
International Conference RANLP 2009 - Borovets, Bulgaria, pages 324–329

A Classification-driven Approach to Document Planning 
 

Rafael L. de Oliveira, Eder M. de Novais, Roberto P. A. de Araujo, Ivandré Paraboni 
University of São Paulo (USP) 

School of Arts, Sciences and Humanities (EACH)  
Av. Arlindo Bettio, 1000 - São Paulo, Brazil 

{ rafaellage, eder.novais, roberto.araujo, ivandre } @usp.br 

 
Abstract 

Document Planning - the task of deciding which content 
messages should be realised in a target document based on raw 
data provided by an underlying application, and how these 
messages should be structured - is arguably one of the most 
crucial tasks in Natural Language Generation (NLG). In this 
work we present a machine learning approach to Document 
Planning that is entirely trainable from annotated corpora, and 
which paves the way to our long-term goal of developing a text 
generator system based on a series of classifiers for a simple 
NLG application in the education domain. 
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1. Introduction 
Natural Language Generation (NLG) systems are used 
whenever simple, 'canned' text is not sufficient, and 
greater (i.e., closer to human performance) linguistic 
variation is required. The traditional NLG architecture is 
often depicted in simplified form as a 3-stages pipelined 
process (Document Planning, Sentence Planning and 
Surface Realisation, cf. [1]), a division that is at least 
partially motivated by the sheer complexity of the task. 
Starting from a high-level communicative goal of 
describing a given domain concept, the system builds up 
a plan to represent the input data up to the point in which 
fully-specified text in natural language is produced. The 
Document Planning module is responsible for deciding 
what information to communicate (this being the task of 
Content Determination) and then how this information 
should be structured for presentation (this being the task 
of Document Structuring.) For a more comprehensive 
discussion of the role of Document Planning and its 
subtasks in the NLG architecture we report to [3]. 

Document Planning is arguably one of the most 
crucial components of an NLG system [1]: if a generated 
document presents the required information in a 
reasonably coherent structure, then the system may be 
considered successful even if the text shows surface 
flaws or limited linguistic variation. On the other hand, if 
the required information is missing from the text, or if 
the text is poorly structured, then the overall results are 
most likely unsatisfactory regardless of how well the 
individual sentences were realised.  

When speaking of Data-to-Text generation1, 
Document Planning is often preceded by a Data 
                                                                 
1 For a large-scale application of this kind, see [5]. 

Interpretation stage [2] that processes raw data 
application in the first place. In what follows, we discuss 
the early stages of a simple Data-to-Text NLG 
application addressing some aspects of both issues, 
namely, which chunks of information – or messages - 
should be included in the generated text from the raw 
data provided by an underlying application, and how 
such messages should be structured within a standard 
RST framework [4]. We will argue that at least in simple 
NLG applications, some of these issues may be tackled 
using trainable and (at least partially) domain-
independent methods. The focus of this paper is one such 
method, in which we apply standard machine learning 
techniques to both Content Determination and Document 
Structuring, and which can be viewed as a first step 
towards the development of a trainable text-generating 
application based on a series of classifiers. 

2. Application and Training Data 
We envisage a simple NLG application in which grades 
obtained by University students in a given course are 
described as short reports generated automatically from 
raw data (i.e., the numeric grades themselves) available 
from their academic records. Thus, the input to our 
system will be a student’s record, and the output is a 
report conveying a series of statements such as “You 
fared well in the regular exams and your grades on this 
subject were above the average of your class” etc. Such 
reports can be useful to both students keen to learn how 
their professors interpret their efforts, and to the 
professors themselves who may have an at-a-glance view 
of the student’s progress. 

