
Leveraging Orthographic Similarity for Multilingual Neural Transliteration

Anoop Kunchukuttan1, Mitesh Khapra2, Gurneet Singh2, Pushpak Bhattacharyya1

{anoopk,pb}@cse.iitb.ac.in, {miteshk,garry}@cse.iitm.ac.in
1Department of Computer Science & Engineering

Indian Institute of Technology Bombay, Mumbai, India.
2Department of Computer Science & Engineering

Indian Institute of Technology Madras, Chennai, India.

Abstract

We address the task of joint training of translit-
eration models for multiple language pairs
(multilingual transliteration). This is an in-
stance of multitask learning, where individ-
ual tasks (language pairs) benefit from shar-
ing knowledge with related tasks. We fo-
cus on transliteration involving related tasks
i.e., languages sharing writing systems and
phonetic properties (orthographically similar
languages). We propose a modified neural
encoder-decoder model that maximizes pa-
rameter sharing across language pairs in order
to effectively leverage orthographic similar-
ity. We show that multilingual transliteration
significantly outperforms bilingual translitera-
tion in different scenarios (average increase of
58% across a variety of languages we experi-
mented with). We also show that multilingual
transliteration models can generalize well to
languages/language pairs not encountered dur-
ing training and hence perform well on the ze-
roshot transliteration task. We show that fur-
ther improvements can be achieved by using
phonetic feature input.

1 Introduction

Transliteration is a key building block for multi-
lingual and cross-lingual NLP since it is essential
for (i) handling of names in applications like ma-
chine translation (MT) and cross-lingual information
retrieval (CLIR), and (ii) user-friendly input meth-
ods. The transliteration problem has been exten-
sively studied in literature for a variety of language
pairs (Karimi et al., 2011). Previous work has looked
at the most natural setup - training on a single lan-
guage pair. However, no prior work exists on jointly

training multiple language pairs (referred to asmul-
tilingual transliteration henceforth).
Multilingual transliteration can be seen as an in-

stance of multi-task learning, where training each
language pair constitutes a task. Multi-task learning
works best when the tasks are related to each other,
so sharing of knowledge across tasks is beneficial.
Thus, multilingual transliteration can be beneficial,
if the languages involved are related. We identify
such a natural and practically useful scenario: mul-
tilingual transliteration involving languages that are
related on account of sharing writing systems and
phonetic properties. We refer to such languages as
orthographically similar languages.
We say that two languages are orthographically

similar if they have: (i) highly overlapping phoneme
sets, (ii) mutually compatible orthographic systems,
and (iii) similar grapheme to phoneme mappings.
For instance, Indo-Aryan languages largely share
the same set of phonemes. They use different In-
dic scripts, but correspondences can be established
between equivalent characters across scripts. For
example, the Hindi (Devanagari script) character
क (ka) maps to the Bengali ক (ka) which stands
for the consonant sound (IPA: k). The grapheme
to phoneme mapping is also consistent for equiva-
lent characters. We can identify two major sources
of orthographic similarity: (a) genetic relationship
between languages (groups like Romance, Slavic,
Indo-Aryan and Turkic languages) (b) prolonged
contact between languages over a long period of
time, e.g. convergence in phonological properties of
the Indo-Aryan and Dravidian languages in the In-
dian subcontinent, most strikingly retroflex conso-
nants (Subbārāo, 2012). Dravidian and Indo-Aryan
languages use compatible Indic scripts. Another

303

Transactions of the Association for Computational Linguistics, vol. 6, pp. 303–316, 2018. Action Editor: Mona Diab.
Submission batch: 8/2017; Revision batch: 12/2017; Published 5/2018.

c©2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.



example is the Nigerian linguistic area comprising
Niger-Congo languages like Yoruba, Fula, Igbo and
Afro-Asiatic languages like Hausa (the most widely
spoken language in Nigeria). Most languages use
the Latin script (some use Ajani, a modified Arabic
script).
In this work, we explore multilingual translit-

eration involving orthographically similar lan-
guages. To the best of our knowledge, ours is
the first work to address the task of multilingual
transliteration. We propose that transliteration in-
volving orthographically similar languages is a sce-
nario where multilingual training can be very ben-
eficial. Since these languages share phonological
properties, the transliteration tasks are clearly re-
lated. We can utilize this relatedness by sharing
the vocabulary across all related languages. The
grapheme-to-grapheme correspondences enable vo-
cabulary sharing. It helps transfer knowledge across
languages while training. For instance, if the net-
work learns that the English character l maps to
the Hindi character ल (la), it would also learn that
l maps to the corresponding Kannada character ಲ
(la). Data from both Kannada and Hindi datasets
will reinforce the evidence for this mapping. A sim-
ilar argument can be made when both the source
and target languages are related. The grapheme-
grapheme correspondences arise from the underly-
ing phoneme-phoneme correspondences. The con-
sistent grapheme-phoneme mappings help establish
the grapheme-grapheme correspondences.
Due to the utilization of language relatedness,

the benefits that are typically ascribed to multi-task
learning (Caruana, 1997) may also apply to mul-
tilingual transliteration. Since related languages
share characters, it is possible to share representa-
tions across languages. This may help to generalize
transliteration models since joint training provides
an inductive bias which prefers models that are better
at transliterating multiple language pairs. The train-
ing may also benefit from implicit data augmenta-
tion since training data from multiple language pairs
is available. From the perspective of a single lan-
guage pair, data from other language pairs can be
seen as additional (noisy) training data. This is par-
ticularly beneficial in low-resource scenarios.
Our work adds to the increasing body of work

investigating multilingual training for various NLP

tasks like POS tagging (Gillick et al., 2016), NER
(Yang et al., 2016; Rudramurthy et al., 2016) and
machine translation (Dong et al., 2015; Firat et al.,
2016; Lee et al., 2017; Zoph et al., 2016; Johnson
et al., 2017) with a view to learn models that gen-
eralize across languages and make effective use of
scarce training data.
The following are the contributions of our work:

