
Semantic Rule Based Text Generation

Michael L. Mauldin

Department of Computer Science

Carnegie-Mel lon University

Pittsburgh, Pennsylvania 15213 USA

A B S T R A C T

This paper presents a semantically oriented, rule based
method for single sentence text generation and discusses
its implementation in the Kafka generator. This generator is
part of the XCALIBUR natural language interface developed
at CMU to provide natural language facilities for a wide
range of expert systems and data bases. Kafka takes as
input the knowledge representation used in XCALIBUR
system and incrementally transforms it first into conceptual
dependency graphs and then into English?

1. Introduction
Transformational text generators have traditionally

emphasized syntactic processing. One example is Bates
ILIAD system which is based on Chomsky's theory of
transformational generative grammar [1]. Another is Mann's
Nigel program, based on the systemic grammar of Halliday
[4]. In contrast, other text generators have emphasized

semantic processing of text, most notably those systems
based on case grammar such as Goldman's BABEL
generator[7] and Swanout's GIST[9] . Kafka combines
etements of both paradigms in the generation of English
text.

Kafka is a rule based English sentence generator used in
the XCALIBUR natural language interface. Kafka uses a
transformational rule interpreter written in Franz Lisp.
These transformations are used to convert the XCALIBUR
knowledge representation to conceptual dependency
graphs and then into English text. Kafka includes
confirmational information in the generated text, providing
sufficient redundancy for the user to ascertain whether his
query/command was correctly understood.

The goal of this work has been to simplify the text
generation process by providing a single computational
formalism of sufficient power to implement both semantic
and syntactic processing. A prototype system has been
written which demonstrates the feasibility of this approach
to single sentence text generation.

1This research is part of the XCALIBUR project at CMU. Digital
Equipment Corporation has funOed this project as part of its artificial
intelligence program. XCALIrrJuR was initially based on software
developed at CMU. Members of the XCALISUR team include: Jaime
CarbonelL Mark Boggs, Micl~ael Mauldin, Peter Anick, Robert Frederking,
Ira Mon~'~rch. Steve rt,~o, ris~ on and Scott Sailer

2. The XCALIBUR Natural Language Interface
XCALIBUR is a natural language interface to expert

systems. It is primarily a front-end for the XCON/XSEL
expert systems developed by John McDermott [5].
XCALIBUR supports mixed-initiative dialogs which allow the
user to issue commands, request data, and answer system
queries in any desired order. XCALIBUR correctly
understands some forms of ellipsis, and incorporates
expectation directed spelling correction as error recovery
steps to allow the processing of non-grammatical user input.

Figure 2.1 shows the gross structure of the XCALIBUR
interface. Figure 2-2 shows some typical user queries and
the corresponding responses from the generator z. More
details about XCALIBUR can be found in [2].

XCALIBUR EXPERTS

dialog dypar H , ~

. . . .

Figure 2.1: The XCALIBUR Natural Language Interface

3. Declarative Knowledge Representation
The XCALIBUR system uses a case-frame based

inter/ingua for communication between the components. To
provide as nearly canonical a representation as possible,
the semantic information in each case-frame is used to
determine the major structure of the tree, and any syntactic
information is stored at the leaves of the semantic tree. The "
resulting case-frame can be converted into a canonical
representation by merely deleting the leaves of the tree.
The canonical representation is very useful for handling
ellipsis, since phrases such as "dual port disk" and "disk
with two ports" are represented identically. Figure
3-1 shows a sample query and its representation with purely
syntactic information removed.

2These responses include confirmational text to assure the user that
hie query has been understood. Without this requirement, these
sentences would have been rendered using anaphora, resulting in It costs
38000 do~late, or even just 38000 dollars, See section 5.3.

376

+ What is the largest 11780 f ixed disk under
$40,0O0?

The rpO7.aa is a 516 MB fixed pack disk that
costs 38000 dollars.

÷ Tell me about the I xy l 1.
The Ixyl 1 is a 240 I/m line printer with plotting

capabilities.

Tell me al l about the largest dual port disk
with removable pack.

The rmO5-ba is a 39140 dollar 256 MB dual port
disk with removable pack, 1200 KB peak
transfer rate and 38 ms access time.

+ What is the pr ice of the largest single por t
disk?

The 176 MB single port rpO6-aa costs 34000
dollars.

Figure 2-2: Sample Queries and Responses

÷ What is the price of the two largest single port disks?

