@article{schneider-etal-2014-discriminative,
    title = "Discriminative Lexical Semantic Segmentation with Gaps: Running the {MWE} Gamut",
    author = "Schneider, Nathan  and
      Danchik, Emily  and
      Dyer, Chris  and
      Smith, Noah A.",
    editor = "Lin, Dekang  and
      Collins, Michael  and
      Lee, Lillian",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "2",
    year = "2014",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/Q14-1016/",
    doi = "10.1162/tacl_a_00176",
    pages = "193--206",
    abstract = "We present a novel representation, evaluation measure, and supervised models for the task of identifying the multiword expressions (MWEs) in a sentence, resulting in a lexical semantic segmentation. Our approach generalizes a standard chunking representation to encode MWEs containing gaps, thereby enabling efficient sequence tagging algorithms for feature-rich discriminative models. Experiments on a new dataset of English web text offer the first linguistically-driven evaluation of MWE identification with truly heterogeneous expression types. Our statistical sequence model greatly outperforms a lookup-based segmentation procedure, achieving nearly 60{\%} F1 for MWE identification."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schneider-etal-2014-discriminative">
    <titleInfo>
        <title>Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Nathan</namePart>
        <namePart type="family">Schneider</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Emily</namePart>
        <namePart type="family">Danchik</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Chris</namePart>
        <namePart type="family">Dyer</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Noah</namePart>
        <namePart type="given">A</namePart>
        <namePart type="family">Smith</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2014</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <genre authority="bibutilsgt">journal article</genre>
    <relatedItem type="host">
        <titleInfo>
            <title>Transactions of the Association for Computational Linguistics</title>
        </titleInfo>
        <originInfo>
            <issuance>continuing</issuance>
            <publisher>MIT Press</publisher>
            <place>
                <placeTerm type="text">Cambridge, MA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">periodical</genre>
        <genre authority="bibutilsgt">academic journal</genre>
    </relatedItem>
    <abstract>We present a novel representation, evaluation measure, and supervised models for the task of identifying the multiword expressions (MWEs) in a sentence, resulting in a lexical semantic segmentation. Our approach generalizes a standard chunking representation to encode MWEs containing gaps, thereby enabling efficient sequence tagging algorithms for feature-rich discriminative models. Experiments on a new dataset of English web text offer the first linguistically-driven evaluation of MWE identification with truly heterogeneous expression types. Our statistical sequence model greatly outperforms a lookup-based segmentation procedure, achieving nearly 60% F1 for MWE identification.</abstract>
    <identifier type="citekey">schneider-etal-2014-discriminative</identifier>
    <identifier type="doi">10.1162/tacl_a_00176</identifier>
    <location>
        <url>https://aclanthology.org/Q14-1016/</url>
    </location>
    <part>
        <date>2014</date>
        <detail type="volume"><number>2</number></detail>
        <extent unit="page">
            <start>193</start>
            <end>206</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Journal Article
%T Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut
%A Schneider, Nathan
%A Danchik, Emily
%A Dyer, Chris
%A Smith, Noah A.
%J Transactions of the Association for Computational Linguistics
%D 2014
%V 2
%I MIT Press
%C Cambridge, MA
%F schneider-etal-2014-discriminative
%X We present a novel representation, evaluation measure, and supervised models for the task of identifying the multiword expressions (MWEs) in a sentence, resulting in a lexical semantic segmentation. Our approach generalizes a standard chunking representation to encode MWEs containing gaps, thereby enabling efficient sequence tagging algorithms for feature-rich discriminative models. Experiments on a new dataset of English web text offer the first linguistically-driven evaluation of MWE identification with truly heterogeneous expression types. Our statistical sequence model greatly outperforms a lookup-based segmentation procedure, achieving nearly 60% F1 for MWE identification.
%R 10.1162/tacl_a_00176
%U https://aclanthology.org/Q14-1016/
%U https://doi.org/10.1162/tacl_a_00176
%P 193-206
Markdown (Informal)
[Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut](https://aclanthology.org/Q14-1016/) (Schneider et al., TACL 2014)
ACL