@article{honnibal-johnson-2014-joint,
    title = "Joint Incremental Disfluency Detection and Dependency Parsing",
    author = "Honnibal, Matthew  and
      Johnson, Mark",
    editor = "Lin, Dekang  and
      Collins, Michael  and
      Lee, Lillian",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "2",
    year = "2014",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/Q14-1011/",
    doi = "10.1162/tacl_a_00171",
    pages = "131--142",
    abstract = "We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5{\%} and 84.0{\%} accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="honnibal-johnson-2014-joint">
    <titleInfo>
        <title>Joint Incremental Disfluency Detection and Dependency Parsing</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Matthew</namePart>
        <namePart type="family">Honnibal</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mark</namePart>
        <namePart type="family">Johnson</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2014</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <genre authority="bibutilsgt">journal article</genre>
    <relatedItem type="host">
        <titleInfo>
            <title>Transactions of the Association for Computational Linguistics</title>
        </titleInfo>
        <originInfo>
            <issuance>continuing</issuance>
            <publisher>MIT Press</publisher>
            <place>
                <placeTerm type="text">Cambridge, MA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">periodical</genre>
        <genre authority="bibutilsgt">academic journal</genre>
    </relatedItem>
    <abstract>We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5% and 84.0% accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second.</abstract>
    <identifier type="citekey">honnibal-johnson-2014-joint</identifier>
    <identifier type="doi">10.1162/tacl_a_00171</identifier>
    <location>
        <url>https://aclanthology.org/Q14-1011/</url>
    </location>
    <part>
        <date>2014</date>
        <detail type="volume"><number>2</number></detail>
        <extent unit="page">
            <start>131</start>
            <end>142</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Journal Article
%T Joint Incremental Disfluency Detection and Dependency Parsing
%A Honnibal, Matthew
%A Johnson, Mark
%J Transactions of the Association for Computational Linguistics
%D 2014
%V 2
%I MIT Press
%C Cambridge, MA
%F honnibal-johnson-2014-joint
%X We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5% and 84.0% accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second.
%R 10.1162/tacl_a_00171
%U https://aclanthology.org/Q14-1011/
%U https://doi.org/10.1162/tacl_a_00171
%P 131-142
Markdown (Informal)
[Joint Incremental Disfluency Detection and Dependency Parsing](https://aclanthology.org/Q14-1011/) (Honnibal & Johnson, TACL 2014)
ACL