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Abstract
While neural machine translation (NMT) has
achieved remarkable success, NMT systems
are prone to make word omission errors. In
this work, we propose a contrastive learn-
ing approach to reducing word omission er-
rors in NMT. The basic idea is to enable the
NMT model to assign a higher probability to
a ground-truth translation and a lower proba-
bility to an erroneous translation, which is au-
tomatically constructed from the ground-truth
translation by omitting words. We design dif-
ferent types of negative examples depending
on the number of omitted words, word fre-
quency, and part of speech. Experiments on
Chinese-to-English, German-to-English, and
Russian-to-English translation tasks show that
our approach is effective in reducing word
omission errors and achieves better translation
performance than three baseline methods.

1 Introduction

While neural machine translation (NMT) has
achieved remarkable success (Sutskever et al.,
2014; Bahdanau et al., 2015; Vaswani et al., 2017),
there still remains a severe challenge: NMT sys-
tems are prone to omit essential words on the
source side, which severely deteriorate the ade-
quacy of machine translation. Due to the lack of
interpretability of neural networks, it is hard to ex-
plain how these omission errors occur and design
methods to eliminate them.

Existing methods for reducing word omission
errors in NMT have focused on modeling cover-
age (Tu et al., 2016; Mi et al., 2016; Wu et al.,
2016; Wang et al., 2016; Tu et al., 2017). The cen-
tral idea is to model the fertility (i.e., the number
of corresponding target words) of a source word
based on attention weights to avoid word omis-
sion. Although these methods prove to be effec-
tive in modeling coverage for NMT, they heav-
ily rely on the attention weights provided by the
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RNNsearch model (Bahdanau et al., 2015). Since
the attention weights between input and output are
not readily available in the state-of-the-art Trans-
former model (Vaswani et al., 2017), it is hard for
existing methods to be directly applicable. As a
result, it is important to develop model-agnostic
methods for addressing the word omission prob-
lem in NMT.

In this paper, we propose a simple and effective
contrastive learning approach to reducing word
omission errors in NMT. The basic idea is to max-
imize the margin between the probability of a
ground-truth translation and that of an erroneous
translation for a given source sentence. The er-
roneous translations are automatically constructed
via omitting words among the ground-truth trans-
lations. We design several types of erroneous
translations in respect of omission counts, word
frequency, and part of speech. Our approach has
the following advantages:

• Model agnostic. Our approach is applica-
ble to all existing NMT models. Only the
training objective and training data need to
be changed.

• Language independent. Our approach is in-
dependent of languages and can be applied to
arbitrary languages.

• Fast to train. Contrastive learning starts with
a pre-trained NMT model and usually con-
verges in only hundreds of steps.

We evaluate our approach on German-to-
English, Chinese-to-English, and Russian-to-
English translation tasks. Experiments show that
contrastive learning can not only effectively re-
duce word omission errors but also achieve better
translation performance than existing methods in
both automatic and human evaluations.



6192

2 A Contrastive Learning Approach

Let x be a source sentence and y be a target sen-
tence. We use P (y|x;θ) to denote an NMT model
parameterized by θ. Given trained parameters θ̂,
the translation of a source sentence is given by

ŷ = argmax
y

{
P (y|x; θ̂)

}
(1)

During decoding process, the NMT model
chooses the candidate sentence with the high-
est probability as the output translation. When
a word omission error occurs, erroneous transla-
tions, which are mistakenly assigned with higher
probabilities, are more likely to be chosen than
ground-truth translations. Therefore, to reduce
word omission errors, the probability that the
NMT model assigns to an erroneous translation
must be lower than that of a ground-truth trans-
lation.

Our proposed contrastive learning method is
shown in Algorithm 1 , which consists of three
steps. In the first step, the model is trained using
maximum likelihood estimation (MLE) on a paral-
lel corpus (lines 1-2). In the second step, negative
examples are automatically constructed by omit-
ting words in ground-truth translations (line 3). In
the third step, the model is finetuned using con-
trastive learning with the estimates of MLE as a
starting point.

