdanau et al., 2015; Parikh et al., 2016;
Vaswani et al., 2017; Kim et al., 2017).

Finally, we employ a two dimensional convo-
lutional neural network (CNN) to score S′ (Le-
Cun et al., 1998). With access to the full
matrix S′, the CNN is able to detect multi-
ple, aligned, character subsequences from m and
m′ that are highly similar. By combining evi-
dence from multiple–potentially non-continguous–
aligned character subsequences, the CNN detects
long-range similarity-preserving edit patterns. This
is crucial, for example, in computing a high
score for the pair Obama, Barack and Barack
Obama.

The architecture of the alignment-scoring CNN
is a three layer network with filters of fixed size. A
linear model is used to score the final output of the
CNN. See Figure 1 for a visual representation of
the STANCE architecture.

Training We train on mention triples, (q, p, n),
where there exists an entity for which q and p are
both aliases (i.e., (q, p) is a positive example), and
there does not exist an entity for which both q and
n are aliases (i.e., a negative example). We use the
Bayesian Personalized Ranking objective (Rendle
et al., 2009): σ(f(q, p)− f(q, n)).

3 Alias Detection

String similarity is a crucial piece of data inte-
gration, search and entity resolution systems, yet
there are few large-scale datasets for training and
evaluating domain-specific string similarity mod-
els. Unlike in coreference resolution, a high quality
model should return high scores for mention pairs

True Positive Aliases
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peacekeeping 
 troops
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Peace- 

keeping

wiki/ 
Peace_ 
Treaty

Peace  
Support  

Operations

(1) Small Edit Dist.

lease  
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Lease

(5) Random

Irish music 
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Society  
of Peace

wiki/ 
Peace_ 
Society

Query

(4) 6-Hop Aliases

wiki/ 
Lancaster_ 
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keeping
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wiki/ 
United_ 
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Peacekeeping

peace 
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peace talks

True Negatives
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Figure 3: True positive and negative aliases. A depic-
tion of the source KB with mentions as ovals, entities
as squares, and the query in a red oval. Links indicate
that an entity is referred to by that mention.

in which both strings are aliases of (i.e., can re-
fer to) the same entity. For example, the mention
Clinton should exhibit high score with both B.
Clinton and H. Clinton.

We construct five datasets for training and eval-
uating string similarity models derived from four
large-scale public knowledge bases, which encom-
pass a diverse range of entity types. The five
datasets are summarized below:

1. Wikipedia (W) – We consider pages in
Wikipedia to be entities. For each entity, we
extract spans of text hyperlinked to that en-
tity’s page and use these as aliases.1

2. Wikipedia-People (WP) – The Wikipedia
dataset restricted to entities with type
person in Freebase (Bollacker et al., 2008).

3. Patent Assignee (A) – Aliases of assignees
(mostly organizations, some persons) found
by combining entity information2 with non-
disambiguated assignees in patents3.

4. Music Artist (M) – MusicBrainz (Swartz,
2002) contains alternative names for music
artists.

1We used a xml dump of Wikipedia from 2016-03-05.
We restrict the entities and hyperlinked spans to come from
non-talk, non-list Wikipedia pages.

2sites.google.com/site/
patentdataproject/Home/downloads

3www.patentsview.org/

sites.google.com/site/patentdataproject/Home/downloads
sites.google.com/site/patentdataproject/Home/downloads
www.patentsview.org/
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5. Diseases (D) – The Comparative Toxicoge-
nomics Database (Davis et al., 2014) stores
alternative names for disease entities.

For each dataset, entities are divided into train-
ing, development, and testing sets, such that each
entity appears in only one set. This partitioning
scheme is meant to ensure that performant mod-
els capture a general notion of similarity, rather
than learning to recognize the aliases of particular
entities. Dataset statistics can be found in Table 1.

Most mention-pairs selected uniformly at ran-
dom are not aliases of the same entity. A model
trained on such pairs may learn to always predict
“Non-alias.” To avoid learning such degenerate
models and to avoid test sets for which degenerate
models are performant, we carefully construct the
training, development and test sets by including a
mix of positive and negative examples and by gen-
erating negative examples designed to be difficult
and practical. We use a mixture of the following
five heuristics to generate negative examples:

1. Small Edit Distance – mentions with Leven-
shtein distance of 1 or 2 from the query;

2. Character Overlap – mentions that share a
4-gram word prefix or suffix with the query;

3. 4-Hop Aliases – first, construct a bipartite
graph of mentions and entities where an edge
between a mention and an entity denotes that
the mention is an alias of the entity. Then,
sample a mention that is not an alias of an
entity for which the query is also an alias, and
whose shortest path to the query requires 4
hops in the graph. Note that all mentions 2
hops from the query are aliases of an entity
for which the query is also an alias.