(*clause
(head (*factual-query))
(destination (*default))
(object

(*nominal
(head (price))
(of

(*nomlnal
(head (disk))
(ports (value {1)))
(size (value (*descending))

(range-high (1))
(range-low (2))
(range-origin

(*absolute)))
(determiner (*def))))

(determiner (.der))))
(level (*main))
(verb

(°conjugation
(root (be))
(mode (* interrogative))
(tense (*present))
(number (*s ingular)))))

Figure 3-1 : A Sample Case-frame

4. The Kafka Generator
Kafka is used to build replies to user queries, to

paraphrase the user's input for clarificational dialogs, and to
generate the system's queries for the user. Figure
4-1 shows the major components and data flow of the Kafka
generator. Either one or two inputs are provided: (1) a case
frame in the XCALIBUR format, and (2) a set of tuples from
the information broker (such as might be returned from a
relational database). Either of these may be omitted. Four
of the seven major components of Kafka use the
transformational formalism, and are shown in bold outlines.

query

I 1

H - I

H°°i--n"

English

Figure 4-1 : Data flow in the Kafka Generator

4.1. Relation to Other Systems
Kafka is a direct descendant of an earlier natural

language generator described in [2], which in turn had many
components either derived from or inspired by Goldman's
BABEL generator [7]. The case frame knowledge
representation used in XCALIBUR has much in common
with Schank's Conceptual Dependency graphs i8]. The
earlier XCALIBUR generator was very much ad hoc, and
Kafka is an effort to formalize the processes used in that
generator. The main similarity between Kafka and BABEL is
in the verb selection process (described in section 5).

The embedded transformational language used by Kafka
was inspired by the OPS5 programming language
developed by Forgy at CMU [3]. o r s 5 was in fact an early
candidate for the implementation of Kafka, but OPS,5
supports only flat data structures. Since the case frame
knowledge representation used in XCALIBUR is highly
recursive, an embedded language supporting case frame
matches was developed. The kafka programming language
can be viewed as a production system with only a single
working memory element and a case frame match rather
than the flat match used in ors,5.

4.2. Transformational Rules
Some of the transformation rules in Kafka were derived

from the verb selection method of BABEL, and others were
derived taken from TGG rules given in [10]. Although Kafka
has been based mainly on the generative grammar theory of
Chomsky, the rule syntax allows much more powerful rules

377

than tl~ose allowed in either the standard or extended
standard theory. We have tried to provide a sufficiently
powerful formalism to encode more than one grammatical
tradition, and have not restricted our rules to any particular
linguistic convention. Our goal has not been to validate any
linguistic theory but rather to demonstrate the feasibility of
using a single computational mechanism for text
generation.

The basic unit of knowledge in XCALIBUR is the case
lrame. Kafka repeatedly transforms case frames into other
case frames until either an error is found, no pattern
matches, or a surface level case frame is generated. The
surface case frame is converted into English by render,
which traverses the case frame according to the sentence
plan, printing out lexical items. A transformation is defined
by an ordered set of rules.

Each rule has up to four parts:
=A pattern, which is matched against the

current node. This match, if successful, usually
binds several local variables to the sub-
expressions matched.

• A result, which is another case frame with
variables at some leaves. These variables are
replaced with the values found during the
match. This process is called instantiation.

= An optional va r iab le check, the name of a lisp
function which takes a binding list as input and
returns either nil which causes the rule to fail,
or a new binding list to be used in the
instantiation phase. This feature allows
representation of functional constraints.

• An optional f inal flag, indicating that the output
from this rule should be returned as the value of
the rule set's transformation.

A transformation is applied to a case frame by first
recursively matching and instantiating the sub-cases of the
expression and then transforming the parent node.
Variables match either a single s-expression or a list of
them. For example = HEAD would match either an atom or a
list, = "REST would match zero or more s-expressions, and
= +OTHER would match one or more s-expressions. If a
variable occurs more than once in a pattern, the first binds a
value to that variable, and the second and subsequent
occurrences must match that binding exactly.

This organization is very similar to that of the ILIAD
program developed by Bates at BBN [1]. The pattern, a
result, and variable check correspond to the structural
description, structural change, and condition of Bates'
transformational rules, with only a minor variation in the
semantics of each operation. The ILIAD system, though, is
very highly syntax oriented (since the application is teaching
English grammar to deaf children) and uses semantic
information only in lexical insertion. The rules in Kafka
perform both semantic and syntactic operations.

4.3. A Sample Rule
Figure 4-2 sample rule from the Kafka grammar for the

XCALIBUR domain. The rule takes a structure of the form
The price ot X is FO0 and converts it to X costs FO0. More
sophisticated rules for verb selection check for semantic

agreement between various slot fillers, but this rule merely
encodes knowledge about the relationship between the
PRICE attribute and the COST verb. Figure 4-3 shows an input
structure that this rule would match; Figure 4-4 shows the
structure which would be returned.

