@inproceedings{liao-xie-2017-statistical,
title = "A Statistical Machine Translation Model with Forest-to-Tree Algorithm for Semantic Parsing",
author = "Liao, Zhihua and
Xie, Yan",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_059",
doi = "10.26615/978-954-452-049-6_059",
pages = "446--451",
abstract = "In this paper, we propose a novel supervised model for parsing natural language sentences into their formal semantic representations. This model treats sentence-to-lambda-logical expression conversion within the framework of the statistical machine translation with forest-to-tree algorithm. To make this work, we transform the lambda-logical expression structure into a form suitable for the mechanics of statistical machine translation and useful for modeling. We show that our model is able to yield new state-of-the-art results on both standard datasets with simple features.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-xie-2017-statistical">
<titleInfo>
<title>A Statistical Machine Translation Model with Forest-to-Tree Algorithm for Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhihua</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a novel supervised model for parsing natural language sentences into their formal semantic representations. This model treats sentence-to-lambda-logical expression conversion within the framework of the statistical machine translation with forest-to-tree algorithm. To make this work, we transform the lambda-logical expression structure into a form suitable for the mechanics of statistical machine translation and useful for modeling. We show that our model is able to yield new state-of-the-art results on both standard datasets with simple features.</abstract>
<identifier type="citekey">liao-xie-2017-statistical</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_059</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>446</start>
<end>451</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Statistical Machine Translation Model with Forest-to-Tree Algorithm for Semantic Parsing
%A Liao, Zhihua
%A Xie, Yan
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F liao-xie-2017-statistical
%X In this paper, we propose a novel supervised model for parsing natural language sentences into their formal semantic representations. This model treats sentence-to-lambda-logical expression conversion within the framework of the statistical machine translation with forest-to-tree algorithm. To make this work, we transform the lambda-logical expression structure into a form suitable for the mechanics of statistical machine translation and useful for modeling. We show that our model is able to yield new state-of-the-art results on both standard datasets with simple features.
%R 10.26615/978-954-452-049-6_059
%U https://doi.org/10.26615/978-954-452-049-6_059
%P 446-451
Markdown (Informal)
[A Statistical Machine Translation Model with Forest-to-Tree Algorithm for Semantic Parsing](https://doi.org/10.26615/978-954-452-049-6_059) (Liao & Xie, RANLP 2017)
ACL