
TAL Recognition in O(M(n2)) Time

Sanguthevar Rajasekaran
Dept. of CISE, Univ. of Florida

raj~cis.ufl.edu
Shibu Yooseph

Dept. of CIS, Univ. of Pennsylvania
yooseph@grad i en t . c i s . upenn . edu

Abstract

We propose an O(M(n2)) time algorithm
for the recognition of Tree Adjoining Lan-
guages (TALs), where n is the size of the
input string and M(k) is the time needed
to multiply two k x k boolean matrices.
Tree Adjoining Grammars (TAGs) are for-
malisms suitable for natural language pro-
cessing and have received enormous atten-
tion in the past among not only natural
language processing researchers but also al-
gorithms designers. The first polynomial
time algorithm for TAL parsing was pro-
posed in 1986 and had a run time of O(n6).
Quite recently, a n O(n 3 M(n)) algorithm
has been proposed. The algorithm pre-
sented in this paper improves the run time
of the recent result using an entirely differ-
ent approach.

1 Introduction

The Tree Adjoining Grammar (TAG) formalism was
introduced by :loshi, Levy and Takahashi (1975).
TAGs are tree generating systems, and are strictly
more powerful than context-free grammars. They
belong to the class of mildly context sensitive gram-
mars (:loshi, et al., 1991). They have been found
to be good grammatical systems for natural lan-
guages (Kroch, Joshi, 1985). The first polynomial
time parsing algorithm for TALs was given by Vi-
jayashanker and :loshi (1986), which had a run time
of O(n6), for an input of size n. Their algorithm
had a flavor similar to the Cocke-Younger-Kasami
(CYK) algorithm for context-free grammars. An
Earley-type parsing algorithm has been given by
Schabes and Joshi (1988). An optimal linear time
parallel parsing algorithm for TALs was given by
Palls, Shende and Wei (1990). In a recent paper,
Rajasekaran (1995) shows how TALs can be parsed
in time O(n3M(n)).

In this paper, we propose an O(M(n2)) time
recognition algorithm for TALs, where M(k) is the

time needed to multiply two k x k boolean matri-
ces. The best known value for M(k) is O(n 2"3vs)
(Coppersmith, Winograd, 1990). Though our algo-
rithm is similar in flavor to those of Graham, Har-
rison, & Ruzzo (1976), and Valiant (1975) (which
were Mgorithms proposed for recognition of Con-
text Pree Languages (CFLs)), there are crucial dif-
ferences. As such, the techniques of (Graham, et al.,
1976) and (Valiant, 1975) do not seem to extend to
TALs (Satta, 1993).

2 T r e e A d j o i n i n g G r a m m a r s

A Tree Adjoining Grammar (TAG) consists of a
quintuple (N, ~ U {~}, I, A, S), where

N is a finite set of nonterminal symbols,
is a finite set of terminal symbols disjoint from

N,
is the empty terminal string not in ~,

I is a finite set of labelled initial trees,
A is a finite set of auxiliary trees,
S E N is the distinguished start symbol
The trees in I U A are called elementary trees. All

internal nodes of elementary trees are labelled with
nonterminal symbols. Also, every initial tree is la-
belled at the root by the start symbol S and has
leaf nodes labelled with symbols from ~3 U {E}. An
auxiliary tree has both its root and exactly one leaf
(called the foot node) labelled with the same non-
terminal symbol. All other leaf nodes are labelled
with symbols in E U {~}, at least one of which has a
label strictly in E. An example of a TAG is given in
figure 1.

