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ABSTRACT 

This paper discusses a sequence of deductive 
parsers, called PAD1 - PAD5, that utilize an 
ax iomat iza t ion  of the pr inciples  and  
parameters of GB theory, including a restricted 
transformational component (Move-a). PAD2 
uses an inference control strategy based on the 
"freeze" predicate of Prolog-II, while PAD3 - 5 
utilize the Unfold-Fold transformation to 
transform the original axiomatization into a 
form that functions as a recursive descent Prolog 
parser for the fragment. 

INTRODUCTION 

This paper reports on several deductive parsers 
for a fragment of Chomsky's Government and 
Binding theory (Chomsky 1981, 1986; Van 
Riemsdijk and Williams 1984). These parsers 
were constructed to illustrate the 'Parsing as 
Deduction' approach, which views a parser as 
a specialized theorem-prover which uses 
knowledge of a language (i.e. its grammar) as a 
set of axioms from which information about the 
utterances of that language (e.g. their 
structural descriptions) can be deduced. This 
approach directly inspired by the seminal 
paper by Pereira and Warren (1983). Johnson 
(1988a) motivates the Parsing as Deduction 
approach in more detail than is possible here, 
and Johnson (1988b) extends the techniques 
presented in this paper to deal with a more 
complex fragment. 

Steven Abney, Bob Berwick, Nelson Correa, 
Tim Hickey, Elizabeth Highleyman, Ewan Klein, 
Peter Ludlow, Martin Kay, Fernando Pereira and 
Whitman Richards all made helpful suggestions 
regarding this work, although all responsibility for 
errors remains my own. The research reported here 
was supported by a grant by the Systems 
Development Foundation to the Center for the 
Study of Language and Information at Stanford 
University and a Postdoctoral Fellowship awarded by 
the Fairchild Foundation through the Brain and 
Cognitive Sciences Department at MIT. 

In this paper I describe a sequence of model 
deductive parsers, called PAD1 - PAD5, for a 
fragment of GB theory. These parsers are not 
designed for practical application, but simply 
to show that GB deductive parsers can actually 
be built. These parsers take PF representations 
as their input and produce LF representations as 
their output. They differ from most extant GB 
parsers in that they make explicit use of the 
four levels of representation that GB attributes 
to an utterance - namely D-structure, S- 
structure, PF and LF - and the transformational 
relationship that holds between them. A 
"grammar" for these parsers consists entirely of 
a set of parameter values that parameterize 
the principles of GB theory - thus the parsers 
described here can be regarded as "principle- 
based' (Berwick 1987) - and the parsers' top- 
level internal structure transparently reflects 
(some of) the principles of that theory; X" and 
@ theory apply at D-structure, Case theory 
applies at S-structure, Move-or is stated as a 
relation between D- and S-structure, and LF- 
movement relates S-structure and LF. In 
particular, the constraints on S-structures that 
result from the interaction of Move-c~ with 
principles constraining D-structure (i.e. X' and 
@ theories) are used constructively throughout 
the parsingprocess. 

The PAD parsers are designed to directly 
mirror the deductive structure of GB theory. 
Intuitively, it seems that deductive parsers 
should be able to mirror theories with a rich 
internal deductive structure; these parsers show 
that to a first approximation this is in fact the 
case. For example, the PAD parsers have no 
direct specification of a 'rule' of Passive, rather 
they deduce the relevant properties of the 
Passive construction fi'om the interaction of O 
theory, Move-a, and Case theory. 

It must be stressed that the PAD parsers are 
only 'model' Parsers. The fragment of English 
they accept could only be called 'restricted'. 
They have no account of WH-movement, and 
M o v e - a  is restricted to apply to lexical 
categories, for example, and they incorporate 
none of the principles of Bounding Theory. 
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However, the techniques used to construct these 
parsers are general, and they should extend to a 
more substantial fragment. 