A substantial part of our work consisted of preparing 
training data. We started by collecting 241 records of 
students’ academic performance data in five courses 
taught by a single professor (who can be viewed as the 
domain expert) in an academic term. Each record consists 
of a set of 25 values representing various aspects of a 
student’s academic performance: figures about 
attendance records, examination grades at various stages 
throughout the course, and the average grades obtained 
by the entire class in the same examinations. Additional 
attributes describe how the available grades should be 
interpreted in that particular course or term (e.g., whether 
a given practical exercise was compulsory etc.) From 
these data we intend to generate textual descriptions of 
both what each student achieved individually, and how 
their performance compares to their peers’.  
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For each one of the 241 data records, the domain 
expert has also authored a short (about 5-sentences long, 
and to some extent normalised) sample report conveying 
a series of statements about the overall progress of the 
student. The reports are entirely purpose-made, i.e., 
written so as to provide training data for a machine-
learned NLG application. Similar methodology has been 
employed in an NLG system (also in the education 
domain) described in [6], and it contrasts the use of 
naturally-occurring texts as a model for the application.  

Unlike common practice in many domain-
independent NLP tasks, we have collected aligned data-
text instances produced by a single author. In the present 
case this was necessary because we are interested in 
establishing the mappings from raw data (e.g., students’ 
grades) to semantics (i.e., the interpretation of the data 
according to the professor in charge), and which may 
vary wildly across domain experts2. The fact that we are 
dealing with a domain- and author-dependent problem 
should not be viewed as unappealing to the wide research 
community, though: as our approach is intended to be 
trainable from a collection of text-data alignments, our 
work remains in principle adaptable to a particular author 
or domain, as we will discuss later.  

As suggested in [7], the collected reports were 
manually segmented and annotated with information 
about the meanings or content messages that they intend 
to convey3. In doing so, we faced the question of how 
these messages should be defined: on the one hand, 
content messages could be sufficiently detailed so as to 
represent the meaning of atomic text units (e.g., single 
words.) On the other hand, meanings could span over 
entire sentences or even paragraphs. As pointed out in 
[1], the level of granularity of content messages should 
presumably be determined by the expected linguistic 
variation of the output text. In our case, given the 
regularity of our target documents, each text was simply 
segmented in meaningful units from which the 
corresponding messages were readily identified. The 
resulting list of messages and the segmentation scheme 
were then refined for completeness, and infrequent 
instances were eliminated (which of course reduced the 
possible linguistic variation of the output.) As a result, 
the possible contents of each document could be 
modelled as a 14-messages vector represented in flat 
semantics as attribute-value pairs, and each text segment 
in the document was annotated with one such message.  

Put together, data and corresponding reports make a 
complete training data set for corpus-based NLG that we 
have called the SINotas corpus. The corpus consists of a 

                                                                 
2 Had we mixed data produced by various authors in a single 

training set, it would not be possible to establish meaningful 
data-text mappings. For example, a grade 5.0 may be rated as 
‘good’ by a particular professor, but simply as ‘poor’ by a 
less benign one. 

3 For an example of automatic alignment technique applicable 
to this task see [12]. 

structured collection of the above 241 data-text 
alignments annotated in XML format, including basic 
sentence segmentation (provided at the message level 
only, as discussed above), part-of-speech information 
and partial discourse structure represented as manually 
annotated RST relations [4].  

The SINotas corpus is a valuable NLG resource in 
its own right, and a ready-to-use testbed for NLG 
research in Portuguese and related languages. However, 
as we have abstracted away from the application raw data 
by modelling the underlying semantics as content 
messages, SINotas does not convey the kind of low-level 
representation available from, e.g., the SUMTIME-
METEO corpus described in [8], which aligns text 
directly with domain data4.  

3. Document Planning as Classification 
We will use the SINotas data-text aligned corpus 
described in the previous section to develop a number of 
modules of a simple corpus-based NLG system as a 
series of classifiers, using off-the-shelf learning 
algorithms. Serialised classifiers have been applied to 
other NLG tasks, e.g., surface realisation as in [9,10]5. 

