@inproceedings{naderi-hirst-2017-recognizing,
title = "Recognizing Reputation Defence Strategies in Critical Political Exchanges",
author = "Naderi, Nona and
Hirst, Graeme",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R17-1069/",
doi = "10.26615/978-954-452-049-6_069",
pages = "527--535",
abstract = "We propose a new task of automatically detecting reputation defence strategies in the field of computational argumentation. We cast the problem as relation classification, where given a pair of reputation threat and reputation defence, we determine the reputation defence strategy. We annotate a dataset of parliamentary questions and answers with reputation defence strategies. We then propose a model based on supervised learning to address the detection of these strategies, and report promising experimental results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="naderi-hirst-2017-recognizing">
<titleInfo>
<title>Recognizing Reputation Defence Strategies in Critical Political Exchanges</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nona</namePart>
<namePart type="family">Naderi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graeme</namePart>
<namePart type="family">Hirst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a new task of automatically detecting reputation defence strategies in the field of computational argumentation. We cast the problem as relation classification, where given a pair of reputation threat and reputation defence, we determine the reputation defence strategy. We annotate a dataset of parliamentary questions and answers with reputation defence strategies. We then propose a model based on supervised learning to address the detection of these strategies, and report promising experimental results.</abstract>
<identifier type="citekey">naderi-hirst-2017-recognizing</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_069</identifier>
<location>
<url>https://aclanthology.org/R17-1069/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>527</start>
<end>535</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recognizing Reputation Defence Strategies in Critical Political Exchanges
%A Naderi, Nona
%A Hirst, Graeme
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F naderi-hirst-2017-recognizing
%X We propose a new task of automatically detecting reputation defence strategies in the field of computational argumentation. We cast the problem as relation classification, where given a pair of reputation threat and reputation defence, we determine the reputation defence strategy. We annotate a dataset of parliamentary questions and answers with reputation defence strategies. We then propose a model based on supervised learning to address the detection of these strategies, and report promising experimental results.
%R 10.26615/978-954-452-049-6_069
%U https://aclanthology.org/R17-1069/
%U https://doi.org/10.26615/978-954-452-049-6_069
%P 527-535
Markdown (Informal)
[Recognizing Reputation Defence Strategies in Critical Political Exchanges](https://aclanthology.org/R17-1069/) (Naderi & Hirst, RANLP 2017)
ACL