(1) We propose a compact neural encoder-decoder
model for multilingual transliteration, that is de-
signed to ensure maximum sharing of parameters
across languages while providing room for learning
language-specific parameters. This allows greater
sharing of knowledge across language pairs by lever-
aging orthographic similarity. We empirically show
thatmodels withmaximal parameter sharing are ben-
eficial, without increasing the model size.
(2) We show that multilingual transliteration ex-
hibits significant improvement in transliteration ac-
curacy over bilingual transliteration in different sce-
narios (average improvement of 58%). Our results
are backed by extensive experiments on 8 languages
across 2 orthographically similar language groups.
(3) We perform an error analysis which suggests
that representations learnt by the encoder in multilin-
gual transliteration can reduce transliteration ambi-
guities. Multilingual transliteration also seems bet-
ter at learning canonical transliterations instead of
alternative, phonetically equivalent transliterations.
These could explain the improved performance of
multilingual transliteration.
(4)We explore the zeroshot transliteration task (i.e.,
transliteration between languages/language pairs not
seen during training) and show that our multi-
lingual model can generalize well to unseen lan-
guages/language pairs. Notably, the zeroshot
transliteration results mostly outperform the direct
bilingual transliteration model.
(5) We have richer phonetic information at our dis-
posal for some related languages. We propose a
novel method to incorporate phonetic input in the
model and show that it provides modest gains for
multilingual transliteration.
The rest of the paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 formalizes
themultilingual transliteration task and describes our
proposed solution. Sections 4 and 5 discuss the ex-
perimental setup, results and analysis. Section 6 dis-

304



cusses various zeroshot transliteration scenarios, our
solutions and the results of experiments. Section 7
discusses incorporation of phonetic information for
multilingual transliteration. Section 8 concludes the
work and discusses future directions.

2 Related Work

General TransliterationMethods Previous work
on transliteration has focused on the scenario
of bilingual training. Until recently, the best-
performing solutions were discriminative statistical
transliteration methods based on phrase-based statis-
tical machine translation (Bisani and Ney, 2008; Ji-
ampojamarn et al., 2008; Jiampojamarn et al., 2009;
Finch and Sumita, 2010). Recent work has explored
bilingual neural transliteration using the standard
neural encoder-decoder architecture (with attention
mechanism) (Bahdanau et al., 2015) or its adap-
tions (Finch et al., 2015; Finch et al., 2016). Using
target bidirectional LSTM with model ensembling,
Finch et al. (2016) have outperformed the state-of-
the-art phrase-based systems on the NEWS shared
task datasets. On the other hand, we focus on mul-
tilingual transliteration with the encoder-decoder ar-
chitecture or its adaptations. The two strands of work
are obviously complimentary.

Multilinguality and Transliteration To the best
of our knowledge, ours is the first work on multi-
lingual transliteration. Jagarlamudi and Daumé III
(2012) have proposed a method for transliteration
mining (given a name and candidate transliterations,
identify the correct transliteration) across multiple
languages using grapheme to IPA mappings. Note
that their model cannot generate transliterations; it
can only rank candidates. Some literature mentions
multilingual transliteration (Surana and Singh, 2008;
He et al., 2017; Prakash, 2012; Pouliquen et al.,
2005) or multilingual transliteration mining (Kle-
mentiev and Roth, 2006; Yoon et al., 2007). In these
cases, however, multilingual refer to methods which
work with multiple languages (as opposed to joint
training - the sense of the word multilingual as we
use it).

Multilingual Translation Our work on multilin-
gual transliteration is motivated by recently pro-
posed multilingual neural machine translation archi-

tectures (Firat et al., 2016). Broadly, these proposals
can be categorized into two groups. One group con-
sists of architectures that specialize parts of the net-
work for particular languages: specialized encoders
(Zoph et al., 2016), decoders (Dong et al., 2015)
or both (Firat et al., 2016). The other group tries
to learn more compact networks with little special-
ization across languages by using a joint vocabu-
lary (Johnson et al., 2017; Lee et al., 2017). For
multilingual transliteration, we adopt an approach
that is closer to the latter group since the languages
under consideration use compatible scripts result-
ing in a shared vocabulary. We specialize just the
output layer for target languages, but share the en-
coder, decoder and character embeddings across lan-
guages. In this respect, we differ from Johnson et al.
(2017). They share all network components across
languages, but add an artificial token at the begin-
ning of the input sequence to indicate the target lan-
guage.

Zeroshot Transliteration We use the multilin-
gual models to address zeroshot transliteration. Ze-
roshot transliteration using bridge/pivot language
has been explored for statistical machine transliter-
ation (Khapra et al., 2010) as well as neural ma-
chine transliteration (Saha et al., 2016). Unlike pre-
vious approaches which pivot over bilingual translit-
eration models, we propose zeroshot transliteration
that pivots over multilingual transliteration mod-
els. We also propose a direct zeroshot transliter-
ation method, a scenario which has been explored
for machine translation by Johnson et al. (2017), but
not investigated previously for transliteration. In
our zeroshot model, sequences from multiple source
languages are mapped to a common encoder rep-
resentation without the need for a parallel corpus
between the source languages. Another work, the
correlational encoder-decoder architecture (Saha et
al., 2016), maps source and pivot languages to a
common space but requires a source-pivot parallel
transliteration corpus.

3 Multilingual Transliteration Learning

We first formalize the multilingual transliteration
task and then describe our proposed solution.

305



Shared LSTM Decoder

Shared CNN Encoder

Shared Character Embedding Layer

L1 Output Layer

Shared 
Attention 
Network

T E N D U L K A R 

त ◌े ◌ं द ◌ु ल क र

L2 Output Layer

ത െ◌ ൻ ഡ ◌ു ൽ ക ◌് ക ർ 

context vector

previous state 
& output

annotation 
vectors

(a) Network Architecture

E R N A K U L A M

Convolution
(with same padding) + 
ReLU
stride=1

Character 
embeddings

Output of 
convolution

Max Pooling
(with same padding) 
stride=1

Annotation 
vectors

Filter width=4

Pool width=4

Filter width=3

(b) CNN Encoder

Figure 1: Multilingual Neural Transliteration Architecture

3.1 Task Definition
The multilingual transliteration task involves learn-
ing transliteration models for l language pairs
(si, ti) ∈ L (i = 1 to l), where L ⊂ S ×T , and S, T
are sets of source and target languages respectively.
The languages in each set are orthographically simi-
lar. S and T need not be mutually exclusive.
We are provided with parallel transliteration cor-

pora for these l language pairs (Di, ∀i = 1 to l).
The goal is to learn a joint transliteration model for
all language pairs which minimizes an appropriate
loss function over all the transliteration corpora.

