@article{narasimhan-etal-2015-unsupervised,
title = "An Unsupervised Method for Uncovering Morphological Chains",
author = "Narasimhan, Karthik and
Barzilay, Regina and
Jaakkola, Tommi",
editor = "Collins, Michael and
Lee, Lillian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "3",
year = "2015",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q15-1012",
doi = "10.1162/tacl_a_00130",
pages = "157--167",
abstract = "Most state-of-the-art systems today produce morphological analysis based only on orthographic patterns. In contrast, we propose a model for unsupervised morphological analysis that integrates orthographic and semantic views of words. We model word formation in terms of morphological chains, from base words to the observed words, breaking the chains into parent-child relations. We use log-linear models with morpheme and word-level features to predict possible parents, including their modifications, for each word. The limited set of candidate parents for each word render contrastive estimation feasible. Our model consistently matches or outperforms five state-of-the-art systems on Arabic, English and Turkish.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="narasimhan-etal-2015-unsupervised">
<titleInfo>
<title>An Unsupervised Method for Uncovering Morphological Chains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Karthik</namePart>
<namePart type="family">Narasimhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommi</namePart>
<namePart type="family">Jaakkola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2015</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Most state-of-the-art systems today produce morphological analysis based only on orthographic patterns. In contrast, we propose a model for unsupervised morphological analysis that integrates orthographic and semantic views of words. We model word formation in terms of morphological chains, from base words to the observed words, breaking the chains into parent-child relations. We use log-linear models with morpheme and word-level features to predict possible parents, including their modifications, for each word. The limited set of candidate parents for each word render contrastive estimation feasible. Our model consistently matches or outperforms five state-of-the-art systems on Arabic, English and Turkish.</abstract>
<identifier type="citekey">narasimhan-etal-2015-unsupervised</identifier>
<identifier type="doi">10.1162/tacl_a_00130</identifier>
<location>
<url>https://aclanthology.org/Q15-1012</url>
</location>
<part>
<date>2015</date>
<detail type="volume"><number>3</number></detail>
<extent unit="page">
<start>157</start>
<end>167</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T An Unsupervised Method for Uncovering Morphological Chains
%A Narasimhan, Karthik
%A Barzilay, Regina
%A Jaakkola, Tommi
%J Transactions of the Association for Computational Linguistics
%D 2015
%V 3
%I MIT Press
%C Cambridge, MA
%F narasimhan-etal-2015-unsupervised
%X Most state-of-the-art systems today produce morphological analysis based only on orthographic patterns. In contrast, we propose a model for unsupervised morphological analysis that integrates orthographic and semantic views of words. We model word formation in terms of morphological chains, from base words to the observed words, breaking the chains into parent-child relations. We use log-linear models with morpheme and word-level features to predict possible parents, including their modifications, for each word. The limited set of candidate parents for each word render contrastive estimation feasible. Our model consistently matches or outperforms five state-of-the-art systems on Arabic, English and Turkish.
%R 10.1162/tacl_a_00130
%U https://aclanthology.org/Q15-1012
%U https://doi.org/10.1162/tacl_a_00130
%P 157-167
Markdown (Informal)
[An Unsupervised Method for Uncovering Morphological Chains](https://aclanthology.org/Q15-1012) (Narasimhan et al., TACL 2015)
ACL