@inproceedings{boros-etal-2017-fast,
title = "Fast and Accurate Decision Trees for Natural Language Processing Tasks",
author = "Boros, Tiberiu and
Dumitrescu, Stefan Daniel and
Pipa, Sonia",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_016",
doi = "10.26615/978-954-452-049-6_016",
pages = "103--110",
abstract = "Decision trees have been previously employed in many machine-learning tasks such as part-of-speech tagging, lemmatization, morphological-attribute resolution, letter-to-sound conversion and statistical-parametric speech synthesis. In this paper we introduce an optimized tree-computation algorithm, which is based on the original ID3 algorithm. We also introduce a tree-pruning method that uses a development set to delete nodes from over-fitted models. The later mentioned algorithm also uses a results caching method for speed-up. Our algorithm is almost 200 times faster than a naive implementation and yields accurate results on our test datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="boros-etal-2017-fast">
<titleInfo>
<title>Fast and Accurate Decision Trees for Natural Language Processing Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tiberiu</namePart>
<namePart type="family">Boros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="given">Daniel</namePart>
<namePart type="family">Dumitrescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sonia</namePart>
<namePart type="family">Pipa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Decision trees have been previously employed in many machine-learning tasks such as part-of-speech tagging, lemmatization, morphological-attribute resolution, letter-to-sound conversion and statistical-parametric speech synthesis. In this paper we introduce an optimized tree-computation algorithm, which is based on the original ID3 algorithm. We also introduce a tree-pruning method that uses a development set to delete nodes from over-fitted models. The later mentioned algorithm also uses a results caching method for speed-up. Our algorithm is almost 200 times faster than a naive implementation and yields accurate results on our test datasets.</abstract>
<identifier type="citekey">boros-etal-2017-fast</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_016</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>103</start>
<end>110</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fast and Accurate Decision Trees for Natural Language Processing Tasks
%A Boros, Tiberiu
%A Dumitrescu, Stefan Daniel
%A Pipa, Sonia
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F boros-etal-2017-fast
%X Decision trees have been previously employed in many machine-learning tasks such as part-of-speech tagging, lemmatization, morphological-attribute resolution, letter-to-sound conversion and statistical-parametric speech synthesis. In this paper we introduce an optimized tree-computation algorithm, which is based on the original ID3 algorithm. We also introduce a tree-pruning method that uses a development set to delete nodes from over-fitted models. The later mentioned algorithm also uses a results caching method for speed-up. Our algorithm is almost 200 times faster than a naive implementation and yields accurate results on our test datasets.
%R 10.26615/978-954-452-049-6_016
%U https://doi.org/10.26615/978-954-452-049-6_016
%P 103-110
Markdown (Informal)
[Fast and Accurate Decision Trees for Natural Language Processing Tasks](https://doi.org/10.26615/978-954-452-049-6_016) (Boros et al., RANLP 2017)
ACL