A tree built from an operation involving two other
trees is called a derived tree. The operation involved
is called adjunction. Formally, adjunction is an op-
eration which builds a new tree 7, from an auxiliary
tree fl and another tree ~ (a is any tree - initial, aux-
iliary or derived). Let c~ contain an internal node m
labelled X and let fl be the auxiliary tree with root
node also labelled X. The resulting tree 7, obtained
by adjoining fl onto c~ at node m is built as follows
(figure 2):

166

Initial tree
O~

S

I
E

G = {{S},{a,b,c,e }, { or}, { ~}, S}

S

S

b S*

Figure 1: Example of a TAG

Auxiliary tree

1. The subtree of a rooted at m, call it t, is excised,
leaving a copy of m behind.

2. The auxiliary tree fl is at tached at the copy of
m and its root node is identifed with the copy
of m.

3. The subtree t is at tached to the foot node of fl
and the root node of t (i.e. m) is identified with
the foot node of ft.

This definition can be extended to include adjunc-
tion constraints at nodes in a tree. The constraints
include Selective, Null and Obligatory adjunction
constraints. The algori thm we present here can he
modified to include constraints.

For our purpose, we will assume that every inter-
nal node in an elementary tree has exactly 2 children.

Each node in a tree is represented by a tuple <
tree, node index, label >. (For brevity, we will refer
to a node with a single variable m whereever there
is no confusion)

A good introduction to TAGs can be found in
(Partee, et al., 1990).

3 Contex t Free recognit ion in
O(M(n)) Time

The CFG G = (N,~,P, A1), where
N is a set of Nonterminals {A1, A2, .., Ak},

is a finite set of terminals,
P is a finite set of productions,
A1 is the start symbol

is assumed to be in the Chomsky Normal Form.
Valiant (1975) shows how the recognition problem
can be reduced to the problem of finding Transitive
Closure and how Transitive Closure can be reduced
to Matr ix Multiplication.

Given an input string aza2 an E ~*, the recur-
sive algori thm makes use of an (n+l)× (n+ l) upper
tr iangular mat r ix b defined by

hi,i+1 = {Ak I(Ak --* a,) E P},
bi,j = ¢, for j • i + 1

and proceeds to find the transitive closure b + of this
matrix. (I f b + is the transitive closure, then Ak E

b. +. ¢:~ A k - ~ ai a j -1) $,J

Instead of finding the transitive closure by the cus-
tomary method based on recursively splitting into
disjoint parts , a more complex procedure based on
'splitting with overlaps' is used. The extra cost in-
volved in such a s trategy can be made almost negligi-
ble. The algori thm is based on the following l emma

Lemma : Let b be an n x n upper triangular ma-
trix, and suppose that for any r > n/e, the tran-
sitive closure of the partitions [1 < i , j < r] and
[n - r < i , j < n] are known. Then the closure of b
can be computed by

I. performing a single matrix multiplication, and

2. finding the closure of a 2(n - r) × 2(n - r) up-
per triangular matrix of which the closure of the
partitions[1 < i , j < n - r] and [n - r < i , j <
2(n - r)] are known.

Proof: See (Valiant, 1975) for details
The idea behind (Valiant, 1975) is based on visu-

alizing Ak E b+j as spanning a tree rooted at the
node Ak with l~aves ai through a j -1 and internal
nodes as nonterminals generated f rom Ak according
to the productions in P. Having done this, the fol-
lowing observation is made :

Given an input string a l . . . a , and 2 distinct sym-
bol positions, i and j, and a nonterminal Ak such
that Ak E b + ., where i' < i , j ' > j , then 3 a non-

I P3

terminal A k, which is a descendent of Ak in the
b + . where tree rooted at Ak, such tha t A k, E i d'

i" < i, j " > j and A k, has two children Ak~ and Ak2
such tha tAk~ E b +, andAk2 E b + . . w i t h i < s < j .
A k, can be thought of as a minimal node in this
sense.(The descendent relation is both reflexive and
transitive)

Thus, given a string a l . . . a , of length n, (say r =
2/3), the following steps are done :

167

t

Figure 2: Adjunction Operat ion

k

t

1. Find the closure of the first 2 /3 ,i.e. all nodes
spanning trees which are within the first 2/3 .

2. Find the closure of the last 2 /3 , i.e. all nodes
spanning trees which are within the last 2/3.

3. Do a composit ion operat ion (i.e. mat r ix multi-
plication) on the nodes got as a result of S t e p
1 with nodes got as a result of S t e p 2.