A SKETCH OF GB THEORY 

In the remainder of this section I sketch the 
aspects of GB theory relevant to the discussion 
below; for more detail the reader should consult 
one of the standard texts (e.g. Van Riemsdijk 
and Williams 1986). GB theory posits four 
distinct representations of an utterance, D- 
structure, S-structure, PF and LF. To a first 
approximation,  D-structure represents  
configurationally the thematic or predicate- 
argument structure of the utterance, S-structure 
represents the utterance's surface constituent 
structure, PF represents its phonetic form, and 
LF ("Logical Form") is a configurational 
representation of the scopal relationships 
between the quantificational elements present 
in the utterance. The PF and LF representations 
constitute the interface between language and 
other cognitive systems external to the 
language module (Chomsky 1986, p. 68). For 
example, the PF representation "Everybody is 
loved" together with the D-structure, S- 
structure and LF representations shown in 
Figure 1 might constitute a well-formed 
quadruple for English. 

INFL" INFL ~ 
/ \ ~ "  / \~-FL" 

/ \ v P  n 

b e V  NP b e V  NPi 
lo~,ed everybody lo~,ed 

D-structure INFL" S-structure 

n N p i / \ v  p 

be V NPi 

Figure 1: Representations of GB Theory. 

In order for such a quadruple to be well-formed 
it must satisfy all of the principles of grammar; 
e.g. the D-structure and S-structure must be 
related by Move(z, the D-structure must satisfy 
X'-theory and @-theory, etc. This is shown 
schematically in Figure 2, where the shaded 
rounded boxes indicate the four levels of 

representation, the boxes indicate relations 
that must hold simultaneously between pairs of 
structures, and the ellipses designate properties 
that must hold of a single structure. This 
diagram is based on the organization of GB 
theory sketched by Van Riemsdijk and 
Williams (1986, p. 310), and represents the 
organization of principles and structures 
incorporated in the parsers discussed below. 

~i! Ph°netic i ~  
~ o r m  (PF) ~ - L 

Hgure 2: (Some of) The Principles of GB 
Theory. 

The principles of grammar are parameterized; 
the set of structures they admit depends on the 
value of these parameters. These principles 
are hypothesised to be innate (and hence 
universally true of all human languages, thus 
they are often called "Universal Grammar'), so 
the extra knowledge that a human requires in 
order to know a language consists entirely of the 
values (or settings) of the parameters plus the 
lexicon for the language concerned. The syntax 
of the English fragment accepted by the parsers 
discussed below is completely specified by the 
following list of parameters. The first two 
parameters determine the X' component, the 
third parameter determines the Move-cz 
relation, and the fourth parameter identifies 
the direction of Case assignment. 

(1) headFirst. 
specFirst. 
movesInSyntax(np). 
rightwardCaseAssignment. 

I conclude this section with some brief remarks 
on the computational problems involved in 
constructing a GB parser. It seems that one can 
only construct a practical GB parser by 
simultaneously using constraints from all of the 
principles of grammar mentioned above 
(excepting LF-Movement), but this involves 
being able to "invert" Move-cz 'on the fly'. 
Because of the difficulty of doing this, most 
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implementations of GB parsers ignore Move-or 
entirely and reformulate X' and @ Theories so 
that they apply at S-structure instead of D- 
structure, even though this weakens the 
explanatory  power  of the theory  and 
complicates  the resul t ing grammar ,  as 
Chomsky (1981) points out. The work reported 
here shows that it is possible to invert a simple 
formulation of Move-(x "on the fly', suggesting 
that it is possible to build parsers that take 
advantage of the D-st ructure/S-s t ructure  
distinction offered by GB theory. 

PARSING AS DEDUCTION 

As just outlined, GB theory decomposes a 
competent user's knowledge of a language 
possessed into two components: (i) the universal 
component (Univeral Grammar), and (ii) a set 
of parameter  values and a lexicon, which 
together constitute the knowledge of that 
i~articular language above and beyond the 
universal component. The relationship between 
these two components of a human's knowledge 
of a language and the knowledge of the 
utterances of that language that they induce 
can be formally described as follows: we regard 
Universal Grammar as a logical theory, i.e. a 
deductively closed set of statements expressed 
in a specialized logical language, and the 
lexicon and rarameter  values that constitute 
the specific knowledge of a human language 
beyond Universal Grammar as a set of formulae 
in that logical language. In the theory of of 
Universal Grammar,  these formulae imply 
statements describing the linguistic properties 
of utterances of that human language; these 
statements constitute knowledge of utterances 
that the parser computes. 

