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ABSTRACT 

Functional Unification Grammars (FUGs) are 
popular for natural language applications because the 
formalism uses very few primitives and is uniform and 
expressive. In our work on text generation, we have 
found that it also has annoying limitations: it is not 
suited for the expression of simple, yet very common, 
taxonomic relations and it does not allow the 
specification of completeness conditions. We have 
implemented an extension of traditional functional 
unification. This extension addresses these limitations 
while preserving the desirable properties of FUGs. It 
is based on the notions of typed features and typed 
constituents. We show the advantages of this exten- 
sion in the context of a grammar used for text genera- 
tion. 

1 I N T R O D U C T I O N  
Unification-based formalisms are increasingly 

used in linguistic theories (Shieber, 1986) and com- 
putational linguistics. In particular, one type of 
unification formalism, functional unification grammar 
(FUG) is widely used for text generation (Kay, 1979, 
McKeown, 1985, Appelt, 1985, Paris, 1987, 
McKeown & Elhadad, 1990) and is beginning to be 
used for parsing (Kay, 1985, Kasper, 1987). FUG 
enjoys such popularity mainly because it allies expres- 
siveness with a simple economical formalism. It uses 
very few primitives, has a clean semantics 
(Pereira&Shieber, 1984, Kasper & Rounds, 1986, E1- 
hadad, 1990), is monotonic, and grants equal status to 
function and structure in the descriptions. 

We have implemented a functional unifier (EI- 
hadad, 1988) covering all the features described in 
(Kay, 1979) and (McKeown & Paris, 1987). Having 
used this implementation extensively, we have found 
all these properties very useful, but we also have met 
with limitations. The functional unification (FU) for- 
malism is not well suited for the expression of simple, 
yet very common, taxonomic relations. The tradi- 
tional way to implement such relations in FUG is ver- 
bose, inefficient and unreadable. It is also impossible 
to express completeness constraints on descriptions. 

In this paper, we present several extensions to the 
FU formalism that address these limitations. These 
extensions are based on the formal semantics 
presented in (Elhadad, 1990). They have been im- 
plemented and tested on several applications. 
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We first introduce the notion of typed features. R 
allows the definition of a structure over the primitive 
symbols used in the grammar. The unifier can take 
advantage of this structure in a manner similar to (Ait- 
Kaci, 1984). We then introduce the notion of typed 
constituents and the FSET construct. It allows the dec- 
laration of explicit constraints on the set of admissible 
paths in functional descriptions. Typing the primitive 
elements of the formalism and the constituents allows 
a more concise expression of grammars and better 
checking of the input descriptions. It also provides 
more readable and better documented grammars. 

Most work in computational linguistics using a 
unification-based formalism (e.g., (Sag & Pollard, 
1987, Uszkoreit, 1986, Karttunen, 1986, Kay, 1979, 
Kaplan & Bresnan, 1982)) does not make use of ex- 
plicit typing. In (Ait-Kaci, 1984), Ait-Kaci introduced 
V-terms, which are very similar to feature structures, 
and introduced the use of type inheritance in unifica- 
tion. W-terms were intended to be general-purpose 
programming constructs. We base our extension for 
typed features on this work but we also add the notion 
of typed constituents and the ability to express com- 
pleteness constraints. We also integrate the idea of 
typing with the particulars of FUGs (notion of con- 
stituent, NONE, ANY and CSET constructs) and show 
the relevance of typing for linguistic applications. 

2 T R A D I T I O N A L  F U N C T I O N A L  
U N I F I C A T I O N  A L G O R I T H M  

The Functional Unifier takes as input two descrip- 
tions, called functional descriptions or FDs and 
produces a new FD if unification succeeds and failure 
otherwise. 

An FD describes a set of objects (most often lin- 
guistic entities) that satisfy certain properties. It is 
represented by a set of pairs [ a : v ] ,  called features, 
where a is an attribute (the name of the property) and 
v is a value, either an atomic s3anbol or recursively an 
FD. An attribute a is allowed to appear at most once 
in a given FD F, so that the phrase "the a of F" is 
always non ambiguous (Kay, 1979). 