4. Reduce problem size to az...an/zal+2n/3...an
and find closure of this input.

The point to note is tha t in step 3, we can get rid
of the mid 1/3 and focus on the remaining problem
size.

This approach does not work for TALs because of
the presence of the adjunction operation.

Firstly, the da ta structure used, i.e. the 2-
dimensional mat r ix with the given representation,
is not sufficient as adjunction does not operate on
contiguous strings. Suppose a node in a tree domi-
nates a frontier which has the substring aiaj to the
left of the foot node and akat to the right of the
footnode. These substrings need not be a contigu-
ous par t of the input; in fact, when this tree is used
for adjunction then a string is inserted between these
two suhstrings. Thus in order to represent a node,
we need to use a ma t r ix of higher dimension, namely
dimension 4, to characterize the substring tha t ap-
pears to the left of the footnode and the substring
tha t appears to the right of the footnode.

Secondly, the observation we made about an entry
E b + is no longer quite true because of the presence
of adjunction.

Thirdly, the technique of gett ing rid of the mid
1/3 and focusing on the reduced problem size alone,
does not work as shown in figure 3:

Suppose 3' is a derived tree in which 3 a node rn
on which adjunction was done by an auxiliary tree
ft. Even if we are able to identify the derived tree
71 rooted at m, we have to first identify fl before we
can check for adjunction, fl need not be realised as
a result of the composit ion operat ion involving the

nodes f rom the first and last 2 /3 ' s ,(say r =2/3) .
Thus, if we discard the mid 1/3, we will not be able
to infer tha t the adjunction had indeed taken place
at node m.

4 N o t a t i o n s

Before we introduce the algori thm, we state the no-
tat ions tha t will be used.

We will be making use of a 4-dimensional mat r ix
A of size (n + 1) x (n + 1) x (n + 1) x (n + 1), where
n is the size of the input string.

(Vijayashanker, Joshi, 1986) Given a TAG G and
an input string aza2..an, n > 1, the entries in A will
be nodes of the trees of G. We say, tha t a node m
(= < 0, node index, label >) E A (i , j , k, l) iff m is a
node in a derived tree 7 and the subtree of 7 rooted
at m has a yield given by either ai+l. . .ajXak+l.. .al
(where X is the footnode of r/, j < k) or ai+l az
(when j = k).

I f a node m E A(i,j,k,l}, we will refer to m as
spanning a tree (i,j,k,l).

When we refer to a node m being realised as a
result of composition of two nodes m l and rnP, we
mean tha t 3 an elementary tree in which m is the
parent of m l and m2.

A Grown Auxiliary Tree is defined to be either
a tree resulting f rom an adjunction involving two
auxiliary trees or a tree resulting f rom an adjunction
involving an auxiliary tree and a grown auxiliary
tree.
Given a node m spanning a tree (i,j,k,l), we define
the last operation to create this tree as follows :

if the tree (i,j,k,l) was created in a series of op-
erations, which also involved an ad junc t ion by an
auxiliary tree (or a grown auxiliary tree) (i, J l , kz, l)
onto the node m, then we say tha t the last opera-
tion to create this tree is an adjunction operation;
else the last operation to create the tree (i,j,k,l) is a
composition.
The concept of last operation is useful in modelling
the steps required, in a bo t tom-up fashion, to create

168

n . . x

71

Node m has label X

/ ,

' 3 '

Derived t ree

71

Figure 3: Situation where we cannot infer the adjunction if we simply get rid of the mid 1/3

a tree.

5 A l g o r i t h m

Given that the set of initial and auxiliary trees can
have leaf nodes labelled with e, we do some prepro-
cessing on the TAG G to obtain an Association List
(ASSOC LIST) for each node. ASSOC LIST (m),
where m is a node, will be useful in obtaining chains
of nodes in elementary trees which have children la-
belled ~.

