@inproceedings{prazak-konopik-2017-cross,
title = "Cross-Lingual {SRL} Based upon {U}niversal {D}ependencies",
author = "Pra{\v{z}}{\'a}k, Ond{\v{r}}ej and
Konop{\'\i}k, Miloslav",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_077",
doi = "10.26615/978-954-452-049-6_077",
pages = "592--600",
abstract = "In this paper, we introduce a cross-lingual Semantic Role Labeling (SRL) system with language independent features based upon Universal Dependencies. We propose two methods to convert SRL annotations from monolingual dependency trees into universal dependency trees. Our SRL system is based upon cross-lingual features derived from universal dependency trees and a supervised learning that utilizes a maximum entropy classifier. We design experiments to verify whether the Universal Dependencies are suitable for the cross-lingual SRL. The results are very promising and they open new interesting research paths for the future.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="prazak-konopik-2017-cross">
<titleInfo>
<title>Cross-Lingual SRL Based upon Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Pražák</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miloslav</namePart>
<namePart type="family">Konopík</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce a cross-lingual Semantic Role Labeling (SRL) system with language independent features based upon Universal Dependencies. We propose two methods to convert SRL annotations from monolingual dependency trees into universal dependency trees. Our SRL system is based upon cross-lingual features derived from universal dependency trees and a supervised learning that utilizes a maximum entropy classifier. We design experiments to verify whether the Universal Dependencies are suitable for the cross-lingual SRL. The results are very promising and they open new interesting research paths for the future.</abstract>
<identifier type="citekey">prazak-konopik-2017-cross</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_077</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>592</start>
<end>600</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual SRL Based upon Universal Dependencies
%A Pražák, Ondřej
%A Konopík, Miloslav
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F prazak-konopik-2017-cross
%X In this paper, we introduce a cross-lingual Semantic Role Labeling (SRL) system with language independent features based upon Universal Dependencies. We propose two methods to convert SRL annotations from monolingual dependency trees into universal dependency trees. Our SRL system is based upon cross-lingual features derived from universal dependency trees and a supervised learning that utilizes a maximum entropy classifier. We design experiments to verify whether the Universal Dependencies are suitable for the cross-lingual SRL. The results are very promising and they open new interesting research paths for the future.
%R 10.26615/978-954-452-049-6_077
%U https://doi.org/10.26615/978-954-452-049-6_077
%P 592-600
Markdown (Informal)
[Cross-Lingual SRL Based upon Universal Dependencies](https://doi.org/10.26615/978-954-452-049-6_077) (Pražák & Konopík, RANLP 2017)
ACL