The parsers presented below compute instances 
of the 'parse" relation, which is true of a PF-LF 
pair if and only if there is a D-structure and an 
S-structure such that the D-structure, S- 
structure, PF, LF quadruple is well-formed with 
respect to all of the (pararneterized) principles 
of grammar. For simplicity, the 'phonology" 
relation is approximated here by the S- 
structure 'yield' function. Specifically, the 
input to the language processor are PF 
representations and that the processor produces 
the corresponding LF representations as output. 
The relationship between the parameter  

settings and lexicon to the 'parse' relation is 
sketched in Figure 3. 

Knowledge of the Language 
Parameter Settings 

headf i rs t .  
specFirst. 
moveslnSyntax(np). 
rightwardCaseAssignment. 

Lexicon 
thetaAssigner(love). 
thetaAssigner(loved). 
nonThetaAssigner(sleep). 
* l *  

~ imply in the theory of Universal Grammar 

Knowledge of Utterances of the Language. 
parse([everybody,-s,love,somebody], 
[ everybodyi [ sornebodyj [I" [NP ei ] [I' [I -s] 

[V" [V" [V love] [NP ej ]]]]]]]) 

parse([everybody,-s,love,somebody], 
[ somebodyj [ everybodyi [I" [NP ei ] [I' [I -s] 

[V" [V' [V love] [NP ej ]]]]]]]) 
. t o l l  

Figure 3: Knowledge of a Language and its 
Utterances. 

It is important to emphasise that the choice of 
logical language and the propert ies  of 
utterances computed by the parser are made 
here simply on the basis of their familiarity 
and simplicity: no theoretical significance 
should be attached to them. I do not claim that 
first-order logic is the 'language of the mind', 
nor that the knowledge of utterances computed 
by the human language processor are instances 
of 'parse' relation (see Berwick and Weinberg 
1984 for further discussion of this last poinO. 

To construct a deductive parser for GB one builds 
a specialized theorem-prover for Universal 
Grammar that relates the parameter values 
and lexicon to the 'parse' relation, provides it 
with parameter  settings and a lexicon as 
hypotheses,  and uses it to derive the 
consequences of these hypotheses that describe 
the u t t e rance  of interest. The Universal 
Grammar inference engine used in the PAD 
parsers is constructed using a Horn-clause 
theorem-prover (a Prolog interpreter). The 
Horn-clause theorem-prover is provided with 
an axiomatization ~/of the theory of Universal 
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Grammar as well as the hypotheses 9/" that 
represent the parameter settings and lexicon. 
Since a set of hypotheses ~rimply a consequence 
F in the theory of Universal Grammar if and 
only if H u ¢./implies F in first-order logic, a 
H o r n - c l a u s e  t h e o r e m - p r o v e r  u s i n g  
axiomatization ¢2 is capable of deriving the 
consequences of af that follow in the theory of 
Universal Grammar. Thus the PAD parsers 
have the logical structure diagrammed in 
Figure 4. 

Knowledge of Language 

Axiomatization of Universal Grammar 
parse(String, LF) :- 

xBar(infl2,DS), theta(infl2,0,DS), 
moveAlpha(DS,[],SS,[]), 
caseFilter(infl2,0,SS), 

phonology(String/[],SS), 
lfMovement(SS,LF). 

Parameter Settings + Lexicon 
headf i r s t .  
. . °  

thetaAssigner(love). 
° . .  

...... ~ imply in First-order Logic ..................... 

Knowledge of Utterances of the Language. 

parse([ everybody,-s,love,somebody], 
[ everybodyi [ semebodyj [I" [NP ei ] [I" [I -s] 

Iv" Iv' Iv love] [NP ej ]]]]l]]) 
. ° ° . ° °  

Figure 4: The Structure of the PAD Parsers. 