M∗ = argmin
M

L(M, D) (1)

where M is the candidate joint transliteration model
and D=(D1, D2, ..., Dl) is training data for all lan-
guage pairs, L is the training loss function given the
model and the training data.
We focus on 3 practical training scenarios:

Similar source languages: We havemultiple ortho-
graphically similar source languages and a single tar-
get language which is not similar to the source lan-
guages. This is an instance of many-to-one learning,
e.g., Indic languages to English.
Similar target languages: We have multiple or-
thographically similar target languages and a single
source languagewhich is not similar to the target lan-
guages. This is an instance of one-to-many learning,
e.g., English to Indic languages.

All similar languages: We have multiple source
languages as well as target languages, which are
all orthographically similar. This is an instance of
many-to-many learning, e.g., Indic-Indic languages.

3.2 Proposed Solution

We propose a neural encoder-decoder model for
multilingual transliteration. For each source-target
language pair (s, t), the network models Ps,t =
p(yt

j |yt
j−1...y

t
1, xs), where xs is the input character

sequence and yt
j is jth element of the output charac-

ter sequence yt. Note that we design a single network
to represent all the Ps,t distributions corresponding
to the set of language pairs L. Our network is an
adaptation of the standard encoder-decoder model
with attention (Bahdanau et al., 2015). We describe
only the salient aspects of our network and refer
the reader to Bahdanau et al. (2015) for the basic
encoder-decoder architecture. Figure 1a shows the
network architecture of our multilingual translitera-
tion system.

Encoder & Decoder: We used a CNN encoder
to encode the character sequence. It consists of
a single convolutional layer (stride size = 1 and
SAME padding), followed by ReLU units and max
pooling. We use filters of different sizes and con-
catenate their output to produce the encoder out-
put. Figure 1b shows a schematic of the encoder.
We chose CNN over the conventional bidirectional

306



LSTM layer since the temporal dependencies for
transliteration are mostly local, which can be han-
dled by the CNN encoder. We observed that train-
ing and decoding are significantly faster, with little
impact on accuracy. The decoder contains a layer of
LSTM cells and their start state is the average of the
encoder’s output vectors (Sennrich et al., 2017).

Parameter Sharing: The vocabulary of the ortho-
graphically similar languages (at input and/or out-
put) is comprised of the union of character sets of all
these languages. Since the character set of these lan-
guages overlaps to a large extent, we share their char-
acter embeddings too. The encoder is shared across
all source languages and the decoder is shared across
all target languages.
The network uses a shared attention mechanism.

The attention network is comprised of a single feed-
forward layer, which predicts the attention score
given the previous decoder output, previous decoder
state and encoder annotation vector.
The output layer (a fully connected feedforward

layer) transforms the decoder LSTM layer’s output
to the size of the output vocabulary, and a softmax
function is applied to convert the output scores to
probabilities. Each target language has its own set
of output layer parameters.
Barring the output layer, all network parame-

ters (input embeddings, output embeddings, at-
tention layer, encoder and decoder) are shared
across all similar languages. This allows maxi-
mum transfer of information for multilingual learn-
ing, while the output layer alone specializes for the
specific target language. Compared to using a target
language tag in the input sequence (Johnson et al.,
2017), we believe our approach allows the language-
specific parameters to directly influence the output
characters.

Training Objective and Model Selection: We
minimize the average negative likelihood of paral-
lel training corpora across all language pairs. We
determined the hyperparameters which gave best re-
sults on a validation set. After training the model for
a fixed number of iterations (sufficient for conver-
gence), we select the model with the maximum ac-
curacy on the validation set for each language pair.
For instance, if the model corresponding to the 32nd

epoch reported maximum accuracy on the validation

set for English-Hindi, thismodel was used for report-
ing test set results for English-Hindi. We observed
that this criterion performed better than choosing the
model with least validation set loss over all language
pairs.

4 Experimental Setup

We describe our experimental setup.

Network Details: The CNN encoder has 4 filters
(widths 1 to 4) of 128 hidden units each in the con-
volutional layer (encoder output size=512). We use
a stride size of 1 and the SAME padding for the
convolutional and max-pooling layers. The decoder
is a single layer of 512 LSTM units. We used the
same configuration for both bilingual and multilin-
gual experiments across all datasets for convenience
after exploration on some language pairs. We apply
dropout (Srivastava et al., 2014) (probability=0.5) at
the output of the encoder and decoder, and SGDwith
the ADAMoptimizer (Kingma and Ba, 2014) (learn-
ing rate=0.001). We trained our models for a max-
imum of 40 epochs (which we found sufficient for
our models to converge) and a batch size of 32. In
each training epoch, we cycle through the parallel
corpora of each language pair. The parallel corpora
are roughly of the same size. Better training sched-
ules could be explored in future.

Languages: We experimented with two sets of or-
thographically similar languages:
Indian languages: (i) Hindi (hi), Bengali (bn)
from the Indo-Aryan branch of Indo-European fam-
ily (ii) Kannada (kn), Tamil (ta) from the Dravid-
ian family. We studied Indic-Indic transliteration
and transliteration involving a non-Indian language
(English↔Indic). We mapped equivalent characters
in different Indic scripts in order to build a common
vocabulary based on the common offsets of the Uni-
code codepoints (Kunchukuttan et al., 2015).
Slavic languages: Czech (cs), Polish (pl), Slovenian
(sl) and Slovak (sk). We studied Arabic↔Slavic
transliteration. Arabic is a non-Slavic language
(Semitic branch of Afro-Asiatic) and uses an abjad
script in which vowel diacritics are omitted in gen-
eral usage.
The languages chosen are representative of lan-

guages spoken by some major groups of peoples

307



en-Indic Indic-en Indic-Indic ar-Slavic
en-hi 12K hi-en 18K bn kn ta ar-cs 15K
en-bn 13K bn-en 12K hi 3620 5085 5290 ar-pl 15K
en-kn 10K kn-en 15K bn 2720 2901 ar-sl 10K
en-ta 10K ta-en 15K kn 4216 ar-sk 10K

Table 1: Training set statistics for different datasets (number
of word pairs). Validation set: 1K (en→Indic & ar↔Slavic),
500 (Indic→en, Indic-Indic). Test set: 1K (all pairs).

Pair Src Tgt

en-hi KANAKLATA कनकलता (kanakalatA)
en-kn LEHMANN ಹಮ (l.ehaman)

(a) English-Indic
Pair Src Tgt

pl-ar DUMITRESCU دومیترسكو (dwmytrskw)
cs-ar MAURICE موریس (mwrys)

(b) Slavic-Arabic

Table 2: Examples of transliteration pairs from our
datasets

which exhibit orthographic similarity: Indic, Ro-
mance, Germanic, Slavic, etc. These languages are
spoken by around 2 billion people. So our approach
addresses a major chunk of the world’s people.