4. 6-Hop Aliases – sample a mention whose
shortest path to the query in the bipartite
mention-entity graph is 6 hops.

5. Random – randomly sample mentions that
are not aliases of the entity for which the query
is also an alias. We do this by first sampling
an entity and then sampling an alias of that
entity uniformly at random.

In all cases, we sample such that entities that
appear more frequently in the corpus and entities
that have a larger number of aliases are more likely
to be sampled (intuitively, these entities are more
relevant and more challenging). For the Wikipedia-
based datasets, we sample entities proportionally to
the number of hyperlink spans linking to the entity.
For the Assignee dataset, we estimate entity fre-

quency by the number of patents held by the entity.
For the Music Artist dataset, entity frequency is es-
timated by the number of entity occurrences in the
Last-FM-1k dataset (Last.fm; Celma, 2010). For
the disease dataset, we do not have frequency infor-
mation and so sampling is performed uniformly at
random. For each dataset, 300 queries are selected
for use in the development set and 4000 queries for
use in the test set. Each query is paired with up
to 1000 negative examples of each type mentioned
above. For training, we also construct datasets
using the approaches above for creating negative
examples.

Figure 3 illustrates how negative (and pos-
itive) examples are generated for the query
peace agreement (which is used to re-
fer to the entities wiki/Peace_Treaty and
wiki/Lancaster_House_Agreement). 4-
Hop (negative) aliases include Peace Support
Operations and peacekeeping troops
and 6-Hop (negative) examples include UN
Peacekeeping and Blue beret. Note that
for each type of negative example, any mention
that is a true positive alias of the query is excluded
from being a negative example, even if it satisfies
one of the above heuristics.

4 Experiments

We evaluate STANCE directly via alias detection
and also indirectly via cross document coreference.
We also conduct an ablation study in order to un-
derstand the contribution of each of STANCE’s
three components to its overall performance.

4.1 Alias Detection

In the first experiment, we compare STANCE with
both classic and learned similarity models in alias
detection. Specifically, we compare STANCE to
following approaches:
• Deep Conflation Model (DCM) – state of

the art model that encodes each string using
a 1-dimensional CNN applied to character n-
grams and computes cosine similarity (Gan
et al., 2017). We use the available code 4.
• Learned Dynamic Time Warping (LDTW)

– encode mentions using a bidirectional LSTM
and compute similarity via dynamic time
warping (DTW). We note equivalence be-
tween LDTW and weighted finite state trans-

4github.com/zhegan27/Deep_Conflation_
Model

github.com/zhegan27/Deep_Conflation_Model
github.com/zhegan27/Deep_Conflation_Model
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Data Unique Strings Entity Count Avg. Num. of Mentions/Ent Avg. TP/Ent (Dev) Avg. TP/Ent (Test)
W 9.32 × 106 4.64 × 106 2.54 ± 4.65 125.01 ± 356.45 80.31 ± 317.42

WP 1.88 × 106 1.16 × 106 1.83 ± 2.06 9.82 ± 23.71 10.53 ± 43.35
A 3.30 × 105 2.27 × 105 1.501 ± 2.64 30.76 ± 63.46 11.42 ± 25.02
M 1.83 × 106 1.16 × 106 1.694 ± 3.23 5.08 ± 13.63 9.20 ± 136.28
D 7.69 × 104 1.19 × 104 6.67 ± 9.10 7.21 ± 10.60 7.46 ± 10.72

Table 1: Qualities of the 5 created datasets. True positive are correct entity aliases included in the dev or test set.

