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Abstract
Until now, grammatical error correction (GEC)
has been primarily evaluated on text written
by non-native English speakers, with a focus
on student essays. This paper enables GEC
development on text written by native speakers
by providing a new data set and metric. We
present a multiple-reference test corpus for
GEC that includes 4,000 sentences in two
new domains (formal and informal writing by
native English speakers) and 2,000 sentences
from a diverse set of non-native student
writing. We also collect human judgments
of several GEC systems on this new test set
and perform a meta-evaluation, assessing how
reliable automatic metrics are across these
domains. We find that commonly used GEC
metrics have inconsistent performance across
domains, and therefore we propose a new
ensemble metric that is robust on all three
domains of text.

1 Introduction

Grammatical error correction (GEC) systems are
evaluated with automatic metrics that compare
their output to gold-standard corrections from
reference corpora. Having automatic metrics that
correlate well with human judgments allows
rapid system development and reliable evaluations
across the field. Although the GEC community has
benefited from several evaluation sets over the
past several years, they are primarily composed
of student essays written by non-native English
speakers (Yannakoudakis et al., 2011; Dahlmeier
et al., 2013; Napoles et al., 2017; Bryant et al.,
2019). As of yet, we do not know how well
GEC systems do on other domains of text or how
reliable automatic evaluation is when we move to
other domains.

We tackle this issue head-on by creating a new
test set for GEC that represents diverse domains

of text. We call this new test set Grammarly
Multi-domain Evaluation for GEC Data set
(GMEG-Data), and it is the first test set to include
multiple corrections of sentences written by native
English speakers and informal writing. We collect
human ratings of the corrections generated by 6
GEC systems on this data. From this gold-standard
human evaluation, we measure the performance
of current GEC metrics and find that the standard
metrics are not robust across domains. We propose
Grammarly Multi-domain Evaluation for GEC
Metric (GMEG-Metric), a new ensemble scorer
that is reliable on all three domains and draws
from the statistics of existing metrics.

This work takes the first major step to develop
truly robust GEC systems. Our contributions
include:

• GMEG-Data: The largest multiple-reference
GEC test set with 6,000 sentences from three
domains: formal and informal text by native
English speakers, and a diverse set of student
writing.

• The output of 6 GEC systems with varying
modern architectures and training data sizes,
and human judgments of the entire set of
system outputs.

• Evaluation of 4 standard GEC metrics and a
leading machine translation (MT) metric on
the new test set.

• GMEG-Metric: A new ensemble metric for
GEC that is robust across all three domains.

• GMEG-Data, GMEG-Metric, human ratings,
and system outputs will be made public to
enable, for the first time, further development
of domain-robust GEC metrics and systems.1

1https://github.com/grammarly/GMEG
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The paper is organized into two main parts: data
and metrics. In data, we first discuss how we create
our data set, GMEG-Data (§3); then assemble the
outputs of several GEC systems on this set (§4.1);
and collect human judgments on the correctness
of the outputs (§4.2). In metrics, we use these
judgments to analyze how automatic evaluation
metrics fare. We describe the existing metrics
examined in this study (§5.1) and propose a new
ensemble metric GMEG-Metric (§5.2). Finally,
we evaluate and analyze metric performance on
GMEG-Data and on the CoNLL-2014 Shared
Task test set (§6).

2 Related Work

This paper represents an exploration of several
components of GEC: corpora, metrics, and meta-
evaluation. We summarize work in these areas.

2.1 Corpora

Prior work on evaluating GEC systems was
performed on text written by primarily non-native
English speakers, focusing on student essays
by English language learners (ELLs). The NUS
Corpus of Learner English (NUCLE) comprises
essays written by mostly Chinese native speakers
(Dahlmeier et al., 2013), and was the data set
for the 2013 and 2014 CoNLL Shared Tasks
in GEC (Ng et al., 2013, 2014). After the
2014 Shared Task, 16 additional references were
released for that test set, 8 from each of Bryant
and Ng (2015) and Sakaguchi et al. (2016). The
Cambridge Learner Corpus First Certificate in
English (FCE) data set includes essays for the B2
qualification exams (Yannakoudakis et al., 2011).
The Johns Hopkins Fluency-Extended GUG
corpus (JFLEG) contains text from the TOEFL
exam (originally collected in the GUG corpus
[Heilman et al., 2014]), with fluency corrections.
Fluency corrections are rewrites needed to make a
text sound natural to a native English speaker
(Sakaguchi et al., 2016), in contrast to only
making minimal corrections to grammatical errors
as in FCE and NUCLE (Napoles et al., 2017).
The Automatic Evaluation of Scientific Writing
(AESW) shared task test set (Daudaravicius
et al., 2016) has text from scientific publications
written by proficient non-native and native English
speakers, but is not widely used. We report the
number of sentences and reference corrections for
these four data sets in Table 1.

Name Description Size # Refs.
CoNLL-14 Student writing 1.3k 2 + 16
FCE Student writing 2.7k 1
JFLEG Student writing 1.5k 4
AESW Academic writing 230k 1

GMEG-Data Formal/informal L1
8k 4and student writing

Table 1: Summary of existing GEC test sets (size
in number of sentences).