Initialize ASSOC LIST (m) = ¢, V m, and then
call procedure MAKELIST on each elementary tree,
in a top down fashion starting with the root node.

Procedure MAKELIST (m)
B e g i n

1. If m is a leaf then quit

2. If m has children ml and me both yielding the
empty string at their frontiers (i.e. m spans a
subtree yielding e) then

ASSOC LIST (ml) = ASSOC
LIST (m) u {m)

ASSOC LIST (m2) = ASSOC
LIST (m) U (m}

3. If m has children m1 and me, with only me
yielding the empty string at its frontier, then

ASSOC LIST (ml) = ASSOC
LIST (m) u {m)

E n d

We initially fill A(i , i+l , i+l , i+l) with all nodes
from Smt ,Vml , where S,~1 = {ml} O AS-
SOC LIST (ml), ml being a node with the same
label as the input hi+l, for 0 < i < n-1. We also fill
A(i,i,j,j), i < j, with nodes from S,~2, Vm2, where
Sin2 = {me) tJ ASSOC LIST (me), me being a foot
node. All entries A(i,i,i,i), 0 < i < n, are filled with

nodes from Sraa,Vm3, where S,n3 = { m3} U AS-
SOC LIST (mS), m3 having label ¢.

Following is the main procedure, Compute Nodes,
which takes as input a sequence r lr2 rp of symbol
positions (not necessarily contiguous). The proce-
dure outputs all nodes spanning trees (i,j,k,O, with
{i, 1} E { r l , r 2 ~'ip } and {j,k} E { r l , r I Jr Z, . . . , rp}.
The procedure is initially called with the sequence
012..n corresponding to the input string aa an.
The matr ix A is updated with every call to this pro-
cedure and it is updated with the nodes just realised
and also with the nodes in the A S S O C LISTs of the
nodes just realised.

Procedure Compute Nodes (rl r2 rp)
B e g i n

1. I f p = 2, then

a. Compose all nodes E A(r l , j , k, re) with all
nodes E A(re,re, re, re), r t < j < k < re.
Update A .

b. Compose all nodes E A (r l , r l , r l , r x) with
all nodes E A(r t , j , k, r2), r t < j < k < re.
Update A .

e. Check for adjunctions involving nodes re-
alised from steps a and b. Update A .

d. Return

2. Compute Nodes (rlr2 rep/a).

3. Compute Nodes (rl+p/z rp).

4. a. Compose nodes realised from step 2 with
nodes realised from step 3.

b. Update A.

5. a. Check for all possible adjunctions involving
the nodes realised as a result of step 4.

b. Update A.

6. Compute Nodes (rlre...rp/arl+2p/a...r p)

169

E n d

S t e p s l a , l b a n d 4a can be carried out in the fol-
lowing manner :

Consider the composition of node m l with node
me. For step 4a, there are two cases to take care of.
C a se 1

If node m l in a derived tree is the ancestor of the
foot node, and node me is its right sibling, such that
m l 6 A(i , j, k, l) and m2 E A(l, r, r, s), then their
parent, say node m should belong to A (i , j , k , s) .
This composition of m l with me can be reduced to a
boolean matr ix multiplication in the following way:
(We use a technique similar to the one used in (Ra-
jasekaran, 1995)) Construct two boolean matrices
B1, of size ((n 4- 1)2p/3) × (p/3) and Be, of size
(p/3) x (p/3).

Bl(ijk, l) = 1 iff m l E A (i , j , k , I)
and i E {rl , .., rv/3}
and 1 E {rl+p/3, ..r2p/3}

= 0 otherwise

Note that in B1 0 < j < k < n.

