@inproceedings{hu-etal-2019-looking,
title = "Are You Looking? Grounding to Multiple Modalities in Vision-and-Language Navigation",
author = "Hu, Ronghang and
Fried, Daniel and
Rohrbach, Anna and
Klein, Dan and
Darrell, Trevor and
Saenko, Kate",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1655/",
doi = "10.18653/v1/P19-1655",
pages = "6551--6557",
abstract = "Vision-and-Language Navigation (VLN) requires grounding instructions, such as {\textquotedblleft}turn right and stop at the door{\textquotedblright}, to routes in a visual environment. The actual grounding can connect language to the environment through multiple modalities, e.g. {\textquotedblleft}stop at the door{\textquotedblright} might ground into visual objects, while {\textquotedblleft}turn right{\textquotedblright} might rely only on the geometric structure of a route. We investigate where the natural language empirically grounds under two recent state-of-the-art VLN models. Surprisingly, we discover that visual features may actually hurt these models: models which only use route structure, ablating visual features, outperform their visual counterparts in unseen new environments on the benchmark Room-to-Room dataset. To better use all the available modalities, we propose to decompose the grounding procedure into a set of expert models with access to different modalities (including object detections) and ensemble them at prediction time, improving the performance of state-of-the-art models on the VLN task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hu-etal-2019-looking">
<titleInfo>
<title>Are You Looking? Grounding to Multiple Modalities in Vision-and-Language Navigation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ronghang</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Fried</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rohrbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Darrell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Saenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Vision-and-Language Navigation (VLN) requires grounding instructions, such as “turn right and stop at the door”, to routes in a visual environment. The actual grounding can connect language to the environment through multiple modalities, e.g. “stop at the door” might ground into visual objects, while “turn right” might rely only on the geometric structure of a route. We investigate where the natural language empirically grounds under two recent state-of-the-art VLN models. Surprisingly, we discover that visual features may actually hurt these models: models which only use route structure, ablating visual features, outperform their visual counterparts in unseen new environments on the benchmark Room-to-Room dataset. To better use all the available modalities, we propose to decompose the grounding procedure into a set of expert models with access to different modalities (including object detections) and ensemble them at prediction time, improving the performance of state-of-the-art models on the VLN task.</abstract>
<identifier type="citekey">hu-etal-2019-looking</identifier>
<identifier type="doi">10.18653/v1/P19-1655</identifier>
<location>
<url>https://aclanthology.org/P19-1655/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>6551</start>
<end>6557</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Are You Looking? Grounding to Multiple Modalities in Vision-and-Language Navigation
%A Hu, Ronghang
%A Fried, Daniel
%A Rohrbach, Anna
%A Klein, Dan
%A Darrell, Trevor
%A Saenko, Kate
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F hu-etal-2019-looking
%X Vision-and-Language Navigation (VLN) requires grounding instructions, such as “turn right and stop at the door”, to routes in a visual environment. The actual grounding can connect language to the environment through multiple modalities, e.g. “stop at the door” might ground into visual objects, while “turn right” might rely only on the geometric structure of a route. We investigate where the natural language empirically grounds under two recent state-of-the-art VLN models. Surprisingly, we discover that visual features may actually hurt these models: models which only use route structure, ablating visual features, outperform their visual counterparts in unseen new environments on the benchmark Room-to-Room dataset. To better use all the available modalities, we propose to decompose the grounding procedure into a set of expert models with access to different modalities (including object detections) and ensemble them at prediction time, improving the performance of state-of-the-art models on the VLN task.
%R 10.18653/v1/P19-1655
%U https://aclanthology.org/P19-1655/
%U https://doi.org/10.18653/v1/P19-1655
%P 6551-6557
Markdown (Informal)
[Are You Looking? Grounding to Multiple Modalities in Vision-and-Language Navigation](https://aclanthology.org/P19-1655/) (Hu et al., ACL 2019)
ACL