2.2 Metrics

The most commonly used automatic GEC metrics
are MaxMatch (M2) and GLEU. M2 reports the
F -score of edits over the optimal phrasal align-
ment between the candidate and the reference
sentences (Dahlmeier and Ng, 2012). This was
the official metric of the 2013 and 2014
Shared Tasks. The General Language Evaluation
Understanding (GLEU) metric captures fluency
rewrites in addition to grammatical corrections
(Napoles et al., 2015, 2016a). It is an extension of
BLEU (Papineni et al., 2002) that penalizes false
negatives.

I-measure calculates the weighted accuracy of
correction and detection, indicating how much
better or worse a candidate system is than the
original text (Felice and Briscoe, 2015). ERRANT
is a rule-based error-type classifier (Bryant et
al., 2017) that can be used as an evaluation
metric by calculating the F -score of changes in
a candidate text compared to a reference. It is
the metric proposed for the 2019 shared task in
GEC (Bryant et al., 2019). Other efforts have
focused on reference-less metrics (Napoles et al.,
2016b; Choshen and Abend, 2018b) and quality
estimation (Chollampatt and Ng, 2018b).

2.3 Meta-evaluation of Metrics

Since 2006, the Workshop (now Conference) on
Machine Translation (WMT) has conducted large-
scale human evaluation of MT systems for its
annual shared task (Koehn and Monz, 2006).
The parallel Metrics track is a shared task for
automatic MT metrics, evaluating performance
against human judgments (Callison-Burch et al.,
2008).

Researchers in GEC have adopted this practice
following the CoNLL-2014 Shared Task on Gram-
matical Error Correction (henceforth CoNLL-14)
(Ng et al., 2014), for which all results are pub-
licly available, including the references and 13
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system outputs. Grundkiewicz et al. (2015) and
Napoles et al. (2015) simultaneously performed a
human evaluation of the system outputs inspired
by WMT. Heretofore, all work in GEC evaluation
has been conducted on this data. Grunkdkiewicz
et al. and Napoles et al. calculated the correla-
tion of the human scores with M2, I-measure, and
BLEU, finding that M2 moderately correlated with
human judgments, I-measure had very weak nega-
tive correlation, and BLEU negatively correlated.
Sakaguchi et al. (2016) analyzed the combina-
tion of available reference sets and metrics to
identify the best evaluation configuration. Later,
Chollampatt and Ng (2018c) re-examined the
metrics, performing the first significance testing
and calculating sentence-level correlation in addi-
tion to system-level correlations. They found no
discernible difference between M2 and GLEU and
additionally determined that I-measure is actually
a robust metric for sentence-level evaluation (also
reported in Napoles et al. (2016b)).

Finally, Choshen and Abend (2018a) developed
a methodology for automatically validating GEC
metrics without human ratings by creating
synthetic systems and calculating the correlation
of a metric with the synthetic system ranking.

3 A Multi-domain Evaluation Set
for GEC

The primary goal of this work is to enable GEC
on broader types of writing beyond ELL student
essays. First, we create a data set (GMEG-Data),
and then use it to evaluate how robust existing
metrics are (§5–6). Unlike prior test sets, GMEG-
Data includes text written by native speakers2

in formal and informal settings and ELLs from
diverse backgrounds, and each sentence has
been corrected by four professional annotators.
We include 2,000 sentences from each of three
sources:

• Informal Web posts (Yahoo Answers)

• Formal articles (Wikipedia)

• Student essays (FCE)

We selected these sources to represent diverse
types of writing and to maintain contextual
information when possible for future work in

2We do not know the native language of all writers, but
we assume the majority are native speakers of English based
on qualitative evaluation.

paragraph-level GEC. Yahoo contains paragraphs
from Yahoo! Answers, written by users answering
questions from other users,3 and is very informal
in terms of grammar, mechanics, and slang. Wiki
has single sentences from Wikipedia, which is
very formal and relatively well formed. We used
the WikEd corpus (Grundkiewicz and Junczys-
Dowmunt, 2014) as the source for Wikipedia
sentences because it only contains text that has
been changed by Wikipedia contributors and
is therefore more likely to contain grammatical
errors. We did not include additional context
because a paragraph of Wikipedia text is less
likely to contain multiple errors than the other two
sources. Although the AESW is very large and
encompasses formal text written by native and
non-native English speakers, it overwhelmingly
contains changes to punctuation (Flickinger et al.,
2016) and has only been corrected once.

Finally, we chose paragraphs from FCE to
represent ELL essays, because this continues to be
an important domain in GEC research, and FCE
represents a broad mix of 16 native languages.
While the original FCE corpus has been corrected
and there are already two other ELL test sets,
we created new annotations for FCE because of
shortcomings in those: The original FCE only
has one reference; NUCLE represents a narrow
sample of ELLs and topics; and JFLEG does not
have any contextual information and was corrected
by untrained, crowdsourced workers. This work
does not use the original annotations released with
the FCE and includes sentences from the training
and test sets.4

3.1 Annotation Process

We randomly selected 2,000 sentences each from
WikEd,5 Yahoo, and the original FCE. For Yahoo
and FCE, we chose whole paragraphs such that
the total number of sentences was 2,000. All
sentences have at least 5 tokens. Each sentence
was corrected by four professional annotators,
all native speakers of English, who were trained
by two linguists. Annotators received detailed
instructions with examples of common mistakes,

3We include these categories: Arts/Humanities, Family/
Relationships, Home, News, Politics, and Society/Culture.

