@inproceedings{edouard-etal-2017-youll,
title = "You{'}ll Never Tweet Alone: Building Sports Match Timelines from Microblog Posts",
author = "Edouard, Amosse and
Cabrio, Elena and
Tonelli, Sara and
Le-Thanh, Nhan",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_030",
doi = "10.26615/978-954-452-049-6_030",
pages = "214--221",
abstract = "In this paper, we propose an approach to build a timeline with actions in a sports game based on tweets. We combine information provided by external knowledge bases to enrich the content of the tweets, and apply graph theory to model relations between actions and participants in a game. We demonstrate the validity of our approach using tweets collected during the EURO 2016 Championship and evaluate the output against live summaries produced by sports channels.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="edouard-etal-2017-youll">
<titleInfo>
<title>You’ll Never Tweet Alone: Building Sports Match Timelines from Microblog Posts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amosse</namePart>
<namePart type="family">Edouard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Cabrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Tonelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nhan</namePart>
<namePart type="family">Le-Thanh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose an approach to build a timeline with actions in a sports game based on tweets. We combine information provided by external knowledge bases to enrich the content of the tweets, and apply graph theory to model relations between actions and participants in a game. We demonstrate the validity of our approach using tweets collected during the EURO 2016 Championship and evaluate the output against live summaries produced by sports channels.</abstract>
<identifier type="citekey">edouard-etal-2017-youll</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_030</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>214</start>
<end>221</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T You’ll Never Tweet Alone: Building Sports Match Timelines from Microblog Posts
%A Edouard, Amosse
%A Cabrio, Elena
%A Tonelli, Sara
%A Le-Thanh, Nhan
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F edouard-etal-2017-youll
%X In this paper, we propose an approach to build a timeline with actions in a sports game based on tweets. We combine information provided by external knowledge bases to enrich the content of the tweets, and apply graph theory to model relations between actions and participants in a game. We demonstrate the validity of our approach using tweets collected during the EURO 2016 Championship and evaluate the output against live summaries produced by sports channels.
%R 10.26615/978-954-452-049-6_030
%U https://doi.org/10.26615/978-954-452-049-6_030
%P 214-221
Markdown (Informal)
[You’ll Never Tweet Alone: Building Sports Match Timelines from Microblog Posts](https://doi.org/10.26615/978-954-452-049-6_030) (Edouard et al., RANLP 2017)
ACL