More formally, given a parallel training set
D = {〈x(s),y(s)〉}Ss=1, the first step is to find a
set of model parameters that maximizes the log-
likelihood of the training set:

θ̂MLE = argmax
θ

{
L(θ)

}
, (2)

where the log-likelihood is defined as

L(θ) =
S∑

s=1

logP (y(s)|x(s);θ) (3)

The second step is to construct negative ex-
amples based on the ground-truth parallel corpus.
Given a ground-truth sentence pair 〈x,y〉 from the
parallel training set D, an erroneous sentence pair
〈x, ỹ〉 can be automatically constructed by omit-
ting words from the translation y in the ground-
truth sentence pair. In this work, we distinguish
between three methods for omitting words:

• Random omission. One or more source words
are omitted according to a random uniform
distribution.

Algorithm 1 Contrastive Learning for NMT

Input: D = {〈x(s),y(s)〉}Ss=1

Output: θ̂CL

1: Obtain θ̂MLE using maximum likelihood esti-
mation on D with random initialization;

2: Construct D̃ = {〈x(s), ỹ(s)〉}Ss=1 based on D
automatically;

3: Obtain θ̂CL using contrastive learning on D̃
with θ̂MLE as a starting point.

• Omission by word frequency. One or more
source words are omitted according to word
frequencies.

• Omission by part of speech. One or more
source words are omitted according to parts
of speech.

Contrastive learning starts with the model pa-
rameters trained by MLE. Our contrastive learn-
ing approach is equipped with a max-margin loss.
The max-margin loss ensures that the margins of
the log-likelihood between the ground-truth pairs
and the contrastive examples are higher than the
setting η:

θ̂CL = argmin
θ

{
J(θ)

}
, (4)

where the max-margin loss is defined as

J(θ)=
S∑

s=1

max

{
N∑

n=1

logP (ỹ(s)
n |x(s);θ)+η

−N logP (y(s)|x(s);θ), 0

}
. (5)

For each ground-truth sentence pair 〈x(s),y(s)〉,
it is possible to sample N negative examples
〈x(s), ỹ

(s)
1 〉, . . . , 〈x(s), ỹ

(s)
N 〉. For simplicity, we

set N = 1 and use D̃ = {〈x(s), ỹ(s)〉}Ss=1 in our
experiments.

3 Experiments

We evaluated the proposed method on Chinese-
to-English, German-to-English, and Russian-to-
English translation tasks.

3.1 Setup
For the Chinese-to-English translation task, we
use the WMT 2017 dataset as the training set,
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which is composed of the News Commentary v12,
UN Parallel Corpus v1.0, and CWMT corpora.
The training set contains 25M sentence pairs. The
newsdev2017 and newstest2017 datasets are used
as the development set and test set, respectively.
For the German-to-English translation task, we
use the WMT 2017 dataset as the training set,
which consists of 6M preprocessed sentence pairs.
The newstest2014 and newstest2017 datasets are
used as the development set and test set, respec-
tively. For the Russian-to-English translation task,
we use the WMT 2017 preprocessed dataset as
the training set, which consists of 25M prepro-
cessed sentence pairs. The newstest2015 and new-
stest2016 datasets are used as the development set
and test set, respectively.

Following Sennrich et al. (2016b), we split
words into sub-word units. The numbers of merge
operations in byte pair encoding (BPE) for both
language pairs are set to 32K. After performing
BPE, the training set of the Chinese-to-English
task contains 550M Chinese sub-word units and
615M English sub-word units, the training set
of the German-to-English task consists of 157M
German sub-word units and 153M English sub-
word units, and the training set of the Russian-to-
English task consists of 653M Russian sub-word
units and 629M English sub-word units.

We used three baselines in our experiments:

• MLE: Maximum likelihood estimation. The
setting of hyper-parameters is the same with
(Vaswani et al., 2017);

• MLE + CP: Imposing the coverage penalty
(Wu et al., 2016) constraint on the decoding
process of MLE. We treat the softmax weight
matrix in the uppermost “encoder-decoder at-
tention” layer of Transformer as the attention
weight matrix to calculate coverage penalty;

• WordDropout: Implementing the word
dropout technique proposed by Sennrich
et al. (2016a) during MLE training.

For our contrastive learning method, we com-
pare different settings of erroneous training set D̃:

• CLone/two/three: D̃ is constructed via omit-
ting one/two/three words randomly from the
ground-truth translations in D;

• CLlow/high: D̃ is constructed via omitting the
word with the lowest/highest frequency from
each ground-truth translation in D;

Figure 1: Visualization of margin differences between
CLone and MLE on 500 sampled sentence pairs. We
use red to highlight sentence pairs on which CLone

achieves a larger margin than MLE. Blue points de-
note MLE achieves a higher margin.