4The source document IDs are included in the released
data.

580% of the WikEd sentences contain named entities.
Therefore we down-sampled these sentences so that only
60% of the sentences in our data set have named entities.
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FCE In the present this day and age, the teachnology technology is a past fact of life.

Wiki It’s Unfortunate unfortunate that you did not get to become an admin, ; I certainly did not forsee
foresee such a mountain of opposition.

Yahoo coz thats wat Because that’s what sustains us every now and then right from the birth.

Table 2: Examples of professionally corrected text from each domain in GMEG-Data. Bolded text
indicates insertions and strike-out text was deleted. The edits correct grammatical, spelling, and fluency
mistakes.

Tokens/ Unchanged Edits/ Tokens/ Type–token
Name Description Sentences sentence sentences sentence edit ratio
FCE Student writing 1,936 18± 10 23% 2.8 1.3 0.11
Wikipedia Formal 1,984 27± 13 19% 2.2 1.2 0.24
Yahoo Informal 1,999 17± 11 50% 1.5 1.2 0.17
CoNLL-14 Student writing 1,312 23± 13 7% 2.2 1.4 0.10

Table 3: Description of test sets. Edits/sentence considers only changed sentences.

and they could ask questions of the trainers at
any time. The same instructions were provided
for each task and the complete instructions are
provided with the annotated data. The trainers
spot-checked their work for quality control.

Annotators were given entire paragraphs when
available and instructed to correct all grammatical,
spelling, and fluency mistakes. If two sentences
had to be merged, annotators labeled those sen-
tences as MERGE, and we concatenated pairs
of sentences together if any annotator marked
them MERGE (63 pairs). When annotators could
not correct a sentence, they assigned the label
FRAGMENT if that sentence represented a frag-
ment of text or NOT ANNOTATABLE for other
issues. Fifteen sentences were removed because all
annotators marked them as NOT ANNOTATABLE
or FRAGMENT. Table 2 shows example edits from
each domain.

3.2 Annotation Analysis

We first calculated descriptive statistics for each
of the three domains and CoNLL-146 as a point of
comparison. We ran ERRANT over the references
and original sentences to obtain alignments and
error type categories. Table 3 summarizes the
extent of changes in each domain.

In all domains, the average length of each
edit is fairly consistent, which can be attributed
to using the edit spans identified by ERRANT.
The portion of sentences needing corrections
varies across domains. The non-native corpora

6All experiments in this paper use the original two
CoNLL-14 references.

of student writing, FCE and CoNLL-14, have
fewer than half as many correct sentences as
Yahoo, which was written by native speakers.
They also have the least amount of lexical variety,
captured by the type–token ratio. Wikipedia, on
the other hand, has fewer unchanged sentences
than FCE, presumably because the sentences were
drawn from WikEd, which was intended to be
a corpus of parallel edits. It also has the most
lexical variety, which may be due to the high
frequency of named entities. Yahoo, the most
informal domain, contains slang terms and non-
conventional mechanics. Somewhat surprisingly,
Yahoo has the most uncorrected sentences but also
the fewest number of edits per corrected sentence.
Even though the annotators received the same
guidelines for all domains and were not instructed
to preserve the register of the text, they appear
to have preserved the more informal style by not
making extensive rewrites to the text.

Figure 1 shows the distribution of the most
frequent error types classified by ERRANT, not
including the OTHER category.7 The majority
of errors in Yahoo and Wiki are punctuation,
orthography, and spelling, which is not surprising
as these sentences were written by native speakers.
Table 2 shows examples of the types of spelling
and punctuation mistakes typical in these corpora.
Yahoo has non-standard spelling, capitalization,
and punctuation, typically found in less formal

7OTHER is assigned to any error not captured by the
ERRANT rules. It is prevalent: The most frequent category
in CoNLL-14, the second most in FCE and Wiki, and the
third most on Yahoo.
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Figure 1: Distribution of the ten most frequent edit types by domain.

text, and it is interesting to note that the relative
frequency of each error type in these domains is
similar in spite of these differences. FCE contains
more grammatical errors, including prepositions,
determiners, verbs, and nouns.

The distribution of errors in GMEG-Data vastly
differs from CoNLL-14. In CoNLL-14, the error
types are more evenly distributed, whereasPUNCT
(punctuation errors) are the most frequent mis-
takes in our annotations. The difference can be
attributed to how the annotations were collected:
the annotators of CoNLL-14 had to categorize
their corrections, focusing the annotations to fit
into each category, and thereby making the errors
easier to categorize. For our corrections, annota-
tors had to select a span and type a replacement
but did not label the error type, which could have
affected the performance of ERRANT. Although
both FCE and CoNLL-14 contain essays writ-
ten by ELLs, the texts are quite different: The
CoNLL-14 essays were written by a fairly homo-
geneous group of students at the same university,
with similar English-language proficiency levels,
and with fewer native languages than FCE. FCE
represents writing from students with more than
a dozen different native languages from differ-
ent geographic regions. While punctuation is the
most frequent error in each of our new domains,
the majority of corrections are to other types of
errors, in contrast to the AESW corpus, which has
punctuation accounting for more than half of the
edits (Flickinger et al., 2016).