It is possible to define a natural partial order over 
the set of FDs. An FD Xis more specific than the FD 
Y if X contains at least all the features of Y (that is 
X _c Y). Two FDs are compatible if they are not con- 
tradictory on the value of an attribute. Let X and Y be 
two compatible FDs. The unification of X and Y is by 



definition the most general FD that is more specific 
than both X and Y. For example, the unification of 
{year:88, time: {hour:5} } and 
{time:{mns:22}, month:10} is {year:88, 
month: i0, time: {hour: 5, mns:22 } }. 
When properties are simple (all the values are atomic), 
unification is therefore very similar to the union of  
two sets: X u Y  is the smallest set containing both X 
and Y. There are two problems that make unification 
different from set union: first, in general, the union of 
two FDs is not a consistent FD (it can contain two 
different values for the same label); second, values of  
features can be complex FDs. The mechanism of 
unification is therefore a little more complex than sug- 
gested, but the FU mechanism is abstractly best under- 
stood as a union operation over FDs (cf (Kay, 
1979) for a full description of the algorithm). 

Note that contrary to structural unification (SU, as 
used in Prolog for example), FU is not based on order 
and length. Therefore, { a : 1, b : 2 } a n d  { b : 2,  
a : 1 ] are equivalent in FU but not in SU, and { a : 1 } 
and { b : 2 ,  a : l  } are compatible in FU but not in 
SU (FDs have no fixed arity) (cf. (Knight, 1989, 
p.105) for a comparison SU vs. FU). 

TERMINOLOGY: We introduce here terms that 
constitute a convenient vocabulary to describe our ex- 
tensions. In the rest of the paper, we consider the 
unification of  two FDs that we call input and gram- 
mar. We define L as a set of  labels or attribute names 
and C as a set of constants, or simple atomic values. A 
string of  labels (that is an element of  L*) is called a 
path, and is noted <11...11,>. A grammar defines a 

domain of  admissible paths, A c L*. A defines the 
skeleton of  well-formed FDs. 

• An FD can be an atom (element of 6') or a 
set of  features. One of the most attractive 
characteristics of  FU is that non-atomic 
FDs can be abstractly viewed in two 
ways: either as a fiat list of equations or 
as a structure equivalent to a directed 
graph with labeled arcs (Karttunen, 
1984). The possibility of using a non- 
structured representation removes the em- 
phasis that has traditionally been placed 
on structure and constituency in language. 

• The meta-FDs NONE and ANY are 
provided to refer to the status of  a feature 
in a description rather than to its value. 
[label:NONE] indicates that label 

cannot have a ground value in the FD 
resulting from the unification. 
[label:ANY] indicates that label 

~- must have a ground value in the resulting 
FD. Note that NONE is best viewed as 
imposing constraints on the definition of 
A: an equation <II...ln>=NONE means that 

<ll...ln > ~ A. 
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• A constituent of  a complex FD is a distin- 
guished subset of features. The special 
label CSET (Constituent Set) is used to 
identify constituents. The value of  CSET 
is a list of paths leading to all the con- 
stitueuts of the FD. Constituents trigger 
recursion in the FU algorithm. Note that 
CSET is part of  the formalism, and that its 
value is not a valid FD. A related con- 
struct of  the formalism, PATTERN, imple- 
ments ordering constraints on the strings 
denoted by the FDs. 

Among the many unification-based formalisms, 
the constructs NONE, ANY, PATrEKN, CSET and the no- 
tion of constituent are specific to FUGs. A formal 
semantics of  FUGs covering all these special con- 
structs is presented in (Elhadad, 1990). 

3 T Y P E D  F E A T U R E S  
A LIMITATION OF FUGS: NO STRUCTURE OVER 

THE SET OF VALUES: In FU, the set of  constants C has 
no structure. It is a fiat collection of symbols with no 
relations between each other. All constraints among 
symbols must be expressed in the grammar. In lin- 
guistics, however, grammars assume a rich structure 
between properties: some groups of  features are 
mutually exclusive; some features are only defined in 
the context of  other features. 