Regarding related work in the field, we notice that 
the early stages of Document Planning (and particularly, 
Content Determination issues) seem to be somewhat 
misrepresented in the NLG literature, a gap that might be 
explained by the domain-dependent nature of the task 
(i.e., the dealing with raw application data.) Content 
Determination has been performed using statistical 
techniques in [11], followed by a machine learning 
approach to select relevant information. The same 
general principal is applied in [12] in the domain of 
American football matches, and taking contextual 
dependencies into account in a so-called ‘collective’ 
content selection approach. An extension of this work 
has been recently presented in [13] for the domain of 
cricket game with a novel alignment technique. In all 
these cases, the main focus is the automatic data-text 
alignment (which in our case was performed manually 
via corpus annotation) and they do not address our 
second subtask, Document Structuring.  

3.1 Content Determination 
Content Determination can be viewed as the task of 
computing content messages (e.g., in the form of 
predicate-argument structures) from the input data 
provided by the underlying application. In our work this 
is implemented as a 2-steps process: first, we compute all 
possible messages derivable from the application data (a 
task that can be viewed as a simplified form of data 
interpretation as in [2]) and then we select the subset of 
                                                                 
4 In other words, SINotas does not contain personal data (e.g., 

student’s grades) but simply text and semantic features 
derived from them for research purposes. 

5 For instance, the system Amalgam described in [10] uses a 
series of 18 decision-trees to implement various tasks ranging 
from lexical choice to punctuation. 
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messages that should actually be realised in a particular 
document (which we will call content selection.) We will 
discuss each step in turn. 

Data interpretation is performed as follows: given 
the 25 input values produced by the application, we 
intend to produce the set of 14 messages representing the 
semantic contents of the target document (some of which 
possibly conveying ‘null’ values that stand for missing or 
irrelevant information.) This procedure was implemented 
by means of a classifier in which the 25 input values are 
learning features to each of the 14 output classes 
(annotated as messages in the SINotas corpus.)  

For example, given a low grade in the examinations 
we would expect the corresponding provas_aval class to 
be assigned a negative value such as “insufficient”. Using 
the application data and the SINotas corpus, 241 * 14 = 
3374 training instances of data interpretation were used 
to classify each of the 14 output messages as below6: 

[val1,val2...val25, message1] 
... 

[val1,val2...val25, message14] 

The second Content Determination task – content 
selection - consists of deciding which of the generated 
messages should end up realised as surface text. This is 
necessary because not all available information appears 
in the output, that is, different value combinations may 
result in different reports altogether, and some values that 
are highly prominent in one context may be even 
discarded in other situations in which different 
information should be spelled out. For example, good 
overall results may make a single low grade not worth 
mentioning at all. Similarly, a student that has decided 
not to sit the final exams does not need to be told that 
his/her grades were ‘below average’ etc. 

Given as an input the original 14-messages vector, 
we would like to filter out irrelevant content based on 
what is actually shown (or not shown) in the sample 
output texts as seen in the corpus. To this end, we 
defined a set of 14 learning features comprising the 
previously generated messages and 14 binary classes 
representing whether each of them were actually realised 
as text (true) or simply omitted (false). Once again, 241 
training instances of content selection were extracted 
from the corpus to classify each of the 14 ‘realise’ binary 
classes) making 3374 instances as below: 

[msg1, msg2...msg14, realise_msg1] 
... 

[msg1, msg2...msg14, realise_msg14] 

Each classification task was performed individually, 
that is, we did not use the reminder (13) binary classes as 
learning features to each class. This may in principle 
seem counter-intuitive, as the textual realisation of one 
message could hinge on whether others are realised or 
not, but such dependencies were not observed in our 

                                                                 
6 In practice, however, none of the classification tasks required 

the use of all 25 learning features, as we discuss in section 5. 

data. By contrasts, see for instance the collective 
selection approach in [12]. 

3.2 Document Structuring 
We are interested in two particular aspects of Document 
Structuring (and which to some extent cover aspects of 
Microplanning in the standard pipeline NLG architecture 
in [1] as well): the task of organising the content 
messages computed in the previous Content 
Determination stage into sentences, and then organising 
these sentences in a global rhetorical structure. Both 
tasks consist of computing RST relations between 
content messages, in the first case within sentences 
(which we will call within-sentence structuring) and in 
the second case between sentences (called between-
sentences structuring.) In our classification-driven 
approach this will be performed in a bottom-up fashion, 
that is, content messages are first aggregated into 
sentences conveying intra-sentential rhetorical relations, 
and then the inter-sentential relations are established.  

