@article{modi-etal-2017-modeling,
    title = "Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction",
    author = "Modi, Ashutosh  and
      Titov, Ivan  and
      Demberg, Vera  and
      Sayeed, Asad  and
      Pinkal, Manfred",
    editor = "Lee, Lillian  and
      Johnson, Mark  and
      Toutanova, Kristina",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "5",
    year = "2017",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/Q17-1003/",
    doi = "10.1162/tacl_a_00044",
    pages = "31--44",
    abstract = "Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="modi-etal-2017-modeling">
    <titleInfo>
        <title>Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Ashutosh</namePart>
        <namePart type="family">Modi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ivan</namePart>
        <namePart type="family">Titov</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Vera</namePart>
        <namePart type="family">Demberg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Asad</namePart>
        <namePart type="family">Sayeed</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Manfred</namePart>
        <namePart type="family">Pinkal</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <genre authority="bibutilsgt">journal article</genre>
    <relatedItem type="host">
        <titleInfo>
            <title>Transactions of the Association for Computational Linguistics</title>
        </titleInfo>
        <originInfo>
            <issuance>continuing</issuance>
            <publisher>MIT Press</publisher>
            <place>
                <placeTerm type="text">Cambridge, MA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">periodical</genre>
        <genre authority="bibutilsgt">academic journal</genre>
    </relatedItem>
    <abstract>Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect.</abstract>
    <identifier type="citekey">modi-etal-2017-modeling</identifier>
    <identifier type="doi">10.1162/tacl_a_00044</identifier>
    <location>
        <url>https://aclanthology.org/Q17-1003/</url>
    </location>
    <part>
        <date>2017</date>
        <detail type="volume"><number>5</number></detail>
        <extent unit="page">
            <start>31</start>
            <end>44</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Journal Article
%T Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction
%A Modi, Ashutosh
%A Titov, Ivan
%A Demberg, Vera
%A Sayeed, Asad
%A Pinkal, Manfred
%J Transactions of the Association for Computational Linguistics
%D 2017
%V 5
%I MIT Press
%C Cambridge, MA
%F modi-etal-2017-modeling
%X Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect.
%R 10.1162/tacl_a_00044
%U https://aclanthology.org/Q17-1003/
%U https://doi.org/10.1162/tacl_a_00044
%P 31-44
Markdown (Informal)
[Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction](https://aclanthology.org/Q17-1003/) (Modi et al., TACL 2017)
ACL