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Abstract 

We propose an O(M(n2)) time algorithm 
for the recognition of Tree Adjoining Lan- 
guages (TALs), where n is the size of the 
input string and M(k) is the time needed 
to multiply two k x k boolean matrices. 
Tree Adjoining Grammars (TAGs) are for- 
malisms suitable for natural language pro- 
cessing and have received enormous atten- 
tion in the past among not only natural 
language processing researchers but also al- 
gorithms designers. The first polynomial 
time algorithm for TAL parsing was pro- 
posed in 1986 and had a run time of O(n6). 
Quite recently, a n  O(n 3 M(n)) algorithm 
has been proposed. The algorithm pre- 
sented in this paper improves the run time 
of the recent result using an entirely differ- 
ent approach. 

1 Introduction 

The Tree Adjoining Grammar (TAG) formalism was 
introduced by :loshi, Levy and Takahashi (1975). 
TAGs are tree generating systems, and are strictly 
more powerful than context-free grammars. They 
belong to the class of mildly context sensitive gram- 
mars (:loshi, et al., 1991). They have been found 
to be good grammatical systems for natural lan- 
guages (Kroch, Joshi, 1985). The first polynomial 
time parsing algorithm for TALs was given by Vi- 
jayashanker and :loshi (1986), which had a run time 
of O(n6), for an input of size n. Their algorithm 
had a flavor similar to the Cocke-Younger-Kasami 
(CYK) algorithm for context-free grammars. An 
Earley-type parsing algorithm has been given by 
Schabes and Joshi (1988). An optimal linear time 
parallel parsing algorithm for TALs was given by 
Palls, Shende and Wei (1990). In a recent paper, 
Rajasekaran (1995) shows how TALs can be parsed 
in time O(n3M(n)). 

In this paper, we propose an O(M(n2)) time 
recognition algorithm for TALs, where M(k) is the 

time needed to multiply two k x k boolean matri- 
ces. The best known value for M(k) is O(n 2"3vs) 
(Coppersmith, Winograd, 1990). Though our algo- 
rithm is similar in flavor to those of Graham, Har- 
rison, & Ruzzo (1976), and Valiant (1975) (which 
were Mgorithms proposed for recognition of Con- 
text Pree Languages (CFLs)), there are crucial dif- 
ferences. As such, the techniques of (Graham, et al., 
1976) and (Valiant, 1975) do not seem to extend to 
TALs (Satta, 1993). 

2 T r e e  A d j o i n i n g  G r a m m a r s  

A Tree Adjoining Grammar (TAG) consists of a 
quintuple (N, ~ U {~}, I, A, S), where 

N is a finite set of nonterminal symbols, 
is a finite set of terminal symbols disjoint from 

N, 
is the empty terminal string not in ~, 

I is a finite set of labelled initial trees, 
A is a finite set of auxiliary trees, 
S E N is the distinguished start symbol 
The trees in I U A are called elementary trees. All 

internal nodes of elementary trees are labelled with 
nonterminal symbols. Also, every initial tree is la- 
belled at the root by the start symbol S and has 
leaf nodes labelled with symbols from ~3 U {E}. An 
auxiliary tree has both its root and exactly one leaf 
(called the foot node ) labelled with the same non- 
terminal symbol. All other leaf nodes are labelled 
with symbols in E U {~}, at least one of which has a 
label strictly in E. An example of a TAG is given in 
figure 1. 

A tree built from an operation involving two other 
trees is called a derived tree. The operation involved 
is called adjunction. Formally, adjunction is an op- 
eration which builds a new tree 7, from an auxiliary 
tree fl and another tree ~ (a is any tree - initial, aux- 
iliary or derived). Let c~ contain an internal node m 
labelled X and let fl be the auxiliary tree with root 
node also labelled X. The resulting tree 7, obtained 
by adjoining fl onto c~ at node m is built as follows 
(figure 2): 
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Figure 1: Example  of a TAG 

Auxiliary tree 

1. The subtree of a rooted at m, call it t, is excised, 
leaving a copy of m behind. 

2. The  auxiliary tree fl is at tached at the copy of 
m and its root node is identifed with the copy 
of m. 

3. The subtree t is at tached to the foot node of fl 
and the root node of t (i.e. m) is identified with 
the foot node of ft. 