Noun 

I Question 
I Personal 

Pronoun --I 
I Demonstrative 
[ Quantified 

Proper 
I Count 

Common ---I 
I Mass 

Figure l :  A systemforNPs 

Let's consider a fragment of grammar describing 
noun-phrases (NPs) (cf Figure 1) using the systemic 
notation given in (Winograd, 1983). Systemic net- 
works, such as this one, encode the choices that need 
to be made to produce a complex linguistic entity. 
They indicate how features can be combined or 
whether features are inconsistent with other combina- 
tions. The configuration illustrated by this fragment is 
typical, and occurs very often in grammars. 1 The 
schema indicates that a noun can be either a pronoun, 
a proper noun or a common noun. Note that these 

1We have implemented a grammar similar to OVinograd, 1983, 
appendix B) containing 111 systems. In this grammar, more than 
40% of the systems are similar to the one described here. 



( (cat noun) 
(alt (( (noun pronoun) 

(pronoun 
( (alt (question personal demonstrative quantified) ) ) ) ) 

( (noun proper) ) 
( (noun common) 
(common ((alt (count mass)))))))) 

Figure 2: A faulty FUG for the NP system 

((alt (( (noun pronoun) 
(common NONE) 
(pronoun 
( (alt (question personal demonstrative quantified) ) ) ) ) 

((noun proper) (pronoun NONE) (common NONE)) 
( (noun common) 
(pronoun NONE) 
(common ((alt (count mass)))))))) 

The input FD describing a personal pronoun is then: 
((cat noun) 
(noun pronoun) 
(pronoun personal) ) 

Figure 3: A correct FUG for the NP system 

three features are mutually exclusive. Note also that 
the choice between the features { q u e s t i o n ,  p e r -  
s o n a l ,  demonstrative, quantified} is 
relevant only when the feature pronoun is selected. 
This system therefore forbids combinations of the type 
{ pronoun, proper } and { common, 
personal }. 

The traditional technique for expressing these con- 
straints in a FUG is to define a label for each non 
terminal symbol in the ~stem. The resulting gram- 

2 mar is shown in Figure 2. This grammar is, however, 
incorrect, as it allows combinations of the type 
( (noun proper) (pronoun question) ) or 
even worse ( (noun proper) (pronoun 
zouzou)  ). Because unification is similar to union 
of  features sets, a feature ( p r o n o u n  q u e s t i o n )  
in the input would simply get added to the output. In 
order to enforce the correct constraints, it is therefore 
necessary to use the meta-FD NONE (which prevents 
the addition of unwanted features) as shown in Figure 
3. 

There are two problems with this corrected FUG 
implementation. First, both the input FD describing a 
pronoun and the grammar are redundant and longer 
than needed. Second, the branches of the alternations 
in the grammar are interdependent: you need to know 
in the branch for pronouns that common nouns can be 
sub-categorized and what the other classes of nouns 
are. This interdependence prevents any modularity: if  
a branch is added to an alternation, all other branches 

2ALT indicates that the lists that follow are alternative noun types. 159 

need to be modified. It is also an inefficient 
mechanism as the number of  pairs processed during 
unification is O (n ~) for a taxonomy of depth d with an 
average ofn  branches at each level. 

TYPED FEATURES: The problem thus is that FUGs 
do not gracefiilly implement mutual exclusion and 
hierarchical relations. The system of  nouns is a typi- 
cal taxonomic relation. The deeper the taxonomy, the 
more problems we have expressing it using traditional 
FUGs. 

We propose extracting hierarchical information 
from the FUG and expressing it as a constraint over 
the symbols used. The solution is to define a sub- 
sumption relation over the set of  constants C. One 
way to define this order is to define types of symbols, 
as illustrated in Figure 4. This is similar to V-terms 
defined in (Ait-Kaci, 1984). 

Once types and a subsumption relation are defined, 
the unification algorithm must be modified. The 
atoms X and Y can be unified ff they are equal OR if  
one subsumes the other. The resuR is the most 
specific of X and Y. The formal semantics of this 
extension is detailed in (Elhadad, 1990). 

