
SOME CHART-BASED TECHNIQUES FOR
PARSING ILL-FORMED INPUT

Chris S. Mellish
Deparlment of Artificial Intelligence,

University of Edinburgh,
80 South Bridge,

EDINBURGH EH1 1HN,
Scotland.

ABSTRACT

We argue for the usefulness of an active chart as the
basis of a system that searches for the globally most
plausible explanation of failure to syntactically parse
a given input. We suggest semantics-free, grammar-
independent techniques for parsing inputs displaying
simple kinds of ill-formedness and discuss the search
issues involved.

THE PROBLEM

Although the ultimate solution to the problem
of processing ill-formed input must take into account
semantic and pragmatic factors, nevertheless it is
important to understand the limits of recovery stra-
tegies that age based entirely on syntax and which are
independent of any particular grammar. The aim of
Otis work is therefore to explore purely syntactic and
granmmr-independent techniques to enable a
to recover from simple kinds of iil-formedness in rex.
tual inputs. Accordingly, we present a generalised
parsing strategy based on an active chart which is
capable of diagnosing simple ¢nvrs
(unknown/mi.uq~elled words, omitted words, extra
noise words) in sentences (from languages described
by context free phrase slructur¢ grammars without e-
productions). This strategy has the advantage that
the recovery process can run after a standard (active
chart) parser has terminated unsuccessfully, without
causing existing work to be reputed or the original
parser to be slowed down in any way, and that,
unlike previous systems, it allows the full syntactic
context to be exploited in the determination of a
"best" parse for an ill-formed sentence.

EXPLOITING SYNTACTIC CONTEXT

Weischedel and Sondheimer (1983) present an
approach to processing ill-formed input based on a
modified ATN parser. The basic idea is, when an ini-
tial p~s@ fails, to select the incomplete parsing path
that consumes the longest initial portion of the input,
apply a special rule to allow the blocked parse to
continue, and then to iterate this process until a

successful parse is generated. The result is a "hillo
climbing" search for the "best" parse, relying at each
point on the "longest path" heuristic. Unfortunately,
sometimes this heuristic will yield several possible
parses, for instance with the sentence:

The snow blocks I" te road

(no partial parse getting past the point shown) where
the parser can fail expecting either a verb or a deter-
miner. Moreover, sometimes the heuristic will cause
the most "obvious" error to be missed:

He said that the snow the road T
The paper will T the best news is the Times

where we might suspect that there is a missing verb
and a misspelled "with" respectively. In all these
cases, the "longest path" heuristic fails to indicate
unambiguously the minimal change that would be
necessary to make the whole input acceptable as a
sentence. This is not surprising, as the left-fight bias
of an ATN parser allows the system to take no
account of the right context of a possible problem
element.

Weischedel and Sondheimer's use of the
"longest path" heuristic is similar to the use of locally
least-cost error recovery in Anderson and
Backhouse's (1981) scheme for compilers. It seems
to be generally accepted that any form of globally
"minimum-distance" error correction will be too
costly to implement (Aho and Ullman, 1977). Such
work has, however, not considered heuristic
approaches, such as the one we are developing.

Another feature of Weischedel and
Sondheimer's system is the use of grammar-slx~ific
recovery rules ("meta-rules" in their terminology).
The same is true of many other systems for dealing
with ill-formed input (e.g. Carhonell and Hayes
(1983), Jensen et al. (1983)). Although grammar-
specific recovery rules are likely in the end always to
be more powerful than grammar-independent rules, it
does seem to be worth investigating how far one can
get with rules that only depend on the grammar for-
ma//sm used.

