@article{lui-etal-2014-automatic,
title = "Automatic Detection and Language Identification of Multilingual Documents",
author = "Lui, Marco and
Lau, Jey Han and
Baldwin, Timothy",
editor = "Lin, Dekang and
Collins, Michael and
Lee, Lillian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "2",
year = "2014",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q14-1003/",
doi = "10.1162/tacl_a_00163",
pages = "27--40",
abstract = "Language identification is the task of automatically detecting the language(s) present in a document based on the content of the document. In this work, we address the problem of detecting documents that contain text from more than one language (multilingual documents). We introduce a method that is able to detect that a document is multilingual, identify the languages present, and estimate their relative proportions. We demonstrate the effectiveness of our method over synthetic data, as well as real-world multilingual documents collected from the web."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lui-etal-2014-automatic">
<titleInfo>
<title>Automatic Detection and Language Identification of Multilingual Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Lui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jey</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Lau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Language identification is the task of automatically detecting the language(s) present in a document based on the content of the document. In this work, we address the problem of detecting documents that contain text from more than one language (multilingual documents). We introduce a method that is able to detect that a document is multilingual, identify the languages present, and estimate their relative proportions. We demonstrate the effectiveness of our method over synthetic data, as well as real-world multilingual documents collected from the web.</abstract>
<identifier type="citekey">lui-etal-2014-automatic</identifier>
<identifier type="doi">10.1162/tacl_a_00163</identifier>
<location>
<url>https://aclanthology.org/Q14-1003/</url>
</location>
<part>
<date>2014</date>
<detail type="volume"><number>2</number></detail>
<extent unit="page">
<start>27</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Automatic Detection and Language Identification of Multilingual Documents
%A Lui, Marco
%A Lau, Jey Han
%A Baldwin, Timothy
%J Transactions of the Association for Computational Linguistics
%D 2014
%V 2
%I MIT Press
%C Cambridge, MA
%F lui-etal-2014-automatic
%X Language identification is the task of automatically detecting the language(s) present in a document based on the content of the document. In this work, we address the problem of detecting documents that contain text from more than one language (multilingual documents). We introduce a method that is able to detect that a document is multilingual, identify the languages present, and estimate their relative proportions. We demonstrate the effectiveness of our method over synthetic data, as well as real-world multilingual documents collected from the web.
%R 10.1162/tacl_a_00163
%U https://aclanthology.org/Q14-1003/
%U https://doi.org/10.1162/tacl_a_00163
%P 27-40
Markdown (Informal)
[Automatic Detection and Language Identification of Multilingual Documents](https://aclanthology.org/Q14-1003/) (Lui et al., TACL 2014)
ACL