Ours Alias Detection Ablation

Data STANCE Lev JW LCS Sdx CRF LSTM DCM LDTW -CNN -LSTM -OT
W .416 .238 .297 .332 .294 .299 .230 .288 .362 .208 .287 .340

WP .594 .246 .283 .397 .308 .515 .328 .352 .413 .234 .411 .538
A .906 .720 .850 .622 .733 .780 .790 .782 .903 .797 .838 .910
M .597 .296 .328 .293 .354 .319 .399 .509 .396 .250 .403 .475
D .417 .206 .244 .191 .259 .162 .247 .437 .347 .230 .252 .360

Table 2: Mean Average Precision (MAP).

ducers where the transducer topology is the
edit distance (insert, delete, swap) program.
Parameters are learned such that DTW dis-
tance is meaningful (Cuturi and Blondel,
2017).
• LSTM – represent each mention using the

final hidden state of a bidirectional LSTM.
Similarity is the dot product of mention repre-
sentations (i.e. S|m||m′|).
• Classic Approaches – Levenshtein Distance

(Lev), Jaro-Winkler distance (JW), Longest
Common Subsequence (LCS).
• Phonetic Relaxation (Sdx) – transform men-

tions using the Soundex phonetic mapping
and then compute Levenshtein.
• CRF – implementation 5 of the model defined

in (McCallum et al., 2005).
Given a query mention, q, and a set of candidate

mentions, we use each model to rank candidates
by similarity to q. We compute the mean average
precision (MAP) and hits at k = {1, 10, 50} of the
ranking with respect to a set of ground truth labeled
aliases. We report MAP and hits at k averaged over
all test queries. The set of candidates for query
q include all corresponding positive and negative
examples from the test set (Section 3).

For models with hyperparameters, we tune the
hyperparameters on the dev set using a grid search
over: embedding dimension, learning rate, hid-
den state dimension, and number of filters (for
the CNN). All models were implemented in Py-
Torch, utilizing SinkhornAutoDiff 6, and optimized
with Adam (Kingma and Lei Ba, 2015). Our

5github.com/dirko/pyhacrf
6github.com/gpeyre/SinkhornAutoDiff

implementation is publicly available 7.

4.2 Ablation Study

Our second experiment is designed to reveal the
purpose of each of STANCE’s components. To do
so, we compare variants of STANCE with compo-
nents removed and/or modified. Specifically, we
compare the following variants:
• WITHOUT-OT (-OT) – STANCE with

LSTM encodings and CNN scoring but with-
out optimal transport-based alignment.
• CNN-TO-LINEAR (-CNN) – STANCE

with the CNN scoring model replaced by a
linear scoring model. Again, the optimal
transport-based alignment is removed.
• LSTM-TO-BINARY (-LSTM) – A binary

similarity matrix (Sij = I[mi = m′j ]) and
CNN scoring model, designed to assess the
importance of the initial mention encodings.
Once more, the optimal transport-based align-
ment is removed.

We evaluate each model variant using MAP and
hits at k on the 5 datasets as in the first experiment.
Results can be found in Table 2 and Table 3, respec-
tively. We note that these ablations are equivalent
to the models proposed by Traylor et al. (2017).

4.3 Results and Analysis

Table 2 and Table 3 contain the MAP and hits at k
(respectively) for each method and dataset (for alias
detection and ablation experiments). The results
reveal that with the exception of the disease dataset,
STANCE (or one of its variants) performs best in
terms of both metrics. The results suggest that the

7github.com/iesl/stance

github.com/dirko/pyhacrf
github.com/gpeyre/SinkhornAutoDiff
github.com/iesl/stance
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Ours Alias Detection Ablation

Data K STANCE Lev JW LCS Sdx CRF LSTM DCM LDTW -CNN -LSTM -OT
1 .698 .553 .630 .569 .545 .599 .436 .610 .570 .358 .509 .586

W 10 .599 .380 .471 .450 .381 .464 .383 .440 .525 .355 .444 .515
50 .604 .373 .488 .441 .366 .474 .448 .431 .556 .446 .507 .556
1 .744 .434 .506 .570 .422 .648 .421 .528 .456 .300 .550 .680

WP 10 .708 .397 .397 .475 .323 .646 .469 .459 .573 .357 .544 .665
50 .766 .417 .488 .517 .370 .716 .745 .546 .729 .547 .672 .745
1 .942 .850 .920 .726 .808 .867 .863 .881 .926 .821 .870 .932