This definition can be extended to include adjunc- 
tion constraints at nodes in a tree. The constraints 
include Selective, Null and Obligatory adjunction 
constraints. The  algori thm we present here can he 
modified to include constraints. 

For our purpose, we will assume that  every inter- 
nal node in an elementary tree has exactly 2 children. 

Each node in a tree is represented by a tuple < 
tree, node index, label >. (For brevity, we will refer 
to a node with a single variable m whereever there 
is no confusion) 

A good introduction to TAGs can be found in 
(Partee, et al., 1990). 

3 Contex t  Free recognit ion in 
O( M(n)) Time  

The CFG G = (N,~,P,  A1), where 
N is a set of Nonterminals {A1, A2, .., Ak}, 

is a finite set of terminals, 
P is a finite set of productions, 
A1 is the start symbol 

is assumed to be in the Chomsky Normal Form. 
Valiant (1975) shows how the recognition problem 
can be reduced to the problem of finding Transitive 
Closure and how Transitive Closure can be reduced 
to Matr ix  Multiplication. 

Given an input string aza2 .... an E ~*, the recur- 
sive algori thm makes use of an (n+l)× (n+ l )  upper 
tr iangular mat r ix  b defined by 

hi,i+1 = {Ak I(Ak --* a,) E P}, 
bi,j = ¢, for j • i + 1 

and proceeds to find the transitive closure b + of this 
matrix.  (I f  b + is the transitive closure, then Ak E 

b. +. ¢:~ A k - ~  ai .... a j -1)  $,J 

Instead of finding the transitive closure by the cus- 
tomary  method based on recursively splitting into 
disjoint parts ,  a more complex procedure based on 
'splitting with overlaps'  is used. The extra  cost in- 
volved in such a s trategy can  be made almost  negligi- 
ble. The algori thm is based on the following l emma  

Lemma : Let b be an n x n upper triangular ma- 
trix, and suppose that for any r > n/e,  the tran- 
sitive closure of the partitions [1 < i , j  < r] and 
[ n -  r < i , j  < n] are known. Then the closure of b 
can be computed by 

I. performing a single matrix multiplication, and 

2. finding the closure of a 2(n - r) × 2(n - r) up- 
per triangular matrix of which the closure of the 
partitions[1 < i , j  < n -  r] and [ n -  r < i , j  < 
2(n - r)] are known. 

Proof: See (Valiant, 1975) for  details 
The idea behind (Valiant, 1975) is based on visu- 

alizing Ak E b+j as spanning a tree rooted at the 
node Ak with l~aves ai through a j -1  and internal 
nodes as nonterminals  generated f rom Ak according 
to the productions in P. Having done this, the fol- 
lowing observation is made  : 

Given an input string a l . . . a ,  and 2 distinct sym- 
bol positions, i and j, and a nonterminal  Ak such 
that  Ak E b + ., where i' < i , j '  > j ,  then 3 a non- 

I P3 

terminal A k, which is a descendent of Ak in the 
b + . where tree rooted at Ak, such tha t  A k, E i d' 

i" < i, j "  > j and A k, has two children Ak~ and Ak2 
such tha tAk~ E b  +, andAk2 E b  + . . w i t h i < s < j .  
A k, can be thought  of as a minimal node in this 
sense.(The descendent relation is both reflexive and 
transitive) 

Thus, given a string a l . . . a ,  of length n, (say r = 
2/3),  the following steps are done : 
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Figure 2: Adjunction Operat ion 
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1. Find the closure of the first 2 /3  ,i.e. all nodes 
spanning trees which are within the first 2/3 . 

2. Find the closure of the last 2 /3  , i.e. all nodes 
spanning trees which are within the last 2/3. 

3. Do a composit ion operat ion (i.e. mat r ix  multi-  
plication) on the nodes got as a result of S t e p  
1 with nodes got as a result of S t e p  2. 

4. Reduce problem size to az...an/zal+2n/3...an 
and find closure of this input.  

The point to note is tha t  in step 3, we can get rid 
of the mid 1/3 and focus on the remaining problem 
size. 

This  approach does not work for TALs because of 
the presence of the adjunction operation. 