(R query-to-declare active-voice-cost
(cd (pr imi t ive (be))

(actor (*nominal
(head: (pr ice))
(or =x)
='other))

(object =y)
=*be-rest)

=>
(cd (pr imi t ive (cost))

(actor =x)
(object =y)
=be-rest))

Figure 4-2: Rule 'active-voice-cost'

(cd (pr imi t ive (be))
(actor

(*nominal (head: (price))
(of (*nominal (ports (1))

(size
(*descending

(range-low: (1))
(range-high: (2))
(range-origin:
(*absolute))))

(heed: (disk))
(determiner: (*def))))

(determiner: (*def))))
(object (*unknown (head: (pr ice))))
(destination (*defaul t))
(]evel: (*main))
(tense: (*present))
(number: (*s ingular)))

Figure 4-3: Input Case Frame

(cd (primitive (cost))
(actor

(*nominal
(ports (1))
(size

(*descending
(range-low: (1))
(range-high: (2))
(range-origin:

(*absolute))))
(head: (disk))
(determiner: (*def))))

(object (*unknown (head: (pr ice))))
(destination ('de fau l t))
(level: ('main))
(tense: (*present))
(number: (*s ingular)))

Figure 4-4: Output Case Frame

5. The G e n e r a t i o n P rocess
The first step in the generation process is preprocessing,

which removes a lot of unnecessary fields from each case
frame. These are mostly syntactic information left by the
parser which are not used during the semantic processing
of the query. Some complex input forms are converted into
simpler forms. This step provides a high degree of
insulation between the XCALIBUR system and the text
generator, since changes in the XCALIBUR representation

378

can be caught and converted here before any of Kafka's
internal rules are affected.

In the second phase (not used when paraphrasing user
input) the case frame is converted from a query into a
declarative response by filling some slots with ("UNKNOWN)
place-holders. Next the re~at module replaces these place-
holders with information from the back-end (usually data
from the XCON static database). The result is a CD graph
representing a reply for each item in the user's query, with
all the available data filled in.

In the third phase of operation, the verb transform selects
an English verb for each underlying CD primitive. Verb
selection is very similar to that used by Goldman in his
BABEL generator [7], except that BABEL uses hand-coded
discrimination nets to select verbs, while Kafka keeps the
rules separate. A rule compiler is being written which builds
these discrimination nets automatically. The D-nets are
used to weed out rules which cannot possibly apply to the
current structure. Since the compiler in not yet installed,
Kafka uses an interpreter which tries each rule in turn.

After verb selection, the np-instantiation transform
provides texical items for each of the adjectives and nouns
present in each CD graph. Finally the order module
linearizes the parse tree by choosing an order for the cases
and deciding whether they need case markers. The final
sentence is produced by the render module, which
traverses the parse tree according to the sentence plan
produced by order, printing the lexical items from each leaf
node.

5.1. A Sample Run
The following is a transcript of an actual generation run

which required 30 seconds of CPU time on a VAX 11/780
running under Franz Lisp. Most of the system's time is
wasted by attempting futile matches during the first part of
the match/instantiate loop. The variable parse1 has been
set by the parser to the case frame shown in Figure 3-1. The
variable data1 is the response from the information broker
to the user's query. This transcript shows the Kafka system
combining these two inputs to produce a reply for the user
including (1) the answer to his direct query and (2) the
information used by the information broker to determine that
answer.

-> (or int data1)

((name class number-of-megabytes ports price)
((rp07-aa disk 510 1 38000)))

-> (render-resul~ Rprsel datal~

Applying rules for preparso...

Rule ' input-str ing-delet ion' applied...
Rule ' input-str ing-delet ion' applied.,.
Rule 'posit ion-deletion' applied...
Rule 'property-fronting1' applied...
Rule ' input-str ing-delet ion' applied...
Rule 'posit ion-delet ion' applied...
Rule 'property-fronting1' applied...
Rule ' input-str ing-delet ion' applied...
Rule 'modifiers-breakout' applied...
Rule 'modifiers-breakout' applied...
Rule 'modifiers-deletion' applied...
Rule ' input-str ing-de]et ion' applied...
Rule 'project' applied...
Rule ' Input-str ing-delet ion' applied...
Rule 'cases-breakout' applied...
Rule 'cases-breakout' applied...
Rule 'cases-deletion' applied...

Applying rules for query-to-declare...

Rule ' fact-to*cd' applied...
Rule 'active-voice-cost' applied...

Applylng rules for verb-select...

Rule 'cd-cost' applied.. .

Applying rules for np-instanttate...

Rule 'k- largest ' applied. . .
Rule 'size-delet ion' applied.. .
Rule 'prenominal-megabytes' applied,. .
Rule 'prenominal-single-port' applied.. .
Rule 'nominal-price' applied.. .

(cr (verb (cost))
(agent

(*nominal
(head: (disk))
(prenominal: (516 M8) (single port))
(determiner: (*def))
(name (rp07-aa))))

(object
(*nominal

(head: (dol lar))
(determiner: (*generic))
(count (38000)777

(destination (*default))
(level: (*main))
(mode: (declarative))
(voice: (active))
(tense: (*present))
(number: (singular))
(person: (th i rd))
(subject: (agent))
(plan: ((unmarked agent) *verb (unmarked object)))
(verb-conj: (costs)))

And the resulting surface string is:

The 516 MB single port rpO7-aa costs 38000 dollars.

