@inproceedings{fell-etal-2019-song,
title = "Song Lyrics Summarization Inspired by Audio Thumbnailing",
author = "Fell, Michael and
Cabrio, Elena and
Gandon, Fabien and
Giboin, Alain",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1038/",
doi = "10.26615/978-954-452-056-4_038",
pages = "328--337",
abstract = "Given the peculiar structure of songs, applying generic text summarization methods to lyrics can lead to the generation of highly redundant and incoherent text. In this paper, we propose to enhance state-of-the-art text summarization approaches with a method inspired by audio thumbnailing. Instead of searching for the thumbnail clues in the audio of the song, we identify equivalent clues in the lyrics. We then show how these summaries that take into account the audio nature of the lyrics outperform the generic methods according to both an automatic evaluation and human judgments."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fell-etal-2019-song">
<titleInfo>
<title>Song Lyrics Summarization Inspired by Audio Thumbnailing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Fell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Cabrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabien</namePart>
<namePart type="family">Gandon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alain</namePart>
<namePart type="family">Giboin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Given the peculiar structure of songs, applying generic text summarization methods to lyrics can lead to the generation of highly redundant and incoherent text. In this paper, we propose to enhance state-of-the-art text summarization approaches with a method inspired by audio thumbnailing. Instead of searching for the thumbnail clues in the audio of the song, we identify equivalent clues in the lyrics. We then show how these summaries that take into account the audio nature of the lyrics outperform the generic methods according to both an automatic evaluation and human judgments.</abstract>
<identifier type="citekey">fell-etal-2019-song</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_038</identifier>
<location>
<url>https://aclanthology.org/R19-1038/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>328</start>
<end>337</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Song Lyrics Summarization Inspired by Audio Thumbnailing
%A Fell, Michael
%A Cabrio, Elena
%A Gandon, Fabien
%A Giboin, Alain
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F fell-etal-2019-song
%X Given the peculiar structure of songs, applying generic text summarization methods to lyrics can lead to the generation of highly redundant and incoherent text. In this paper, we propose to enhance state-of-the-art text summarization approaches with a method inspired by audio thumbnailing. Instead of searching for the thumbnail clues in the audio of the song, we identify equivalent clues in the lyrics. We then show how these summaries that take into account the audio nature of the lyrics outperform the generic methods according to both an automatic evaluation and human judgments.
%R 10.26615/978-954-452-056-4_038
%U https://aclanthology.org/R19-1038/
%U https://doi.org/10.26615/978-954-452-056-4_038
%P 328-337
Markdown (Informal)
[Song Lyrics Summarization Inspired by Audio Thumbnailing](https://aclanthology.org/R19-1038/) (Fell et al., RANLP 2019)
ACL
- Michael Fell, Elena Cabrio, Fabien Gandon, and Alain Giboin. 2019. Song Lyrics Summarization Inspired by Audio Thumbnailing. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), pages 328–337, Varna, Bulgaria. INCOMA Ltd..