Within-sentence structuring is performed as follows. 
Given a list of (filtered) content messages produced in 
the previous Content Determination stage, we would like 
to have them distributed across a number of individual 
sentences. To this end, we defined training instances of 
within-sentence structuring as relations between message 
pairs in the form (m1, m2, relation) in which m1 and m2 
are messages represented as attribute-value pairs, and 
relation is a rhetorical relation (which in our data could 
be either concession, joint or contrast). For each positive 
instance of within-sentences structuring (mi,mj), we have 
also defined counter-examples (conveying the ‘none’ 
value of the relation class) covering every other possible 
message combination. Thus, our goal was to use 
messages as learning features for classifying relation as 
one of its possible RST values, or as the special none 
case. 12,247 such training instances of within-sentence 
structuring were extracted from the SINotas corpus, 
being 394 two-message sentences (in which messages are 
linked by a RST relation) and the reminder 11,853 
instances being one-message (none) sentences as follows: 

[attr1,val1, attr2, val2, relation] 

Between-sentences structuring follows a similar 
approach. Our goal in this case is to learn possible 
rhetorical relations between the sentences produced in 
the previous stage (which in our data could be either 
contrast, elaboration or none.) Thus, every related 
sentence pair in the corpus produced a positive training 
instance in the form (m1, m2, relation) in which m1 and 
m2 are messages from one sentence each, and which are 
found in the nucleus and satellite (or vice-versa) of a 
inter-sentential rhetorical relation. 

For each positive instance of between-sentences 
structuring (mi,mj), we have also defined 12 negative 
instances (conveying the ‘none’ value of the relation 
class) covering every other possible message 
combination (mi,mk)such that j ≠ i and j ≠ k. In this way, 
3432 training instances were extracted from the corpus, 
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being 176 cases of contrast, 88 cases of elaboration and 
3168 counter-examples (none). The structure of the 
training instances is the same used for within-sentence 
structuring, though considering inter-sentential RST 
relations: 

[attr1,val1, attr2, val2, relation] 

4. Implementation 
The message generator was implemented as a module 
that produces a 14-message vector from the given set of 
input values (e.g., students’ grades etc.) Similarly, the 
message selector was implemented as a subsequent 
module that reduces this vector to those (possible fewer) 
messages that should actually be passed on to the next 
stage. Both modules were integrated (or rather, 
pipelined) as a Content Determination component 
corresponding to the first stage in our NLG application 
under development.  

Following the same approach, within-sentence and 
between-sentence structuring were pipelined in a 
Document Structuring module. In this case however it 
was necessary an additional procedure for submitting all 
possible message pair combinations to each classifier in 
order to decide which message pairs should make 
sentences and which sentences should be linked by 
rhetorical relations. 

A complete example of our classification-driven 
Document Planning works as follows. First, Content 
Determination: given a student’s record showing (among 
other information) a 6.6 grade in the final exams, data 
interpretation produces a fixed 14-message vector 
conveying all relevant facts about the input, including the 
message mf_aval=bom (which stands for a ‘good’ grade 
in the final exams.) Next, content selection takes this 
vector as an input, eliminates all unnecessary messages 
and outputs the (sub)set of those that should actually 
appear in the text.  

The second stage is Document Structuring: within-
sentence structuring could determine that the generated 
message should be aggregated in a single sentence with, 
say, a message mf_turma=abaixo (which says that the 
grade falls below the overall class results) using a 
concession rhetorical relation. Finally, between-sentences 
structuring could link the generated sentence to a second 
one using a contrast rhetorical relation. In this example, 
the single piece of information about the final exams 
(had we implemented the entire system, of course) could 
eventually be realised as “Your grades in the final exams 
were good but below average”, and then linked to 
another sentence as “On the other hand, your substitutive 
examination grades were pretty good”.  