102

IOT tbe T gardener T c°llects T manure T ff T the T antumn 7 T J , 1 2 3 4 5 6 ,

<Need S from 0 to 7>
<Need NP+VP from 0 to 7>
<Need VP from 2 to 7>
<Need VP+PP from 2 to 7>
<Need PP from 4 to 7>
<Need P+NP from 4 to 7>
<Need P from4 to 5>

(hypoth~s)
(by top-down rule)
(by fundamental rule with NP found bottom-up)
(by top-down rule)
(by fundamental rule with VP found bottom-up)
(by top-down rule)
(by fundamental rule with NP found bottom-up)

Figure 1: Focusing on an emx.

In _~.~_pting an ATN parser to compare partial
parses, Weischedel and Sondheimer have already
introduced machinery to represent several alternative
partial parses simultaneously. From this, it is a rela-
tively small step to introduce a well-formed substring
table, or even an active chart, which allows for a glo-
hal assessment of the state of the parser. If the gram-
mar form~fi~m is also changed to a declarative for-
malism (e.g. CF-PSGs, DCGs (Pereira and Warren
1980), patr-ll (Shieber 1984)), then there is a possi-
bility of constructing other partial parses that do not
start at the beginning of the input. In this way, right
context can play a role in the determination of the
~est" parse.

WHAT A CHART PARSER LEAVES BEHIND

The information that an active chart parser
leaves behind for consideration by a "post mortem"
obviously depends on the parsing sWategy used (Kay
1980, Gazdar and Mellish 1989). Act/re edges are
particularly important fx~n the point of view of diag-
nosing errors, as an unsatisfied active edge suggests a
place where an input error may have occurred. So
we might expect to combine violated expectations
with found constituents to hypothesise complete
parses. For simplicity, we assume here that the
grammar is a simple CF-PSG, although there are
obvious generalisations.

(Left-right) top-down pars/ng is guaranteed to
create active edges for each kind of phrase that could
continue a partial parse starling at the beginning of
the input. On the other hand, bottom-up parsing (by
which we mean left corner parsing without top-down
filtering) is guaranteed to find all complete consti-
merits of every possible parse. In addition, whenever
a non-empty initial segment of a rule RHS has been
found, the parser will create active edges for the kind
of phrase predicted to occur after this segment. Top-
down parsing will always create an edge for a phrase
that is needed for a parse, and so it will always

indicate by the presence of an unsatisfied active edge
the first ester point, if there is one. If a subsequent
error is present, top-down parsing will not always
create an active edge corresponding to it, because the
second may occur within a constituent that will not
be predicted until the first error is corrected. Simi-
larly, fight-to-left top-down parsing will always indi-
cate the last error point, and a combination of the two
will find the first and last, but not necessarily any
error points in between. On the other hand, bottom-
up parsing will only create an active edge for each
error point that comes immediately after a sequence
of phrases corresponding to an initial segment of the
RI-IS of a grammar rule. Moreover, it will not neces-
sarily refine its predictions to the most detailed level
(e.g. having found an NP, it may predict the
existence of a following VP, but not the existence of
types of phrases that can start a VP). Weisobedel and
Sondheimer's approach can be seen as an incremen-
tal top-down parsing, where at each stage the right-
most tin.riffled active edge is artificially allowed to
be safistied in some way. As we have seen, there is
no guarantee that this sort of hill-climbing will find
the "best" solution for multiple errors, or even for
single errors. How can we combine bottom-up and
top-down parsing for a more effective solution?

FOCUSING ON AN ERROR

Our basic stramgy is to run a bottom-up parser
over the input and then, if this fails to find a complete
parse, to run a modified top-down parser over the
resulting chart to hypothesise possible complete
parses. The modified top-down parser attempts to
find the minimal errors that, when taken account of,
enable a complete parse to be constructed. Imagine
that a bottom-up parser has already run over the input
"the gardener collects manure if the autumn". Then
Figure 1 shows (informally) how a top-down parser
might focus on a possible error. To implement this
kind of reasoning, we need a top-down parsing rule
that knows how to refine a set of global needs and a