The clause defining the 'parse" relation given in 
Figure 4 as part of the axiomatization of GB 
theory is the actual Prolog definition of 'parse' 
used in the PAD1 and PAD2 parsers. Thus the 
top-level s t ructure of the knowledge  of 
language employed by the PAD parsers mirrors 
the top-level structure of GB theory. 

Ideally the internal structure of the various 
principles of grammar should reflect the 
internal organization of the principles of GB 
(e.g. Case assigment should be defined in terms 
of Government) ,  bu t  for s implici ty the 
principles are axiomatized directly here. For 
reasons of space a complete description of the 
all of the principles is not given here; however 
a sketch of one of the principles, the Case 
Filter, is given in the remainder of this section. 

The other principles are implemented in a 
similiar fashion. 

The Case Filter as formulated in PAD applies 
recurs ive ly  th roughou t  the S-structure,  
associating each node with one of the three 
atomic values ass, rec or 0. These values 
represent the Case properties of the node they 
are associated with; a node associated with 
the property ass must be a Case assigner, a node 
associated with the proper ty  rec must be 
capable of being assigned Case, and a node 
associated with the property 0 must be neutral 
with  respect  to Case. The Case Filter 
determines if there is an assignment of these 
values to nodes in the tree consistent with the 
principles of Case assignment. A typical 
assignment of Case properties to the nodes of an 
S-structure in English is shown in 5, where the 
Case properties of a node are depicted by the 
boldface annotations on that node. 1 

INFL" : 0 

NP  : rec INFL' : ass 

everybody INFL: ass VP: 0 
i ! 

be / V ' : 0  

V : 0  N P : 0  
I I 

loved e 

Figure 5: Case Properties. 

The Case Filter is parameterizeci with respect 
to the predicates 'rightwardCaseAssignment'  
and qeftwardCaseAssignment ' ;  if these are 
specified as parameter settings of the language 
concerned,  ~ the Case Filter permits  Case 
assigners and receivers to appear  in the 
relevant linear order. The lexicon contains 
def ini t ions of the one-place predica tes  
'noC.ase', "assignsCase' and 'needsCase' which 
hold of lexical i tems with the relevant 

1 These annotations are reminiscent of the 
complex feature bundles associated with categories 
in GPSG (Gazdar et. al. 1986). The formulation here 
differs from the complex feature bundle approach 
in that the values associated with nodes by the Case 
Filter are not components of that node's category 
label, and hence are invisible to other principles of 
grammar. Thus this formulation imposes an 
informational encapsulation of the principles of 
grammar that the complex feature approach does 
not.  
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property; these predicates are used by the Case 
Filter to ensure the associations of Case 
properties with lexical items are valid. 

Specifically, the Case Filter liscences the 
following structures: 

(2a) a constituent with no Case properties may 
have a Case assigner and a Case receiver 
as daugh te r s  iff they are in the 
appropr ia te  order  for the language 
concerned, 

(2b) a constituent with no Case properties may 
have any number of daughters with no 
Case properties, 

(2c) a constituent with Case property C may be 
realized as a lexical i tem W if W is 
permitted by the lexicon to have Case 
property C, and 

(2d) INFL' assign Case to its left if its INFL 
daughter is a Case assigner. 

This axiomatization of Universal Grammar 
together with the parameter values and 
lexicon for English is used as the axiom set of a 
Prolog interpreter to produce the parser called 
PAD1. Its typical behaviour is shown below. 2 

:parse([everybody, - s, love, somebody], IF) 
LF = everybody::i^somebody::j^infl2:[np:i, 

infll:[infl: # (- s), vp:[vl:[v: # love, np.~]]]] 
LF = somebody:.-j^everybody::i^infl2:[np:i, 

infll:[infl: # (- s), vp:[vl:[v:. # love, np.'j]]]] 
No (more) solutions 

:parse([harry, be, Ioved], LF) 
LF = infl2:[np: # harry, infll:[infl: # be, 

vp:[vl:[v: # loved, np:[]]]]] 
No (more) solutions 

A N  ALTERNATIVE CONTROL STRUCTURE 

Because it uses the SLD inference control 
strategy of Prolog with the axiomatization of 
Universal Grammar shown above, PAD1 
functions as a 'generate and test' parser. 
Specifically, it enumerates all D-structures 
that satisfy X'-theory, filters those that fail 
to satisfy O-theory, computes the corresponding 

2 For the reasons explained below, the X' 
principle used in this run of parser was restricted to 
allow only finitely many D-structures. 