A 10 .932 .805 .896 .738 .746 .840 .870 .841 .947 .879 .904 .950
50 .966 .847 .930 .817 .789 .896 .927 .883 .970 .940 .946 .970
1 .698 .442 .475 .417 .382 .465 .460 .614 .406 .251 .483 .562

M 10 .690 .369 .386 .398 .328 .371 .538 .623 .532 .388 .525 .581
50 .806 .448 .506 .502 .430 .452 .707 .746 .716 .595 .682 .743
1 .589 .514 .517 .458 .451 .410 .449 .630 .508 .314 .381 .505

D 10 .521 .266 .300 .285 .260 .232 .329 .499 .455 .334 .349 .475
50 .638 .305 .395 .371 .324 .316 .470 .571 .600 .497 .511 .604

Table 3: Hits at K.

optimal transport and CNN-based alignment scor-
ing components of STANCE lead to a more robust
model of similarity than inner-product based mod-
els, like LSTM and DCM. We hypothesize that
using n-grams as opposed to individual characters
embeddings is advantageous on the disease dataset,
leading to DCM’s top performance. Surprisingly,
-OT is best on the assignee dataset. We hypothesize
that this is due to many corporate acronyms.

To better understand STANCE’s performance
and improvement over the baseline methods we
provide analysis of particular examples highlight-
ing two advantages of the model: it leverages op-
timal transport for noise reduction, and it uses its
CNN-based scoring function to learn non-standard
similarity-preserving string edit patterns that would
be difficult to learn with classic edit operations (i.e.,
insert, delete and substitute).

Noise Reduction. Since the model leverages dis-
tributed representations for characters, it often dis-
covers many similarities between the characters
in two mentions. For example, Figure 4a shows
two strings that are not aliases of the same entity.
Despite this, there are many regions of high sim-
ilarity due to multiple instances of the character
bigrams aa, an and en in both mentions. In exper-
iments, we find that this leads the -OT model astray.
However, STANCE’s optimal transport compo-
nent constructs a transport plan that contains little
alignment between the characters in the mentions
as seen in Figure 4b, which displays the product
of the similarity matrix and the transportation plan.
Ultimately, this leads STANCE to correctly predict
that the two strings are not similar.

(a) Similarity Matrix.

(b) Noise Filtered

Figure 4: Noise Filtering: OT effectively reduces
noise in the similarity matrix even when many charac-
ter n-grams are common to both mentions (Teen Bahu-
raaniyaan / Saath Saath Banayenge Ek Aashi).

Token Permutation. A natural and frequently
occurring similarity-preserving edit pattern that oc-
curs in our datasets is token permutation, i.e., the
tokens of two aliases of the same entity are ordered
differently in each mention. For example, consider
the similarity matrix in Figure 5b. The CNN easily
learns that two strings may be aliases of the same
entity even if one is a token permutation of the
other. This is because it identifies multiple con-
tiguous “diagonal lines” in the similarity matrix.
Classic and learned string similarity measures do
not learn this relationship easily.

4.4 Cross Document Coreference

We evaluate the impact of using STANCE for
in cross-document coreference in the Twitter at
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(a) Similarity (b) Similarity x Transport

Figure 5: Token Permutation: STANCE learns that
token permutations preserve string similarity (Paul
Lieberstein / Lieberstein, Paul).

Method Dev B3 F1 Test B3 F1
Ours (HAC + STANCE) 93.5 82.5

Green (Spelling Only) 78.0 77.2
Green (with Context) 88.5 79.7
Phylo (Spelling Only) 96.9 72.3
Phylo (with Context) 97.4 72.1

Phylo (with Context & Time) 97.7 72.3

Table 4: Cross Document Coreference Results on Twit-
ter at the Grammy’s Dataset. Baseline results from
(Dredze et al., 2016).

the Grammy’s dataset (Dredze et al., 2016). This
dataset consists of 4577 mentions of 273 entities in
tweets published close in time to the 2013 Grammy
awards. We use the same train/dev/test partition
with data provided by the authors 8. The dataset
is notable for having significant variation in the
spellings of mentions that refer to the same entity.
We design a simple cross-document coreference
model that ignores the mention context and simply
uses STANCE trained on the WikiPPL model. We
perform average linkage hierarchical agglomera-
tive clustering using STANCE scores as the link-
age function and halt agglomerations according to
a threshold (i.e., no agglomerations with linkage
below the threshold are performed). We tune the
threshold on the development set by finding the
value which gives the highest evaluation score (B3

F1). We compare our method to the previously pub-
lished state of the art methods (Green (Green et al.,
2012) and Phylo (Andrews et al., 2014)). Both
of these methods report numbers using their name
spelling features alone as well as with context fea-
tures. We find that our approach outperforms both
methods (including those using context features)
on the test dataset in terms of B3 F1 (Table 4).

