@inproceedings{steinberger-etal-2017-pyramid,
title = "Pyramid-based Summary Evaluation Using {A}bstract {M}eaning {R}epresentation",
author = "Steinberger, Josef and
Krejzl, Peter and
Brychc{\'\i}n, Tom{\'a}{\v{s}}",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_090",
doi = "10.26615/978-954-452-049-6_090",
pages = "701--706",
abstract = "We propose a novel metric for evaluating summary content coverage. The evaluation framework follows the Pyramid approach to measure how many summarization content units, considered important by human annotators, are contained in an automatic summary. Our approach automatizes the evaluation process, which does not need any manual intervention on the evaluated summary side. Our approach compares abstract meaning representations of each content unit mention and each summary sentence. We found that the proposed metric complements well the widely-used ROUGE metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="steinberger-etal-2017-pyramid">
<titleInfo>
<title>Pyramid-based Summary Evaluation Using Abstract Meaning Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Steinberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Krejzl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomáš</namePart>
<namePart type="family">Brychcín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel metric for evaluating summary content coverage. The evaluation framework follows the Pyramid approach to measure how many summarization content units, considered important by human annotators, are contained in an automatic summary. Our approach automatizes the evaluation process, which does not need any manual intervention on the evaluated summary side. Our approach compares abstract meaning representations of each content unit mention and each summary sentence. We found that the proposed metric complements well the widely-used ROUGE metrics.</abstract>
<identifier type="citekey">steinberger-etal-2017-pyramid</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_090</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>701</start>
<end>706</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pyramid-based Summary Evaluation Using Abstract Meaning Representation
%A Steinberger, Josef
%A Krejzl, Peter
%A Brychcín, Tomáš
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F steinberger-etal-2017-pyramid
%X We propose a novel metric for evaluating summary content coverage. The evaluation framework follows the Pyramid approach to measure how many summarization content units, considered important by human annotators, are contained in an automatic summary. Our approach automatizes the evaluation process, which does not need any manual intervention on the evaluated summary side. Our approach compares abstract meaning representations of each content unit mention and each summary sentence. We found that the proposed metric complements well the widely-used ROUGE metrics.
%R 10.26615/978-954-452-049-6_090
%U https://doi.org/10.26615/978-954-452-049-6_090
%P 701-706
Markdown (Informal)
[Pyramid-based Summary Evaluation Using Abstract Meaning Representation](https://doi.org/10.26615/978-954-452-049-6_090) (Steinberger et al., RANLP 2017)
ACL