B e E s) = 1 iff me e A(I , r , r , s)
and 1 E {r1+;13, ..rep/3}
and s E { r l + e p / 3 , .., rp}

-- 0 otherwise

Clearly the dot product of the i jk th row of B1
with the s th column of Be is a 1 iff m E A(i, j, k, s).
Thus, update A (i , j , k , s) with {m} U A S S O C L I S T
(m).
Case 2

If node me in a derived tree is the ancestor of the
foot node, and node m l is its left sibling, such that
m l E A (i , j , j , l) and m2 E A(l ,p, q, r), then their
parent, say node m should belong to A(i ,p ,q , s) .
This can also be handled similar to the manner de-
scribed for case 1. Update A(i ,p ,q , s) with {m} U
A S S O C L I S T (m).

Notice that Case 1 also covers step l a and Case 2
also covers step l b .

S t e p 5a and S t e p l c can be carried out in the
following manner :

We know that if a node m E A (i , j , k , i) , and the
root m l of an auxiliary tree E A(r, i, i, s), then ad-
joining the tree 7/, rooted at ml, onto the node m,
results in the node m spanning a tree (rj ,k,s) , i.e. m
E A(r, j, k, s).

We can essentially use the previous technique of
reducing to boolean matr ix multiplication. Con-
struct two matrices C1 and Ce of sizes (p2/9) x (n +
1) 2 and (n + 1) 2 x (n + 1) 2, respectively, as follows :

Cl(ii, jk) = 1 iff 3ml , root of an auxiliary
tree E A(i, j, k, l), with same label as m and
Cl(il, jk) = 0 otherwise

Note that in CI i E {r l , . . , rp ls} , i E
{ r l + 2 p / 3 , .., rp} , and 0 _< j < k < n.

Ce(qt, rs) = 1 iff m E A(q, r, s, t)
-- 0 otherwise

Note that i n C 2 0 < q < r < s < t < n .
Clearly the dot product of the ii th row of C1 with

the rs th column of Ce is a 1 iff m E A(i , r , s , l) .
Thus, update A(i, r, s, l) with {m} U A S S O C L I S T
(m).

The input string ala2...an is in the language gener-
ated by the TAG G iff 3 a node labelled S in some
A(O, j , j , n) , 0 <_ j < n.

6 C o m p l e x i t y

Steps l a , l b and 4a can be computed in
O(neM(p)) .
Steps 5a and l e can be computed in
O((ne/pe)eM(pg)).
If T(p) is the time taken by the procedure Compute
Nodes, for an input of size p, then

T(p) = 3T(2p/3)4-O(n2M(p))4-
O((ne /pe)e M (pe))

where n is the initial size of the input string.
Solving the recurrence relation, we get T(n) -
O(M(ne)) .

7 P r o o f o f C o r r e c t n e s s

We will show the proof of correctness of the algo-
r i thm by induction on the length of the sequence of
symbol positions.

But first, we make an observation, given any two
symbol positions (r~, rt), rt > r~ 4-1 , and a node m
spanning a tree (i , j , k, l) such that i < rs and i _> rt
with j and k in any of the possible combinations as
shown in figure 4.

3 a node m' which is a descendent of the
node m in the tree (i,j,k,l) and which either
E A S S O C L I S T (m l) or is the same as ml, with
ml having one of the two properties mentioned be-
low :

1. m l spans a tree (i l , j l , kl , 11) such that the last
operation to create this tree was a composition
operation involving two nodes me and m3 with
me spanning (ix, J2, k2, 12) and m3 spanning
(12,j3, ks, ix). (with (r , < l~. < rt), 01 <- r,),
(rt < !1) and either (j2 = kz, j3 = j l , k3 = kl)
or (j2 = j l ,k2 = k l , j3 = k3))

2. m l spans a tree (i l , j l , kl, l l) such that the last
operation to create this tree was an adjunction
by an auxiliary tree (or a grown auxiliary tree)
(il, j2, ke, Ix), rooted at node me, onto the node
m l spanning the tree (j e , j l , kl, k2) such that
node me has either the property mentioned in
(1) or belongs to the A S S O C L I S T of a node

170

I I

rs rt

j k

2

3

4 j

5

Figure 4: Combinations

j k

j k

k

j k

of j and k being considered

which has the property mentioned in (1). (The
labels of m l and me being the same)

Any node satisfying the above observation will be
called a minimal node w.r.t, the symbol positions
(r,, r0.