103

fundamental rule that is able m incorporate found
constituents from either directim. When we may
encounter multiple rotors, however, we need to
express multiple needs (e.g. <Need N from 3 to 4 and
PP from 8 to I0>). We also need to have a fimda-
mental rule that can absorb found phrases firom any-
where in a relevant portion of the chart (e.g. given a
rule "NP --+ Det Adj N" and a sequence "as marvel-
lous sihgt", we need to be able to hypothesi~ that
"as" should be a Det and "sihgt" a N). To save
repealing work, we need a version of the top-down
rule that stops when it reaches an appropriate
category that has already been found bottom-up.
Finally, we need to handle both "anchored" and
"unanchored" needs. In an anchored need (e.g.
<Need NP from 0 to 4>) we know the beginning and
end of the portion of the chart within which the
search is to take place. In looking for a NP VP
sequence in "the happy blageon su'mpled the bait",
however, we can't initially find a complete (initial)
NP or (final) VP and hence don't know where in the
chart these phrases meeL We express this by <Need
NP from 0 to *, VP f~om * to 6>, the symbol "*"
denoting a position in the chart that remains to be
determined.

GENERALISED TOP-DOWN PARSING

If we adopt a chart parsing suategy with only
edges that carry informafim about global needs,
thee will be considerable dupficated effort. For
instance, the further refinement of the two edges:

<Need NP hem 0 to 3 and V from 9 to 10>
<Need NP from 0 to 3 and Adj from 10 to 11>

can lead to any analysis of possible NPs between 0
and 3 being done twice. Restricting the possible for-
mat of edges in this way would be similar to allowing
the "functional composition rule" (Steedman 1987) in
standard chart parsing, and in general this is not done
for efficiency reasons. Instead, we need to produce a
single edge that is "in charge" of the computation
looking for NPs between 0 and 3. When poss£ole NPs
are then found, these then need to be combined with
the original edges by an appropriate form of the fun-
damental rule. We are thus led to the following form
for a generalised edge in our chart parser:.

<C from S to E needs
C$1 fi'om $1 toe l ,
cs2 from s2 to e2.
. o .

C$, from $. to e,>

where C is a category, the c$~ are lists of categories

(which we will show inside square brackets),. S, E,
the si and the e~ ate positions in the chart (or the spe-
cial symbol "*~). The presence of an edge of this
kind in the chart indicates that the parser is attempt-
ing to find a phrase of category C covering the por-
tion of the chart from S to E, but that in order to
succeed it must still satisfy all the needs listed. Each
need specifies a sequence of categories csl that must
be found contiguously to occupy the portion of the
chart extending from st to ei.

Now that the format of the edges is defined, we
can be precise about the parsing rules used. Our
modified chart parsing rules are shown in Figure 2.
The modified top-down ru/e allows us to refine a
need into a more precise one, using a rule of the
grammar (the extra conditions on the rule prevent
further refinement where a phrase of a given category
has already been found within the precise part of the
chart being considezed). The modified fundamental
ru/e allows a need to be satisfied by an edge that is
completely ~ti~fied (i.e. an inactive edge, in the stan-
dard terminology). A new rule, the simplification
ru/~, is now required to do the relevant housekeeping
when one of an edge's needs has been completely
satisfied. One way that these rules could run would
be as follows. The chart starts off with the inactive
edges left by bottom-up parsing, together with a sin-
gle "seed" edge for the top-down phase <GOAL from
0 to n needs [S] from 0 to n>, where n is the final
position in the chart. At any point the fundamental
rule is run as much as possible. When we can
proceed no further, the first need is refined by the
top-down rule (hopefully search now being
anchored). The fundamental rule may well again
apply, taking account of smaller phrases that have
already been found. When this has run, the top-down
rule may then further refine the system's expectations
about the parts of the phrase that cannot be found.
And so on. This is just the kind of "focusing" that we
discussed in the last section.. If an edge expresses
needs in several separate places, the first will eventu-
ally get resolved, the simplification rule will then
apply and the rest of the needs will then be worked
on.