5.2. Generating Anaphora
Kafka has minimal capability to generate anaphora. A

discourse history is kept by the dialog manager which maps
each nominal case frame to a surface noun phrase.
Anaphoric references are generated by choosing the
shortest noun phrase representing the nominal not already
bound to another nominal. Thus the pronoun it could only
refer to a single item. Each noun phrase is generated in the
output order, so the discourse history can be used to make
decisions about anaphoric reference based on what the
user has read p to that point. This technique is similar to but
less sophisticated than that used by McDonald[6].
Generation of anaphora is inhibited when new information
must be displayed to the user, or when confirmational text is
to be included.

5.3. Confirmational Information
Speakers in a conversation use redundancy to ensure

that all parties understand one another. This redundancy
can be incorporated into natural language interfaces by
"echoing," or including additional information such as
paraphrases in the generated text to confirm that the
computer has chosen the correct meaning of the user's
input, For example, of the user asks:

+ What is the price of the largest single port disk?

379

The following reply, while strictly correct, is likely to be
unhelpful, and does not reassure the user that the meaning
of the query has been properly understood:

34000 dollars.

The XCALIBUR system would answer with the following
sentence which not only answers the user's question, but
includes evidence that the system has correctly determined
the user's request:

The 176 MB single port rpO6-aa costs 34000 dollars.

XCALIBUR uses focus information to provide echoing. As
each part of the user's query is processed, all the attributes
of the object in question which are needed to answer the
queryare recorded. Then the generator assures that the
value of each of these attributes is presented in the final
output.

6. Summary and Future Work
The current prototype of the Kafka generator is running

and generating text for both paraphrases and responses for
the XCALIBUR system. This system demonstrates the
feasibility of the semantic transformational method of text
generation. The transformational rule formalism allows
much simpler specification of diverse syntactic and
semantic computations than the hard-coded lisp used in the
previous version of the XCALIBUR generator.

Current work on Kafka is focused on three goals: first,
more grammar rules are necessary to increase coverage.
Now that the basic method has been validated, the grammar
will be extended to cover the entire XCALIBUR domain. The
second goal is making Kafka more efficient. Most of the
system's time is spent trying matches that are doomed to
fail. The discrimination network now being added to the
system will avoid these pointless matches, providing the
speed required in an interactive system like XCALIBUR. The
third goal is formalizing the remaining ad hoc phases of the
generator. Four of seven major components now use
transformations; two of these seem amenable to the
transformational method. The case ordering can easily be
done by transformations. Converting the semantic
processing done by the relat module will be more difficult,
since the rule interpreter will have to be expanded to allow
multiple inputs.

7. Acknow ledgments
Many thanks to Karen Kukich for her encouragement and

for access to her wealth of literature on text generation. I
would also like to thank Jaime Carbonell for his criticism
and suggestions which were most helpful in revising earlier
drafts of this paper.

References

1. Bates, M. and Wilson, K., "Final Report, ILIAD,
Interactive Language Instruction Assistance for the
Deaf," Tech. report, Bolt Berank and Newman, 1981,
No. 4771.

2. Carbonell, J.G., Boggs, W.M., Mauldin, M.L. and
Anick, P.G., "The XCALIBUR Project, A Natural
Language Interface to Expert Systems," Proceedings
of the Eighth International Joint Conference on
Artificial Intelligence, 1983.

3. Forgy, C.L., "OPS5 User's Manual," Tech. report,
Dept. of Computer Science, Carnegie-Mellon
University, 1981, CMU-CS-81-135.

4. Mann, W.C., "An Overview of the Nigel Text
Generation Grammar," Proceedings of the 21st
Meeting of the Association for Computational
Linguistics, 1983, pp. 79-84.

5. McDermott, J., "RI: A Rule-Baeed Configurer of
Computer Systems," Tech. report, Dept. of Computer
Science, Carnegie-Mellon University, 1980.

6. McDonald, D.D., "Subsequent Reference: Syntactic
and Rhetorical Constraints," Theoretical Issues in
Natural Language Processing-2, 1978, pp. 64-72.

7. Schank, R.C., Conceptual Information Processing,
Amsterdam: North-Holland, 1975.

8. Schank, R.C. and Riesbeck, C.K., Inside Computer
Understanding, Hillside, NJ: Lawrence Erlbaum, 1981.

9. Swartout, B., "GIST English Generator," Tech. report,
USC/Information Sciences Institute, 1982.

10. Wardhaugh, R., Introduction to Linguistics, McGraw
Hill, 1977.

380