Datasets: (See Table 1 for statistics of datasets).
We used the official NEWS 2015 shared task

dataset (Banchs et al., 2015) for English to Indic
transliteration. This dataset has been used for many
editions of the NEWS shared tasks. We split the
NEWS 2015 training dataset as the train and valida-
tion data for Indic-English transliteration. For test-
ing, we used the NEWS 2015 dev-test set. We cre-
ated the Indian-Indian parallel transliteration corpora
from the English to Indian language training corpora
of the NEWS 2015 dataset by mining name pairs
which have English names in common.
We mined the Arabic-Slavic dataset from Wiki-

data (Vrandečić and Krötzsch, 2014), a structured
knowledge base containing items (roughly entities of
interest). Each item has a label (title of item page)
which is available in multiple languages. We ex-
tracted labels from selected items referring to named
entities (persons, organizations and locations) to en-
sure that we extract parallel transliterations (as op-
posed to translations).

Pair P B M Pair P B M

Similar Source and Target Languages
Indic-Indic (45.5%)
bn-hi 29.74 19.08 27.69 kn-bn 28.59 24.04 37.47
bn-kn 17.62 18.14 27.74 kn-ta 34.89 30.85 38.30
hi-bn 29.92 25.46 39.15 ta-hi 29.07 19.24 28.97
hi-ta 25.15 28.62 38.70 ta-kn 26.99 19.86 29.06

Similar Source Languages
Slavic-Arabic (55.8%) Indic-English (24.2%)
cs-ar 38.91 37.10 59.17 bn-en 55.23 48.93 54.01
pl-ar 34.70 34.80 44.83 hi-en 49.19 38.26 51.11
sk-ar 43.26 37.49 62.21 kn-en 42.79 33.77 47.70
sl-ar 41.90 36.74 62.04 ta-en 33.93 23.22 25.93

Similar Target Languages
Arabic-Slavic (176.8%) English-Indic (1.1%)
ar-cs 15.41 12.08 36.76 en-bn 42.90 41.70 46.10
ar-pl 13.68 12.26 24.21 en-hi 60.50 64.10 60.70
ar-sk 15.24 13.82 38.72 en-kn 48.70 52.00 53.90
ar-sl 18.31 13.63 44.35 en-ta 52.90 57.80 55.30

Table 3: Comparison of bilingual (B) and multilin-
gual (M) neural models as well as bilingual PBSMT
(P) models (top-1 accuracy %). Figure in brackets
for each dataset shows average increase in translit-
eration accuracy for multilingual neural model over
bilingual neural model. Best accuracies for each lan-
guage pair in bold.

Evaluation: We use top-1 exact match accuracy as
the evaluation metric (Banchs et al., 2015). This
is one of the metrics in the NEWS shared tasks on
transliteration.

5 Results and Discussion

We discuss and analyze the results of our experi-
ments.

5.1 Quantitative Observations

Table 3 compares results of bilingual (B) and mul-
tilingual (M) neural models as well as a bilingual
transliteration system (P) based on phrase-based sta-
tistical machine transliteration (PBSMT). The PB-
SMT system was trained usingMoses (Koehn et al.,
2007) with no lexicalized reordering and uses mono-
tonic decoding. We used a 5-gram character lan-
guage model trained with Witten-Bell smoothing.
We observe that multilingual training substan-

tially improves the accuracy over bilingual training
in all datasets (an average increase of 58.2% over all

308



language pairs). Transliteration accuracy increases
in all scenarios: (i) similar sources (ii) similar tar-
gets and (iii) similar sources & targets.
If we look at results for various language groups,

transliteration involving Slavic languages and Ara-
bic benefits more than transliteration involving In-
dic languages and English. Arabic→Slavic translit-
eration shows maximum improvement (average:
176.8%) while English→Indic pairs show minimum
improvement (average: 1.1% ).
We also see that the multilingual model shows

significant improvements over a bilingual translit-
eration system based on phrase-based SMT. The
PBSMT system is better than the bilingual neural
transliteration system in most cases. This is consis-
tent with previous work (Finch et al., 2015), where
the standard encoder-decoder architecture (with at-
tention mechanism) (Bahdanau et al., 2015) could
not outperform PBSMT approaches. However, a
model using target bidirectional LSTM with model
ensembling (Finch et al., 2016) outperforms PBSMT
models. These improvements are orthogonal to our
work and could be used to further improve the bilin-
gual as well as multilingual systems. The bilingual
neural networkmodels are not able to outperform the
PBSMT models possibly due to the small size of the
datasets and the limited depth of the network (single
layer encoder and decoder).

5.2 Qualitative Observations
We see that multilingual transliteration is better than
bilingual transliteration in the following aspects:
• Vowels are generally a major source of translit-
eration errors (Kumaran et al., 2010; Kunchukut-
tan and Bhattacharyya, 2015) because of ambigui-
ties in vowel mappings. We see a major decrease
in vowel errors due to multilingual training (aver-
age decrease of ∼20%). We observe substantial de-
crease in long-short vowel confusion errors (Indic
languages as target languages) and insertion/deletion
of A (English/Slavic as target). We also see a ma-
jor improvement in Arabic→Slavic transliteration.
The Arabic script does not represent vowels, hence
the transliteration system needs to correctly generate
vowels. The multilingual model is better at generat-
ing vowels compared to the bilingual model.
• We also observe that consonants with similar pho-
netic properties are a major source of transliteration

Source B M

باستور (bAstwr) bastor pastor
كیلين (kylyn) kelen kailin

(a) Arabic-Czech examples

Source B M

व जर्ल (varjila) vergill virgil
ए लसन (elisana) elissan ellison

(b) Hindi-English examples

Table 4: Examples of bi- vs. multi-lingual outputs.
ar and hi text are also shown using Buckwalter and
ITRANS romanization schemes respectively

errors, and these show a substantial decrease with
multilingual training. For Indic-English translitera-
tion, we see substantial error reduction in the follow-
ing character pairsK-C, T-D, P-B. We also observe a
decrease in confusion between aspirated and unaspi-
rated sounds. For Arabic→Slavic transliteration, we
see substantial error reduction for the following char-
acter pairs K-C, F-V and P-B.

• For Slavic→Arabic, we observed a significant re-
duction in the number of errors related to characters
representing fricative sounds like j,s,z,g (Buckwalter
romanization).

