@article{beigman-klebanov-etal-2013-using,
title = "Using Pivot-Based Paraphrasing and Sentiment Profiles to Improve a Subjectivity Lexicon for Essay Data",
author = "Beigman Klebanov, Beata and
Madnani, Nitin and
Burstein, Jill",
editor = "Lin, Dekang and
Collins, Michael",
journal = "Transactions of the Association for Computational Linguistics",
volume = "1",
year = "2013",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q13-1009/",
doi = "10.1162/tacl_a_00213",
pages = "99--110",
abstract = "We demonstrate a method of improving a seed sentiment lexicon developed on essay data by using a pivot-based paraphrasing system for lexical expansion coupled with sentiment profile enrichment using crowdsourcing. Profile enrichment alone yields up to 15{\%} improvement in the accuracy of the seed lexicon on 3-way sentence-level sentiment polarity classification of essay data. Using lexical expansion in addition to sentiment profiles provides a further 7{\%} improvement in performance. Additional experiments show that the proposed method is also effective with other subjectivity lexicons and in a different domain of application (product reviews)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beigman-klebanov-etal-2013-using">
<titleInfo>
<title>Using Pivot-Based Paraphrasing and Sentiment Profiles to Improve a Subjectivity Lexicon for Essay Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitin</namePart>
<namePart type="family">Madnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2013</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We demonstrate a method of improving a seed sentiment lexicon developed on essay data by using a pivot-based paraphrasing system for lexical expansion coupled with sentiment profile enrichment using crowdsourcing. Profile enrichment alone yields up to 15% improvement in the accuracy of the seed lexicon on 3-way sentence-level sentiment polarity classification of essay data. Using lexical expansion in addition to sentiment profiles provides a further 7% improvement in performance. Additional experiments show that the proposed method is also effective with other subjectivity lexicons and in a different domain of application (product reviews).</abstract>
<identifier type="citekey">beigman-klebanov-etal-2013-using</identifier>
<identifier type="doi">10.1162/tacl_a_00213</identifier>
<location>
<url>https://aclanthology.org/Q13-1009/</url>
</location>
<part>
<date>2013</date>
<detail type="volume"><number>1</number></detail>
<extent unit="page">
<start>99</start>
<end>110</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Using Pivot-Based Paraphrasing and Sentiment Profiles to Improve a Subjectivity Lexicon for Essay Data
%A Beigman Klebanov, Beata
%A Madnani, Nitin
%A Burstein, Jill
%J Transactions of the Association for Computational Linguistics
%D 2013
%V 1
%I MIT Press
%C Cambridge, MA
%F beigman-klebanov-etal-2013-using
%X We demonstrate a method of improving a seed sentiment lexicon developed on essay data by using a pivot-based paraphrasing system for lexical expansion coupled with sentiment profile enrichment using crowdsourcing. Profile enrichment alone yields up to 15% improvement in the accuracy of the seed lexicon on 3-way sentence-level sentiment polarity classification of essay data. Using lexical expansion in addition to sentiment profiles provides a further 7% improvement in performance. Additional experiments show that the proposed method is also effective with other subjectivity lexicons and in a different domain of application (product reviews).
%R 10.1162/tacl_a_00213
%U https://aclanthology.org/Q13-1009/
%U https://doi.org/10.1162/tacl_a_00213
%P 99-110
Markdown (Informal)
[Using Pivot-Based Paraphrasing and Sentiment Profiles to Improve a Subjectivity Lexicon for Essay Data](https://aclanthology.org/Q13-1009/) (Beigman Klebanov et al., TACL 2013)
ACL