S-structures using Move-(z, removes all S- 
structures that fail to satisfy the Case Filter, 
and only then determines if the terminal string 
of the S-structure is the string it was given to 
parse. Since the X' principle admits infinitely 
many D-structures the resulting procedure is 
only a semi-decision procedure, i.e. the parser 
is not  g u a r a n t e e d  to te rmina te  on 
ungrammatical input. 

Clearly the PAD1 parser does not u se  its 
knowledge of language in an efficient manner. 
It would be more efficient to co-routine between 
the principles of grammar,  checking each 
existing node for well-formedness with respect 
to these principles and ensuring that the 
terminal string of the partially constructed S- 
structure matches the string to be parsed before 
creating any additional nodes. Because the 
Parsing as Deduction framework conceptually 
separates the knowledge used by the processor 
from the manner in which that knowledge is 
used, we can use an inference control strategy 
that applies the principles of grammar in the 
manner just described. The PAD2 parser 
incorporates the same knowledge of language as 
PAD1 (in fact textually identical), but it uses 
an inference control strategy inspired by the 
'freeze' predicate of Prolog-II (Cohen 1985, 
Giannesini et. al. 1986)to achieve this goal. 

The control strategy used in PAD2 allows 
inferences using specified predicates to be 
delayed until specified arguments to these 
predicates are at least partially instantiated. 
When some other application of an inference 
rule instantiates such an argument the current 
sequence of inferences is suspended and the 
delayed inference performed immediately. 
Figure 6 lists the predicates that are delayed 
in this manner, and the argument that they 
require to be at least partially instantiated 
before inferences using them will proceed. 

Predicate Delayed on 

X' theory 
O theory 
Move-u 
Case Filter 
Phonology 
LF-Movement 

D-structure 
D-st~'ucture 
S-structure 
S-structure 
not delayed 
S-structure 

Figure 6: The Control Strategy of PAD2. 

With this control strategy the parsing process 
proceeds as follows. Inferences using the X', O, 
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Case, Move-a and LF-movement principles are 
immedia te ly  de layed  since the relevant  
structures are uninstantiated. The 'phonology" 
principle (a simple recursive tree-walking 
predicate that collects terminal items) is not 
delayed,  so the parser begins performing 
inferences  associa ted  wi th  it. These 
instantiate the top node of the S-structure, so 
the delayed inferences resulting from the Case 
Filter,  M o v e - a  and LF-movement  are 
performed. The inferences associated with 
M o v e - a  result in the instantiation of the top 
node(s) of the D-structure, and hence the 
delayed inferences associated with the X" and 
O principles are also performed. Only after all 
of the principles have appl ied to the S- 
structure node instantiated by the "phonology" 
relation and the corresponding D-structure 
node(s) instantiated by  Move-a are any further 
inferences associated with the 'phonology" 
relation performed, causing the instantiation of 
further S-structure nodes and the repetition of 
the cycle of activation and delaying. 

Thus the PAD2 parser simultaneously constructs 
D-structure, S-structure and LF representations 
in a top-down left-to-right fashion, functioning 
in effect as a recursive descent parser. This toi>- 
down behaviour is not an essential property of a 
parser such as PAD2; using techniques based on 
those described by  Pereira and Shieber (1987) 
and Cohen and Hickey (1987) it should be 
possible to construct parsers that use the same 
knowledge of language in a bottom-up fashion. 

