@inproceedings{liao-xie-2017-statistical,
    title = "A Statistical Machine Translation Model with Forest-to-Tree Algorithm for Semantic Parsing",
    author = "Liao, Zhihua  and
      Xie, Yan",
    editor = "Mitkov, Ruslan  and
      Angelova, Galia",
    booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
    month = sep,
    year = "2017",
    address = "Varna, Bulgaria",
    publisher = "INCOMA Ltd.",
    url = "https://aclanthology.org/R17-1059/",
    doi = "10.26615/978-954-452-049-6_059",
    pages = "446--451",
    abstract = "In this paper, we propose a novel supervised model for parsing natural language sentences into their formal semantic representations. This model treats sentence-to-lambda-logical expression conversion within the framework of the statistical machine translation with forest-to-tree algorithm. To make this work, we transform the lambda-logical expression structure into a form suitable for the mechanics of statistical machine translation and useful for modeling. We show that our model is able to yield new state-of-the-art results on both standard datasets with simple features."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-xie-2017-statistical">
    <titleInfo>
        <title>A Statistical Machine Translation Model with Forest-to-Tree Algorithm for Semantic Parsing</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zhihua</namePart>
        <namePart type="family">Liao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yan</namePart>
        <namePart type="family">Xie</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ruslan</namePart>
            <namePart type="family">Mitkov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Galia</namePart>
            <namePart type="family">Angelova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>INCOMA Ltd.</publisher>
            <place>
                <placeTerm type="text">Varna, Bulgaria</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we propose a novel supervised model for parsing natural language sentences into their formal semantic representations. This model treats sentence-to-lambda-logical expression conversion within the framework of the statistical machine translation with forest-to-tree algorithm. To make this work, we transform the lambda-logical expression structure into a form suitable for the mechanics of statistical machine translation and useful for modeling. We show that our model is able to yield new state-of-the-art results on both standard datasets with simple features.</abstract>
    <identifier type="citekey">liao-xie-2017-statistical</identifier>
    <identifier type="doi">10.26615/978-954-452-049-6_059</identifier>
    <location>
        <url>https://aclanthology.org/R17-1059/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>446</start>
            <end>451</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Statistical Machine Translation Model with Forest-to-Tree Algorithm for Semantic Parsing
%A Liao, Zhihua
%A Xie, Yan
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F liao-xie-2017-statistical
%X In this paper, we propose a novel supervised model for parsing natural language sentences into their formal semantic representations. This model treats sentence-to-lambda-logical expression conversion within the framework of the statistical machine translation with forest-to-tree algorithm. To make this work, we transform the lambda-logical expression structure into a form suitable for the mechanics of statistical machine translation and useful for modeling. We show that our model is able to yield new state-of-the-art results on both standard datasets with simple features.
%R 10.26615/978-954-452-049-6_059
%U https://aclanthology.org/R17-1059/
%U https://doi.org/10.26615/978-954-452-049-6_059
%P 446-451
Markdown (Informal)
[A Statistical Machine Translation Model with Forest-to-Tree Algorithm for Semantic Parsing](https://aclanthology.org/R17-1059/) (Liao & Xie, RANLP 2017)
ACL