With this new definition of unification, taking ad- 
vantage of the structure over constants, the grammar 
and the input become much smaller and more readable 
as shown in Figure 4. There is no need to introduce 
artificial labels. The input FD describing a pronoun is 
a simple ( (cat personal-pronoun) ) instead 
of  the redundant chain down the hierarchy ( ( c a t  
noun) (noun pronoun) (pronoun 



(define-type noun (pronoun proper common)) 
(define-type pronoun 

(personal-pronoun question-pronoun 
demonstrative-pronoun quantified-pronoun)) 

(define-type common (count-noun mass-noun)) 

The ~amm~becomes: 
((cat noun) 
(alt (((cat pronoun) 

(cat ((alt (question-pronoun personal-pronoun 
demonstrative-pronoun quantified-pronoun))))) 

((cat proper)) 
((cat common) 
(cat ((alt (count-noun mass-noun)))))))) 

Andthemput: ((cat personal-pronoun)) 

Figure 4: Using typed ~atures 

Typedeelarat~ns: 
(define-constituent determiner 

(definite distance demonstrative possessive)) 

InputFDd~cr~ingadeterminer: 
(determiner ((definite yes) 

(distance far) 
(demonstrative no) 
(possessive no))) 

F~ure 5: A typed constitue~ 

personal)). Because values can now share the 
same label CAT, mutual exclusion is enforced without 
adding any pair [ 1 : NONE] .3 Note that it is now pos- 
sible to have several pairs [a :v  i ] in an FD F, but 
that the phrase "the a of  F"  is still non-ambiguous: it 
refers to the most specific of  the v i. Finally, the fact 
that there is a taxonomy is explicitly stated in the type 
definition section whereas it used to be buried in the 
code of  the FUG. This taxonomy is used to document 
the grammar and to check the validity of  input FDs. 

4 TYPED CONSTITUENTS: THE FSET 
CONSTRUCT 

A natural extension of  the notion of typed features 
is to type constituents: typing a feature restricts its 
possible values; typing a constituent restricts the pos- 
sible features it can have. 

Figure 5 illustrates the idea. The define 
constituent statement allows only the four given 
features to appear under the constituent 
d e t e r m i n e r .  This statement declares what the 

3In this example, the grammar could be a simple flat alternation 
((cat ((alt (noun pronoun personal-pronoun .., common mass-noun 
count-noun))))), but this expression would hide the structure of the 
gIan~n~. 16 0 

grammar knows about determiners. Define 
constituent is a completeness constraint as 
defined in LFGs (Kaplan & Bresnan, 1982); it says 
what the grammar needs in order to consider a con- 
stituent complete. Without this construct, FDs can 
only express partial information. 

Note that expressing such a constraint (a limit on 
the arity of  a constituent) is impossible in the tradi- 
tional FU formalism. It would be the equivalent of 
putting a NONE in the attribute field of a pair as in 
NONE:NONE. 

In general, the set of features that are allowed un- 
der a certain constituent depends on the value of 
another feature. Figure 6 illustrates the problem. The 
fragment of  grammar shown defines what inherent 
roles are defined for different types of  processes (it 
follows the classification provided in (Halliday, 
1985)). We also want to enforce the constraint that 
the set of  inherent roles is "closed": for an action, the 
inherent roles are agent, medium and benef and noth- 
ing else. This constraint cannot be expressed by the 
standard FUG formalism. A d e f i n e  
c o n s t i t u e n t  makes it possible, but nonetheless 
not very efficient: the set of possible features under 
the constituent i n h e r e n t - r o l e s  depends on the 
value of the feature p r o c e s s - t y p e .  The first part 
of  Figure 6 shows how the correct constraint can be 
implemented with d e f i n e  c o n s t i t u e n t  only: 
we need to exclude all the roles that are not defined 



WithoutFSET: 
(define-constituent inherent-roles 

(agent medium benef carrier attribute processor phenomenon)) 

( (cat clause) 
(alt ( ( (process-type action) 

(inherent-roles ((carrler NONE) 
(attribute NONE) 
(processor NONE) 
(phenomenon NONE) ) ) ) 

( (process-type attributive) 
(inherent-roles ( (agent NONE) 

(medium NONE) 
(benef NONE) 
(processor NONE) 
(phenomenon NONE) ) ) ) 

( (process-type mental) 
(inherent-roles ((agent NONE) 

