@article{schneider-etal-2014-discriminative,
title = "Discriminative Lexical Semantic Segmentation with Gaps: Running the {MWE} Gamut",
author = "Schneider, Nathan and
Danchik, Emily and
Dyer, Chris and
Smith, Noah A.",
editor = "Lin, Dekang and
Collins, Michael and
Lee, Lillian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "2",
year = "2014",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q14-1016",
doi = "10.1162/tacl_a_00176",
pages = "193--206",
abstract = "We present a novel representation, evaluation measure, and supervised models for the task of identifying the multiword expressions (MWEs) in a sentence, resulting in a lexical semantic segmentation. Our approach generalizes a standard chunking representation to encode MWEs containing gaps, thereby enabling efficient sequence tagging algorithms for feature-rich discriminative models. Experiments on a new dataset of English web text offer the first linguistically-driven evaluation of MWE identification with truly heterogeneous expression types. Our statistical sequence model greatly outperforms a lookup-based segmentation procedure, achieving nearly 60{\%} F1 for MWE identification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schneider-etal-2014-discriminative">
<titleInfo>
<title>Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Danchik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Dyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present a novel representation, evaluation measure, and supervised models for the task of identifying the multiword expressions (MWEs) in a sentence, resulting in a lexical semantic segmentation. Our approach generalizes a standard chunking representation to encode MWEs containing gaps, thereby enabling efficient sequence tagging algorithms for feature-rich discriminative models. Experiments on a new dataset of English web text offer the first linguistically-driven evaluation of MWE identification with truly heterogeneous expression types. Our statistical sequence model greatly outperforms a lookup-based segmentation procedure, achieving nearly 60% F1 for MWE identification.</abstract>
<identifier type="citekey">schneider-etal-2014-discriminative</identifier>
<identifier type="doi">10.1162/tacl_a_00176</identifier>
<location>
<url>https://aclanthology.org/Q14-1016</url>
</location>
<part>
<date>2014</date>
<detail type="volume"><number>2</number></detail>
<extent unit="page">
<start>193</start>
<end>206</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut
%A Schneider, Nathan
%A Danchik, Emily
%A Dyer, Chris
%A Smith, Noah A.
%J Transactions of the Association for Computational Linguistics
%D 2014
%V 2
%I MIT Press
%C Cambridge, MA
%F schneider-etal-2014-discriminative
%X We present a novel representation, evaluation measure, and supervised models for the task of identifying the multiword expressions (MWEs) in a sentence, resulting in a lexical semantic segmentation. Our approach generalizes a standard chunking representation to encode MWEs containing gaps, thereby enabling efficient sequence tagging algorithms for feature-rich discriminative models. Experiments on a new dataset of English web text offer the first linguistically-driven evaluation of MWE identification with truly heterogeneous expression types. Our statistical sequence model greatly outperforms a lookup-based segmentation procedure, achieving nearly 60% F1 for MWE identification.
%R 10.1162/tacl_a_00176
%U https://aclanthology.org/Q14-1016
%U https://doi.org/10.1162/tacl_a_00176
%P 193-206
Markdown (Informal)
[Discriminative Lexical Semantic Segmentation with Gaps: Running the MWE Gamut](https://aclanthology.org/Q14-1016) (Schneider et al., TACL 2014)
ACL