The source data for FCE and Wiki both have
corrections, and we compare this new set of
annotations to the original ones. GMEG-Data has
more corrections per sentence than the original
corpora: an average of 2.2 corrections/sentence
for FCE compared with 1.7, and in Wiki, 1.9
compared with 1.5. We additionally calculate the
M2 precision and recall of the original annotations

Original GMEG-Data
Domain P R P R
FCE 64.8 49.6 67.3± 3.4 63.2± 4.7
Wiki 40.9 33.2 61.6± 1.1 59.4± 4.3

Table 4: The M2 precision and recall of the
original set of corrections against the GMEG-
Data references and the mean scores of each
GMEG-Data reference against the other three
references.

against the new corrections to understand the
extent of overlap between the annotation sets
(Table 4). For FCE, P = 64.8, which is com-
parable to the precision of the GMEG-Data
references against each other, but recall is much
lower. This suggests that many of the original
FCE corrections are included in GMEG-Data.
In contrast, the original Wiki annotations have
much lower precision and recall (40.9 and
33.2, respectively). WikEd was taken from the
Wikipedia revision history and we surmise that
the original corrections contain many changes not
related to GEC mistakes such as Copenhagen →
Østerbro. Considering just GMEG-Data, the high
mean precision and recall indicates a high level of
consistency between the different references.

4 Human Evaluation of GEC Systems

Now that we have a new test set in place with
reference annotations, the next step is to correct
the source sentences with GEC systems. We will
then perform a human evaluation of the system
outputs. This provides the setup for evaluating
automatic metrics (conducted in §5). Correlation
with human rankings has been used to evaluate
GEC metrics on the CoNLL-2014 Shared Task
results (Grundkiewicz et al., 2015; Napoles
et al., 2015; Sakaguchi et al., 2016; Chollampatt
and Ng, 2018c). Following evaluation method-
ologies established in WMT, previous work
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Name Architecture Tokens Data size
AMU SMT word Large
LSTM LSTM BPE Large
LSTM-R LSTM BPE Large
Marian deepGRU BPE Small
NUS CNN BPE Medium
Transf. Transformer BPE Large

Table 5: Different types of system architectures.
Data size indicates the number of parallel training
sentences. Small: <1M, Medium: 1M–2M,
Large: >2M.

collected human ratings of 13 system outputs
from CoNLL-14 and calculated the correlation
between automatic metric scores and those human
judgments. This section describes assembling
ground-truth human judgments of GMEG-Data.
We first outline the GEC systems included and
then describe how we conduct human evaluation
of the system outputs.

4.1 GEC Systems
We select 6 GEC systems that differ in 3 aspects:
the type of system (statistical or neural), the neural
network architecture, and the amount of data used
for training. We give only a brief overview of the
systems below (summarized in Table 5) because
the goal of this paper is not to identify the best
GEC system, and furthermore the systems are
trained on a combination of public data sets and
propriety data.

AMU A statistical MT model trained using a
modified version of the Moses toolkit (Koehn
et al., 2007). We use the pre-trained model pub-
lished in Junczys-Dowmunt and Grundkiewicz
(2016).

LSTM A RNN-based sequence-to-sequence
neural network with bi-directional encoder and
LSTM units, trained with the OpenNMT-py
toolkit (Klein et al., 2018). We train a second
high-recall system using the same architecture,
but changing the data sampling strategy (called
LSTM-R).

Marian A RNN-based sequence-to-sequence
neural network with deep-transition architecture
(Barone et al., 2017) trained with the Marian
toolkit (Junczys-Dowmunt et al., 2018). We use
the WMT17 system parameters (Sennrich et al.,
2017), excluding ensembles and left-to-right
re-ranking.

NUS A multi-layer convolutional sequence-
to-sequence neural network trained with the
Fairseq-py toolkit (Gehring et al., 2017). We use
the pre-trained model of Chollampatt and Ng
(2018a).

Transformer A transformer (Vaswani et al., 2017)
neural network trained using the Fairseq-py toolkit
and the parameters proposed for the IWSLT ’14
MT task.8

4.2 Human Judgments of GEC

We evaluate all 6 GEC systems described above
as well as 3 additional ‘‘systems’’ to define a
baseline (Source: the unaltered input sentence),
lower-bound (Source+error: the source sentence
with 1–2 errors inserted9), and upper-
bound (Reference: a randomly chosen human
correction). Our evaluation includes GMEG-Data
as well as CoNLL-14, for comparison with
earlier work. Unlike previous human evaluations
(Grundkiewicz et al., 2015; Napoles et al., 2015),
we collect judgments on the entire set of sentences
from both corpora. Both human and automatic
evaluation are performed over the complete set of
sentences, thus addressing Choshen and Abend’s
(2018a) critique of prior work using inconsistent
samples for human and automatic evaluation.

