@article{angelidis-lapata-2018-multiple,
title = "Multiple Instance Learning Networks for Fine-Grained Sentiment Analysis",
author = "Angelidis, Stefanos and
Lapata, Mirella",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina and
Roark, Brian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "6",
year = "2018",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q18-1002",
doi = "10.1162/tacl_a_00002",
pages = "17--31",
abstract = "We consider the task of fine-grained sentiment analysis from the perspective of multiple instance learning (MIL). Our neural model is trained on document sentiment labels, and learns to predict the sentiment of text segments, i.e. sentences or elementary discourse units (EDUs), without segment-level supervision. We introduce an attention-based polarity scoring method for identifying positive and negative text snippets and a new dataset which we call SpoT (as shorthand for Segment-level POlariTy annotations) for evaluating MIL-style sentiment models like ours. Experimental results demonstrate superior performance against multiple baselines, whereas a judgement elicitation study shows that EDU-level opinion extraction produces more informative summaries than sentence-based alternatives.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="angelidis-lapata-2018-multiple">
<titleInfo>
<title>Multiple Instance Learning Networks for Fine-Grained Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefanos</namePart>
<namePart type="family">Angelidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We consider the task of fine-grained sentiment analysis from the perspective of multiple instance learning (MIL). Our neural model is trained on document sentiment labels, and learns to predict the sentiment of text segments, i.e. sentences or elementary discourse units (EDUs), without segment-level supervision. We introduce an attention-based polarity scoring method for identifying positive and negative text snippets and a new dataset which we call SpoT (as shorthand for Segment-level POlariTy annotations) for evaluating MIL-style sentiment models like ours. Experimental results demonstrate superior performance against multiple baselines, whereas a judgement elicitation study shows that EDU-level opinion extraction produces more informative summaries than sentence-based alternatives.</abstract>
<identifier type="citekey">angelidis-lapata-2018-multiple</identifier>
<identifier type="doi">10.1162/tacl_a_00002</identifier>
<location>
<url>https://aclanthology.org/Q18-1002</url>
</location>
<part>
<date>2018</date>
<detail type="volume"><number>6</number></detail>
<extent unit="page">
<start>17</start>
<end>31</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Multiple Instance Learning Networks for Fine-Grained Sentiment Analysis
%A Angelidis, Stefanos
%A Lapata, Mirella
%J Transactions of the Association for Computational Linguistics
%D 2018
%V 6
%I MIT Press
%C Cambridge, MA
%F angelidis-lapata-2018-multiple
%X We consider the task of fine-grained sentiment analysis from the perspective of multiple instance learning (MIL). Our neural model is trained on document sentiment labels, and learns to predict the sentiment of text segments, i.e. sentences or elementary discourse units (EDUs), without segment-level supervision. We introduce an attention-based polarity scoring method for identifying positive and negative text snippets and a new dataset which we call SpoT (as shorthand for Segment-level POlariTy annotations) for evaluating MIL-style sentiment models like ours. Experimental results demonstrate superior performance against multiple baselines, whereas a judgement elicitation study shows that EDU-level opinion extraction produces more informative summaries than sentence-based alternatives.
%R 10.1162/tacl_a_00002
%U https://aclanthology.org/Q18-1002
%U https://doi.org/10.1162/tacl_a_00002
%P 17-31
Markdown (Informal)
[Multiple Instance Learning Networks for Fine-Grained Sentiment Analysis](https://aclanthology.org/Q18-1002) (Angelidis & Lapata, TACL 2018)
ACL