TRANSFORMING THE AXIOMATIZATION 

In this sec t ion  I sketch  a p ro g ram 
transformation which transforms the original 
ax iomat iza t ion  of the g rammar  to an 
equivalent  axiomatizat ion that in effect 
exhibits this 'co-routining' behaviour when 
executed using Prolog's SLD inference control 
strategy. Interestingly, a data-flow analysis of 
this transformed axiomatization (viewed as a 
P ro log  p r o g r a m )  jus t i f ies  a fu r the r  
t ransformation that yields an equivalent  
program that avoids the construction of D- 
structure trees altogether.  The resulting 
parsers, PAD3 - PADS, use the same parameter 
settings and lexicon as PAD1 and PAD2, and 
they provably  compute  the same PF-LF 
relationship as PAD2 does. The particular 
techniques used to construct these parsers 

depend  on the internal details  of the 
formulation of the principles of grammar 
adopted here - specifically on their simple 
recursive structure - and I do not claim that 
they will general ize to more  extensive 
formulations of these principles. 

Recall that the knowledge of a language 
incorporated in PAD1 and PAD2 consists of two 
separate components, (i) parameter values and 
a lexicon, and (ii) an axiomatization U of the 
theory  of  Universa l  Grammar .  The 
axiomatization U specifies the deductively 
closed set of statements that constitute the 
theory of Universal Grammar, and clearly any 
axiomatization U'  equivalent to U (i.e. one 
which defines the same set of statements) 
defines exactly the same theory of Universal 
Grammar. Thus the original axiomatization U 
of Universal Grammar used in the PAD parsers 
can be  rep laced  wi th  any  equiva len t  
axiomatization U'  and the system will entail 
exactly the same knowledge of the utterances of 
the language. A deductive parser using U ' in  
place of U may perform a differer~ce sequence of 
inference steps but  ultimately it will infer an 
identical set of consequences (ignoring non- 
termination). 

The PAD3 parser uses the same parameter 
values and lexicon as PAD1 and PAD2, but it 
uses a reaxiomatization of Universal Grammar 
obta ined  by  app ly ing  the U n f o l d / F o l d  
transformation described and proven correct by 
Tamaki and Sato (1984) and Kanamori and 
Horiuchi (1988). Essentially, the Unfold/Fold 
transformation is used here to replace a 
sequence  of pred ica tes  each of which 
recursively traverses the same structure by a 
single predicate recursive on that structure that 
requires every node in that structure to meet all 
of the constraints imposed by  the original 
sequence of predicates. In the PAD3 parser the 
X', @, Move-a, Case and Phonology principles 
used in PAD1 and PAD2 are folded and 
replaced by the single predicate 'p" that holds 
of exactly the D-structure, S-structure PF 
triples admitted by  the conjunction of the 
original principles. 

Because the reaxiomatization technique used 
here  replaces the original axiomatization of 
PAD1 and PAD2 with an equivalent one (in the 
sense of the min imum Herbrand model  
semantics), the PAD3 parser provably infers 
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exactly the same knowledge of language as 
PAD1 and PAD2. Because PAD3's knowledge of 
the principles of grammar that relate D- 
structure, S-structure and PF is now represented 
by the single recursive predicate 'p' that checks 
the well-formedness of a node with respect to 
all of the relevant principles, PAD3 exhibits 
the 'co-routining" behaviour of PAD2 rather 
than the 'generate and test" behaviour of 
PAD1, even when used with the standard SLD 
inference control strategy of Prolog. 3 

PAD3 constructs D-structures, just as PAD1 and 
PAD2 do. However, a simple analysis of the 
data dependencies in the PAD3 program shows 
that in this particular case no predicate uses 
the D-structure value returned by a call to 
predicate 'p '  (even when 'p '  calls itself 
recursively, the D-structure value returned is 
ignored). Therefore replacing the predicate 'p' 
with a predicate 'p l '  exactly equivalent to 'p' 
except that it avoids construction of any D- 
structures does not affect the set of consequences 
of these axioms. 4 The PAD4 parser is exactly 
the same as the PAD3 parser, except that it 
uses the predicate 'p l '  instead of "p', so it 
therefore computes exactly the same PF - LF 
relationship as all of the other PAD parsers, 
but it avoids the construction of any D-structure 
nodes. That is, the PAD4 parser makes use of 
exactly the same parameter settings and 
lexicon as the other PAD parsers, and it uses 
this knowledge to compute exactly the same 
knowledge of utterances. It differs from the 
other PAD parsers in that it does not use this 
knowledge to explicitly construct a D-structure 
representation of the utterance it is parsing. 