Firstly, the da ta  structure used, i.e. the 2- 
dimensional mat r ix  with the given representation, 
is not sufficient as adjunction does not operate on 
contiguous strings. Suppose a node in a tree domi- 
nates a frontier which has the substring aiaj to the 
left of the foot node and akat to the right of the 
footnode. These substrings need not be a contigu- 
ous par t  of the input; in fact, when this tree is used 
for adjunction then a string is inserted between these 
two suhstrings. Thus in order to represent a node, 
we need to use a ma t r ix  of higher dimension, namely  
dimension 4, to characterize the substring tha t  ap- 
pears to the left of the footnode and the substring 
tha t  appears  to the right of the footnode. 

Secondly, the observation we made about  an entry 
E b + is no longer quite true because of the presence 
of adjunction. 

Thirdly, the technique of gett ing rid of the mid 
1/3 and focusing on the reduced problem size alone, 
does not work as shown in figure 3: 

Suppose 3' is a derived tree in which 3 a node rn 
on which adjunction was done by an auxiliary tree 
ft. Even if we are able to identify the derived tree 
71 rooted at m, we have to first identify fl before we 
can check for adjunction, fl need not be realised as 
a result of the composit ion operat ion involving the 

nodes f rom the first and last 2 /3 ' s  ,(say r =2/3) .  
Thus,  if we discard the mid 1/3, we will not be able 
to infer tha t  the adjunction had indeed taken place 
at node m. 

4 N o t a t i o n s  

Before we introduce the algori thm, we state  the no- 
tat ions tha t  will be used. 

We will be making use of a 4-dimensional mat r ix  
A of size (n + 1) x (n + 1) x (n + 1) x (n + 1), where 
n is the size of the input string. 

(Vijayashanker, Joshi, 1986) Given a TAG G and 
an input string aza2..an, n > 1, the entries in A will 
be nodes of the trees of G. We say, tha t  a node m 
(=  < 0, node index, label >) E A ( i , j ,  k, l) iff m is a 
node in a derived tree 7 and the subtree of 7 rooted 
at m has a yield given by either ai+l. . .ajXak+l.. .al  
(where X is the footnode of r/, j < k) or ai+l .... az 
(when j = k). 

I f  a node m E A(i,j,k,l}, we will refer to m as 
spanning a tree (i,j,k,l). 

When we refer to a node m being realised as a 
result of composition of two nodes m l  and rnP, we 
mean tha t  3 an elementary tree in which m is the 
parent  of m l  and m2. 

A Grown Auxiliary Tree is defined to be either 
a tree resulting f rom an adjunction involving two 
auxiliary trees or a tree resulting f rom an adjunction 
involving an auxiliary tree and a grown auxiliary 
tree. 
Given a node m spanning a tree (i,j,k,l), we define 
the last operation to create this tree as follows : 

if the tree (i,j,k,l) was created in a series of op- 
erations, which also involved an ad junc t ion  by an 
auxiliary tree (or a grown auxiliary tree) (i, J l ,  kz, l) 
onto the node m, then we say tha t  the last opera- 
tion to create this tree is an adjunction operation; 
else the last operation to create the tree (i,j,k,l) is a 
composition. 
The concept of last operation is useful in modelling 
the steps required, in a bo t tom-up  fashion, to create 
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Figure 3: Situation where we cannot infer the adjunction if we simply get rid of the mid 1/3 

a tree. 

5 A l g o r i t h m  

Given that  the set of initial and auxiliary trees can 
have leaf nodes labelled with e, we do some prepro- 
cessing on the TAG G to obtain an Association List 
(ASSOC LIST) for each node. ASSOC LIST (m), 
where m is a node, will be useful in obtaining chains 
of nodes in elementary trees which have children la- 
belled ~. 

Initialize ASSOC LIST (m) = ¢, V m, and then 
call procedure MAKELIST  on each elementary tree, 
in a top down fashion starting with the root node. 

Procedure MAKELIST  (m) 
B e g i n  

1. If m is a leaf then quit 

2. If m has children ml and me both yielding the 
empty string at their frontiers (i.e. m spans a 
subtree yielding e) then 

ASSOC LIST (ml)  = ASSOC 
LIST (m) u {m) 

ASSOC LIST (m2) = ASSOC 
LIST (m) U (m} 

3. If m has children m1 and me, with only me 
yielding the empty string at its frontier, then 

ASSOC LIST (ml )  = ASSOC 
LIST (m) u {m) 

E n d  

We initially fill A(i , i+l , i+l , i+l )  with all nodes 
from Smt ,Vml ,  where S,~1 = {ml}  O AS- 
SOC LIST (ml),  ml  being a node with the same 
label as the input hi+l, for 0 < i < n-1. We also fill 
A(i,i,j,j), i < j, with nodes from S,~2, Vm2, where 
Sin2 = {me) tJ ASSOC LIST (me), me being a foot 
node. All entries A(i,i,i,i), 0 < i < n, are filled with 

nodes from Sraa,Vm3, where S,n3 = { m3} U AS- 
SOC LIST (mS), m3 having label ¢. 