• Themultilingual system seems to prefer the canon-
ical spellings, even when other alternative spellings
seem faithful to the source language phonetics. The
system is thus able to learn conventional usage better
than the bilingual models. e.g. morisa (Hindi, ro-
manized text shown) is transliterated incorrectly to
the phonetically acceptable English word moris by
the bilingual model. The multilingual model gener-
ates the correct systemMaurice.

• Since Indic scripts are very phonetic, very few
non-canonical spellings are possible. As a conse-
quence, vowel error reduction was also minimum for
English-Indic transliteration (10%). This may partly
explain why multilingual training provides minimal
benefit for English-Indic transliteration.

Table 4 shows some examples where multilingual
output is better than the bilingual output.

309



Figure 2: Visualization of contextual representations
of vowels for hi-en transliteration. Each colour rep-
resents a different vowel.

5.3 Analysis

We investigated a few hypotheses to understand why
multilingual models are better:
Better contextual representations for vowels: We
hypothesize that the encoder learns better contex-
tual representations for vowels. To test this hypoth-
esis, we studied 3 character long sequences from the
test set with a vowel in the middle (i.e., 1-char win-
dow around vowel). We processed these sequences
through the encoder of the bilingual and multilin-
gual transliteration systems to generate the encoder
output corresponding to the vowels. For instance,
for the vowel a in the word part, we encode the 3
character sequence par using the encoder. The en-
coder output corresponding to the character a is con-
sidered the contextual representation of the charac-
ter a in this word. Figure 2 shows a visualization of
these contextual representations of the vowels using
t-SNE (van der Maaten and Hinton, 2008). For the
bilingual model, we observe that the contextual rep-
resentations of same vowels tend to cluster together.
For the multilingual model, the clustering is more
specialized. The representations are grouped by the
vowel along with the context. For instance, the re-
gion highlighted in the plot shows representations of

Hindi vowels e (yellow) and i (blue) followed by the
consonant v. Other vowels with the same context are
seen in the same region too. This suggests that the
multilingual model is able to learn specialized rep-
resentations of vowels in different contexts and this
helps the decoder generate correct transliterations.
More monolingual data: In the many-one scenario,
more monolingual data is available for the target lan-
guage since target words from all training language
pairs are available. We hypothesize that this may
help the decoder to better model the target language
sequence. To test this, we decoded the test data using
the bilingual models along with a larger target RNN
LM (with LSTM units) using shallow fusion (Gul-
cehre et al., 2017). The RNN LM was trained on
all the target language words across all parallel cor-
pora. These experiments were performed for Indic-
English and Slavic-Arabic pairs. We did not observe
any major change in the transliteration accuracies of
bilingual models due to integration of a larger LM.
Thus, larger target side data does not explain the im-
provement in transliteration accuracy due to multi-
lingual transliteration.
More parallel data: Multilingual training pools to-
gether parallel corpora from multiple orthographi-
cally similar languages, which effectively increases
the data available for training. To test if this ex-
plains the improved performance, we comparedmul-
tilingual and bilingual models under similar data
size conditions, i.e., the total parallel corpora size
across all language pairs used to train the multilin-
gual model is equivalent to the size of the bilingual
corpus used to train the bilingual model. Specifically
we compared the following under similar data size
conditions: (a) {bn,hi,kn,ta}-en multilingual model
(50% hi-en training pairs) with hi-en bilingual model
(b) {cs,pl,sk,sl}-ar multilingual model (30% pl-ar
training pairs) with pl-ar bilingual model. Table
5 shows the results of these experiments. We ob-
served that the multilingual system showed signif-
icantly higher transliteration accuracy compared to
the bilingual model for Polish-Arabic. For Hindi-
English, the bilingual model was better than the mul-
tilingual model. So, we cannot decisively conclude
that the performance improvement of multilingual
transliteration can be attributed to the effective in-
crease in training data size. In a multilingual train-
ing scenario, data from other languages act as noisy

310



Pair B M

pl-ar 14.64 44.83
hi-en 38.26 35.93

Table 5: Results of experiments under balanced data
conditions

Pair sepdec sepout sepnone Pair sepdec sepout sepnone

Indic-Indic
bn-hi 27.28 27.69 28.72 kn-bn 32.22 37.47 35.76
bn-kn 25.86 27.74 27.11 kn-ta 40.06 38.30 40.37
hi-bn 37.22 39.15 39.35 ta-hi 27.74 28.97 28.45
hi-ta 35.74 38.70 35.54 ta-kn 28.13 29.06 28.65

Arabic-Slavic English-Indic
ar-cs 39.68 36.76 35.95 en-bn 41.00 46.10 44.10
ar-pl 27.25 24.21 26.85 en-hi 56.00 60.70 61.60
ar-sk 41.36 38.72 40.14 en-kn 49.30 53.90 54.30
ar-sl 49.14 44.35 45.88 en-ta 53.00 55.30 52.90

Table 6: Comparison of multilingual architectures

version of data from the original language and sup-
plement the available bilingual data, but they can-
not necessarily substitute data from the original lan-
guage pair.

5.4 Comparison with variant architectures

We compare three variants of the encoder-decoder
architecture: (a) our model: target language specific
output layer (and parameters) (sepout), (b) every tar-
get language has its own decoder and output layer
(sepdec) (Lee et al., 2017), and (c) all languages share
the same decoder and output layer, but the first to-
ken of the input sequence is a special token to spec-
ify target language (sepnone) (Johnson et al., 2017).
These architectures differ in the degree of parameter
sharing. sepdec has fewer shared parameters than our
model and sepnone has more shared parameters than
our model. In all three cases, the encoder is shared
across all source languages. Table 6 shows the re-
sults of this comparison. We cannot definitively con-
clude if one model is better than the other. Except
for Arabic-Slavic transliteration, the trend seems to
indicate that models with greater parameter sharing
(sepout/sepnone) may perform better. In any case,
given the comparable results we prefer models with
fewer model parameters (sepout/sepnone).