• CLV/IN: D̃ is constructed via omitting
one verb or preposition randomly from the
ground-truth translation in D. The part-of-
speech information is given by the Stanford
Parser (Manning et al., 2014).

3.2 Comparison of Margins
To find out whether CL increases the margin com-
pared with MLE, we calculate the following mar-
gin difference for a ground-truth sentence pair
〈x,y〉 and an erroneous sentence pair 〈x, ỹ〉:

∆M=logP (y|x; θ̂CL)−logP (ỹ|x; θ̂CL)−
logP (y|x; θ̂MLE)+logP (ỹ|x; θ̂MLE) (6)

Figure 1 shows the margin difference between
CLone and MLE on 500 sampled sentence pairs
from the training set for the Chinese-to-English
task. “Sentence length” denotes the sum of the
lengths of the source and target sentences (i.e.,
|x| + |y|). Red points denote sentence pairs on
which CLone has a larger margin than MLE (i.e.,
∆M > 0), while the blue ones denote the ∆M <
0 case. We find that CLone has a larger margin
than MLE on 95% of the 500 sampled sentence
pairs, with an average margin difference of 1.4.

3.3 Automatic Evaluation Results
Table 1 shows the results of automatic evaluation
on Chinese-to-English, German-to-English, and
Russian-to-English translation tasks. The evalu-
ation metric is case-insensitive BLEU score (Pap-
ineni et al., 2002). Contrastive learning starts with
the model parameters trained by MLE and con-
verges in only 150 steps. For fair comparison, all
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Method Zh-En De-En Ru-En
MLE 23.90 34.88 31.24
MLE + CP 24.04 34.93 31.36
WordDropout 23.73 34.63 31.05
CLone 24.92 ++∗∗†† 35.74 ++∗∗†† 32.04 ++∗∗††

CLtwo 24.76 ++∗∗†† 35.54 ++∗∗†† 31.94 ++∗††

CLthree 24.52 +∗†† 35.44 ++∗†† 32.20 ++∗∗††

CLlow 24.13 † 34.96 † 31.47 ++†

CLhigh 24.77 ++∗∗†† 35.24 ++†† 31.70 ++††

CLV 24.12 † 35.02 †† 31.73 ++∗††

CLIN 24.71 ++∗∗†† 35.26 +∗†† 31.76 ++∗††

Table 1: Automatic evaluation results on Chinese-to-English, German-to-English, and Russian-to-English transla-
tion tasks. Contrastive learning starts with the model parameters trained by MLE and converges in only 150 steps.
For fair comparison, all the models of MLE, MLE + CP, and MLE + data are trained for another 150 steps as
well, but yielding no further improvement. “+”: significantly better than MLE (p < 0.05). “++”: significantly
better than MLE (p < 0.01). “∗”: significantly better than MLE + CP (p < 0.05). “∗∗”: significantly better than
MLE + CP (p < 0.01).“†”: significantly better than WordDropout (p < 0.05). “††”: significantly better than
WordDropout (p < 0.01).

Method Flu. Ade.

Evaluator 1

MLE 4.31 4.25
MLE + CP 4.31 4.31
WordDropout 4.29 4.25
CLone 4.32 4.58

Evaluator 2

MLE 4.27 4.22
MLE + CP 4.26 4.25
WordDropout 4.25 4.23
CLone 4.27 4.53

Table 2: Human evaluation results on the Chinese-to-
English task. “Flu.” denotes fluency and “Ade.” de-
notes adequacy. Two human evaluators who can read
both Chinese and English were asked to assess the flu-
ency and adequacy of the translations. The scores of
fluency and adequacy range from 1 to 5.

the models of MLE, MLE+CP, and MLE+data
are trained for another 150 steps as well, but yield-
ing no further improvement.

We observe that with negative examples syn-
thesized properly, our contrastive learning method
significantly outperforms MLE, MLE + CP, and
WordDropout on all three language pairs.

An interesting finding is that omitting high-
frequency source words (i.e., CLhigh) achieves
significantly better results than omitting low-
frequency source words (i.e., CLlow) for all three
language pairs, which suggests that standard NMT
models tend to omit high-frequency source words
rather than low-frequency words.