Following is the main procedure, Compute Nodes, 
which takes as input a sequence r lr2 ..... rp of symbol 
positions (not necessarily contiguous). The proce- 
dure outputs all nodes spanning trees (i,j,k,O, with 
{i, 1} E { r l , r 2  ..... ~'ip } and  {j,k} E { r l , r  I Jr Z, . . . , rp}.  
The procedure is initially called with the sequence 
012..n corresponding to the input string aa ..... an. 
The matr ix  A is updated with every call to this pro- 
cedure and it is updated with the nodes just  realised 
and also with the nodes in the A S S O C  LISTs  of the 
nodes just  realised. 

Procedure Compute Nodes ( rl r2 ..... rp ) 
B e g i n  

1. I f p  = 2, then 

a. Compose all nodes E A(r l , j ,  k, re) with all 
nodes E A(re,re, re, re), r t  < j < k < re. 
Update A . 

b. Compose all nodes E A ( r l , r l , r l , r x )  with 
all nodes E A(r t ,  j ,  k, r2), r t  < j < k < re. 
Update A . 

e. Check for adjunctions involving nodes re- 
alised from steps a and b. Update A . 

d. Return 

2. Compute Nodes ( rlr2 ..... rep/a ). 

3. Compute Nodes ( rl+p/z ..... rp ). 

4. a. Compose nodes realised from step 2 with 
nodes realised from step 3. 

b. Update A. 

5. a. Check for all possible adjunctions involving 
the nodes realised as a result of step 4. 

b. Update A. 

6. Compute Nodes ( rlre...rp/arl+2p/a...r p ) 
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E n d  

S t e p s  l a , l b  a n d  4a  can be carried out in the fol- 
lowing manner : 

Consider the composition of node m l  with node 
me. For step 4a, there are two cases to take care of. 
C a se  1 

If node m l  in a derived tree is the ancestor of the 
foot node, and node me is its right sibling, such that  
m l  6 A(i ,  j, k, l) and m2 E A(l, r, r, s), then their 
parent, say node m should belong to A ( i , j , k , s ) .  
This composition of m l  with me can be reduced to a 
boolean matr ix  multiplication in the following way: 
(We use a technique similar to the one used in (Ra- 
jasekaran, 1995)) Construct two boolean matrices 
B1, of size ((n 4- 1)2p/3) × (p/3) and Be, of size 
(p/3) x (p/3). 

Bl(ijk,  l) = 1 iff m l  E A ( i , j , k , I )  
and i E {rl ,  .., rv/3} 
and 1 E {rl+p/3, ..r2p/3} 

= 0 otherwise 

Note that  in B1 0 < j < k < n. 

B e E s  ) = 1 iff me e A( I , r ,  r , s )  
and 1 E {r1+;13, ..rep/3} 
and s E { r l + e p / 3 ,  .., rp} 

-- 0 otherwise 

Clearly the dot product  of the i jk  th row of B1 
with the s th column of Be is a 1 iff m E A(i,  j, k, s). 
Thus, update  A ( i , j , k ,  s) with {m} U A S S O C  L I S T  
(m). 
Case  2 

If node me in a derived tree is the ancestor of the 
foot node, and node m l  is its left sibling, such that  
m l  E A ( i , j , j , l )  and m2 E A(l ,p,  q, r), then their 
parent, say node m should belong to A( i ,p ,q , s ) .  
This can also be handled similar to the manner de- 
scribed for case 1. Update A( i ,p ,q , s )  with {m} U 
A S S O C  L I S T  (m). 

Notice that  Case 1 also covers step l a  and Case 2 
also covers step l b .  