5. Results 
To each of our four Document Planning subtasks – data 
interpretation, content selection, within-sentence and 
between-sentences structuring - we have applied J48 
Weka [14] decision-tree induction using 10-fold cross-
validation and its default parameter values.  

With respect to data interpretation, we notice that 
each message actually depends only on a small set of 
features. This does not come as a surprise as our 25 
learning features cover a wide range of phenomena in the 
application semantics, e.g., from weekly attendance to 
average grades. Thus, all decision-trees were revised to 
determine which learning features were actually needed 
for each classification, and pruned accordingly.  As a 
result, the 14 classification tasks were performed using 
on average only 2.2 learning features each. 

Four messages types (sub_aval, sub_turma, 
corel_nota_falta and aband_rec) could not be classified 
automatically due to the heavy imbalance in their value 
distributions and/or data sparseness. These cases will be 
implemented separately following a knowledge-
engineered approach. Table 1 below shows the results for 
the reminder (i.e., machine-learned) classes only as 
compared to a baseline approach that simply selects the 
most frequent value for each class. 

Table 1. Data interpretation results 
 Decision-tree induction Baseline 

Class Prec. Recall F-measure Correctness 
provas_aval 0.970 0.968 0.982 0.349 

provas_turma 0.989 0.989 0.989 0.415 
progresso 0.756 0.754 0.752 0.270 
eps_aval 0.710 0.635 0.659 0.502 
dev_ep1 0.963 0.963 0.963 0.859 
freq_aval 0.918 0.948 0.945 0.780 
mf_aval 0.956 0.958 0.977 0.336 

mf_turma 0.988 0.984 0.986 0.560 
rec_aval 0.928 0.931 0.925 0.830 

rec_turma 0.652 0.716 0.680 0.846 
 

A number of observations are due. First, the 
frequency-based baseline would only approach decision-
tree induction when data are extremely sparse (e.g., the 
class rec_turma in which 85% of values are ‘null’.) On 
the other hand, when these problems do not occur (e.g., 
the values of the class mf_aval are evenly distributed in 
the corpus) results of the machine-learned approach are 
far superior to the baseline. 

Second, we notice that accuracy rates for some 
classes are extremely high, which is mainly the case of 
classes of well-defined semantics (for example, 
University policies determine that a 5.0 grade should be 
considered average, and this kind of knowledge was 
taken into account by the domain expert when writing the 
reports.) However, this is not the case when we consider 
more subjective classes such as, e.g., progresso, which 
describes the student’s performance curve throughout the 
term (e.g., rising, falling, U-shaped etc.), or sparse data 
such as in rec_turma (modelling recuperation exams 
attended by very few of the students.) 

In addition to that, we notice that the results hide 
some extreme situations in all classes. For example, the 
data do not provide sufficient evidence to classify 
instances conveying rec_turma=media (i.e., an average 
result in the recuperation exams) which occurred only 
twice in the training data. In practice, this means that we 
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should expect the system to rate an ‘average’ grade as 
something else in 2 out of 241 cases (0.83%), a relatively 
minor error rate that we expect to accommodate in the 
subsequent (and also classification-driven) stages of the 
generation process. In either case, we believe that the 
overall positive results in message classification should 
be interpreted as more indicative of the simplicity of the 
underlying semantics (allowing the authoring of highly 
consistent reports as seen in the corpus) and less of the 
performance of the annotation task or computational 
approach undertaken. 

With respect to the second task - content selection – 
we notice that some of the message realisations turned 
out to be trivially derivable from the input messages. 
This was the case of five messages conveying highly 
prominent information (mf_turma, corel_nota_falta, 
provas_turma, dev_ep1 and abandon_rec) that is always 
included in the output text unless they contained a ‘null’ 
value. For all these cases, no learning approach was 
actually required. Below we show the results for the 
reminder (machine-learned) classes and the correctness 
rates of a possible baseline algorithm that simply 
includes all non-null messages in the output text. 

