@inproceedings{steinberger-etal-2017-cross,
title = "Cross-lingual Flames Detection in News Discussions",
author = "Steinberger, Josef and
Brychc{\'\i}n, Tom{\'a}{\v{s}} and
Hercig, Tom{\'a}{\v{s}} and
Krejzl, Peter",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_089",
doi = "10.26615/978-954-452-049-6_089",
pages = "694--700",
abstract = "We introduce Flames Detector, an online system for measuring flames, i.e. strong negative feelings or emotions, insults or other verbal offences, in news commentaries across five languages. It is designed to assist journalists, public institutions or discussion moderators to detect news topics which evoke wrangles. We propose a machine learning approach to flames detection and calculate an aggregated score for a set of comment threads. The demo application shows the most flaming topics of the current period in several language variants. The search functionality gives a possibility to measure flames in any topic specified by a query. The evaluation shows that the flame detection in discussions is a difficult task, however, the application can already reveal interesting information about the actual news discussions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="steinberger-etal-2017-cross">
<titleInfo>
<title>Cross-lingual Flames Detection in News Discussions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Steinberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomáš</namePart>
<namePart type="family">Brychcín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomáš</namePart>
<namePart type="family">Hercig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Krejzl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce Flames Detector, an online system for measuring flames, i.e. strong negative feelings or emotions, insults or other verbal offences, in news commentaries across five languages. It is designed to assist journalists, public institutions or discussion moderators to detect news topics which evoke wrangles. We propose a machine learning approach to flames detection and calculate an aggregated score for a set of comment threads. The demo application shows the most flaming topics of the current period in several language variants. The search functionality gives a possibility to measure flames in any topic specified by a query. The evaluation shows that the flame detection in discussions is a difficult task, however, the application can already reveal interesting information about the actual news discussions.</abstract>
<identifier type="citekey">steinberger-etal-2017-cross</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_089</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>694</start>
<end>700</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual Flames Detection in News Discussions
%A Steinberger, Josef
%A Brychcín, Tomáš
%A Hercig, Tomáš
%A Krejzl, Peter
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F steinberger-etal-2017-cross
%X We introduce Flames Detector, an online system for measuring flames, i.e. strong negative feelings or emotions, insults or other verbal offences, in news commentaries across five languages. It is designed to assist journalists, public institutions or discussion moderators to detect news topics which evoke wrangles. We propose a machine learning approach to flames detection and calculate an aggregated score for a set of comment threads. The demo application shows the most flaming topics of the current period in several language variants. The search functionality gives a possibility to measure flames in any topic specified by a query. The evaluation shows that the flame detection in discussions is a difficult task, however, the application can already reveal interesting information about the actual news discussions.
%R 10.26615/978-954-452-049-6_089
%U https://doi.org/10.26615/978-954-452-049-6_089
%P 694-700
Markdown (Informal)
[Cross-lingual Flames Detection in News Discussions](https://doi.org/10.26615/978-954-452-049-6_089) (Steinberger et al., RANLP 2017)
ACL
- Josef Steinberger, Tomáš Brychcín, Tomáš Hercig, and Peter Krejzl. 2017. Cross-lingual Flames Detection in News Discussions. In Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 694–700, Varna, Bulgaria. INCOMA Ltd..