(medium NONE) 
(benef NONE) 
(carrier NONE) 
(attribute NONE) ) ) ) ) ) ) 

With FSET: 
( (cat clause) 
(alt ( ( (process-type action) 

(inherent-roles ( (FEET (agent medium benef) ) ) ) ) 
( (process-type attributive) 
(inherent-roles ( (FEET (carrier attribute) ) ) ) ) 

( (process-type mental) 
(inherent-roles ( (FEET (processor phenomenon) ) ) ) ) ) ) ) 

Figure 6: The FSET Construct 

for the process-type. Note that the problems are very 
similar to those encountered on the pronoun system: 
explosion of  NONE branches, interdependent branches, 
long and inefficient grammar. 

To solve this problem, we introduce the construct 
FEET (feature set). FEET specifies the complete set of 
legal features at a given level of an FD. FEET adds 
constraints on the definition of the domain of admis- 
sible paths A. The syntax is the same as CSET. Note 
that all the features specified in FEET do not need to 
appear in an FD: only a subset of those can appear. 
For example, to define the class of middle verbs (e.g., 
"to shine" which accepts only a medium as inherent 
role and no agent), the following statement can be 
unified with the fragment of grammar given in Figure 
6: 
( (verb ( (lex "shine") )) 
(process-type action) 
(voice-class middle) 
(inherent-roles ( (FSET (medium)) ) ) ) 

The feature (FEET (medium)) can be unified 
vAth (FSET (agent medium benef)) and the 
result is (FSET (medium)). 

Typing constituents is necessary to implement the 
theoretical claim of LFG that the number of syntactic 
functions is limited. It also has practical advantages. 161 

The first advantage is good documentation of the 
grammar. Typing also allows checking the validity of 
inputs as defined by the type declarations. 

The second advantage is  that it can be used to 
define more efficient data-structures to represent FDs. 
As suggested by the definition of FDs, two types of 
data-structures can be used to internally represent 
FDs: a fiat list of equations (which is more appropriate 
for a language like Prolog) and a structured represen- 
tation (which is more natural for a language like Lisp). 
When all constituents are typed, it becomes possible 
to use arrays or hash-tables to store FDs in Lisp, 
which is much more efficient We are currently inves- 
tigating alternative internal representations for FDs 
(cf. (Pereira, 1985, Karttunen, 1985, Boyer, 1988, 
Hirsh, 1988) for discussions of data-structures and 
compilation of FUGs). 

5 CONCLUSION 
Functional Descriptions are built from two com- 

ponents: a set C of primitives and a set L of labels. 
Traditionally, all structuring of FDs is done using 
strings of labels. We have shown in this paper that 
there is much to be gained by delegating some of the 
structuring to a set of primitives. The set C is no 
longer a fiat set of symbols, but is viewed as a richly 



structured world. The idea of typed-unification is not 
new (Ait-Kaci, 1984), but we have integrated it for the 
first time in the context of FUGs and have shown its 
linguistic relevance. We have also introduced the 
FSET construct, not previously used in unification, en- 
dowing FUGs with the capacity to represent and 
reason about complete information in certain situa- 
tions. 

The structure of C can be used as a meta- 
description of the grammar: the type declarations 
specify what the grammar knows, and are used to 
check input FDs. It allows the writing of much more 
concise grammars, which perform more efficiently. It 
is a great resource for documenting the grammar. 

The extended formalism described in this paper is 
implemented in Common Lisp using the Union-Find 
algorithm (Elhadad, 1988), as suggested in (Huet, 
1976, Ait-Kaci, 1984, Escalada-Imaz & Ghallab, 
1988) and is used in several research projects (Smadja 
& McKeown, 1990, Elhadad et al, 1989, McKeown & 
Elhadad, 1990, McKeown et al, 1991). The source 
code for the unifier is available to other researchers. 
Please contact the author for further details. 

We are investigating other extensions to the FU 
formalism, and particularly, ways to modify control 
over grammars: we have developed indexing schemes 
for more efficient search through the grammar and 
have extended the formalism to allow the expression 
of complex constraints (set union and intersection). 
We are now exploring ways to integrate these later 
extensions more tightly to the FUG formalism. 
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