Table 2. Content selection results 
 Decision-tree induction Baseline 

Class Prec. Recall F-measure Correctness 
provas_aval 0.995 0.981 0.987 0.784 

sub_aval 0.995 0.944 0.968 1.000 
sub_turma 0.875 0.991 0.924 0.938 
progresso 0.989 0.963 0.975 0.983 
eps_aval 0.894 0.916 0.904 0.784 
freq_aval 0.884 0.884 0.884 0.817 
mf_aval 0.821 0.923 0.849 0.784 
rec_aval 0.963 0.992 0.977 0.988 

rec_turma 0.993 0.937 0.963 0.946 
 

Although content selection turned out to be a 
straightforward procedure – the simple baseline 
algorithm achieves superior results in 4 out of 9 classes - 
we notice that by applying the generated models to the 
241 input message vectors in the SINotas corpus we have 
actually obtained output sets of average 5.1 messages 
each7, that is, the next module to be implemented – 
document structuring – will have to deal with an average 
of 5 messages in each text, and not 14, a considerable 
reduction in the task complexity that we expect to 
become evident in the next stages of development of our 
generation system.  

Results for the third task - within-sentence 
structuring – are as follows. 

                                                                 
7 This relatively low average number of output messages is 

greatly influenced by several records of students that did not 
sit any of the expected exams, producing single-sentence 
reports of the kind “Unfortunately you do not seem to have 
followed the course regularly”. 

Table 3. Within-sentence structuring results 
 Decision-tree induction 

Class Precision Recall F-measure 
concession 0.980 0.916 0.947 

joint 0.847 0.756 0.799 
contrast 0 0 0 

null 0.993 0.997 0.995 
 

The high correctness rates in this case are due to the 
regularity of the sentence structures in the corpus, most 
of which either comparing two opposite values (e.g., a 
low and a high grade in a concession relation) or simply 
stating them as two otherwise independent facts (linked 
by a joint relation.) The corpus contained only eight 
instances of intra-sentential contrast relations. These 
cases could not be classified automatically, and will be 
left out from our output documents. Given the high F-
measure rates above, we do not explicitly provide a 
baseline algorithm. By comparison to this case we notice 
that the simple choice for, e.g., the most frequent 
meaningful class (concession) would have achieved 
70.8% correctness rate, but only if we could disregard the 
negative instances, that is, if the system somehow ‘knew’ 
in advance that the two messages should be linked by a 
RST relation in the first place. 

Finally, results for the fourth task - between-
sentences structuring - are as follows.  

Table 4. Between-sentences structuring results 
 Decision-tree induction 

Class Precision Recall F-measure 
contrast 0.933 0.875 0.903 

elaboration 0.882 0.852 0.867 
null 0.990 0.995 0.992 

 

Once again, we observe high correctness rates due to 
the uniform rhetorical structure of our corpus. By means 
of comparison, a possible baseline strategy that chooses 
always the ‘null’ class would achieve up to 92.3% 
correctness (although obviously not performing any 
useful document structuring.) 

6. Final Remarks 
We have presented a corpus-based approach to NLG 
Document Planning addressing the initial stages of 
Content Determination (here including both aspects of 
data interpretation and content selection) and Document 
Structuring (which we called within- and between-
sentences structuring.) Although still domain-dependent - 
in the sense that it requires annotated training data – 
results in both cases were highly satisfactory, suggesting 
that the general methodology is in principle applicable to 
the development of simple NLG systems of this kind. 
Moreover, as automatic (or semi-automatic) methods for 
data-text alignment become more widespread (e.g., [12]), 
the current knowledge acquisition bottleneck is likely to 
become more treatable. 

We are currently working on the late stages of 
Macroplanning / Microplanning, that is, generating 
abstract sentence specifications for a future surface 
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realisation module, which should ultimately lead to a 
simple NLG system made of a series of classifiers. 
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