6 Zeroshot Transliteration

In the previous sections, we have shown that multi-
lingual training is beneficial for language pairs ob-
served during training. In addition, the encoder-
decoder architecture opens up the possibility of ze-
roshot transliteration i.e., transliteration between
language pairs that have not been seen during train-
ing. The encoder-decoder architecture decouples
the source and target language network compo-
nents and makes the architecture more modular. As
a consequence, we can consider the encoder out-
put (for the source language) to be embedded in a
language-neutral, common subspace - a sort of inter-
lingua. The decoder proceeds to generate the target
word from the language neutral representation of the
source word. Hence, training on just a few language
pairs is sufficient to learn all language-specific pa-
rameters - making zeroshot transliteration possible.
Before describing different zeroshot translitera-

tion scenarios, we introduce a few terms. A language
that is the source in any language pair seen during
training is said to be source-covered. We can define
target-covered languages analogously. Now, we can
envisage the following zeroshot transliteration sce-
narios: (a) unseen language pairs: both the source
and target languages are covered, but the pair was
not observed during training, (b) unseen source lan-
guage: the source language is not covered, but it is
orthographically similar to other source-covered lan-
guages, (c) unseen target language: can be defined
analogously. Next, we describe our proposed solu-
tions to these scenarios.

6.1 Unseen Language Pair

We investigated the following solutions:
Multilingual Zeroshot-Direct: Since source and
target languages are covered, we use the trainedmul-
tilingual model discussed in previous sections for
source-target transliteration.
Model selection can be an issue for this approach.

As discussed earlier, model selection using valida-
tion set accuracy for each language pair is better than
average validation set loss. For an unseen language
pair, we cannot use validation set accuracy/loss for
model selection (since validation data is not avail-
able). So we explored the following model selection
criterion: maximum average validation set accuracy

311



across all the trained language pairs (sc_acc). We
also compared sc_acc to the model with least av-
erage validation set loss over all training language
pairs (sc_loss).
Nevertheless, there are inherent limitations to

model selection by averaging validation accuracy or
loss for trained language pairs. Irrespective of the
model selection method used, the chosen model may
still be suboptimal for unseen language pairs since
the network is not optimized for such pairs.
Multilingual Zeroshot-Pivot: To address the limi-
tations with zeroshot-direct transliteration, we pro-
pose transliteration from source to target using a
pivot language, and pipelining the best source-pivot
and pivot-target transliteration models. We choose
a pivot language such that the network has been
trained for source-pivot and pivot-target pairs. Since
the network has been trained for the source-pivot
and target-pivot pairs, we can expect optimal perfor-
mance in each stage of the pipeline. Note that we use
the multilingual model for source-pivot and pivot-
target transliteration (we found it better than using
the bilingual models). To reduce cascading errors
due to pipelining, we consider the top-k source-pivot
transliterations in the next stage of the pipeline. The
probability for a target word y given the source word
x is computed as:

p(y|x) =

k∑

i=1

p(y|zi)p(zi|x) (2)

zi: ith best source-pivot transliteration. We used k=10.

6.2 Unseen Source Language
An unseen source language can be easily handled
in our architecture. Though the language has not
been source-covered, a source word can be directly
processed through the network since all source lan-
guages share the encoder and character embeddings.

6.3 Unseen Target Language
Handling an unseen target language is tricky since
the output layer is specific to each target language.
Hence, parameters for the unseen language’s output
layer cannot be learned during training. Note that
even architectures where the entire network is com-
pletely shared between all language pairs (Johnson et
al., 2017) cannot handle an unseen target language -

Pair Biling Zeroshot Zeroshot
Direct Pivoting † Direct

sc_acc sc_loss sc_ora

bn-ta 16.20 36.12 (hi) 31.79 27.45 34.47
ta-bn 18.48 47.01 (hi) 24.87 17.97 25.28
hi-kn 34.66 47.14 (ta) 44.48 42.13 43.05
kn-hi 34.12 39.02 (ta) 40.45 37.28 40.96
† best pivot for multilingual pivoting in brackets

(a) Unseen language pair

Method Slavic-ar (cs-ar) Indic-en (hi-en)

Bilingual 37.10 38.26
Zeroshot 60.48 45.24
Multilingual 59.17 51.11

(b) Unseen source language

Method ar-Slavic (ar-cs) en-Indic (en-hi)
proxy acc proxy acc

Bilingual none 12.08 none 64.10

sk 42.09 kn 9.00
Proxy sl 41.89 bn 18.30

pl 38.27 ta 2.90

Proxy sk 42.20 kn 9.70
+ sl 40.99 bn 18.10
LMFusion pl 36.35 ta 3.10

(c) Unseen target language

Table 7: Results for zeroshot transliteration

the embedding for target language indicator tokens
are not learned during training for unseen target lan-
guages. We found that simple approaches like as-
signing parameters for unseen target languages by
averaging the parameters of the trained target lan-
guages do not work.

Hence, we use a target-covered language as proxy
for the unseen target language. The simplest ap-
proach considers the output of the source to proxy
language transliteration system as the target lan-
guage’s output. However, this doesn’t take into ac-
count phonotactic characteristics of the target lan-
guage. We propose to incorporate this information
by using anRNN (using LSTMunits) character-level
language model of the target language words. While
predicting the next output character during decoding,
we combine the scores from themultilingual translit-
eration model and the target LM using shallow fu-
sion of the transliteration model and the language
model (Gulcehre et al., 2017).

312



6.4 Results and Discussion
We discuss the results for each scenario below.

6.4.1 Unseen language pair
We experimented with transliteration between four
Indic languages viz., hi,bn,ta,kn. We trained a mul-
tilingual model on 8 out of the 12 possible language
pairs, covering all the 4 languages. The remaining 4
language pairs (ta-bn, bn-ta, hi-kn and hi-kn) are the
unseen language pairs (results in Table 7a).
Zeroshot vs. Direct Bilingual: For all unseen lan-
guage pairs, all zeroshot systems (pivot as well dif-
ferent direct configurations) are better than the di-
rect bilingual system. Note that unlike the zeroshot
systems, the bilingual systems were directly trained
on the unseen language pairs. Yet the zeroshot sys-
tems outperform direct bilingual systems since the
underlyingmultilingual models are significantly bet-
ter than the bilingual models (as seen in Section 5).
These results show that the multilingual model gen-
eralizes well to unseen language pairs.
Direct vs. Pivot Zeroshot: We also observe that the
pivot zeroshot system is better than both of the direct
zeroshot systems (sc_acc and sc_loss). To verify if
the limitations of the model selection criterion ex-
plain the direct system’s relatively lesser accuracy,
we also considered an oracle direct zeroshot system
(sc_ora). The oracle system selects the model with
the best accuracy using a parallel validation corpus
for the unseen language pair. This oracle system is
also inferior to the pivot transliteration model. So,
we can conclude that the network is better tuned for
transliteration of language pairs it has been directly
trained on. Hence, multilingual pivoting works bet-
ter than direct transliteration in spite of the cascading
errors involved in pipelining.
Model Selection Criteria: For the direct zeroshot
system, the average accuracy (sc_acc) is a better
model selection criterion than average loss (sc_loss).