Several methodologies have been proposed for
human evaluation of system outputs. For this
task, we use a hybrid approach that combines
judgments on a continuous scale with relative
ranking (partial ranking with scalars or PRWS).
PRWS was advocated for in EASL (Sakaguchi
and Van Durme, 2018) and RankME (Novikova
et al., 2018), two recent works that investigated
reliable methods for collecting human ratings
of competing systems’ outputs. Those studies
both found PRWS to be more reliable than the
direct assessment framework used in WMT (Bojar
et al., 2016), the relative-ranking methodology
formerly applied by WMT (Callison-Burch et al.,
2007), and earlier GEC human evaluation work
(Grundkiewicz et al., 2015; Napoles et al., 2015).
Unlike relative ranking, PRWS does not explicitly
ask raters to rank the sentences, although a ranking
can be inferred from the relative scores. Raters

8https://github.com/pytorch/fairseq/
tree/master/examples/translation

9These sentences and an explanation of the rule-based
error-insertion method are included with the released data
set.
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Figure 2: Interface for collecting human ratings.

implicitly adjust their scores for each system to
be relative to the other systems and thereby the
numeric scores are more discriminative.

In the PRWS framework, human participants
read the original sentence and up to 5 corrected
versions of that sentence. For each correction, they
drag the handle of a slider bar to their judgment on
a scale from Completely ungrammatical/Garbled
to Perfect. The position on the slider bar
corresponds to a score between 0 and 100. We
also include a checkbox to indicate whether a
correction altered the meaning of the sentence.
Our PRWS interface is shown in Figure 2.

We performed annotation on Amazon Mechanical
Turk, and showed workers one group of judgments
on the screen at a time, with 20 screens per
HIT following the direct-assessment framework
(Graham et al., 2015), allowing for more robust
quality control. Every sentence generated by every
system was scored, with duplicate system outputs
collapsed. Domains were separated so that no
worker judged sentences from different domains
on the same day. Each item was evaluated by
8 participants, limited to be in the US with
an acceptance rate of 98% and ≥ 500 HITs
completed, and paid $2 per HIT. If a worker
did not assign a lower score to Source+error than
the Source sentence at least 70% of the time,
we excluded their work. In total, 34 out of 771
workers were excluded from the task.

4.3 Analysis of Human Judgments

From the judgments, we calculate human scores
for each sentence and for each system. The score
of each candidate sentence is the mean of the 8
human ratings of that sentence, and the system

score is the mean of all candidate sentence scores
produced by that system. We use the mean score
instead of the relative rank for this study because
an automatic metric must be able to evaluate
a single system by providing a numeric score
(0–100 in our case). Table 6 displays the scores
of each system by domain. Across domains, the
difference between the scores of the source and
reference is around 7 points, except for FCE,
which has more than twice as wide a difference
(15 points). The highest performing system by
domain makes up about half of the performance
gap between the source and reference, however,
the best systems change far fewer sentences than
the reference (13% points fewer on average).
The overall ranking of systems changes based
on domain, with all systems outperforming the
Source on FCE and CoNLL-14, but Source is
judged higher than at least 2 systems in the other
domains. Transformer has the lowest score in Wiki
and Yahoo, likely because it is more aggressive
than the other systems: It leaves the fewest
number sentences of unchanged and changes the
meaning of 3.7% of sentences, more than every
system but Source+error. NUS has the next most
sentences with meaning changes (1.1%) and all
other systems change meaning in fewer than 1%
of sentences.

We calculate the reliability of the human ratings
by splitting the 8 judgments into 2 groups of 4 and
reporting the mean correlation between each group
(Table 7). At the system level, correlation is very
strong (> 0.9), demonstrating the consistency
of the annotations collected with PRWS and
further suggesting that even 4 judgments yield
robust scores at the system level. At the sentence
level, correlation is more variable across domains.
CoNLL-14 and Wiki have the lowest correlations
(0.3–0.4), and FCE and Yahoo have moderate
correlation (0.5–0.6). More careful scrutiny is
needed to understand the differences between
domains at the sentence level.

5 Evaluating GEC Metrics

To evaluate existing metrics, we calculate the
correlation between the human scores (collected
in §4.2) and the scores assigned by an automatic
metric. We will examine existing metrics (§5.1)
and a new ensemble metric that we propose in
§5.2.
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Mean human score Percent of sentences unchanged
System FCE Wiki Yahoo CoNLL FCE Wiki Yahoo CoNLL
Ref. 83.4 82.1 82.3 79.9 23.1 18.9 49.7 7.3
AMU 70.7 76.0 74.5 74.0∗ 60.3 70.3 75.9 47.6∗

LSTM 74.3 77.7 78.5 75.9 34.3 40.7 49.9 28.1
LSTM-R 74.4 78.2 78.2 75.6 30.7 34.4 42.4 28.2
Marian 77.0∗ 75.5 76.6 71.2 40.0∗ 65.6 64.5 53.9
NUS 74.0 75.7 75.9 73.4∗ 52.3 67.5 65.0 55.6∗
Transf. 73.9∗ 71.5 72.2 75.6∗ 28.6∗ 15.0 25.9 19.8∗

Source 68.1 75.9 75.1 70.2 100.0 100.0 100.0 100.0
Source+error 46.0 62.4 47.5 53.8 0.1 0.4 0.1 0.1

Table 6: The mean score assigned to each system and the percent of sentences left unchanged (No
change). The highest value is in bold, the lowest in italics. ∗ indicates that the model was trained on
in-domain data for that test set.