For this all to make sense, we must assume that
all hypothesised needs can eventually be resolved
(otherwise the rules do not suffice for more than one
error to be narrowed down). We can ensure this by
introducing special rules for recoguising the most
primitive kinds of errors. The results of these rules
must obviously be scored in some way, so that errors
are not wildly hypothesised in all sorts of places.

I04

Top-down rule:
<C from S t o e needs [cl. . .csl] from s l to e : , cs2 fzom s2 to e2 cs . from s . t o e . >
c I ~ RHS (in the grammar)

<cl from sl toe needs RHS from sx t o e >
where e = ff csl is not empty or e 1 ffi * then * else e x
(el = * or CSl is non-empty or there is no category cl from sl to e:)

Fundamental rule:
<C from S m E needs [...cs n c l ...cs n] from s l to e x, cs 2 ...>
<c ~ from S ~ to El needs <nothing>>

<C fxom S t o e needs c s n from sx to S t, csx2 fxom E t to e l , cs2 ...>

(sl < S x , e l = * or El < e :)

Simplification rule:
<C fxom S t o E needs ~ from s to s, c$2 from s2 to e2, ... cs . from s . me, ,>

<C from S t o e needs cs2 from s2 to e2, ... cs . fxom s . t o e . >

Garbage rule:
<C fronts t oE needs I] from sl to e l , c$2 from s2 to e2, ... cs . f r o m s , t o e . >

<C f ron t s t o E needs cs2 from s2 to e2, ... cs . from s . m e . >
(s, ~el)

Empty category rule:
<C from S t o E needs [cl.. .csl] from s to s, cs2 from s2 to e2 ca. from s . t o e . >

<C fxom S t o E needs cs2 from s2 to e2. ... cs . f~om s , t o e , >

Unknown word rule:
<C from S t o e needs [cl.. .csl] from s l to ex, cs2 from s2 to e2 cs . fzom s . t o e . >

<C from S t o E needs cs~ from s t+ l to ex, cs2 from s2 to e2, ... cs . from s . t o e . >
(cl a lexical category, s l < the end of the chart and
the word at s i not of category c ~).

Figure 2: Generalised Top-down Parsing Rules

SEARCH CONTROL AND EVALUATION
FUNCTIONS

Even without the extra rules for recognising
primitive errors, we have now introduced a large
parsing search space. For instance, the new funda-
mental rule means that top-down processing can take
place in many different parts of the chart. Chart
parsers already use the notion of an agenda, in which
possible additions to the chart are given priority, and
so we have sought to make use of this in organising a
heuristic search for the "best" poss~le parse. We
have considered a number of parameters for deciding
which edges should have priority:

MDE (mode of formation)We prefer edges
that arise from the fundamental rule to those that
arise from the rap-down rule; we disprefer edges that
arise from unanchored applications of the top-down
nile.

PSF (penalty so far) Edges resulting from the
garbage, empty category and unknown word rules are
given penalty scores. PSF counts the penalties that
have been accumulated so far in an edge.

PB (best penalty) This is an estimate of the
best possible penalty that this edge, when complete.
could have. This score can use the PSF, together with
information about the parts of the chart covered - for

105

instance, the number of words in these parts which
do not have lexical entries.

GU$ (the m a ~ u m number of words that have
been used so far in a partial parse using this edge)
We prefer edges that lead to parses accounting for
more words of the input.

PBG (the best possible penalty for any com-
plete hypothesis involving this edge). This is a short-
fall score in the sense of Woeds (1982).

UBG (the best possible number of words that
could be used in any complete hypothesis containing
this edge).

In our implementation, each rule calculates
each of these scores for the new edge from those of
the contributing edges. We have experimented with a
number of ways of using these scores in comparing
two possible edges to be added to the chart. At
present, the most promising approach seems to be to
compare in mm the scores for PBG, MDE, UBG,
GUS, PSF and PB. As soon as a difference in scores
is encountered, the edge that wins on this account is
chosen as the preferred one. Putting PBG first in this
sequence ensures that the first solution found will be
a solution with a minimal penalty score.