6.4.2 Unseen source language
We conducted 2 experiments: (a) train on (bn,kn,ta)-
en pairs and test on hi-en pair, and; (b) train on
(pl,sk,sl)-ar pairs and test on cs-ar pair. See Table
7b for results. In this scenario, too, we observe that
zeroshot transliteration performs better than direct
bilingual transliteration. In fact, zeroshot transliter-
ation is competitive with multilingual transliteration

too (accuracy is > 90% of multilingual translitera-
tion). Though the network has not seen the source
language, the encoder is able to generate source lan-
guage representations that are useful for decoding.

6.4.3 Unseen target language
We conducted 2 experiments: (a) train on ar-
(pl,sk,sl) pairs and test on ar-cs pair, and;(b) train on
en-(bn,kn,ta) pairs and test on en-hi pair. The target
languages used in training were the proxy languages.
See Table 7c for results.
We observe contradictory results for the experi-

ments. For ar-cs, the use of proxy language gives
transliteration results better than bilingual transliter-
ation. But, the proxy language is not a good substi-
tute for Hindi. Shallow fusion of target LM with the
transliteration model makes little difference.
We see that the transliteration performance of

proxy languages is correlated to its orthographic sim-
ilarity to the target language. Thus, it is preferable
to choose a proxy with high orthographic similar-
ity to the target language. We see one anomaly to
this trend. Kannada as proxy performs badly com-
pared to Bengali, though Kannada is orthographi-
cally more similar to Hindi. One reason could be the
orthographic convention in Hindi and Bengali that
the terminal vowel is automatically suppressed. In
Kannada, the vowel has to be explicitly suppressed
with a terminal halanta character. Simply deleting
the terminal halanta in Kannada output to conform to
Hindi conventions increases accuracy to 24.1% (bet-
ter than Bengali). Clearly, shallow fusion is not suf-
ficient to adapt a proxy language’s output to the tar-
get language, and further investigations are required.
If a proxy-target corpus is available, we can generate
better transliterations via pivoting.

7 Incorporating Phonetic Information

So far, we considered characters as atomic units. We
have thus relied on correspondences between charac-
ters for multilingual learning. In addition, for some
languages, we can find an almost one-one correspon-
dence from the characters to phonemes (a basic unit
of sound). Each phoneme can be factorized into a set
of articulatory properties like place of articulation,
nasalization, voicing, aspiration, etc. If the input
for transliteration incorporates these phonetic prop-
erties, it may learn better character representations

313



Pair O Ph Pair O Ph

Indic- bn-en 54.01 55.53 kn-en 47.70 53.31
English hi-en 51.11 54.86 ta-en 25.93 29.63

bn-hi 27.69 28.51 kn-bn 37.47 39.19
Indic- bn-kn 27.74 29.72 kn-ta 38.30 41.93
Indic hi-bn 39.15 37.73 ta-hi 28.97 29.17

hi-ta 38.70 39.00 ta-kn 29.06 31.54

Table 8: Onehot (O) vs. phonetic (Ph) input

across languages by bringing together similar char-
acters. e.g. the Kannada character ಳ (La), has no
Hindi equivalent character, but the Hindi character
ल (la) is the closest character. The two characters
differ in terms of one phonetic feature (the retroflex
property), which can be represented in the phonetic
input and can serve to indicate the similarity between
the two characters.
We incorporated phonetic features in our model

by using feature-rich input vectors instead of the con-
ventional onehot vector input for characters. Our
phonetic feature input vector is a bitvector encod-
ing the phonetic properties of the character, one bit
for each value of every property. The multiplication
of the phonetic feature vector with the weight ma-
trix in the first layer generates phonetic embeddings
for each character. These are inputs to the encoder.
Apart from this input change, the rest of the network
architecture is the same as described in Section 3.2.
Experiments: We experimented with Indian lan-
guages (Indic→English and Indic-Indic translitera-
tion). Indic scripts generally have a one-one cor-
respondence from characters to phonemes. Hence,
we use phonetic features described by Kunchukut-
tan et al. (2016) to generate phonetic feature vectors
for characters (available via the Indic NLP Library1).
These Indic languages are spoken by nearly a billion
people and hence the use of phonetic features is use-
ful for many of the world’s most widely spoken lan-
guages.
Results and Discussion: Table 8 shows the results.
We observe that phonetic feature input improves
transliteration accuracy for Indic-English transliter-
ation. The improvements are primarily due to reduc-
tion in errors related to similar consonants like (T,D),
(P,B), (C,K) and the use of H for aspiration.

1https://github.com/anoopkunchukuttan/indic_
nlp_library

For Indic-Indic transliteration, we see moderate
improvement in transliteration accuracy due to pho-
netic feature input. Since the source as well as tar-
get scripts are largely phonetic, phonetic representa-
tion may not be useful in resolving ambiguities (un-
like Indic-English transliteration). Again, we see im-
provements due to reduction of errors related to sim-
ilar consonants.

8 Conclusion and Future Work

We show that multilingual training using a neural
encoder-decoder architecture significantly improves
transliteration involving orthographically similar
languages compared to bilingual training. Our key
idea is maximal sharing of network components in
order to utilize high task relatedness on account of
orthographic similarity. The primary reasons for the
improvements could be: (a) learning of specialized
representations by the shared encoder and; (b) abil-
ity to learn canonical spellings. We also show that
the multilingual transliteration models can general-
ize well to language pairs not encountered during
training and observe that zeroshot transliteration can
outperform direct bilingual transliteration in many
cases. Moreover, multilingual transliteration can be
further improved by shared phonetic input.
Transliteration is an example of a sequence to se-

quence task which is characterized by the follow-
ing properties: (a) small vocabulary (b) short se-
quences (c) monotonic transformation (d) unequal
source and target sequence length (e) significant vo-
cabulary overlap across languages. Given the bene-
fits we have shown for multilingual transliteration,
other NLP tasks that can be characterized simi-
larly (viz., grapheme to phoneme conversion, trans-
lation of short text like tweets and headlines between
related languages at subword level, and possibly
speech recognition as well as TTS) could also benefit
from multilingual training.

9 Acknowledgements

We would like to thank Rudramurthy V for making
available code for parsing Wikidata and extracting
multilingual named entities. We would also like to
thank the action editor and reviewers for their valu-
able comments.

