@article{govindarajan-etal-2019-decomposing,
    title = "Decomposing Generalization: Models of Generic, Habitual, and Episodic Statements",
    author = "Govindarajan, Venkata  and
      Van Durme, Benjamin  and
      White, Aaron Steven",
    editor = "Lee, Lillian  and
      Johnson, Mark  and
      Roark, Brian  and
      Nenkova, Ani",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "7",
    year = "2019",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/Q19-1035/",
    doi = "10.1162/tacl_a_00285",
    pages = "501--517",
    abstract = "We present a novel semantic framework for modeling linguistic expressions of generalization{---} generic, habitual, and episodic statements{---}as combinations of simple, real-valued referential properties of predicates and their arguments. We use this framework to construct a dataset covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to probe the efficacy of type-level and token-level information{---}including hand-engineered features and static (GloVe) and contextual (ELMo) word embeddings{---}for predicting expressions of generalization."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="govindarajan-etal-2019-decomposing">
    <titleInfo>
        <title>Decomposing Generalization: Models of Generic, Habitual, and Episodic Statements</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Venkata</namePart>
        <namePart type="family">Govindarajan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Benjamin</namePart>
        <namePart type="family">Van Durme</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Aaron</namePart>
        <namePart type="given">Steven</namePart>
        <namePart type="family">White</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <genre authority="bibutilsgt">journal article</genre>
    <relatedItem type="host">
        <titleInfo>
            <title>Transactions of the Association for Computational Linguistics</title>
        </titleInfo>
        <originInfo>
            <issuance>continuing</issuance>
            <publisher>MIT Press</publisher>
            <place>
                <placeTerm type="text">Cambridge, MA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">periodical</genre>
        <genre authority="bibutilsgt">academic journal</genre>
    </relatedItem>
    <abstract>We present a novel semantic framework for modeling linguistic expressions of generalization— generic, habitual, and episodic statements—as combinations of simple, real-valued referential properties of predicates and their arguments. We use this framework to construct a dataset covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to probe the efficacy of type-level and token-level information—including hand-engineered features and static (GloVe) and contextual (ELMo) word embeddings—for predicting expressions of generalization.</abstract>
    <identifier type="citekey">govindarajan-etal-2019-decomposing</identifier>
    <identifier type="doi">10.1162/tacl_a_00285</identifier>
    <location>
        <url>https://aclanthology.org/Q19-1035/</url>
    </location>
    <part>
        <date>2019</date>
        <detail type="volume"><number>7</number></detail>
        <extent unit="page">
            <start>501</start>
            <end>517</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Journal Article
%T Decomposing Generalization: Models of Generic, Habitual, and Episodic Statements
%A Govindarajan, Venkata
%A Van Durme, Benjamin
%A White, Aaron Steven
%J Transactions of the Association for Computational Linguistics
%D 2019
%V 7
%I MIT Press
%C Cambridge, MA
%F govindarajan-etal-2019-decomposing
%X We present a novel semantic framework for modeling linguistic expressions of generalization— generic, habitual, and episodic statements—as combinations of simple, real-valued referential properties of predicates and their arguments. We use this framework to construct a dataset covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to probe the efficacy of type-level and token-level information—including hand-engineered features and static (GloVe) and contextual (ELMo) word embeddings—for predicting expressions of generalization.
%R 10.1162/tacl_a_00285
%U https://aclanthology.org/Q19-1035/
%U https://doi.org/10.1162/tacl_a_00285
%P 501-517
Markdown (Informal)
[Decomposing Generalization: Models of Generic, Habitual, and Episodic Statements](https://aclanthology.org/Q19-1035/) (Govindarajan et al., TACL 2019)
ACL