System Sentence
Domain r ρ r ρ
FCE 0.992 0.914 0.603 0.588
Wiki 0.994 0.907 0.376 0.285
Yahoo 0.988 0.990 0.599 0.543
CoNLL-14 0.981 0.914 0.399 0.387

Table 7: Pearson (r) and Spearman (ρ) correlation
between the scores of 2 groups of 4 human judges
at the sentence- and system-level, averaged over
100 samples.

5.1 Existing Metrics

We include the following GEC and MT metrics in
our analysis:

GLEU With the default ordern-grams,n = 1.4.

charGLEU GLEU modified to use character
n-grams (n = 1.5).

I-measure With the -nomix option to speed
up computation time.

MaxMatch (M2) We report M2
0.5 (with the

default parameter β = 0.5) and M2
0.2 (β = 0.2),

which was shown to have stronger correlation
with human ratings (Grundkiewicz et al., 2015).

ERRANT The average F0.5 or F0.2 score of the
24 error categories assigned by ERRANT, without
the finer grained distinction between Missing,
Replacement, or Unnecessary edits.

CHRF++ A top metric at the WMT Metrics
Shared Tasks (Ma et al., 2018; Bojar et al., 2017)
that reports the F2 score of character n-grams
(n = 1..6) and tokenn-grams (n = 1, 2) (Popović,
2017).

5.2 Ensemble Metric

We propose a new scorer, GMEG-Metric, that
is an ensemble of the existing metrics. The
motivation is twofold. First, different metrics
capture different aspects of the correction.
For instance, ERRANT precisely represents the
precision and recall by specific error type and,
arguably, error types should not be equally
weighted (correcting an agreement error is likely
more impactful than correcting a punctuation
error). GLEU, on the other hand, captures the
fluency of corrections by comparing higher-order
n-grams. Second, different domains of text have
different types of errors and corrections, and
therefore we suspect that the reliability of a metric
may not be constant across different domains.
For example, the CoNLL-14 data set, on which
previous metrics have been evaluated, has very
few punctuation and spelling corrections, unlike
the three domains included in GMEG-Data (as
shown in Figure 1). Additionally, by training a
supervised metric using data from a range of
domains and high-performing GEC system
architectures, we provide a way to evaluate black-
box systems for which the training regime and
data are unknown.

To facilitate system development, ideally a
metric should incorporate information about
performance on specific error types, fluency,
recall, and precision. In the field of MT, metrics
have been proposed that use a regression model,
trained on data from multiple language pairs
and domains, to predict the sentence-level human
scores. Some of these models use basic statistics
such as precision and recall of character and word
n-grams (Stanojevic and Sima’an, 2014), while
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FCE Wiki Yahoo
Metric r ρ r ρ r ρ
CHRF++ 0.639 0.733 0.972 0.943 0.791 0.687
ERRANT0.2 0.828 0.779 0.453 0.596 0.596 0.643
ERRANT0.5 0.919 0.887 0.401 0.555 0.532 0.601
GLEU 0.838 0.813 0.426 0.538 0.740 0.775
charGLEU 0.959 0.932 0.644 0.732 0.846 0.835
I-measure 0.819 0.839 0.854 0.875 0.915 0.900
M2

0.2 0.852 0.846 0.548 0.680 0.717 0.836
M2

0.5 0.860 0.849 0.346 0.552 0.580 0.699
GMEG-Metric 0.984 0.950 0.982 0.967 0.940 0.931
Human 0.992 0.931 0.994 0.907 0.988 0.990

Table 8: Correlation of metrics with human scores on the test set (Pearson’s r and Spearman’s ρ). Human
is the correlation between two human scores, each containing 4 randomly selected non-overlapping
judgments, averaged over 100 iterations. For the automatic metrics, correlation is calculated against all
8 judgments.

others use the scores of other metrics as input
features (Yu et al., 2015; Ma et al., 2017).

The ensemble scorer we propose for GEC is a
ridge regression model (α = 0.001, determined
with cross-validation)10 trained to predict the
system-level human scores. The model uses as
features the precision and recall values calculated
by ERRANT, CHRF, and M2; the statistics
calculated by I-measure, not including F -scores;
and the overall GLEU and charGLEU scores (73
features in total). We train a single model on the
combined data from all domains, with each system
as an instance.

To counter the small number of data points
available for training, we generate 674 new syn-
thetic systems for each domain from the existing
6 GEC systems. Synthetic systems are created
following the hybrid super-sampling approach
of Graham and Liu (2016), which was used to
generate new systems for evaluating MT metrics
on language pairs with a small number of systems.
We sample sentences from pairs of systems (not
including Reference, Source, and Source+error),
altering the percentage of sentences from each
system from 10% to 90%.11 The system-level
score for each synthetic system is the mean of the
human scores of each sentence it contains.

