@inproceedings{fernandez-etal-2017-opinion,
title = "Opinion Mining in Social Networks versus Electoral Polls",
author = "Fern{\'a}ndez, Javi and
Llopis, Fernando and
Guti{\'e}rrez, Yoan and
Mart{\'\i}nez-Barco, Patricio and
D{\'\i}ez, {\'A}lvaro",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_032",
doi = "10.26615/978-954-452-049-6_032",
pages = "231--237",
abstract = "The recent failures of traditional poll models, like the predictions in United Kingdom with the Brexit, or in United States presidential elections with the victory of Donald Trump, have been noteworthy. With the decline of traditional poll models and the growth of the social networks, automatic tools are gaining popularity to make predictions in this context. In this paper we present our approximation and compare it with a real case: the 2017 French presidential election.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fernandez-etal-2017-opinion">
<titleInfo>
<title>Opinion Mining in Social Networks versus Electoral Polls</title>
</titleInfo>
<name type="personal">
<namePart type="given">Javi</namePart>
<namePart type="family">Fernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fernando</namePart>
<namePart type="family">Llopis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoan</namePart>
<namePart type="family">Gutiérrez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricio</namePart>
<namePart type="family">Martínez-Barco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Álvaro</namePart>
<namePart type="family">Díez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The recent failures of traditional poll models, like the predictions in United Kingdom with the Brexit, or in United States presidential elections with the victory of Donald Trump, have been noteworthy. With the decline of traditional poll models and the growth of the social networks, automatic tools are gaining popularity to make predictions in this context. In this paper we present our approximation and compare it with a real case: the 2017 French presidential election.</abstract>
<identifier type="citekey">fernandez-etal-2017-opinion</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_032</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>231</start>
<end>237</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Opinion Mining in Social Networks versus Electoral Polls
%A Fernández, Javi
%A Llopis, Fernando
%A Gutiérrez, Yoan
%A Martínez-Barco, Patricio
%A Díez, Álvaro
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F fernandez-etal-2017-opinion
%X The recent failures of traditional poll models, like the predictions in United Kingdom with the Brexit, or in United States presidential elections with the victory of Donald Trump, have been noteworthy. With the decline of traditional poll models and the growth of the social networks, automatic tools are gaining popularity to make predictions in this context. In this paper we present our approximation and compare it with a real case: the 2017 French presidential election.
%R 10.26615/978-954-452-049-6_032
%U https://doi.org/10.26615/978-954-452-049-6_032
%P 231-237
Markdown (Informal)
[Opinion Mining in Social Networks versus Electoral Polls](https://doi.org/10.26615/978-954-452-049-6_032) (Fernández et al., RANLP 2017)
ACL
- Javi Fernández, Fernando Llopis, Yoan Gutiérrez, Patricio Martínez-Barco, and Álvaro Díez. 2017. Opinion Mining in Social Networks versus Electoral Polls. In Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 231–237, Varna, Bulgaria. INCOMA Ltd..