@inproceedings{ruder-etal-2019-unsupervised,
title = "Unsupervised Cross-Lingual Representation Learning",
author = "Ruder, Sebastian and
S{\o}gaard, Anders and
Vuli{\'c}, Ivan",
editor = "Nakov, Preslav and
Palmer, Alexis",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-4007/",
doi = "10.18653/v1/P19-4007",
pages = "31--38",
abstract = "In this tutorial, we provide a comprehensive survey of the exciting recent work on cutting-edge weakly-supervised and unsupervised cross-lingual word representations. After providing a brief history of supervised cross-lingual word representations, we focus on: 1) how to induce weakly-supervised and unsupervised cross-lingual word representations in truly resource-poor settings where bilingual supervision cannot be guaranteed; 2) critical examinations of different training conditions and requirements under which unsupervised algorithms can and cannot work effectively; 3) more robust methods for distant language pairs that can mitigate instability issues and low performance for distant language pairs; 4) how to comprehensively evaluate such representations; and 5) diverse applications that benefit from cross-lingual word representations (e.g., MT, dialogue, cross-lingual sequence labeling and structured prediction applications, cross-lingual IR)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ruder-etal-2019-unsupervised">
<titleInfo>
<title>Unsupervised Cross-Lingual Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Vulić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this tutorial, we provide a comprehensive survey of the exciting recent work on cutting-edge weakly-supervised and unsupervised cross-lingual word representations. After providing a brief history of supervised cross-lingual word representations, we focus on: 1) how to induce weakly-supervised and unsupervised cross-lingual word representations in truly resource-poor settings where bilingual supervision cannot be guaranteed; 2) critical examinations of different training conditions and requirements under which unsupervised algorithms can and cannot work effectively; 3) more robust methods for distant language pairs that can mitigate instability issues and low performance for distant language pairs; 4) how to comprehensively evaluate such representations; and 5) diverse applications that benefit from cross-lingual word representations (e.g., MT, dialogue, cross-lingual sequence labeling and structured prediction applications, cross-lingual IR).</abstract>
<identifier type="citekey">ruder-etal-2019-unsupervised</identifier>
<identifier type="doi">10.18653/v1/P19-4007</identifier>
<location>
<url>https://aclanthology.org/P19-4007/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>31</start>
<end>38</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Cross-Lingual Representation Learning
%A Ruder, Sebastian
%A Søgaard, Anders
%A Vulić, Ivan
%Y Nakov, Preslav
%Y Palmer, Alexis
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F ruder-etal-2019-unsupervised
%X In this tutorial, we provide a comprehensive survey of the exciting recent work on cutting-edge weakly-supervised and unsupervised cross-lingual word representations. After providing a brief history of supervised cross-lingual word representations, we focus on: 1) how to induce weakly-supervised and unsupervised cross-lingual word representations in truly resource-poor settings where bilingual supervision cannot be guaranteed; 2) critical examinations of different training conditions and requirements under which unsupervised algorithms can and cannot work effectively; 3) more robust methods for distant language pairs that can mitigate instability issues and low performance for distant language pairs; 4) how to comprehensively evaluate such representations; and 5) diverse applications that benefit from cross-lingual word representations (e.g., MT, dialogue, cross-lingual sequence labeling and structured prediction applications, cross-lingual IR).
%R 10.18653/v1/P19-4007
%U https://aclanthology.org/P19-4007/
%U https://doi.org/10.18653/v1/P19-4007
%P 31-38
Markdown (Informal)
[Unsupervised Cross-Lingual Representation Learning](https://aclanthology.org/P19-4007/) (Ruder et al., ACL 2019)
ACL
- Sebastian Ruder, Anders Søgaard, and Ivan Vulić. 2019. Unsupervised Cross-Lingual Representation Learning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, pages 31–38, Florence, Italy. Association for Computational Linguistics.