@article{guu-etal-2018-generating,
title = "Generating Sentences by Editing Prototypes",
author = "Guu, Kelvin and
Hashimoto, Tatsunori B. and
Oren, Yonatan and
Liang, Percy",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina and
Roark, Brian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "6",
year = "2018",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q18-1031",
doi = "10.1162/tacl_a_00030",
pages = "437--450",
abstract = "We propose a new generative language model for sentences that first samples a prototype sentence from the training corpus and then edits it into a new sentence. Compared to traditional language models that generate from scratch either left-to-right or by first sampling a latent sentence vector, our prototype-then-edit model improves perplexity on language modeling and generates higher quality outputs according to human evaluation. Furthermore, the model gives rise to a latent edit vector that captures interpretable semantics such as sentence similarity and sentence-level analogies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guu-etal-2018-generating">
<titleInfo>
<title>Generating Sentences by Editing Prototypes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kelvin</namePart>
<namePart type="family">Guu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsunori</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Hashimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Oren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Percy</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We propose a new generative language model for sentences that first samples a prototype sentence from the training corpus and then edits it into a new sentence. Compared to traditional language models that generate from scratch either left-to-right or by first sampling a latent sentence vector, our prototype-then-edit model improves perplexity on language modeling and generates higher quality outputs according to human evaluation. Furthermore, the model gives rise to a latent edit vector that captures interpretable semantics such as sentence similarity and sentence-level analogies.</abstract>
<identifier type="citekey">guu-etal-2018-generating</identifier>
<identifier type="doi">10.1162/tacl_a_00030</identifier>
<location>
<url>https://aclanthology.org/Q18-1031</url>
</location>
<part>
<date>2018</date>
<detail type="volume"><number>6</number></detail>
<extent unit="page">
<start>437</start>
<end>450</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Generating Sentences by Editing Prototypes
%A Guu, Kelvin
%A Hashimoto, Tatsunori B.
%A Oren, Yonatan
%A Liang, Percy
%J Transactions of the Association for Computational Linguistics
%D 2018
%V 6
%I MIT Press
%C Cambridge, MA
%F guu-etal-2018-generating
%X We propose a new generative language model for sentences that first samples a prototype sentence from the training corpus and then edits it into a new sentence. Compared to traditional language models that generate from scratch either left-to-right or by first sampling a latent sentence vector, our prototype-then-edit model improves perplexity on language modeling and generates higher quality outputs according to human evaluation. Furthermore, the model gives rise to a latent edit vector that captures interpretable semantics such as sentence similarity and sentence-level analogies.
%R 10.1162/tacl_a_00030
%U https://aclanthology.org/Q18-1031
%U https://doi.org/10.1162/tacl_a_00030
%P 437-450
Markdown (Informal)
[Generating Sentences by Editing Prototypes](https://aclanthology.org/Q18-1031) (Guu et al., TACL 2018)
ACL