@article{beinborn-etal-2014-predicting,
title = "Predicting the Difficulty of Language Proficiency Tests",
author = "Beinborn, Lisa and
Zesch, Torsten and
Gurevych, Iryna",
editor = "Lin, Dekang and
Collins, Michael and
Lee, Lillian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "2",
year = "2014",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q14-1040",
doi = "10.1162/tacl_a_00200",
pages = "517--530",
abstract = "Language proficiency tests are used to evaluate and compare the progress of language learners. We present an approach for automatic difficulty prediction of C-tests that performs on par with human experts. On the basis of detailed analysis of newly collected data, we develop a model for C-test difficulty introducing four dimensions: solution difficulty, candidate ambiguity, inter-gap dependency, and paragraph difficulty. We show that cues from all four dimensions contribute to C-test difficulty.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beinborn-etal-2014-predicting">
<titleInfo>
<title>Predicting the Difficulty of Language Proficiency Tests</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Beinborn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Zesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Language proficiency tests are used to evaluate and compare the progress of language learners. We present an approach for automatic difficulty prediction of C-tests that performs on par with human experts. On the basis of detailed analysis of newly collected data, we develop a model for C-test difficulty introducing four dimensions: solution difficulty, candidate ambiguity, inter-gap dependency, and paragraph difficulty. We show that cues from all four dimensions contribute to C-test difficulty.</abstract>
<identifier type="citekey">beinborn-etal-2014-predicting</identifier>
<identifier type="doi">10.1162/tacl_a_00200</identifier>
<location>
<url>https://aclanthology.org/Q14-1040</url>
</location>
<part>
<date>2014</date>
<detail type="volume"><number>2</number></detail>
<extent unit="page">
<start>517</start>
<end>530</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Predicting the Difficulty of Language Proficiency Tests
%A Beinborn, Lisa
%A Zesch, Torsten
%A Gurevych, Iryna
%J Transactions of the Association for Computational Linguistics
%D 2014
%V 2
%I MIT Press
%C Cambridge, MA
%F beinborn-etal-2014-predicting
%X Language proficiency tests are used to evaluate and compare the progress of language learners. We present an approach for automatic difficulty prediction of C-tests that performs on par with human experts. On the basis of detailed analysis of newly collected data, we develop a model for C-test difficulty introducing four dimensions: solution difficulty, candidate ambiguity, inter-gap dependency, and paragraph difficulty. We show that cues from all four dimensions contribute to C-test difficulty.
%R 10.1162/tacl_a_00200
%U https://aclanthology.org/Q14-1040
%U https://doi.org/10.1162/tacl_a_00200
%P 517-530
Markdown (Informal)
[Predicting the Difficulty of Language Proficiency Tests](https://aclanthology.org/Q14-1040) (Beinborn et al., TACL 2014)
ACL