We split the annotated data in half, so that
there are approximately 1,000 sentences from
each domain for training/development and 1,000

10Using the scikit-learn toolkit (Pedregosa et al., 2011).
11The method for producing synthetic systems is included

with the released data and code.

for testing. GMEG-Metric is trained on the
development set with cross-validation.

6 System-level Correlation with
Human Judgments

Each metric is evaluated on 3k sentences in
the test split. We report the Pearson correlation
and the Spearman rank coefficients between the
system scores predicted by each metric and
the ground-truth scores from the human rating.
The Spearman coefficient is appropriate for
differentiating between two systems, although it
too harshly penalizes metrics that change the order
of systems with similar performance (Macháček
and Bojar, 2013), so we also report the Pearson
correlation. Because we only have a small number
of systems, and the correlation can change based
on the inclusion or exclusion of one additional data
point, we include the artificial systems (§5.2) for
more robust correlation calculations. The upper-
and lower-bounds (Reference and Source+error)
could artificially inflate the correlation values
and are therefore not included in any of the
correlation calculations. The results on the test
set for all metrics and domains are in Table 8.
Following Graham and Baldwin (2014), we apply
the Williams statistical test12 over the Pearson
correlation values to find the best metric. Figure 3
shows the matrix of p-values for each pair of
metrics.

12https://github.com/ygraham/significance-
williams
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Figure 3: Results of Williams significance test. The p-value of the cell (i, j) indicates that metric i is significantly
better than metric j. The best metric on each domain is identified by a completely gray column, meaning no other
metric was significantly (p < 0.05) better.

The best metric in all domains is GMEG-
Metric. In some instances, GMEG-Metric has
stronger correlation than Human, which we
explain because GMEG-Metric was trained to
predict the mean of 8 human ratings, whereas
Human is the correlation between 2 groups of 4
human ratings. The previously proposed metrics
have inconsistent performance across domains.
For instance, I-measure is the second best metric in
the Yahoo domain (only GMEG-Metric is better)
but the second worst metric in FCE (only CHRF is
worse). Not including GMEG-Metric, I-measure
is statistically best on Yahoo, CHRF is the best on
Wiki, and charGLEU is the best on FCE.

Character-level GLEU (charGLEU) is statisti-
cally better than word-level GLEU, which can
be explained by the high number of spelling and
orthographic corrections present in the three data
sets. Furthermore, charGLEU is better than the M2

metrics on all three domains. On the domains with
fewer errors per sentence, Wiki and Yahoo, pre-
cision becomes more important as signaled by the
statistically higher correlation of M2

0.2 compared
with M2

0.5. ERRANT0.5 and M2
0.5 have high corre-

lations only on FCE, which has a higher error rate
and a more even distribution across error types.
In contrast, CHRF++, which operates on n-grams,
has the lowest correlation on FCE. It inflates the
scores of systems that have low edit recall but
high n-gram recall because there is naturally a
high n-gram overlap between the candidate and
reference text.

When training on all domains, the ensem-
ble scorer performs the best across domains
according to the significance test, capturing the
relative importance of different metrics. Given

Figure 4: Results of ablation by system and by domain.
The yellow bar indicates performance when the domain
is seen in training, and the green bar the ablation result.

the variability in error distributions and metric
performance across the three domains, we recom-
mend using the trained ensemble scorer for future
system development.

6.1 Ablation Studies
To understand how each of the domains and
systems impacts the overall performance of the
ensemble scorer, we perform a series of ablation
studies on the development set, reporting the mean
performance over 50 folds of cross-validation with
a 75/25 train/test split. We report the Pearson
correlations13 in Figure 4.

By system We ablate each system and the
corresponding group of synthetic systems that
were sampled from that system. We calculate
correlations on a 25% split of each subset of
the data, and report results for the three systems

13We obtained very similar results with the Spearman
correlation.
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Domain All Ablation
FCE 0.962 0.915
Wiki 0.973 0.507
Yahoo 0.969 0.468
CoNLL-14 0.978 −0.632

Table 9: The Pearson correlation of GMEG-
Metric trained on all four domains, averaged
over 50 cross-validation folds. All reports the
score for the model trained on all domains and
Ablation reflects the correlation when that domain
is ablated.

that showed a significant change (Figure 4). The
correlations remain very high for all systems,
except when ablating Transformer. This system
was judged the lowest by humans on Wiki and
Yahoo and proposed the most meaning-changing
corrections (3.7% of sentences). Such corrections
include deletions or substitutions of named entities
(e.g., ‘‘He was born Mads Dittmann Mikkelsen
in in 1965’’), and of infrequent words (e.g.,
‘‘Truvannamalai is a cosmopolitan city city’’ and
‘‘Many non-retail foreign offices are closed’’). A
limitation of the existing metrics is they do not
penalize such changes as much as humans do.
Meaning-changing corrections are less prevalent
in the output of the other systems, and so when
Transformer is ablated, these types of changes are
no longer present in the training data and the model
no longer penalizes them. We include Transformer
for training GMEG-Metric so it is robust to unseen
systems that make aggressive, meaning-altering
changes, in addition to competitive systems that
do not exhibit this behavior. For future work,
we propose augmenting the GMEG-Metric with a
feature for detecting meaning changing edits.

