@inproceedings{nikolov-hahnloser-2019-large,
title = "Large-Scale Hierarchical Alignment for Data-driven Text Rewriting",
author = "Nikolov, Nikola I. and
Hahnloser, Richard",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1098",
doi = "10.26615/978-954-452-056-4_098",
pages = "844--853",
abstract = "We propose a simple unsupervised method for extracting pseudo-parallel monolingual sentence pairs from comparable corpora representative of two different text styles, such as news articles and scientific papers. Our approach does not require a seed parallel corpus, but instead relies solely on hierarchical search over pre-trained embeddings of documents and sentences. We demonstrate the effectiveness of our method through automatic and extrinsic evaluation on text simplification from the normal to the Simple Wikipedia. We show that pseudo-parallel sentences extracted with our method not only supplement existing parallel data, but can even lead to competitive performance on their own.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nikolov-hahnloser-2019-large">
<titleInfo>
<title>Large-Scale Hierarchical Alignment for Data-driven Text Rewriting</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="given">I</namePart>
<namePart type="family">Nikolov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Hahnloser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a simple unsupervised method for extracting pseudo-parallel monolingual sentence pairs from comparable corpora representative of two different text styles, such as news articles and scientific papers. Our approach does not require a seed parallel corpus, but instead relies solely on hierarchical search over pre-trained embeddings of documents and sentences. We demonstrate the effectiveness of our method through automatic and extrinsic evaluation on text simplification from the normal to the Simple Wikipedia. We show that pseudo-parallel sentences extracted with our method not only supplement existing parallel data, but can even lead to competitive performance on their own.</abstract>
<identifier type="citekey">nikolov-hahnloser-2019-large</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_098</identifier>
<location>
<url>https://aclanthology.org/R19-1098</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>844</start>
<end>853</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Large-Scale Hierarchical Alignment for Data-driven Text Rewriting
%A Nikolov, Nikola I.
%A Hahnloser, Richard
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F nikolov-hahnloser-2019-large
%X We propose a simple unsupervised method for extracting pseudo-parallel monolingual sentence pairs from comparable corpora representative of two different text styles, such as news articles and scientific papers. Our approach does not require a seed parallel corpus, but instead relies solely on hierarchical search over pre-trained embeddings of documents and sentences. We demonstrate the effectiveness of our method through automatic and extrinsic evaluation on text simplification from the normal to the Simple Wikipedia. We show that pseudo-parallel sentences extracted with our method not only supplement existing parallel data, but can even lead to competitive performance on their own.
%R 10.26615/978-954-452-056-4_098
%U https://aclanthology.org/R19-1098
%U https://doi.org/10.26615/978-954-452-056-4_098
%P 844-853
Markdown (Informal)
[Large-Scale Hierarchical Alignment for Data-driven Text Rewriting](https://aclanthology.org/R19-1098) (Nikolov & Hahnloser, RANLP 2019)
ACL