@article{arthur-etal-2015-semantic,
title = "Semantic Parsing of Ambiguous Input through Paraphrasing and Verification",
author = "Arthur, Philip and
Neubig, Graham and
Sakti, Sakriani and
Toda, Tomoki and
Nakamura, Satoshi",
editor = "Collins, Michael and
Lee, Lillian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "3",
year = "2015",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q15-1041",
doi = "10.1162/tacl_a_00159",
pages = "571--584",
abstract = "We propose a new method for semantic parsing of ambiguous and ungrammatical input, such as search queries. We do so by building on an existing semantic parsing framework that uses synchronous context free grammars (SCFG) to jointly model the input sentence and output meaning representation. We generalize this SCFG framework to allow not one, but multiple outputs. Using this formalism, we construct a grammar that takes an ambiguous input string and jointly maps it into both a meaning representation and a natural language paraphrase that is less ambiguous than the original input. This paraphrase can be used to disambiguate the meaning representation via verification using a language model that calculates the probability of each paraphrase.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arthur-etal-2015-semantic">
<titleInfo>
<title>Semantic Parsing of Ambiguous Input through Paraphrasing and Verification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Arthur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoki</namePart>
<namePart type="family">Toda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2015</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We propose a new method for semantic parsing of ambiguous and ungrammatical input, such as search queries. We do so by building on an existing semantic parsing framework that uses synchronous context free grammars (SCFG) to jointly model the input sentence and output meaning representation. We generalize this SCFG framework to allow not one, but multiple outputs. Using this formalism, we construct a grammar that takes an ambiguous input string and jointly maps it into both a meaning representation and a natural language paraphrase that is less ambiguous than the original input. This paraphrase can be used to disambiguate the meaning representation via verification using a language model that calculates the probability of each paraphrase.</abstract>
<identifier type="citekey">arthur-etal-2015-semantic</identifier>
<identifier type="doi">10.1162/tacl_a_00159</identifier>
<location>
<url>https://aclanthology.org/Q15-1041</url>
</location>
<part>
<date>2015</date>
<detail type="volume"><number>3</number></detail>
<extent unit="page">
<start>571</start>
<end>584</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Semantic Parsing of Ambiguous Input through Paraphrasing and Verification
%A Arthur, Philip
%A Neubig, Graham
%A Sakti, Sakriani
%A Toda, Tomoki
%A Nakamura, Satoshi
%J Transactions of the Association for Computational Linguistics
%D 2015
%V 3
%I MIT Press
%C Cambridge, MA
%F arthur-etal-2015-semantic
%X We propose a new method for semantic parsing of ambiguous and ungrammatical input, such as search queries. We do so by building on an existing semantic parsing framework that uses synchronous context free grammars (SCFG) to jointly model the input sentence and output meaning representation. We generalize this SCFG framework to allow not one, but multiple outputs. Using this formalism, we construct a grammar that takes an ambiguous input string and jointly maps it into both a meaning representation and a natural language paraphrase that is less ambiguous than the original input. This paraphrase can be used to disambiguate the meaning representation via verification using a language model that calculates the probability of each paraphrase.
%R 10.1162/tacl_a_00159
%U https://aclanthology.org/Q15-1041
%U https://doi.org/10.1162/tacl_a_00159
%P 571-584
Markdown (Informal)
[Semantic Parsing of Ambiguous Input through Paraphrasing and Verification](https://aclanthology.org/Q15-1041) (Arthur et al., TACL 2015)
ACL