
A RATIONAL RECONSTRUCTION OF THE PROTEUS SENTENCE PLANNER 

Graeme Ritchie 

Department of Artificial Intelligence 
University of Edinburgh, Hope Park Square 

Edinburgh EH8 9NW 

ABSTRACT 

A revised and more structured version of 
Davey's discourse generation program has been 
implemented, which constructs the underlying forms 
for sentences and clauses by using rules which 
annotate and segment the initial sequence of events 
in various ways. 

i. The Proteus Program 

The text generation program designed and im- 
plemented by Davey (1974,1978) achieved a high 
level of fluency in the generation of small para- 
graphs of English describing events in a limited 
domain (games of "tic-tac-toe"/"noughts-and- 
crosses"). Although that work was completed ten 
years ago, the performance is still impressive by 
current standards. The program could play a game 
of "noughts-and-crosses" with a user, then produce 
a fluent sunmmry of what had happened during the 
game(whether or not the game was complete). For 
example: 

The game began with your taking a corner, and 
I took the middle of an adjacent edge. If you had 
taken the corner opposite the one which you had 
just taken, you would have threatened me, but you 
took the one adjacent to the square which I had 
just taken. The game hasn't finished yet. 

As well as heuristics for actually playing a 
game, the program contained rules for text genera- 
tion, which could be regarded as having the follow- 
ing components (this is not a decomposition used by 
Davey, but an organisation imposed here in order to 
clarify the processing): 

(a) Sentence planner 
(b) Description constructor 
(c) Systems network 

The third (syntactic) component, is a major 
part of the original Proteus program, and Davey 
included a very detailed systemic grammar (in the 
style of Hudson (1971)) for the area of English he 
was concerned with; consequently the written 
accoun~ (Davey (1974,1978)) deal mainly with these 
grammatical aspects. However, much of the fluency 
of the discourses produced by Proteus seems to 
derive from the crucial computations performed by 

This research was supported by SERC grants 
GR/B/9874.6 and GR/C/8845.1. 

components (a) and (b), since the syntactic system 
is largely set up to convert deep representations 
into surface tokens, without too much regard for 
global contextual factors. Unfortunately, the 
written accounts give only a rough informal outline 
of how these components operated. A completely re- 
vised version of Proteus has been implemented in 
Prolog on a DEC System iO, and this paper describes 
the working of its sentence planner. The system 
outlined below is not an exact replication of 
Davey's program, but is a "rational reconstruction'~ 
that'is, an attempt to present a slightly cleaner, 
more general method, based on Davey's ideas and 
performing the same specific task as Proteus. 
Paradoxically, this cleaning up process may lead to 
minor losses of fluency, where particular effects 
were gained in Proteus by slightly ad hoc measures. 

2. The Sentence Planner 

The module which creates the overall clausal 
structure of each sentence works on a list of 
numbers representing the course of a game (complete 
or unfinished), where each square is represented by 
a number between i and 9. The processing carried 
out by the sentence planner can be seen as 
occurring in three logical phases: 

i. move annotation 
2. sentence segmentation 
3. case-frame linking 

Although these stages are logically distinct, 
they need not occur wholly in temporal sequence. 
However, the abstract model is clearer if viewed 
in separate stages. 

2.1. Move Annotation 

The system has a set of heuristic rules 
which enable it to play noughts-and-crosses to a 
reasonable standard. (A non-optimal set of rules 
helps to introduce some variety into the play). 
It uses these move-generating rules to work through 
the history of the game, computing at each position 
which move it would have made for that situation 

and which move-generating rule gives rise to the 
move actually made at that point. This allows it 
to mark the actual move in the given history with 
certain tactical details, using the implicit 
assumption that whoever made the moves had the same 
knowledge of the game as the system itself does. 
The five move-generators are totally ordered to 
reflect a "priority" or "significance" with 

327 



respect to the game, and each move-generator is 
labelled with one of three categories - "defen- 
sive" (e.g. blocking the third square in an 
opponent's near-complete line), "offensive" (e.g. 
creating a near-complete line, which thus 
threatens the opponent) or "neutral" (e.g. taking 
a square to start the game). In addition to basic 
organisational entries (square taken, name of 
player, pointer to preceding move, pointer to 
following move), the annotation of the moves 
contains the following information: 

(a) generating heuristic(s) - there is a 
list, in priority order, of the heuristics 
which could have given rise to that move. 

