@article{modi-etal-2017-modeling,
title = "Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction",
author = "Modi, Ashutosh and
Titov, Ivan and
Demberg, Vera and
Sayeed, Asad and
Pinkal, Manfred",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina",
journal = "Transactions of the Association for Computational Linguistics",
volume = "5",
year = "2017",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q17-1003/",
doi = "10.1162/tacl_a_00044",
pages = "31--44",
abstract = "Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="modi-etal-2017-modeling">
<titleInfo>
<title>Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashutosh</namePart>
<namePart type="family">Modi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Titov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asad</namePart>
<namePart type="family">Sayeed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Pinkal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect.</abstract>
<identifier type="citekey">modi-etal-2017-modeling</identifier>
<identifier type="doi">10.1162/tacl_a_00044</identifier>
<location>
<url>https://aclanthology.org/Q17-1003/</url>
</location>
<part>
<date>2017</date>
<detail type="volume"><number>5</number></detail>
<extent unit="page">
<start>31</start>
<end>44</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction
%A Modi, Ashutosh
%A Titov, Ivan
%A Demberg, Vera
%A Sayeed, Asad
%A Pinkal, Manfred
%J Transactions of the Association for Computational Linguistics
%D 2017
%V 5
%I MIT Press
%C Cambridge, MA
%F modi-etal-2017-modeling
%X Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect.
%R 10.1162/tacl_a_00044
%U https://aclanthology.org/Q17-1003/
%U https://doi.org/10.1162/tacl_a_00044
%P 31-44
Markdown (Informal)
[Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction](https://aclanthology.org/Q17-1003/) (Modi et al., TACL 2017)
ACL