@inproceedings{nakov-etal-2017-trust,
title = "Do Not Trust the Trolls: Predicting Credibility in Community Question Answering Forums",
author = "Nakov, Preslav and
Mihaylova, Tsvetomila and
M{\`a}rquez, Llu{\'i}s and
Shiroya, Yashkumar and
Koychev, Ivan",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R17-1072/",
doi = "10.26615/978-954-452-049-6_072",
pages = "551--560",
abstract = "We address information credibility in community forums, in a setting in which the credibility of an answer posted in a question thread by a particular user has to be predicted. First, we motivate the problem and we create a publicly available annotated English corpus by crowdsourcing. Second, we propose a large set of features to predict the credibility of the answers. The features model the user, the answer, the question, the thread as a whole, and the interaction between them. Our experiments with ranking SVMs show that the credibility labels can be predicted with high performance according to several standard IR ranking metrics, thus supporting the potential usage of this layer of credibility information in practical applications. The features modeling the profile of the user (in particular trollness) turn out to be most important, but embedding features modeling the answer and the similarity between the question and the answer are also very relevant. Overall, half of the gap between the baseline performance and the perfect classifier can be covered using the proposed features."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nakov-etal-2017-trust">
<titleInfo>
<title>Do Not Trust the Trolls: Predicting Credibility in Community Question Answering Forums</title>
</titleInfo>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsvetomila</namePart>
<namePart type="family">Mihaylova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yashkumar</namePart>
<namePart type="family">Shiroya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Koychev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address information credibility in community forums, in a setting in which the credibility of an answer posted in a question thread by a particular user has to be predicted. First, we motivate the problem and we create a publicly available annotated English corpus by crowdsourcing. Second, we propose a large set of features to predict the credibility of the answers. The features model the user, the answer, the question, the thread as a whole, and the interaction between them. Our experiments with ranking SVMs show that the credibility labels can be predicted with high performance according to several standard IR ranking metrics, thus supporting the potential usage of this layer of credibility information in practical applications. The features modeling the profile of the user (in particular trollness) turn out to be most important, but embedding features modeling the answer and the similarity between the question and the answer are also very relevant. Overall, half of the gap between the baseline performance and the perfect classifier can be covered using the proposed features.</abstract>
<identifier type="citekey">nakov-etal-2017-trust</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_072</identifier>
<location>
<url>https://aclanthology.org/R17-1072/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>551</start>
<end>560</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Do Not Trust the Trolls: Predicting Credibility in Community Question Answering Forums
%A Nakov, Preslav
%A Mihaylova, Tsvetomila
%A Màrquez, Lluís
%A Shiroya, Yashkumar
%A Koychev, Ivan
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F nakov-etal-2017-trust
%X We address information credibility in community forums, in a setting in which the credibility of an answer posted in a question thread by a particular user has to be predicted. First, we motivate the problem and we create a publicly available annotated English corpus by crowdsourcing. Second, we propose a large set of features to predict the credibility of the answers. The features model the user, the answer, the question, the thread as a whole, and the interaction between them. Our experiments with ranking SVMs show that the credibility labels can be predicted with high performance according to several standard IR ranking metrics, thus supporting the potential usage of this layer of credibility information in practical applications. The features modeling the profile of the user (in particular trollness) turn out to be most important, but embedding features modeling the answer and the similarity between the question and the answer are also very relevant. Overall, half of the gap between the baseline performance and the perfect classifier can be covered using the proposed features.
%R 10.26615/978-954-452-049-6_072
%U https://aclanthology.org/R17-1072/
%U https://doi.org/10.26615/978-954-452-049-6_072
%P 551-560
Markdown (Informal)
[Do Not Trust the Trolls: Predicting Credibility in Community Question Answering Forums](https://aclanthology.org/R17-1072/) (Nakov et al., RANLP 2017)
ACL