@inproceedings{naderi-hirst-2017-recognizing,
    title = "Recognizing Reputation Defence Strategies in Critical Political Exchanges",
    author = "Naderi, Nona  and
      Hirst, Graeme",
    editor = "Mitkov, Ruslan  and
      Angelova, Galia",
    booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
    month = sep,
    year = "2017",
    address = "Varna, Bulgaria",
    publisher = "INCOMA Ltd.",
    url = "https://aclanthology.org/R17-1069/",
    doi = "10.26615/978-954-452-049-6_069",
    pages = "527--535",
    abstract = "We propose a new task of automatically detecting reputation defence strategies in the field of computational argumentation. We cast the problem as relation classification, where given a pair of reputation threat and reputation defence, we determine the reputation defence strategy. We annotate a dataset of parliamentary questions and answers with reputation defence strategies. We then propose a model based on supervised learning to address the detection of these strategies, and report promising experimental results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="naderi-hirst-2017-recognizing">
    <titleInfo>
        <title>Recognizing Reputation Defence Strategies in Critical Political Exchanges</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Nona</namePart>
        <namePart type="family">Naderi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Graeme</namePart>
        <namePart type="family">Hirst</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ruslan</namePart>
            <namePart type="family">Mitkov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Galia</namePart>
            <namePart type="family">Angelova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>INCOMA Ltd.</publisher>
            <place>
                <placeTerm type="text">Varna, Bulgaria</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose a new task of automatically detecting reputation defence strategies in the field of computational argumentation. We cast the problem as relation classification, where given a pair of reputation threat and reputation defence, we determine the reputation defence strategy. We annotate a dataset of parliamentary questions and answers with reputation defence strategies. We then propose a model based on supervised learning to address the detection of these strategies, and report promising experimental results.</abstract>
    <identifier type="citekey">naderi-hirst-2017-recognizing</identifier>
    <identifier type="doi">10.26615/978-954-452-049-6_069</identifier>
    <location>
        <url>https://aclanthology.org/R17-1069/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>527</start>
            <end>535</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recognizing Reputation Defence Strategies in Critical Political Exchanges
%A Naderi, Nona
%A Hirst, Graeme
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F naderi-hirst-2017-recognizing
%X We propose a new task of automatically detecting reputation defence strategies in the field of computational argumentation. We cast the problem as relation classification, where given a pair of reputation threat and reputation defence, we determine the reputation defence strategy. We annotate a dataset of parliamentary questions and answers with reputation defence strategies. We then propose a model based on supervised learning to address the detection of these strategies, and report promising experimental results.
%R 10.26615/978-954-452-049-6_069
%U https://aclanthology.org/R17-1069/
%U https://doi.org/10.26615/978-954-452-049-6_069
%P 527-535
Markdown (Informal)
[Recognizing Reputation Defence Strategies in Critical Political Exchanges](https://aclanthology.org/R17-1069/) (Naderi & Hirst, RANLP 2017)
ACL