(b) tactically equivalent alternatives - for 
each heuristic listed in (a), there is a 
list of the other squares which could 
also have resulted from that heuristic. 

(c) lines involved - for each square 
mentioned in the various entries, there 
is a note of which lines (if any) were 
(or would have been) tactically involved 
in that move. 

(d) better move - if there is a higher 
priority heuristic that would give rise 
to a different choice of square, an 
annotated description of that "better" 
move is attached. 

For example, the game described by the 
discourse in Section 1 above would initially be 
just a sequence of square-numbers, together with 
the name of the first player: 

user 1 2 3 

After annotation, the third move (square 3) 
would have the following information attached: 

square : 3 
heuristics/alternatives : take [9 8 7 6 5 4) 
better move : 

square : 9 (i 5 9) 
heuristics/alternatives : 

threaten f7 (i 4 7) 5 (i 5 9) 4 (I 4 7)] 

2.2 Sentence Segmentation 

The sentence segmentation process 
involves grouping the annotated moves into 
clusters so that each cluster contains an 
appropriate amount of information for one sentence. 
This uses the following guidelines, in the 
following order, to determine the number of moves 
within a sentence: 

i. If there is just one move left in the 
sequence, that must be a single sentence. 

2. If there are just two moves left, they 
form a single sentence. 

3. If a move is a "mistake" (i.e. there is a 
tactically better alternative) then start 
a new sentence to describe it. This is 

quite a dominant principle, in that the 
system will perform "look-ahead" of two 
(actual) moves in the annotated chain to 
check if there is a mistake looming up. 

4. If a move is a combined attack and defenc~ 
give it a sentence to itself. 

5. If this move is an attack, and the next 
move successfully thwarts that attack, 
then put these two moves into a sentence 
on their own. 

6. Put the next three moves in a sentence. 
(No more than three moves may occur in a 
single sentence structure). 

As well as segmenting the moves, this module 
attaches to each move a tag indicating its overall 
tactical relationship to the preceding moves. 
This is a gross summary of some of the tactical 
information provided by the annotator, and encodes 
much of the information needed by the next stage 
(case-frame linking). There are four tag-values 
used - "consequence" (the move is a result of the 
preceding one), "thwart" (the move prevents an 
attack by the preceding one), "mistake" (the move 
is a failure to make the best possible move), and 
"null" (an all-purpose default). 

2.3 Case-frame Linkin$ 

Once the moves have been annotated, 
grouped and tagged, their descriptions can be 
constructed and linked together, to form the 
internal structure of the sentence. In this 
process, various case-frame structures are com- 
puted from the information attached to each move, 
and are placed in order, linked by various 
relationships. There may be, within a sentence, 
several descriptions associated with a single 
move, since it is possible for more than one 
aspect of a move to be mentioned. In each case- 
frame structure, the other roles will contain 
suitable fillers - e.g. the square taken (for a 
"take" description), or the other player (for a 
"threat") - which are computable from the anno- 
tations. Each such case-frame description will 
eventually give rise to a full tensed clause. In 
addition, some of these case-frames will have, 
embedded within them on the "method" case-role, 
further simple case-frames which will eventually 
give rise to adjuncts to the tensed clause in the 
form of verb phrases (e.g. "...by taking a 
corner.."). Hence the linking process involves 
selecting those descriptive structures (from the 
annotations) which are to be expressed linguisti- 
cally, formulating these as filled case-frame~, 
and labelling the relationships between these 
descriptions. Relationships between case-frame 
descriptions are indicated by attaching to each 
case-frame a "link" symbol indicating its relation 
to the surrounding discourse (either within that 
sentence, or across the preceding sentence 
boundary). This process is non-deterministic in 
the sense that there are usually several equally 
good ways of expressing a given move or sequence 
of moves within a sentence. The program contains 

