@inproceedings{costa-paraboni-2019-personality,
title = "Personality-dependent Neural Text Summarization",
author = "Costa, Pablo and
Paraboni, Ivandr{\'e}",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1024/",
doi = "10.26615/978-954-452-056-4_024",
pages = "205--212",
abstract = "In Natural Language Generation systems, personalization strategies - i.e, the use of information about a target author to generate text that (more) closely resembles human-produced language - have long been applied to improve results. The present work addresses one such strategy - namely, the use of Big Five personality information about the target author - applied to the case of abstractive text summarization using neural sequence-to-sequence models. Initial results suggest that having access to personality information does lead to more accurate (or human-like) text summaries, and paves the way for more robust systems of this kind."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="costa-paraboni-2019-personality">
<titleInfo>
<title>Personality-dependent Neural Text Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pablo</namePart>
<namePart type="family">Costa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivandré</namePart>
<namePart type="family">Paraboni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In Natural Language Generation systems, personalization strategies - i.e, the use of information about a target author to generate text that (more) closely resembles human-produced language - have long been applied to improve results. The present work addresses one such strategy - namely, the use of Big Five personality information about the target author - applied to the case of abstractive text summarization using neural sequence-to-sequence models. Initial results suggest that having access to personality information does lead to more accurate (or human-like) text summaries, and paves the way for more robust systems of this kind.</abstract>
<identifier type="citekey">costa-paraboni-2019-personality</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_024</identifier>
<location>
<url>https://aclanthology.org/R19-1024/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>205</start>
<end>212</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Personality-dependent Neural Text Summarization
%A Costa, Pablo
%A Paraboni, Ivandré
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F costa-paraboni-2019-personality
%X In Natural Language Generation systems, personalization strategies - i.e, the use of information about a target author to generate text that (more) closely resembles human-produced language - have long been applied to improve results. The present work addresses one such strategy - namely, the use of Big Five personality information about the target author - applied to the case of abstractive text summarization using neural sequence-to-sequence models. Initial results suggest that having access to personality information does lead to more accurate (or human-like) text summaries, and paves the way for more robust systems of this kind.
%R 10.26615/978-954-452-056-4_024
%U https://aclanthology.org/R19-1024/
%U https://doi.org/10.26615/978-954-452-056-4_024
%P 205-212
Markdown (Informal)
[Personality-dependent Neural Text Summarization](https://aclanthology.org/R19-1024/) (Costa & Paraboni, RANLP 2019)
ACL
- Pablo Costa and Ivandré Paraboni. 2019. Personality-dependent Neural Text Summarization. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), pages 205–212, Varna, Bulgaria. INCOMA Ltd..