@article{honnibal-johnson-2014-joint,
title = "Joint Incremental Disfluency Detection and Dependency Parsing",
author = "Honnibal, Matthew and
Johnson, Mark",
editor = "Lin, Dekang and
Collins, Michael and
Lee, Lillian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "2",
year = "2014",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q14-1011",
doi = "10.1162/tacl_a_00171",
pages = "131--142",
abstract = "We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5{\%} and 84.0{\%} accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="honnibal-johnson-2014-joint">
<titleInfo>
<title>Joint Incremental Disfluency Detection and Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Honnibal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Johnson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5% and 84.0% accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second.</abstract>
<identifier type="citekey">honnibal-johnson-2014-joint</identifier>
<identifier type="doi">10.1162/tacl_a_00171</identifier>
<location>
<url>https://aclanthology.org/Q14-1011</url>
</location>
<part>
<date>2014</date>
<detail type="volume"><number>2</number></detail>
<extent unit="page">
<start>131</start>
<end>142</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Joint Incremental Disfluency Detection and Dependency Parsing
%A Honnibal, Matthew
%A Johnson, Mark
%J Transactions of the Association for Computational Linguistics
%D 2014
%V 2
%I MIT Press
%C Cambridge, MA
%F honnibal-johnson-2014-joint
%X We present an incremental dependency parsing model that jointly performs disfluency detection. The model handles speech repairs using a novel non-monotonic transition system, and includes several novel classes of features. For comparison, we evaluated two pipeline systems, using state-of-the-art disfluency detectors. The joint model performed better on both tasks, with a parse accuracy of 90.5% and 84.0% accuracy at disfluency detection. The model runs in expected linear time, and processes over 550 tokens a second.
%R 10.1162/tacl_a_00171
%U https://aclanthology.org/Q14-1011
%U https://doi.org/10.1162/tacl_a_00171
%P 131-142
Markdown (Informal)
[Joint Incremental Disfluency Detection and Dependency Parsing](https://aclanthology.org/Q14-1011) (Honnibal & Johnson, TACL 2014)
ACL