S t e p  5a  and S t e p  l c  can be carried out in the 
following manner  : 

We know that  if a node m E A ( i , j , k , i ) ,  and the 
root m l  of an auxiliary tree E A(r, i, i, s), then ad- 
joining the tree 7/, rooted at ml,  onto the node m, 
results in the node m spanning a tree (rj ,k,s) ,  i.e. m 
E A(r, j, k, s). 

We can essentially use the previous technique of 
reducing to boolean matr ix  multiplication. Con- 
struct two matrices C1 and Ce of sizes (p2/9) x (n + 
1) 2 and (n + 1) 2 x (n + 1) 2, respectively, as follows : 

Cl(ii, jk) = 1 iff 3ml ,  root of an auxiliary 
tree E A(i,  j, k, l), with same label as m and 
Cl(il,  jk) = 0 otherwise 

Note that  in CI i E {r l , . . , rp ls} ,  i E 
{ r l + 2 p / 3  , .., rp} ,  and 0 _< j < k < n. 

Ce(qt, rs) = 1 iff m E A(q, r, s, t) 
-- 0 otherwise 

Note that  i n C 2  0 < q < r < s < t < n .  
Clearly the dot product  of the ii th row of C1 with 

the rs th column of Ce is a 1 iff m E A( i , r , s , l ) .  
Thus, update A(i,  r, s, l) with {m} U A S S O C  L I S T  
(m). 

The input string ala2...an is in the language gener- 
ated by the TAG G iff 3 a node labelled S in some 
A(O, j , j , n ) ,  0 <_ j < n. 

6 C o m p l e x i t y  

Steps l a ,  l b  and 4a  can be computed in 
O(neM(p)) .  
Steps 5a  and l e  can be computed in 
O((ne/pe)eM(pg)).  
If T(p) is the time taken by the procedure Compute 
Nodes, for an input of size p, then 

T(p) = 3T(2p/3)4-O(n2M(p))4-  
O( ( ne /pe)e M (pe) ) 

where n is the initial size of the input string. 
Solving the recurrence relation, we get T(n)  - 
O(M(ne)) .  

7 P r o o f  o f  C o r r e c t n e s s  

We will show the proof of correctness of the algo- 
r i thm by induction on the length of the sequence of 
symbol positions. 

But first, we make an observation, given any two 
symbol positions (r~, rt),  rt > r~ 4-1 , and a node m 
spanning a tree ( i , j ,  k, l) such that  i < rs and i _> rt 
with j and k in any of the possible combinations as 
shown in figure 4. 

3 a node m' which is a descendent of the 
node m in the tree (i,j,k,l) and which either 
E A S S O C  L I S T ( m l )  or is the same as ml,  with 
ml  having one of the two properties mentioned be- 
low : 

1. m l  spans a tree ( i l , j l ,  kl ,  11) such that  the last 
operation to create this tree was a composition 
operation involving two nodes me and m3 with 
me spanning (ix, J2, k2, 12) and m3 spanning 
(12,j3, ks, ix). (with ( r ,  < l~. < rt), 01 <- r,),  
(rt < !1) and either (j2 = kz, j3 = j l , k3  = kl) 
or (j2 = j l ,k2  = k l , j3  = k3) ) 

2. m l  spans a tree ( i l , j l ,  kl, l l)  such that  the last 
operation to create this tree was an adjunction 
by an auxiliary tree (or a grown auxiliary tree) 
(il,  j2, ke, Ix), rooted at node me, onto the node 
m l  spanning the tree ( j e , j l ,  kl, k2) such that  
node me has either the property mentioned in 
(1) or belongs to the A S S O C  L I S T  of a node 
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which has the property mentioned in (1). (The 
labels of m l  and me being the same) 

Any node satisfying the above observation will be 
called a minimal node w.r.t, the symbol positions 
(r,,  r0.  

The minimM nodes can be identified in the follow- 
ing manner. If the node m spans ( i , j ,  k, l) such that  
the last operation to create this tree is a composition 
of the form in figure ha, then m tO A S S O C  L I S T ( m )  
is minimal. Else, if it is as shown in figure 5b, we 
can concentrate on the tree spanned by node m l  and 
repeat the process. But, if the last operation to cre- 
ate (i, j, k, 1) was an adjunction as shown in figure 
5c, we can concentrate on the tree (il,  j ,  k, 11) ini- 
tially spanned by node m. If the only adjunction 
was by an auxiliary tree, on node m spanning tree 
( Q , j , k ,  lx) as shown in figure 5d, then the set of 
minimal nodes will include both m and the root m l  
of the auxiliary, tree and the nodes in their respec- 
tive A S S O C  LISTs. But if the adjunction was by a 
grown auxiliary tree as shown in figure he, then the 
minimal nodes include the roots of/31,/32, ..,/3s, 7 
and the node m. 

