@inproceedings{madhyastha-etal-2019-vifidel,
title = "{VIFIDEL}: Evaluating the Visual Fidelity of Image Descriptions",
author = "Madhyastha, Pranava and
Wang, Josiah and
Specia, Lucia",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1654/",
doi = "10.18653/v1/P19-1654",
pages = "6539--6550",
abstract = "We address the task of evaluating image description generation systems. We propose a novel image-aware metric for this task: VIFIDEL. It estimates the faithfulness of a generated caption with respect to the content of the actual image, based on the semantic similarity between labels of objects depicted in images and words in the description. The metric is also able to take into account the relative importance of objects mentioned in human reference descriptions during evaluation. Even if these human reference descriptions are not available, VIFIDEL can still reliably evaluate system descriptions. The metric achieves high correlation with human judgments on two well-known datasets and is competitive with metrics that depend on and rely exclusively on human references."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="madhyastha-etal-2019-vifidel">
<titleInfo>
<title>VIFIDEL: Evaluating the Visual Fidelity of Image Descriptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pranava</namePart>
<namePart type="family">Madhyastha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josiah</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address the task of evaluating image description generation systems. We propose a novel image-aware metric for this task: VIFIDEL. It estimates the faithfulness of a generated caption with respect to the content of the actual image, based on the semantic similarity between labels of objects depicted in images and words in the description. The metric is also able to take into account the relative importance of objects mentioned in human reference descriptions during evaluation. Even if these human reference descriptions are not available, VIFIDEL can still reliably evaluate system descriptions. The metric achieves high correlation with human judgments on two well-known datasets and is competitive with metrics that depend on and rely exclusively on human references.</abstract>
<identifier type="citekey">madhyastha-etal-2019-vifidel</identifier>
<identifier type="doi">10.18653/v1/P19-1654</identifier>
<location>
<url>https://aclanthology.org/P19-1654/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>6539</start>
<end>6550</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VIFIDEL: Evaluating the Visual Fidelity of Image Descriptions
%A Madhyastha, Pranava
%A Wang, Josiah
%A Specia, Lucia
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F madhyastha-etal-2019-vifidel
%X We address the task of evaluating image description generation systems. We propose a novel image-aware metric for this task: VIFIDEL. It estimates the faithfulness of a generated caption with respect to the content of the actual image, based on the semantic similarity between labels of objects depicted in images and words in the description. The metric is also able to take into account the relative importance of objects mentioned in human reference descriptions during evaluation. Even if these human reference descriptions are not available, VIFIDEL can still reliably evaluate system descriptions. The metric achieves high correlation with human judgments on two well-known datasets and is competitive with metrics that depend on and rely exclusively on human references.
%R 10.18653/v1/P19-1654
%U https://aclanthology.org/P19-1654/
%U https://doi.org/10.18653/v1/P19-1654
%P 6539-6550
Markdown (Informal)
[VIFIDEL: Evaluating the Visual Fidelity of Image Descriptions](https://aclanthology.org/P19-1654/) (Madhyastha et al., ACL 2019)
ACL