The rules for computing scores need to make
estimates about the possible penalty scores that might
arise from attempting to find given types of phrases
in given parts of the chart. We use a number of
heuristics to compute these. For instance, the pres.
ence of a word not appearing in the lexicon means
that every parse covering that word must have a
non-zero penalty score. In general, an attempt to find
an instance of a given category in a given portion o f
the chart must produce a penalty score if the boltom-
up parsing phase has not yielded an inactive edge of
the correct kind within that portion. Finally, the fact
that the grammar is assumed to have no e-
productions means that an attempt to find a long
sequence of categories in a short piece of chart is
doomed to produce a penalty score; similarly a
sequence of lexical categories cannot be found
without penalty in a pordon of chart that is too long.

Some of the above scoring parameters score an
edge according what sorts of parses it could contri-
bute to, not just according to bow internally plausible
it seems. This is desirable, as we wish the construc-
tion of globally most plausible solutions to drive the
parsing. On the other hand, it introduces a number of
problems for chart organisation. As the same edge
(apart from its score) may be generated in different
ways, we may end up with multiple possible scores

for it. It would make sense at each point to consider
the best of the possible scores associated with an
edge to be the current score. In this way we would
not have to repeat work for every differently scored
version of an edge. But consider the following
scenario:

Edge A is added to the chart. Later edge B
is spawned using A and is placed in the
agenda. Subsequently A's scc~e increases
because it is derived in a new and better
way. This should affect B's score (and
hence B's position on the agenda).

If the score of an edge increases then the scores of
edges on the agenda which were spawned from it
should also increase. To cope with this sort of prob-
lem, we need some sort of dependency analysis, a
mechanism for the propagation of changes and an
easily resorted agenda. We have not addressed these
problems so far - our cterent implementation treats
the score as an integral part of an edge and suffers
fiom the resulting duplication problem.

PRELIMINARY EXPERIMENTS

To see whether the ideas of this paper make
sense in practice, we have performed some very prel-
iminaw experiments, with an inefficient implementa-
tion of the chart parser and a small CF-PSG (84 rules
and 34 word lexicon, 18 of whose entries indicate
category ambiguity) for a fragment of English. We
generated random sentences (30 of each length con-
sidered) from the grammar and then introduced ran-
dom ocxunences of specific types of errors into these
sentences. The errors considered were none (i.e. leav-
ing the correct sentence as it was), deleting a word,
adding a word (either a completely unknown word or
a word with an entry in the lexicon) and substituting
a completely unknown word for one word of the sen-
tence. For each length of original sentence, the
re ,~ts were averaged over the 30 sentences ran-
domly generated. We collected the following statis-
tics (see Table 1 for the results):

BU cyc/e$ - the number of cycles taken (see
below) to exhaust the chart in the initial (standard)
bottom-up parsing phase.

#$olns - the number of different "solutions"
found. A "solution" was deemed to be a description
of a possible set of errors which has a minimal
penalty score and if corrected would enable a com-
plete parse to be constructed. Possible errors were
adding an extra word, deleting a word and substitut-
ing a word for an instance of a given lexical category.

106

Table 1: Preliminary experimental results

Error

None

Delete one word

Add unknown word

Add known word

Subst unknown word

Length of original

3

6

9

12

3

6
9

12

BU cycles, , #Solns

31 i

69 1
135 1

198 1

17 5

50 5
105 6

155 7

'3 29 1
6 60 2
9 105 2

12 156 3

3

6

9
12

3
6

9
12

37 3

72 3
137 3

170 5
17 2

49 2

96 2

150 3

First Last TD cycles

0 0 0

0 0 0

0 0 0

0 0 0

14 39 50

18 73 114

27 137 350

33 315 1002

9 17 65
24 36 135

39 83 526

132 289 1922

29 51 88
. d

43 88 216

58 124 568

99 325 1775
17 28 46

23 35 105

38 56 300
42 109 1162

The penalty associated with a given set of errors was
the number of em3~ in the set.