Given a sequence < r l , r 2 , . . , r p  >, we call 
(rq,r~+l) a gap, iff rq+l ¢ rq + 1. Identifying min- 
imal nodes w.r.t, every new gap created, will serve 
our purpose in determining all the nodes spanning 
trees (i, j, k, 1), with {i, l} e {rl ,  r2, .., rp}. 

T h e o r e m  : Given an increasing sequence < 
r l ,  r2, .., rp > of symbol positions and given 

a. V gaps (rq, rq+l), all nodes spanning trees (i,j,k,l} 
with rq < i < j < k < l < rq+l 

b. V gaps (rq, rq+l), all nodes spanning trees (i,j,k,l) 
such that either rq < i < rq+l or rq < l < rq+l 

c. V gaps (rq,rq+l) , all the minimal nodes for the 
gap such that these nodes span trees (i,j,k,l) with 
{i , l}  E { r l , r2 , . . , rp  } and i <_ 1 

in addition to the initialization information, the 
algorithm computes all the nodes spanning trees 
(i,i,k,O with ( i , l }  ~ { r~,r~,. . ,rp } and i _< i < 
k < l .  

m 

P r o o f  : 

B a s e  Cases  : 
For length = 1, it is trivial as this information is 
already known as a result of initialization. 
For length = 2, there are two cases to consider : 

1. r2 = r l  + 1, in which case a composition in- 
volving nodes from A(r l ,  rl, rl, r l )  with nodes 
from A(r l ,  r2, r2, r2) and a composition involv- 
ing nodes from A(r l ,  r2, r2, r2) with nodes from 
A(r2, r2, r2, r2), followed by a check for adjunc- 
tion involving nodes realised from the previous 
two compositions, will be sufficient. Note that  
since there is only one symbol from the input 
(namely, ar~), and because an auxiliary tree has 
at least one label from ~, thus, checking for one 
adjunction is sufficient as there can be at most 
one adjunction. 

2. r2 ~ r l  + 1, implies that  (rl,r2) is a gap. 
Thus, in addition to the information given 
as per the theorem, a composition involv- 
ing nodes from A(r l ,  j ,  k, r2) with nodes from 
A(r2,r2, r2,r2) and a composition involving 
nodes from A ( r l , r l , r l , r l )  with nodes from 
A(rl ,  j, k, r2), (r l  < j < k < r2), followed by an 
adjunction involving nodes realised as a result of 
the previous two compositions will be sufficient 
as the only adjunction to take care of involves 
the adjunction of some auxiliary tree onto a 
node m which yields e, and m E A(r l ,  r l ,  r l ,  r l )  
or m E A(r2,r2,r2,  r2). 

I n d u c t i o n  h y p o t h e s i s  : V increasing sequence 
< r l , r2 ,  ..,r~ > of symbol positions of length < p, 
(i.e q < p), the algorithm, given the information as 
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Figure 5: Identifying minimal nodes 

required by the theorem, computes all nodes span- 
ning trees (i,j ,k,l) such that  {i, l} e { rl ,  r2, .., rq } 
and i < j < k < I. I n d u c t i o n  : Given an increasing 
sequence < r l ,  r~, .., rp, rp+l > of symbol positions 
together with the information required as per parts 
a ,b , c  of the theorem, the algorithm proceeds as fol- 
lows: 

1. By the induction hypothesis, the algorithm 
correctly computes all nodes spanning trees 
(i,j ,k,i) within the first 2/3, i.e, { i , l }  E { 
r t ,  r2, .., r2(p+D/3 } and i < l . By the hypothe- 
sis, it also computes all nodes ( i ' , j , k ' , l ' )w i th in  
the last 2/3, i.e, { i ~, ! ~ } E {rl+(p+l)/3, .., rp+z} 
and i' < i'. 

