@article{webster-etal-2018-mind,
title = "Mind the {GAP}: A Balanced Corpus of Gendered Ambiguous Pronouns",
author = "Webster, Kellie and
Recasens, Marta and
Axelrod, Vera and
Baldridge, Jason",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina and
Roark, Brian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "6",
year = "2018",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q18-1042",
doi = "10.1162/tacl_a_00240",
pages = "605--617",
abstract = "Coreference resolution is an important task for natural language understanding, and the resolution of ambiguous pronouns a longstanding challenge. Nonetheless, existing corpora do not capture ambiguous pronouns in sufficient volume or diversity to accurately indicate the practical utility of models. Furthermore, we find gender bias in existing corpora and systems favoring masculine entities. To address this, we present and release GAP, a gender-balanced labeled corpus of 8,908 ambiguous pronoun{--}name pairs sampled to provide diverse coverage of challenges posed by real-world text. We explore a range of baselines that demonstrate the complexity of the challenge, the best achieving just 66.9{\%} F1. We show that syntactic structure and continuous neural models provide promising, complementary cues for approaching the challenge.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="webster-etal-2018-mind">
<titleInfo>
<title>Mind the GAP: A Balanced Corpus of Gendered Ambiguous Pronouns</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kellie</namePart>
<namePart type="family">Webster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Recasens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Axelrod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Baldridge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Coreference resolution is an important task for natural language understanding, and the resolution of ambiguous pronouns a longstanding challenge. Nonetheless, existing corpora do not capture ambiguous pronouns in sufficient volume or diversity to accurately indicate the practical utility of models. Furthermore, we find gender bias in existing corpora and systems favoring masculine entities. To address this, we present and release GAP, a gender-balanced labeled corpus of 8,908 ambiguous pronoun–name pairs sampled to provide diverse coverage of challenges posed by real-world text. We explore a range of baselines that demonstrate the complexity of the challenge, the best achieving just 66.9% F1. We show that syntactic structure and continuous neural models provide promising, complementary cues for approaching the challenge.</abstract>
<identifier type="citekey">webster-etal-2018-mind</identifier>
<identifier type="doi">10.1162/tacl_a_00240</identifier>
<location>
<url>https://aclanthology.org/Q18-1042</url>
</location>
<part>
<date>2018</date>
<detail type="volume"><number>6</number></detail>
<extent unit="page">
<start>605</start>
<end>617</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Mind the GAP: A Balanced Corpus of Gendered Ambiguous Pronouns
%A Webster, Kellie
%A Recasens, Marta
%A Axelrod, Vera
%A Baldridge, Jason
%J Transactions of the Association for Computational Linguistics
%D 2018
%V 6
%I MIT Press
%C Cambridge, MA
%F webster-etal-2018-mind
%X Coreference resolution is an important task for natural language understanding, and the resolution of ambiguous pronouns a longstanding challenge. Nonetheless, existing corpora do not capture ambiguous pronouns in sufficient volume or diversity to accurately indicate the practical utility of models. Furthermore, we find gender bias in existing corpora and systems favoring masculine entities. To address this, we present and release GAP, a gender-balanced labeled corpus of 8,908 ambiguous pronoun–name pairs sampled to provide diverse coverage of challenges posed by real-world text. We explore a range of baselines that demonstrate the complexity of the challenge, the best achieving just 66.9% F1. We show that syntactic structure and continuous neural models provide promising, complementary cues for approaching the challenge.
%R 10.1162/tacl_a_00240
%U https://aclanthology.org/Q18-1042
%U https://doi.org/10.1162/tacl_a_00240
%P 605-617
Markdown (Informal)
[Mind the GAP: A Balanced Corpus of Gendered Ambiguous Pronouns](https://aclanthology.org/Q18-1042) (Webster et al., TACL 2018)
ACL