328 



rules for all such possibilities, and works 
through all the possible combinations using a 
simple depth-first search. The case-frame 
construction also determines the clausal structure 
of the sentence, in that the nesting or con- 
joining of clauses is fixed at this stage. The 
clausal structure does not allow recursive 
levels - there are, for example, no verbs with 
sentential complements. The case-frame construc- 
tion and tagging depends on the links inserted 
by the sentence-segmenter, together with three 
items of information from the annotations on the 
moves - whether the move has two aspects, defen- 
sive and offensive; any "better" move that has 
been attached; and whether the tactic-name 
uniquely defines, within the context, which square 
must have been taken. The case-frame construction 
and linking proceeds according to certain 
guidelines: 

I. if the move is a "mistake", indicate that 
by describing both the better move and 
the actual move. 

2. if a move has two possible descriptions, 
one "offensive" and the other "defensive", 
describe both aspects. 

3. if a move has two possible descriptions 
which have the same classification within 
the set {neutral, offensive, defensive}, 
then choose the most significant (as 
determined by the priority ordering of 
tactics). 

4. if two consecutive (actual) moves are 
such that the second one prevents an 
attack made by the first, then select the 
tactics corresponding to these aspects to 
describe them. 

5. if there are no "offensive" or "defensive" 
aspects listed, use the simple "take" 
form. 

The following rule is also applied to all 
moves described: if the square taken is not 
uniquely determined by the tactic-name, and the 
tactic-name is not "take", then create a "take" 
case-frame describing the move, and either make 
it into a separate conjoined clause (if the move 
has a sentence to itself) or attach it to the main 
case-frame as the "method". 

Since the aim of the current project is to 
use this discourse domain as a "back-end" for 
experimenting with functional unification grammar 
(Kay (1979)), the sentence planner has to produce 
"fuctional descriptions" to indicate the under- 
lying grau~natical form for each sentence. The 
linked case-frames are therefore reformulated 
into functional descriptions, with the links 
attached to the front of each clause determining 
two aspects of the syntactic structure - the 
lexical item (if any) to be used as "binder" or 
"connective" at the front of the clause (again, a 
non-deterministic choice), and the grammntical 
features (e.g. modality, aspect) to be added to 
the clause in addition to those default settings 

programmed into the system. The ten possible 
"links", with their possible surface realisations 
are: 

hypothetical 
altho although 
condante if 
condconse 
sequence 
external-contrast however 
internal-contrast but 
conjunction and 
internal-result and so 
external-result consequently 

as a result 

In addition, the first four of the above 
links cause the clause to have perfect aspect, 
"hypothetical" and "altho" cause the presence of 
the modality "can", and "condconse" results in 
the modality "will". (Notice that "could" is 
regarded as the past tense of "can", and "would" 
as the past tense of "will"). 

3. Possible Generalisations 

After establishing a suitably implementation 
independent description of the processing 
necessary to achieve the behaviour of Proteus, 
the next step should be to try to extract some 
general notion of how to describe a sequence of 
events. The domain used here (tic-tac-toe) has 
the unusually convenient feature that there is a 
basic canonical form for representing (in a 
relatively neutral, primitive form) what the 
sequence of events was. That is, the original 
list of moves is a non-grammatical representation 
of the world events to be described. It is not 
realistic to make such an assumption in general, 
so a more abstract model may have to take up the 
planning process at a slightly later stage, when 
moves already have some form of "descriptions". 

REFERENCES 

Davey, Anthony (1974) The Formalisation of 
Discourse Production. Ph.D. Thesis, University 
of Edinburgh. 

Davey, Anthony (1978) Discourse Production. 
Edinburgh: Edinburgh University Press. 

Hudson, Richard (1971) English Complex Sentences. 
Amsterdam: North Holland. 

Kay, Martin (1979) Functional Grammar. Pp.142- 
158 in Proceedings of the Fifth Annual Meeting 
of the Berkeley Linguistics Society. Berkeley, 
CA: University of California. 

329 