The minimM nodes can be identified in the follow-
ing manner. If the node m spans (i , j , k, l) such that
the last operation to create this tree is a composition
of the form in figure ha, then m tO A S S O C L I S T (m)
is minimal. Else, if it is as shown in figure 5b, we
can concentrate on the tree spanned by node m l and
repeat the process. But, if the last operation to cre-
ate (i, j, k, 1) was an adjunction as shown in figure
5c, we can concentrate on the tree (il, j , k, 11) ini-
tially spanned by node m. If the only adjunction
was by an auxiliary tree, on node m spanning tree
(Q , j , k , lx) as shown in figure 5d, then the set of
minimal nodes will include both m and the root m l
of the auxiliary, tree and the nodes in their respec-
tive A S S O C LISTs. But if the adjunction was by a
grown auxiliary tree as shown in figure he, then the
minimal nodes include the roots of/31,/32, ..,/3s, 7
and the node m.

Given a sequence < r l , r 2 , . . , r p >, we call
(rq,r~+l) a gap, iff rq+l ¢ rq + 1. Identifying min-
imal nodes w.r.t, every new gap created, will serve
our purpose in determining all the nodes spanning
trees (i, j, k, 1), with {i, l} e {rl , r2, .., rp}.

T h e o r e m : Given an increasing sequence <
r l , r2, .., rp > of symbol positions and given

a. V gaps (rq, rq+l), all nodes spanning trees (i,j,k,l}
with rq < i < j < k < l < rq+l

b. V gaps (rq, rq+l), all nodes spanning trees (i,j,k,l)
such that either rq < i < rq+l or rq < l < rq+l

c. V gaps (rq,rq+l) , all the minimal nodes for the
gap such that these nodes span trees (i,j,k,l) with
{i , l} E { r l , r2 , . . , rp } and i <_ 1

in addition to the initialization information, the
algorithm computes all the nodes spanning trees
(i,i,k,O with (i , l } ~ { r~,r~,. . ,rp } and i _< i <
k < l .

m

P r o o f :

B a s e Cases :
For length = 1, it is trivial as this information is
already known as a result of initialization.
For length = 2, there are two cases to consider :

1. r2 = r l + 1, in which case a composition in-
volving nodes from A(r l , rl, rl, r l) with nodes
from A(r l , r2, r2, r2) and a composition involv-
ing nodes from A(r l , r2, r2, r2) with nodes from
A(r2, r2, r2, r2), followed by a check for adjunc-
tion involving nodes realised from the previous
two compositions, will be sufficient. Note that
since there is only one symbol from the input
(namely, ar~), and because an auxiliary tree has
at least one label from ~, thus, checking for one
adjunction is sufficient as there can be at most
one adjunction.

2. r2 ~ r l + 1, implies that (rl,r2) is a gap.
Thus, in addition to the information given
as per the theorem, a composition involv-
ing nodes from A(r l , j , k, r2) with nodes from
A(r2,r2, r2,r2) and a composition involving
nodes from A (r l , r l , r l , r l) with nodes from
A(rl , j, k, r2), (r l < j < k < r2), followed by an
adjunction involving nodes realised as a result of
the previous two compositions will be sufficient
as the only adjunction to take care of involves
the adjunction of some auxiliary tree onto a
node m which yields e, and m E A(r l , r l , r l , r l)
or m E A(r2,r2,r2, r2).

I n d u c t i o n h y p o t h e s i s : V increasing sequence
< r l , r2 , ..,r~ > of symbol positions of length < p,
(i.e q < p), the algorithm, given the information as

171

(5a)

m

r r
s t

(ab)
m

(5c)

m

auxiliary A
• tree o ~ , . ~ / / / / / / 2 X
grow.

tree ///// ~k//~
i il ' j k ' ll !

