@inproceedings{ive-etal-2019-distilling,
title = "Distilling Translations with Visual Awareness",
author = "Ive, Julia and
Madhyastha, Pranava and
Specia, Lucia",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1653/",
doi = "10.18653/v1/P19-1653",
pages = "6525--6538",
abstract = "Previous work on multimodal machine translation has shown that visual information is only needed in very specific cases, for example in the presence of ambiguous words where the textual context is not sufficient. As a consequence, models tend to learn to ignore this information. We propose a translate-and-refine approach to this problem where images are only used by a second stage decoder. This approach is trained jointly to generate a good first draft translation and to improve over this draft by (i) making better use of the target language textual context (both left and right-side contexts) and (ii) making use of visual context. This approach leads to the state of the art results. Additionally, we show that it has the ability to recover from erroneous or missing words in the source language."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ive-etal-2019-distilling">
<titleInfo>
<title>Distilling Translations with Visual Awareness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Ive</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pranava</namePart>
<namePart type="family">Madhyastha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous work on multimodal machine translation has shown that visual information is only needed in very specific cases, for example in the presence of ambiguous words where the textual context is not sufficient. As a consequence, models tend to learn to ignore this information. We propose a translate-and-refine approach to this problem where images are only used by a second stage decoder. This approach is trained jointly to generate a good first draft translation and to improve over this draft by (i) making better use of the target language textual context (both left and right-side contexts) and (ii) making use of visual context. This approach leads to the state of the art results. Additionally, we show that it has the ability to recover from erroneous or missing words in the source language.</abstract>
<identifier type="citekey">ive-etal-2019-distilling</identifier>
<identifier type="doi">10.18653/v1/P19-1653</identifier>
<location>
<url>https://aclanthology.org/P19-1653/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>6525</start>
<end>6538</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Distilling Translations with Visual Awareness
%A Ive, Julia
%A Madhyastha, Pranava
%A Specia, Lucia
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F ive-etal-2019-distilling
%X Previous work on multimodal machine translation has shown that visual information is only needed in very specific cases, for example in the presence of ambiguous words where the textual context is not sufficient. As a consequence, models tend to learn to ignore this information. We propose a translate-and-refine approach to this problem where images are only used by a second stage decoder. This approach is trained jointly to generate a good first draft translation and to improve over this draft by (i) making better use of the target language textual context (both left and right-side contexts) and (ii) making use of visual context. This approach leads to the state of the art results. Additionally, we show that it has the ability to recover from erroneous or missing words in the source language.
%R 10.18653/v1/P19-1653
%U https://aclanthology.org/P19-1653/
%U https://doi.org/10.18653/v1/P19-1653
%P 6525-6538
Markdown (Informal)
[Distilling Translations with Visual Awareness](https://aclanthology.org/P19-1653/) (Ive et al., ACL 2019)
ACL
- Julia Ive, Pranava Madhyastha, and Lucia Specia. 2019. Distilling Translations with Visual Awareness. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6525–6538, Florence, Italy. Association for Computational Linguistics.