By domain Next, we ablate systems from each
domain and report the results of testing on a
25% split of the domain data over 50 cross-
validation folds. As expected, performance drops
when a domain is not seen in training, although the
correlation is still high. Even the lowest result, 0.74
Pearson correlation on Wiki, indicates a strong
correlation that is higher than the correlation
reported in Table 8 for all but two of the existing
metrics, suggesting the metric is robust across the
three domains.

6.2 Contrastive Analysis on CoNLL-14
Finally, to draw a comparison with previous GEC
metrics research, we run the same experiments

Figure 5: Correlation of automatic metrics on new
systems (including artificial) on the CoNLL-14 test set.

with the test set from the CoNLL-2014 Shared
Task, reporting cross-validation results over the
GMEG-Data development and the CoNLL-2014
test set.14 The two references provided in the
shared task are used as the gold standard with
the automatic metrics. The systems in this work
are significantly better than the systems that
participated in the 2014 Shared Task: The best
shared-task system had M2

0.5 = 37.3 whereas the
M2

0.5 of our systems ranges from 42.1 to 51.6.
Figure 5 shows the correlations, which differ
substantially from the correlations we found on the
new domains (Table 8). Of note, GMEG-Metric,
CHRF, and I-measure negatively correlate with
the human score, while all metrics have positive
correlation on the new domains. However, the
correlations for GLEU, I-measure, and M2

0.5 are
similar to those that have been reported in previous
work (Grundkiewicz et al., 2015; Napoles et al.,
2015), supporting the findings of those studies
and further suggesting that these metrics score
improved systems as reliably as the state-of-the-
art from 2014. This also supports our annotation
framework, which yields results consistent with
results reported in previous studies (in addition to
being internally consistent; see §4.3).

GMEG-Metric, which was trained on the
combined data of the other three domains, has
a moderate negative correlation on the CoNLL-
14 test set. This result is yet another signal that
this data set is significantly different from the
new domains, since the ablation study shows
GMEG-Metric has stable performance on Yahoo,
Wiki, and FCE. Notably, CoNLL-14 has fewer

14We use cross-validation because the CoNLL-2014 test
set is smaller, with only 1,312 sentences.

561



punctuation and spelling corrections, as well as a
different error-type distribution compared to FCE,
the other data set of non-native text (Figure 1).
Of the metrics with strong positive correlation
on CoNLL-14, charGLEU is the only one that is
stable and performs relatively well on the other
three domains.

To support researchers who want to optimize
their GEC systems on the CoNLL-14 test set, we
train the ensemble including this narrow domain
and report cross-validation results in Table 9.
Although the GMEG-Metric has very strong cor-
relation with human scores when trained on all
four domains, performance drops significantly
when Wiki, Yahoo, or CoNLL-14 are ablated.
FCE is the only domain that still has strong per-
formance when unseen in training. Without
explicit domain adaptation, the supervised metric
is biased towards the domains present in the train-
ing data. These results demonstrate the expres-
siveness of GMEG-Metric to new domains of
text, including domains that have different error
distributions. In order to evaluate GMEG-Metric
on a new domain, a new model should be retrained
with representative data.

7 Conclusions and Future Work

In this paper, we take the first major step forward
towards robust grammatical error correction
across multiple domains. Prior work in GEC has
focused almost exclusively on correcting errors by
ELL writers, which has led to systems optimized
for that demographic and metrics optimized to the
few data sets available. However, ELL writers are
just one of the many potential beneficiaries of
GEC feedback. We advance the field by releasing
a new multi-domain, multiple-reference data set
(GMEG-Data) encompassing two new domains
of text written by native speakers. Each domain
is large enough to be a stand-alone evaluation
set, having more sentences than prior multiple-
reference GEC test sets. The data set additionally
includes corrections by 6 current GEC systems and
8 human ratings per correction. We also release a
pre-trained ensemble scorer (GMEG-Metric) that
we have shown to be the best metric on all three
domains. GMEG-Metric is flexible and robust
when retrained on new domains of text: When
including CoNLL-14 in training, the metric has
very strong correlation with human judgments,
compared with a strong negative correlation when

it is not included in the training data. To adapt
the metric to a new domain, human judgments are
necessary for no more than 1,000 sentences from
6 ‘‘real’’ systems.

With this work we are able to draw three
important conclusions:

1. Metrics used for ELL domains (i.e., CoNLL-
14) are not the most reliable on other
domains. In fact, the best singular metrics are
I-Measure and a character-version of GLEU
developed in this work.

2. Our ensemble metric (GMEG-Metric) has the
highest correlation with human judgments
and we recommend GEC practitioners use
this framework as the field expands to new
domains.

3. The introduction of a new GEC evaluation set
should be accompanied by a meta-evaluation
of the automatic metrics on that data.

There are several avenues for future work.
By sharing all of the collected data, system
outputs, and annotations,15 we lay the groundwork
for further metric development. This data set
also allows the field to experiment with domain
adaptation methods for the first time: For instance,
tailoring neural GEC models trained on ELL
data to one of our native domains, or tuning
GMEG-Metric on a small amount of data to work
robustly across a multitude of domains. Other
research avenues include paragraph-level GEC
and sentence-level quality evaluation.
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