8bitbucket.org/mdredze/tgx

5 Related Work

Classic string similarity methods based on string
alignment include Levenshtein distance, Longest
Common Subsequence, Needleman and Wunsch
(1970), and Smith and Waterman (1981).

Sequence modeling and alignment is a widely
studied problem in both theoretical and applied
computer science and is too vast to be properly cov-
ered entirely. We note that the most relevant prior
work focuses on learned string edit models and in-
cludes the work of McCallum et al. (2005) which
uses a model based on CRFs, and Bilenko and
Mooney (2003) which uses a SVM-based model.
Andrews et al. (2012, 2014) developed a genera-
tive model, which is used for joint cross document
coreference and string edit modeling tasks. Closely
related work also appears in the field of compu-
tational morphology (Dreyer et al., 2008; Faruqui
et al., 2016; Rastogi et al., 2016). Much of this
work uses WFSTs with learned parameters. JRC-
Names (Steinberger et al., 2011; Ehrmann et al.,
2017) is a dataset that stores multilingual aliases of
person and organization entities.

Similar neural network architectures to our ap-
proach have been used for related sequence align-
ment problems. Santos et al. (2017) uses an RNN
to encode toponyms before using a multi-layer per-
ceptron to determine if a pair of toponyms are
matching. The Match-SRNN computes a similarity
matrix over two sentence representations and uses
an RNN applied to the matrix in a manner akin
to the classic dynamic program for question an-
swering and IR tasks (Wan et al., 2016). A similar
RNN-based alignment approach was also used for
phoneme recognition (Graves, 2012). Many pre-
vious works have studied character-level models
(Kim et al., 2016b; Sutskever et al., 2011).

Alias detection also bears similarity to natural
language inference tasks, where instead of aligning
characters to determine if two mentions refer to
the same entity, the task is to aligns words to deter-
mine if two sentences are semantically equivalent
(Bowman et al., 2015; Williams et al., 2018).

Optimal transport and the related Wasserstein
distance is studied in mathematics, optimization,
and machine learning (Peyré et al., 2017; Villani,
2008). It has notably been used in the NLP commu-
nity for modeling the distances between documents
(Kusner et al., 2015; Huang et al., 2016) as the
cost of transporting embedded representations of
the words in one document to the words of the an-

bitbucket.org/mdredze/tgx
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other, in point cloud-based embeddings (Frogner
et al., 2019), and in learning word correspondences
across languages and domains. (Alvarez-Melis and
Jaakkola, 2018; Alvarez-Melis et al., 2019).

String similarity models are crucial to record
linkage, deduplication, and entity linking tasks.
These include author coreference (Levin et al.,
2012), record linkage in databases (Li et al., 2015),
and record linkage systems with impactful down-
stream applications (Sadosky et al., 2015).

6 Conclusion

In this work, we present STANCE, a neural model
of string similarity that is trained end-to-end. The
main components of our model are: a character-
level bidirectional LSTM for character encoding,
a soft alignment mechanism via optimal transport,
and a powerful CNN for scoring alignments. We
evaluate our model on 5 datasets created from pub-
licly available knowledge bases and demonstrate
that it outperforms the baselines in almost all cases.
We also show that using STANCE improves upon
state of the art performance in cross-document
coreference in the Twitter at the Grammy’s dataset.
We analyze our trained model and show that its
optimal transport component helps to filter noise
and that is has the capacity to learn non-standard
similarity-preserving string edit patterns.

In future work, we hope to further study the
connections between our optimal transport-based
alignment method and methods based on attention.
We also hope to consider connections to work on
probabilistic latent representation of permutations
and matchings (Mena et al., 2018; Linderman et al.,
2018). Additionally, we hope to apply STANCE to
a wider-range of entity resolution tasks, for which
string similarity is a component of model that con-
siders additional features such as the natural lan-
guage context of the entity mention.
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