(Se)
i z

I

(M)
root of auxiliary

ra tree has property

tree ~ / / / J / / ~

i -'i 1 ' l
1 1

Grown aux tree formed by adjoining

Ps " P2 Pl

on to roo t o f g r o w n a u x tree 7

Root of ~1 has property shown in (Sa)

Figure 5: Identifying minimal nodes

required by the theorem, computes all nodes span-
ning trees (i,j ,k,l) such that {i, l} e { rl , r2, .., rq }
and i < j < k < I. I n d u c t i o n : Given an increasing
sequence < r l , r~, .., rp, rp+l > of symbol positions
together with the information required as per parts
a ,b , c of the theorem, the algorithm proceeds as fol-
lows:

1. By the induction hypothesis, the algorithm
correctly computes all nodes spanning trees
(i,j ,k,i) within the first 2/3, i.e, { i , l } E {
r t , r2, .., r2(p+D/3 } and i < l . By the hypothe-
sis, it also computes all nodes (i ' , j , k ' , l ')w i th in
the last 2/3, i.e, { i ~, ! ~ } E {rl+(p+l)/3, .., rp+z}
and i' < i'.

2. The composition step involving the nodes
from the first and last 2/3 of the sequence
< r l , r2, .., rp, rp+i >, followed by the adjunc-
tion step captures all nodes m such that either

a. m spans a tree (i , j ,k , l)such that the last op-
eration to create this tree was a composi-
tion operation on two nodes m l and m2
with m l spanning (i , j ' ,k; l ' } and me span-
ning
(i; j",k", l) . (with i E { r l , r2, .., r(p+l)/3 },
i E { rl+(p+l)/3,. . ,r2(p+D/3 } and I E !
ri+2(p+z)/3, .., rp+z }, and either (j' = k ,

j" = j , k" = k) or (j' = j , k ' = k , j " = k ')
).

b. m spans a tree O,J, k,l) such that the last op-
eration to create this tree was an adjunc-
tion by an auxiliary or grown auxiliary tree
(i,j ' ,k',l), rooted at node mI, onto the node
m spanning the tree (j ' , j ,k,k ') such that
node m l has either the property mentioned
in (1) or it belongs to the A S S O C L I S T of
a node which has the property mentioned
in (1). (The labels of m and m l being the
same)

Note that , in addition to the nodes m captured
from a or b, we will also be realising nodes E
A S S O C L I S T (m).

The nodes captured as a result of 2 are
the minimal nodes with respect to the gap
(r(p+l)/a, rl+2(p+l)/3) with the additional property
that the trees (i,j,k,l) they span are such that i E {
r l , r 2 , .., r (p + l)] 3 } and l E { r l + 2 (p + l)] 3 , . . , r p + l } .

Before we can apply the hypothesis on the se-
quence < rx, r2, .., r(p+t)/3, rl+2(p+l)[3, ..rp+l >, we
have to make sure that the conditions in p a r t s
a ,b , c of the theorem are met for the new gap
(r(p+1)/3, rl+2(p+l)/3). It is easy to see that con-
ditions for parts a and b are met for this gap. We
have also seen that as a result of step 2, all the mini-
mal nodes w.r.t the gap (r(p+x)/3 , rl+2(p+l)/3), with

172

the desired property as required in part c have been
computed. Thus applying the hypothesis on the
sequence < r l , r2, .., r(p+l)[3, r l+2(p+l) /3 , ..rp+l >,
the algorithm in the end correctly computes all
the nodes spanning trees (ij,k,1) with {i,l} E
{rl , r2, . . , rp+x } a n d i < j < k < l . D

8 I m p l e m e n t a t i o n

The TAL recognizer given in this paper was im-
plemented in Scheme on a SPARC station-10/30.
Theoretical results in this paper and those in (Ra-
jasekaran, 1995) clearly demonstrate that asymp-
totically fast algorithms can be obtained for TAL
parsing with the help of matrix multiplication al-
gorithms. The main objective of the implementa-
tion was to check if matrix multiplication techniques
help in practice also to obtain efficient parsing algo-
rithms.