314



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly learn-
ing to align and translate. In International Conference
on Learning Representations.

Rafael E. Banchs, Min Zhang, Xiangyu Duan, Haizhou
Li, and A. Kumaran. 2015. Report of NEWS 2015
Machine Transliteration Shared Task. In Proceedings
of the Fifth Named Entities Workshop.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech Communication.

Rich Caruana. 1997. Multitask learning. Machine learn-
ing.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-Task learning for mul-
tiple language translation. In Annual Meeting of the
Association for Computational Linguistics.

Andrew Finch and Eiichiro Sumita. 2010. A Bayesian
model of bilingual segmentation for transliteration. In
International Workshop on Spoken Language Transla-
tion.

Andrew Finch, Lemao Liu, Xiaolin Wang, and Eiichiro
Sumita. 2015. Neural network transduction models in
transliteration generation. In Proceedings of the Fifth
Named Entities Workshop.

Andrew Finch, Lemao Liu, Xiaolin Wang, and Eiichiro
Sumita. 2016. Target-Bidirectional neural models for
machine transliteration. In Proceedings of The Sixth
Named Entities Workshop.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016.
Multi-way, multilingual neural machine translation
with a shared attention mechanism. In Conference
of the North American Chapter of the Association for
Computational Linguistics.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2016. Multilingual language process-
ing from bytes. In Conference of the North American
Chapter of the Association for Computational Linguis-
tics.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, and Yoshua Bengio. 2017. On integrating a lan-
guage model into Neural Machine Translation. Com-
puter Speech and Language.

Junqing He, Long Wu, Xuemin Zhao, and Yonghong
Yan. 2017. HCCL at SemEval-2017 Task 2: Combin-
ing multilingual word embeddings and transliteration
model for semantic similarity. In Proceedings of the
11th International Workshop on Semantic Evaluation.

Jagadeesh Jagarlamudi and Hal Daumé III. 2012. Reg-
ularized interlingual projections: Evaluation on mul-
tilingual transliteration. In Proceedings of the 2012

Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning.

Sittichai Jiampojamarn, Colin Cherry, andGrzegorzKon-
drak. 2008. Joint processing and discriminative train-
ing for letter-to-phoneme conversion. In Annual Meet-
ing of the Association for Computational Linguistics.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou,
Kenneth Dwyer, and Grzegorz Kondrak. 2009. Di-
recTL: A language-independent approach to translit-
eration. In Proceedings of the 2009 Named Entities
Workshop: Shared task on transliteration.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda B. Viégas, Martin Wattenberg, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation sys-
tem: Enabling zero-shot translation. Transactions of
the Association for Computational Linguistics.

Sarvnaz Karimi, Falk Scholer, and Andrew Turpin. 2011.
Machine transliteration survey. ACM Computing Sur-
veys.

Mitesh M. Khapra, A. Kumaran, and Pushpak Bhat-
tacharyya. 2010. Everybody loves a rich cousin: An
empirical study of transliteration through bridge lan-
guages. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics.

DiederikKingma and JimmyBa. 2014. Adam: Amethod
for stochastic optimization. In International Confer-
ence on Learning Representations.

Alexandre Klementiev and Dan Roth. 2006. Weakly
supervised named entity transliteration and discovery
frommultilingual comparable corpora. InProceedings
of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin,
and Evan Herbst. 2007. Moses: Open source toolkit
for statistical machine translation. In Proceedings of
the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions.

A. Kumaran, Mitesh M. Khapra, and Pushpak Bhat-
tacharyya. 2010. Compositional machine transliter-
ation. ACM Transactions on Asian Language Infor-
mation Processing.

Anoop Kunchukuttan and Pushpak Bhattacharyya. 2015.
Data representation methods and use of mined corpora
for Indian language transliteration. In Named Entities
Workshop.

315



Anoop Kunchukuttan, Ratish Puduppully, and Pushpak
Bhattacharyya. 2015. Brahmi-Net: A transliteration
and script conversion system for languages of the In-
dian subcontinent. In Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics - Human Language Technologies: System
Demonstrations.

Anoop Kunchukuttan, Pushpak Bhattacharyya, and
Mitesh M. Khapra. 2016. Substring-based unsu-
pervised transliteration with phonetic and contextual
knowledge. In SIGNLL Conference on Computational
Natural Language Learning.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully character-level Neural Machine Transla-
tion without explicit segmentation. Transactions of the
Association for Computational Linguistics.

Bruno Pouliquen, Ralf Steinberger, Camelia Ignat, Tem-
nikova Irina, and Anna Widiger. 2005. Multilingual
person name recognition and transliteration. Corela.

Ram Prakash. 2012. Quillpad multilingual predictive
transliteration system. In Proceedings of the Second
Workshop on Advances in Text Input Methods.

V. Rudramurthy, Mitesh M. Khapra, and Pushpak Bhat-
tacharyya. 2016. Sharing network parameters
for crosslingual Named Entity Recognition. arXiv
preprint arXiv:1607.00198.

Amrita Saha, Mitesh M. Khapra, Sarath Chandar, Ja-
narthanan Rajendran, and Kyunghyun Cho. 2016. A
correlational encoder-decoder architecture for pivot-
based sequence generation. In International Confer-
ence on Computational Linguistics.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017. Nematus: A toolkit for neural machine trans-
lation. In Software Demonstrations of the 15th Con-
ference of the European Chapter of the Association for
Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research.

Kārumūri V Subbārāo. 2012. South Asian languages: A
syntactic typology. Cambridge University Press.

Harshit Surana and Anil Kumar Singh. 2008. A more
discerning and adaptable multilingual transliteration
mechanism for Indian languages. In Proceedings of
the Third International Joint Conference on Natural
Language Processing.

Laurens van der Maaten and Geoffrey Hinton. 2008. Vi-
sualizing data using t-SNE. Journal ofMachine Learn-
ing Research.

Denny Vrandečić andMarkus Krötzsch. 2014. Wikidata:
a free collaborative knowledgebase. Communications
of the ACM.

Zhilin Yang, Ruslan Salakhutdinov, and William Cohen.
2016. Multi-task cross-lingual sequence tagging from
scratch. arXiv preprint arXiv:1603.06270.

Su-Youn Yoon, Kyoung-Young Kim, and Richard
Sproat. 2007. Multilingual transliteration using fea-
ture based phonetic method. In Annual Meeting-
Association for Computational Linguistics.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
Neural Machine Translation.

316


