@inproceedings{kocon-etal-2019-multi-level,
title = "Multi-level analysis and recognition of the text sentiment on the example of consumer opinions",
author = "Koco{\'n}, Jan and
Za{\'s}ko-Zieli{\'n}ska, Monika and
Mi{\l}kowski, Piotr",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1066/",
doi = "10.26615/978-954-452-056-4_066",
pages = "559--567",
abstract = "In this article, we present a novel multi-domain dataset of Polish text reviews, annotated with sentiment on different levels: sentences and the whole documents. The annotation was made by linguists in a 2+1 scheme (with inter-annotator agreement analysis). We present a preliminary approach to the classification of labelled data using logistic regression, bidirectional long short-term memory recurrent neural networks (BiLSTM) and bidirectional encoder representations from transformers (BERT)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kocon-etal-2019-multi-level">
<titleInfo>
<title>Multi-level analysis and recognition of the text sentiment on the example of consumer opinions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Kocoń</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monika</namePart>
<namePart type="family">Zaśko-Zielińska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piotr</namePart>
<namePart type="family">Miłkowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this article, we present a novel multi-domain dataset of Polish text reviews, annotated with sentiment on different levels: sentences and the whole documents. The annotation was made by linguists in a 2+1 scheme (with inter-annotator agreement analysis). We present a preliminary approach to the classification of labelled data using logistic regression, bidirectional long short-term memory recurrent neural networks (BiLSTM) and bidirectional encoder representations from transformers (BERT).</abstract>
<identifier type="citekey">kocon-etal-2019-multi-level</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_066</identifier>
<location>
<url>https://aclanthology.org/R19-1066/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>559</start>
<end>567</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-level analysis and recognition of the text sentiment on the example of consumer opinions
%A Kocoń, Jan
%A Zaśko-Zielińska, Monika
%A Miłkowski, Piotr
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F kocon-etal-2019-multi-level
%X In this article, we present a novel multi-domain dataset of Polish text reviews, annotated with sentiment on different levels: sentences and the whole documents. The annotation was made by linguists in a 2+1 scheme (with inter-annotator agreement analysis). We present a preliminary approach to the classification of labelled data using logistic regression, bidirectional long short-term memory recurrent neural networks (BiLSTM) and bidirectional encoder representations from transformers (BERT).
%R 10.26615/978-954-452-056-4_066
%U https://aclanthology.org/R19-1066/
%U https://doi.org/10.26615/978-954-452-056-4_066
%P 559-567
Markdown (Informal)
[Multi-level analysis and recognition of the text sentiment on the example of consumer opinions](https://aclanthology.org/R19-1066/) (Kocoń et al., RANLP 2019)
ACL