The recognizer implemented two different algo-
rithms for matrix multiplication, namely the triv-
ial cubic time algorithm and an algorithm that ex-
ploits the sparsity of the matrices. The TAL recog-
nizer that uses the cubic time algorithm has a run
time comparable to that of Vijayashanker-]oshi's al-
gorithm.

Below is given a sample of a grammar tested and
also the speed up using the sparse version over the
ordinary version. The grammar used, generated the
TAL anbnc n. This grammar is shown in figure 1.

Interestingly, the sparse version is an order of
magnitude faster than the ordinary version for
strings of length greater than 7.

i[S t r ing
abe
aabbcc

Answer

Yes
Yes

S p e e d u p [1
3.1
6.1

aabcabe No 8.0
abacabac No 11.7
aaabbbccc Yes 11.4

The above implementation results suggest that
even in practice better parsing algorithms can be
obtained through the use of matrix multiplication
techniques.

9 C o n c l u s i o n s

In this paper we have presented an O(M(n2)) time
algorithm for parsing TALs, n being the length of
the input string. We have also demonstrated with
our implementation work that matrix multiplication
techniques can help us obtain efficient parsing algo-
rithms.

A c k n o w l e d g e m e n t s

This research was supported in part by an NSF Re-
search Initiation Award CCR-92-09260 and an ARO
grant DAAL03-89-C-0031.

References

D. Coppersmith and S. Winograd, Matrix Multi-
plication Via Arithmetic Progressions, in Proc.
19th Annual ACM Symposium on Theory of Com-
puting, 1987,pp. 1-6. Also in Journal of Symbolic
Computation, Vol. 9, 1990, pp. 251-280.

S.L. Graham, M.A. Harrison, and W.L. Ruzzo, On
Line Context Free Language Recognition in Less
than Cubic Time, Proc. A CM Symposium on The-
ory of Computing, 1976, pp. 112-120.

A.K. Joshi, L.S. Levy, and M. Takahashi, Tree Ad-
junct Grammars, Journal of Computer and Sys-
tem Sciences, 10(1), 1975.

A.K. Joshi, K. Vijayashanker and D. Weir, The Con-
vergence of Mildly Context-Sensitive Grammar
Formalisms, Foundational Issues of Natural Lan-
guage Processing, MIT Press, Cambridge, MA,
1991,pp. 31-81.

A. Kroch and A.K. Joshi, Linguistic Relevance of
Tree Adjoining Grammars, Technical Report MS-
CS-85-18, Department of Computer and Informa-
tion Science, University of Pennsylvania, 1985.

M. Palis, S. Shende, and D.S.L. Wet, An Optimal
Linear Time Parallel Parser for Tree Adjoining
Languages, SIAM Journal on Computin#,1990.

B.H. Partee, A. Ter Meulen, and R.E. Wall, Stud-
ies in Linguistics and Philosophy, Vol. 30, Kluwer
Academic Publishers, 1990.

S. Rajasekaran, TAL Parsing in o(n 6) Time, to ap-
pear in SIAM Journal on Computing, 1995.

G. Satta, Tree Adjoining Grammar Parsing and
Boolean Matrix Multiplication, to be presented in
the 31st Meeting of the Association for Computa-
tional Linguistics, 1993.

G. Satta, Personal Communication, September
1993.

Y. Schabes and A.K. Joshi, An Earley-Type Parsing
Algorithm for Tree Adjoining Grammars, Proc.
26th Meeting of the Association for Computa-
tional Linguistics, 1988.

L.G. Valiant, General Context-Free Recognition in
Less than Cubic Time, Journal of Computer and
System Sciences, 10,1975, pp. 308-315.

K. Vijayashanker and A.K. Joshi, Some Computa-
tional Properties of Tree Adjoining Grammars,
Proc. 2~th Meeting of the Association for Com-
putational Linguistics, 1986.

173