Method Zh-En De-En Ru-En
MLE 362 221 471
MLE + CP 265 200 383
WordDropout 245 168 351
CLone 122 138 250

Table 3: Comparison of error counts on the test sets.
CL denotes the contrastive learning method with the
highest BLEU score, which is CLone for the Chinese-
to-English and German-to-English tasks and CLthree

for the Russian-to-English task.

The experiment on omission by part of speech
further confirms this finding as omitting high-
frequency prepositions (i.e., CLIN) leads to bet-
ter results than omitting low-frequency verbs (i.e.,
CLV).

3.4 Human Evaluation Results

Table 2 shows the results of human evaluation on
the Chinese-to-English task. We asked two hu-
man evaluators who can read both Chinese and
English to evaluate the fluency and adequacy of
the translations generated by MLE, MLE + CP,
MLE + data, and CLone. The scores of fluency
and adequacy range from 1 to 5. The translations
were shuffled randomly, and the name of each
method was anonymous to human evaluators.

We find that CLone significantly improves the
adequacy over all baselines. This is because omit-
ting important information in source sentences de-
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creases the adequacy of translation. CLone is
capable of alleviating this problem by assigning
lower probabilities to translations with word omis-
sion errors.

To further quantify to what extent our approach
reduces word omission errors, we asked human
evaluators to manually count word omission er-
rors on the test sets of all the translation tasks. Ta-
ble 3 shows the error counts. We find that CLone

achieves significant error reduction as compared
with MLE, MLE + CP, and WordDropout for
all the three language pairs.

4 Related Work

Our work is related to two lines of research: mod-
eling coverage for NMT and contrastive learning
in NLP.

4.1 Modeling Coverage for NMT

The notion of coverage dates back to conven-
tional phrase-based statistical machine translation
(Koehn et al., 2003). A coverage vector, which is
used to indicate whether a source phrase is trans-
lated or not during the decoding process, ensures
that each source phrase is translated exactly once.
As there are no latent variables defined on lan-
guage structures in neural networks, it is hard to
directly introduce coverage into NMT. As a result,
there are two strategies. The first strategy is to
modify the model architectures to incorporate cov-
erage (Tu et al., 2016; Mi et al., 2016), which re-
quires considerable expertise. The second strategy
is to impose constraints on the decoding process
(Wu et al., 2016).

Our work differs from prior studies in that con-
trastive learning is model agnostic. All previous
coverage-based methods heavily rely on attention
weights between source and target words to derive
coverage for source words. Such attention weights
are not readily available for all NMT models. In
contrast, our method can be used to fine-tune arbi-
trary NMT models to reduce word omission errors
in only hundreds of steps.

4.2 Contrastive Learning in NLP

Contrastive learning has been widely used in nat-
ural language processing. For instance, word
embeddings are usually learned by the noise
contrastive estimation method (Gutmann and
Hyvärinen, 2012): a negative example is synthe-
sized by randomly selecting a word from the vo-

cabulary to replace a word in a ground-truth exam-
ple (Vaswani et al., 2013; Mnih and Kavukcuoglu,
2013; Bose et al., 2018).

Contrastive learning has also been investi-
gated in neural language modelling (Huang et al.,
2018), unsupervised word alignment (Liu and
Sun, 2015), order embeddings (Vendrov et al.,
2016; Bose et al., 2018), knowledge graph embed-
dings (Yang et al., 2015; Lin et al., 2015; Bose
et al., 2018) and caption generation (Mao et al.,
2016; Vedantam et al., 2017).

The closest work to ours is (Wiseman and Rush,
2016), which leverages contrastive learning during
beam search with the golden reference sentences
as positive examples and the current output sen-
tences as contrastive examples. While they focus
on improving the capability of Seq2Seq model to
capture global dependencies, we focus on reduc-
ing word omission errors of Transformer model
effectively.

5 Conclusion

We have presented contrastive learning for reduc-
ing word omission errors in neural machine trans-
lation. Contrastive examples are automatically
constructed by omitting words from the ground-
truth translations. Our approach is model-agnostic
and can be applied to arbitrary NMT models. Ex-
periments show that our approach significantly re-
duces omission errors and improves translation
performance on three language pairs.
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