@article{matuschek-gurevych-2013-dijkstra,
title = "Dijkstra-{WSA}: A Graph-Based Approach to Word Sense Alignment",
author = "Matuschek, Michael and
Gurevych, Iryna",
editor = "Lin, Dekang and
Collins, Michael",
journal = "Transactions of the Association for Computational Linguistics",
volume = "1",
year = "2013",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q13-1013/",
doi = "10.1162/tacl_a_00217",
pages = "151--164",
abstract = "In this paper, we present Dijkstra-WSA, a novel graph-based algorithm for word sense alignment. We evaluate it on four different pairs of lexical-semantic resources with different characteristics (WordNet-OmegaWiki, WordNet-Wiktionary, GermaNet-Wiktionary and WordNet-Wikipedia) and show that it achieves competitive performance on 3 out of 4 datasets. Dijkstra-WSA outperforms the state of the art on every dataset if it is combined with a back-off based on gloss similarity. We also demonstrate that Dijkstra-WSA is not only flexibly applicable to different resources but also highly parameterizable to optimize for precision or recall."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="matuschek-gurevych-2013-dijkstra">
<titleInfo>
<title>Dijkstra-WSA: A Graph-Based Approach to Word Sense Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Matuschek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2013</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>In this paper, we present Dijkstra-WSA, a novel graph-based algorithm for word sense alignment. We evaluate it on four different pairs of lexical-semantic resources with different characteristics (WordNet-OmegaWiki, WordNet-Wiktionary, GermaNet-Wiktionary and WordNet-Wikipedia) and show that it achieves competitive performance on 3 out of 4 datasets. Dijkstra-WSA outperforms the state of the art on every dataset if it is combined with a back-off based on gloss similarity. We also demonstrate that Dijkstra-WSA is not only flexibly applicable to different resources but also highly parameterizable to optimize for precision or recall.</abstract>
<identifier type="citekey">matuschek-gurevych-2013-dijkstra</identifier>
<identifier type="doi">10.1162/tacl_a_00217</identifier>
<location>
<url>https://aclanthology.org/Q13-1013/</url>
</location>
<part>
<date>2013</date>
<detail type="volume"><number>1</number></detail>
<extent unit="page">
<start>151</start>
<end>164</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Dijkstra-WSA: A Graph-Based Approach to Word Sense Alignment
%A Matuschek, Michael
%A Gurevych, Iryna
%J Transactions of the Association for Computational Linguistics
%D 2013
%V 1
%I MIT Press
%C Cambridge, MA
%F matuschek-gurevych-2013-dijkstra
%X In this paper, we present Dijkstra-WSA, a novel graph-based algorithm for word sense alignment. We evaluate it on four different pairs of lexical-semantic resources with different characteristics (WordNet-OmegaWiki, WordNet-Wiktionary, GermaNet-Wiktionary and WordNet-Wikipedia) and show that it achieves competitive performance on 3 out of 4 datasets. Dijkstra-WSA outperforms the state of the art on every dataset if it is combined with a back-off based on gloss similarity. We also demonstrate that Dijkstra-WSA is not only flexibly applicable to different resources but also highly parameterizable to optimize for precision or recall.
%R 10.1162/tacl_a_00217
%U https://aclanthology.org/Q13-1013/
%U https://doi.org/10.1162/tacl_a_00217
%P 151-164
Markdown (Informal)
[Dijkstra-WSA: A Graph-Based Approach to Word Sense Alignment](https://aclanthology.org/Q13-1013/) (Matuschek & Gurevych, TACL 2013)
ACL