First - the number of cycles of generalised
top-down parsing required to find the first solution.

Last - the number of cycles of generalised top-
down parsing required to find the last solution.

TD cyc/es - the number of cycles of generalised
top-down parsing required to exhaust all possibilities
of sets of errors with the same penalty as the first
solution found.

It was important to have an implementation-
independent measure of the amount of work done by
the parser, and for this we used the concept of a
"cycle" of the chart parser. A "cycle" in this context
represents the activity of the parser in removing one
item from the agenda, adding the relevant edge to the
chart and adding to the agenda any new edges that
are suggested by the rules as a result of the new addi-
tion. For instance, in conventional top-down chart
parsing a cycle might consist of removing the edge
<S from 0 to 6 needs [NP VI'] from 0 to 6> from the
front of the agenda, adding this to the chart and then
adding new edges to the agenda, as follows. Ftrst of
all, for each edge of the form <NP from 0 to a needs

0> in the chart the fundamental rule determines that
<S from 0 to 6 needs [VP] from ct to 6> should be
added. Secondly, for each rule NP -.., 7 in the gram-
mar the top-down rule determines that <NP from 0 to
* needs y from 0 to *> should be added. With gen-
eralised top-down parsing, there are more rules to be
considered, but the idea is the same. Actually, for the
top-down rule our implementation schedules a whole
collection of single additions ("apply the top down
rule to edge a") as a single item on the agenda. When
such a request reaches the front of the queue, the
actual new edges are then computed and themselves
added to the agenda. The result of this strategy is to
make the agenda smaller but more structured, at the
cost of some extra cycles.

EVALUATION AND FUTURE WORK

The preliminary results show that, for small
sentences and only one error, enumerating all the
possible minimum-penalty errors takes no worse than
10 times as long as parsing the correct sentences.
Finding the first minimal-penalty error can also be
quite fast. There is, however, a great variability
between the types of error. Errors involving com-
pletely unknown words can be diagnosed reasonably

107

quickly because the presence of an unknown word
allows the estimation of penalty scores to be quite
accurate (the system still has to work out whether the
word can be an addition and for what categories it
can substitute for an instance of, however). We have
not yet considered multiple errors in a sentence, and
we can expect the behaviour to worsten dramatically
as the number of errors increases. Although Table 1
does not show this, there is also a great deal of varia-
bility between sentences of the same length with the
same kind of introduced error. It is noticeable that
errors towards the end of a sentence are harder to
diagnose than those at the start. This reflects the leR-
fight orientation of the parsing rules - an attempt to
find phrases starting to the right of an error will have
a PBG score at least one more than the estimated PB,
whereas an attempt m find phrases in an open-ended
portion of the chart starting before an error may have
a PBG score the same as the PB (as the error may
occur within the phrases to be found). Thus more
parsing attempts will be relegated to the lower parts
of the agenda in the first case than in the second.

One disturbing fact about the statistics is that
the number of minimal-penalty solutions may be
quite large. For instance, the ill-formed sentence:

who has John seen on that had

was formed by adding the extra word "had" to the
sentence "who has John seen on that". Our parser
found three other possible single errors to account for
the sentence. The word "on" could have been an
added word, the word "on" could have been a substi-
tution for a complementiser and there could have
been a missing NP after "on". This large number of
solutions could be an artefact of our particular gram-
ram" and lexicon; certainly it is unclear how one
should choose between possible solutions in a
grammar-independent way. In a few cases, the intro-
duction of a random error actually produced a gram-
matical sentence - this occurred, for instance, twice
with sentences of length 5 given one random A__dded
word.

