@article{irvine-etal-2013-measuring,
title = "Measuring Machine Translation Errors in New Domains",
author = "Irvine, Ann and
Morgan, John and
Carpuat, Marine and
Daum{\'e} III, Hal and
Munteanu, Dragos",
editor = "Lin, Dekang and
Collins, Michael",
journal = "Transactions of the Association for Computational Linguistics",
volume = "1",
year = "2013",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q13-1035",
doi = "10.1162/tacl_a_00239",
pages = "429--440",
abstract = "We develop two techniques for analyzing the effect of porting a machine translation system to a new domain. One is a macro-level analysis that measures how domain shift affects corpus-level evaluation; the second is a micro-level analysis for word-level errors. We apply these methods to understand what happens when a Parliament-trained phrase-based machine translation system is applied in four very different domains: news, medical texts, scientific articles and movie subtitles. We present quantitative and qualitative experiments that highlight opportunities for future research in domain adaptation for machine translation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="irvine-etal-2013-measuring">
<titleInfo>
<title>Measuring Machine Translation Errors in New Domains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ann</namePart>
<namePart type="family">Irvine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Morgan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hal</namePart>
<namePart type="family">Daumé III</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dragos</namePart>
<namePart type="family">Munteanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2013</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We develop two techniques for analyzing the effect of porting a machine translation system to a new domain. One is a macro-level analysis that measures how domain shift affects corpus-level evaluation; the second is a micro-level analysis for word-level errors. We apply these methods to understand what happens when a Parliament-trained phrase-based machine translation system is applied in four very different domains: news, medical texts, scientific articles and movie subtitles. We present quantitative and qualitative experiments that highlight opportunities for future research in domain adaptation for machine translation.</abstract>
<identifier type="citekey">irvine-etal-2013-measuring</identifier>
<identifier type="doi">10.1162/tacl_a_00239</identifier>
<location>
<url>https://aclanthology.org/Q13-1035</url>
</location>
<part>
<date>2013</date>
<detail type="volume"><number>1</number></detail>
<extent unit="page">
<start>429</start>
<end>440</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Measuring Machine Translation Errors in New Domains
%A Irvine, Ann
%A Morgan, John
%A Carpuat, Marine
%A Daumé III, Hal
%A Munteanu, Dragos
%J Transactions of the Association for Computational Linguistics
%D 2013
%V 1
%I MIT Press
%C Cambridge, MA
%F irvine-etal-2013-measuring
%X We develop two techniques for analyzing the effect of porting a machine translation system to a new domain. One is a macro-level analysis that measures how domain shift affects corpus-level evaluation; the second is a micro-level analysis for word-level errors. We apply these methods to understand what happens when a Parliament-trained phrase-based machine translation system is applied in four very different domains: news, medical texts, scientific articles and movie subtitles. We present quantitative and qualitative experiments that highlight opportunities for future research in domain adaptation for machine translation.
%R 10.1162/tacl_a_00239
%U https://aclanthology.org/Q13-1035
%U https://doi.org/10.1162/tacl_a_00239
%P 429-440
Markdown (Informal)
[Measuring Machine Translation Errors in New Domains](https://aclanthology.org/Q13-1035) (Irvine et al., TACL 2013)
ACL