@inproceedings{lee-etal-2019-convlab,
    title = "{C}onv{L}ab: Multi-Domain End-to-End Dialog System Platform",
    author = "Lee, Sungjin  and
      Zhu, Qi  and
      Takanobu, Ryuichi  and
      Zhang, Zheng  and
      Zhang, Yaoqin  and
      Li, Xiang  and
      Li, Jinchao  and
      Peng, Baolin  and
      Li, Xiujun  and
      Huang, Minlie  and
      Gao, Jianfeng",
    editor = "Costa-juss{\`a}, Marta R.  and
      Alfonseca, Enrique",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P19-3011/",
    doi = "10.18653/v1/P19-3011",
    pages = "64--69",
    abstract = "We present ConvLab, an open-source multi-domain end-to-end dialog system platform, that enables researchers to quickly set up experiments with reusable components and compare a large set of different approaches, ranging from conventional pipeline systems to end-to-end neural models, in common environments. ConvLab offers a set of fully annotated datasets and associated pre-trained reference models. As a showcase, we extend the MultiWOZ dataset with user dialog act annotations to train all component models and demonstrate how ConvLab makes it easy and effortless to conduct complicated experiments in multi-domain end-to-end dialog settings."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2019-convlab">
    <titleInfo>
        <title>ConvLab: Multi-Domain End-to-End Dialog System Platform</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sungjin</namePart>
        <namePart type="family">Lee</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Qi</namePart>
        <namePart type="family">Zhu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ryuichi</namePart>
        <namePart type="family">Takanobu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zheng</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yaoqin</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiang</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jinchao</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Baolin</namePart>
        <namePart type="family">Peng</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiujun</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Minlie</namePart>
        <namePart type="family">Huang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jianfeng</namePart>
        <namePart type="family">Gao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marta</namePart>
            <namePart type="given">R</namePart>
            <namePart type="family">Costa-jussà</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Enrique</namePart>
            <namePart type="family">Alfonseca</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present ConvLab, an open-source multi-domain end-to-end dialog system platform, that enables researchers to quickly set up experiments with reusable components and compare a large set of different approaches, ranging from conventional pipeline systems to end-to-end neural models, in common environments. ConvLab offers a set of fully annotated datasets and associated pre-trained reference models. As a showcase, we extend the MultiWOZ dataset with user dialog act annotations to train all component models and demonstrate how ConvLab makes it easy and effortless to conduct complicated experiments in multi-domain end-to-end dialog settings.</abstract>
    <identifier type="citekey">lee-etal-2019-convlab</identifier>
    <identifier type="doi">10.18653/v1/P19-3011</identifier>
    <location>
        <url>https://aclanthology.org/P19-3011/</url>
    </location>
    <part>
        <date>2019-07</date>
        <extent unit="page">
            <start>64</start>
            <end>69</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ConvLab: Multi-Domain End-to-End Dialog System Platform
%A Lee, Sungjin
%A Zhu, Qi
%A Takanobu, Ryuichi
%A Zhang, Zheng
%A Zhang, Yaoqin
%A Li, Xiang
%A Li, Jinchao
%A Peng, Baolin
%A Li, Xiujun
%A Huang, Minlie
%A Gao, Jianfeng
%Y Costa-jussà, Marta R.
%Y Alfonseca, Enrique
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F lee-etal-2019-convlab
%X We present ConvLab, an open-source multi-domain end-to-end dialog system platform, that enables researchers to quickly set up experiments with reusable components and compare a large set of different approaches, ranging from conventional pipeline systems to end-to-end neural models, in common environments. ConvLab offers a set of fully annotated datasets and associated pre-trained reference models. As a showcase, we extend the MultiWOZ dataset with user dialog act annotations to train all component models and demonstrate how ConvLab makes it easy and effortless to conduct complicated experiments in multi-domain end-to-end dialog settings.
%R 10.18653/v1/P19-3011
%U https://aclanthology.org/P19-3011/
%U https://doi.org/10.18653/v1/P19-3011
%P 64-69
Markdown (Informal)
[ConvLab: Multi-Domain End-to-End Dialog System Platform](https://aclanthology.org/P19-3011/) (Lee et al., ACL 2019)
ACL
- Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Zheng Zhang, Yaoqin Zhang, Xiang Li, Jinchao Li, Baolin Peng, Xiujun Li, Minlie Huang, and Jianfeng Gao. 2019. ConvLab: Multi-Domain End-to-End Dialog System Platform. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 64–69, Florence, Italy. Association for Computational Linguistics.