At this stage, we cannot claim that our experi-
ments have done anything more than indicate a cer-
tain concreteness to the ideas and point to a number
of unresolved problems. It remains to be seen how
the performance will scale up for a realistic grammar
and parser. There are a number of detailed issues to
resolve before a really practical implementation of
the above ideas can be produced. The indexing stra-
tegy of the chart needs to be altered to take into
account the new parsing rules, and remaining prob-
lems of duplication of effort need to be addressed.

For instance, the generalised version of the funda-
mental rule allows an active edge to combine with a
set of inactive edges satisfying its needs in any order.

The scoring of errors is another a r ~ which
should be better investigated. Where extra words are
introduced accidentally into a text, in practice they
are perhaps unlikely to be words that are already in
the lexicon. Thus when we gave our system sen-
tences with known words added, this may not have
been a fair test. Perhaps the scoring system should
prefer added words to be words outside the lexicon,
substituted words to substitute for words in open
categories, deleted words to be non-content words,
and so on. Perhaps also the confidence of the system
about possible substitutions could take into account
whether a standard spelling corrector can rewrite the
acnmi word to a known word of the hypothesised
category. A more sophisticated error scoring strategy
could improve the system's behaviour considerably
for real examples (it might of course make less
difference for random examples like the ones in our
experiments).

Finally the behaviour of the approach with
realistic grammars written in more expressive nota-
tions needs to be established. At present, we are
investigating whether any of the current ideas can be
used in conjunction with Allport's (1988) "interest-
ing corner" parser.

ACKNOWLEDGEMENTS

This work was done in conjunction with the
SERC-supported project GR/D/16130. I am
currently supported by an SERC Advanced Fellow-
ship.

REFERENCES

Aho, Alfred V. and Ullman, Jeffrey D. 1977 Princi-
ples of Compiler Design. Addison-Wesley.

Allpo~ David. 1988 The TICC: Parsing Interesting
Text. In: Proceedings of the Second ACL
Conference on Applied Natural Language
Processing, Austin, Texas.

Anderson, S. O. and Backhouse, Roland C. 1981
Locally Least-Cost Error-Recovery in
Earley's Algorithm. ACM TOPIAS 3(3):
318-347.

Carbonell, Jaime G. and Hayes, Philip J. 1983
Recovery Strategies for Parsing

108

Extragrammafical Language. A/CL 9(3-4):
123-146.

Gazdar, Gerald and Mellish, Chris. 1989 Natura/
Language Processing in LISP - An Intro-
duction to Computational Linguistics.
Addison-Wesley.

Jensen, Karen, Heidom, George E., Miller, Lance A.
and Ravin, Yael. 1983 Parse Fitting and
Prose Fitting: Getting a Hold on Ill.
Formedness. A/C/, 9(3-4): 147-160.

Kay, Matin. 1980 Algorithm Schemata and Data
Structures in Syntactic Processing.
Research Report CSL-80-12, Xerox PARC.

Pereir& Fernando C. N. and Warren, David I-L D.
1980 Definite Clause Grammars for
Language Analysis - A Survey of the For-
malism and a Comparison with Augmented
Transition Networks. Artifu:ial Intelli-
gence 13(3): 231-278.

Shieber, Stuart M. 1984 The Design of a Computer
Language for Linguistic Information. In
Proceedings of COLING-84, 362-366.

Steedman, Mark. 1987 Combinatow Grammars and
Human Language ~ g . In: Garfield,
J., Ed., Modularity in Knowledge
Representation and Natural Language Pro-
ceasing. Bradford Books/MIT Press.

Weischedel, Ralph M. and 5ondheimer. Norman K.
1983 Meta-rules as a Basis for ~ g
HI-Formed Input. AICL 9(3-4): 161-177.

Woods, Williant A. 1982 Optimal Search Strategies
for Speech Understanding Control.
Artificial Intelligence 18(3): 295-326.

109

