@article{govindarajan-etal-2019-decomposing,
title = "Decomposing Generalization: Models of Generic, Habitual, and Episodic Statements",
author = "Govindarajan, Venkata and
Van Durme, Benjamin and
White, Aaron Steven",
editor = "Lee, Lillian and
Johnson, Mark and
Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1035",
doi = "10.1162/tacl_a_00285",
pages = "501--517",
abstract = "We present a novel semantic framework for modeling linguistic expressions of generalization{---} generic, habitual, and episodic statements{---}as combinations of simple, real-valued referential properties of predicates and their arguments. We use this framework to construct a dataset covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to probe the efficacy of type-level and token-level information{---}including hand-engineered features and static (GloVe) and contextual (ELMo) word embeddings{---}for predicting expressions of generalization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="govindarajan-etal-2019-decomposing">
<titleInfo>
<title>Decomposing Generalization: Models of Generic, Habitual, and Episodic Statements</title>
</titleInfo>
<name type="personal">
<namePart type="given">Venkata</namePart>
<namePart type="family">Govindarajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="given">Steven</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present a novel semantic framework for modeling linguistic expressions of generalization— generic, habitual, and episodic statements—as combinations of simple, real-valued referential properties of predicates and their arguments. We use this framework to construct a dataset covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to probe the efficacy of type-level and token-level information—including hand-engineered features and static (GloVe) and contextual (ELMo) word embeddings—for predicting expressions of generalization.</abstract>
<identifier type="citekey">govindarajan-etal-2019-decomposing</identifier>
<identifier type="doi">10.1162/tacl_a_00285</identifier>
<location>
<url>https://aclanthology.org/Q19-1035</url>
</location>
<part>
<date>2019</date>
<detail type="volume"><number>7</number></detail>
<extent unit="page">
<start>501</start>
<end>517</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Decomposing Generalization: Models of Generic, Habitual, and Episodic Statements
%A Govindarajan, Venkata
%A Van Durme, Benjamin
%A White, Aaron Steven
%J Transactions of the Association for Computational Linguistics
%D 2019
%V 7
%I MIT Press
%C Cambridge, MA
%F govindarajan-etal-2019-decomposing
%X We present a novel semantic framework for modeling linguistic expressions of generalization— generic, habitual, and episodic statements—as combinations of simple, real-valued referential properties of predicates and their arguments. We use this framework to construct a dataset covering the entirety of the Universal Dependencies English Web Treebank. We use this dataset to probe the efficacy of type-level and token-level information—including hand-engineered features and static (GloVe) and contextual (ELMo) word embeddings—for predicting expressions of generalization.
%R 10.1162/tacl_a_00285
%U https://aclanthology.org/Q19-1035
%U https://doi.org/10.1162/tacl_a_00285
%P 501-517
Markdown (Informal)
[Decomposing Generalization: Models of Generic, Habitual, and Episodic Statements](https://aclanthology.org/Q19-1035) (Govindarajan et al., TACL 2019)
ACL