This same combination of the Unfold/Fold 
transformation followed data dependency 
analysis can also be performed on all of the 
principles of grammar simultaneously. The 

3 Although in terms of control strategy PAD3 
is very similiar to PAD2, it is computationally much 
more efficient than PAD2, because it is executed 
directly, whereas PAD2 is interpreted by the meta- 
interpreter with the 'delay" control structure. 
4 The generation of the predicate "pl' from 
the predicate 'p' can be regarded an example of 
static garbage-collection (I thank T. Hickey for this 
observation). Clearly, a corresponding run-time 
garbage collection operation could be performed on 
the nodes of the partially constructed D-structures 
in PAD2. 

Unfo ld /Fo ld  t ransformat ion produces a 
predicate in which a da ta -dependency  
analysis identifies both D-structure and S- 
structure values as ignored. The PAD5 parser 
uses the resu l t ing  pred ica te  as its 
axiomatization of Universal Grammar, thus 
PAD5 is a parser which uses exactly the same 
parameter values and lexicon as the earlier 
parsers to compute exactly the same PF-LF 
relationship as these parsers, but it does so 
without  explictly constructing either D- 
structures or S-structure~ 

To summarize, this section presents three new 
parsers. The first, PAD3, utilized a re- 
axiomatization of Universal Grammar, which 
when coupled with the SLD inference control 
strategy of Prolog resulted in a parser that 
constructs D-structures and  S-structures 'in 
parallel', much like PAD2. A data dependency 
analysis of the PAD3 program revealed that 
the D-structures computed were never used, and 
PAD4 exploits this fact to avoid the 
construction of D-structures entirely. The 
techniques used to generate PAD4 were also 
used to generate PADS, which avoids the 
explicit construction of both D-structures and S- 
structures. 

CONCLUSION. 

In this paper I described several deductive 
parsers for GB theory. They knowledge of 
language that they used incorporated the to W 
level s t ruc tu re  of GB theory ,  thus  
demonstrating that parsers can actually be 
built that directly reflect the structure of this 
theory. 

This work might be extended in several ways. 
First, the fragment of English covered by the 
parser could be extended to include a wider 
range of linguistic phenomena. It would be 
interesting to determine if the techniques 
described here to axiomatize the principles of 
grammar and to reaxiomatize Universal 
Grammar to avoid the construction of D- 
structures could be used on this enlarged 
fragment - a program transformation for 
reaxiomatizing a more general formulation of 
Move-ct is given in Johnson (1988b). 

Second, the axiomatization of the principles of 
Universal Grammar could be reformulated to 
incorporate the 'internal' deductive structure of 

247 



the components of GB theory. For example, one 
might define c-command or goverment as 
primitives, and define the principles in terms 
of these. It would be interesting to determine if 
a deductive parser can take advantage of this 
internal deductive structure in the same way 
that the PAD parsers utilized the deductive 
relationships between the various principles of 
grammar. 

Third, it would be interesting to investigate the 
performance of parsers using various inference 
control strategies. The co-routining strategy 
employed by PAD2 is of obvious interest, as are 
its deterministic and non-deterministic bottom- 
up and left-corner variants. These only scratch 
the surface of possibilities, since the Parsing as 
Deduction framework allows one to straight- 
forwardly  formulate  control  strategies 
sensitive tO the various principles of grammar. 
For example, it is easy to specify inference 
control strategies that delay all computations 
concerning particular principles (e.g. binding 
theory) until the end of the parsing process. 

Fourth,  one might  a t tempt  to develop 
specialized logical languages  that are 
capabale of expressing knowledge of languages 
and knowledge of utterances in a more succinct 
and computationally useful fashion than the 
first-order languages. 
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