2. The composition step involving the nodes 
from the first and last 2/3 of the sequence 
< r l ,  r2, .., rp, rp+i >, followed by the adjunc- 
tion step captures all nodes m such that  either 

a. m spans a tree ( i , j ,k , l)such that  the last op- 
eration to create this tree was a composi- 
tion operation on two nodes m l  and m2 
with m l  spanning ( i , j ' ,k; l ' }  and me span- 
ning 
(i; j",k", l) .  (with i E { r l ,  r2, .., r(p+l)/3 }, 
i E { rl+(p+l)/3,. . ,r2(p+D/3 } and I E ! 
ri+2(p+z)/3, .., rp+z }, and either (j' = k ,  

j" = j ,  k" = k) or (j' = j ,  k ' =  k , j "  = k ' )  
). 

b. m spans a tree O,J, k,l) such that  the last op- 
eration to create this tree was an adjunc- 
tion by an auxiliary or grown auxiliary tree 
(i,j ' ,k',l), rooted at node mI,  onto the node 
m spanning the tree (j ' , j ,k,k ')  such that  
node m l  has either the property mentioned 
in (1) or it belongs to the A S S O C  L I S T  of 
a node which has the property mentioned 
in (1). (The  labels of m and m l  being the 
same) 

Note that ,  in addition to the nodes m captured 
from a or b, we will also be realising nodes E 
A S S O C  L I S T  (m). 

The nodes captured as a result of 2 are 
the minimal nodes with respect to the gap 
(r(p+l)/a, rl+2(p+l)/3) with the additional property 
that  the trees (i,j,k,l) they span are such that  i E { 
r l ,  r 2 ,  .., r ( p + l ) ] 3  } and l E { r l + 2 ( p + l ) ] 3 ,  . . ,  r p + l  } .  

Before we can apply the hypothesis on the se- 
quence < rx, r2, .., r(p+t)/3, rl+2(p+l)[3, ..rp+l >, we 
have to make sure that  the conditions in p a r t s  
a ,b , c  of the theorem are met for the new gap 
(r(p+1)/3, rl+2(p+l)/3). It is easy to see that  con- 
ditions for parts a and b are met  for this gap. We 
have also seen that  as a result of step 2, all the mini- 
mal nodes w.r.t the gap (r(p+x)/3 , rl+2(p+l)/3), with 
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the desired property as required in part c have been 
computed. Thus applying the hypothesis on the 
sequence < r l ,  r2, .., r(p+l)[3,  r l+2(p+l ) /3 ,  ..rp+l >, 
the algorithm in the end correctly computes all 
the nodes spanning trees (ij,k,1) with {i,l} E 
{rl , r2, . . , rp+x } a n d i < j < k < l .  D 

8 I m p l e m e n t a t i o n  

The TAL recognizer given in this paper was im- 
plemented in Scheme on a SPARC station-10/30. 
Theoretical results in this paper and those in (Ra- 
jasekaran, 1995) clearly demonstrate that asymp- 
totically fast algorithms can be obtained for TAL 
parsing with the help of matrix multiplication al- 
gorithms. The main objective of the implementa- 
tion was to check if matrix multiplication techniques 
help in practice also to obtain efficient parsing algo- 
rithms. 

The recognizer implemented two different algo- 
rithms for matrix multiplication, namely the triv- 
ial cubic time algorithm and an algorithm that ex- 
ploits the sparsity of the matrices. The TAL recog- 
nizer that uses the cubic time algorithm has a run 
time comparable to that of Vijayashanker-]oshi's al- 
gorithm. 

Below is given a sample of a grammar tested and 
also the speed up using the sparse version over the 
ordinary version. The grammar used, generated the 
TAL anbnc n. This grammar is shown in figure 1. 

Interestingly, the sparse version is an order of 
magnitude faster than the ordinary version for 
strings of length greater than 7. 

i[ S t r ing  
abe 
aabbcc 

Answer  

Yes 
Yes  

S p e e d u p  [1 
3.1 
6.1 

aabcabe No 8.0 
abacabac No 11.7 
aaabbbccc Yes 11.4 

The above implementation results suggest that 
even in practice better parsing algorithms can be 
obtained through the use of matrix multiplication 
techniques. 

9 C o n c l u s i o n s  

In this paper we have presented an O(M(n2)) time 
algorithm for parsing TALs, n being the length of 
the input string. We have also demonstrated with 
our implementation work that matrix multiplication 
techniques can help us obtain efficient parsing algo- 
rithms. 
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