@inproceedings{omote-etal-2019-dependency,
title = "Dependency-Based Relative Positional Encoding for Transformer {NMT}",
author = "Omote, Yutaro and
Tamura, Akihiro and
Ninomiya, Takashi",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1099/",
doi = "10.26615/978-954-452-056-4_099",
pages = "854--861",
abstract = "This paper proposes a new Transformer neural machine translation model that incorporates syntactic distances between two source words into the relative position representations of the self-attention mechanism. In particular, the proposed model encodes pair-wise relative depths on a source dependency tree, which are differences between the depths of the two source words, in the encoder`s self-attention. The experiments show that our proposed model achieves 0.5 point gain in BLEU on the Asian Scientific Paper Excerpt Corpus Japanese-to-English translation task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="omote-etal-2019-dependency">
<titleInfo>
<title>Dependency-Based Relative Positional Encoding for Transformer NMT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yutaro</namePart>
<namePart type="family">Omote</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akihiro</namePart>
<namePart type="family">Tamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takashi</namePart>
<namePart type="family">Ninomiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a new Transformer neural machine translation model that incorporates syntactic distances between two source words into the relative position representations of the self-attention mechanism. In particular, the proposed model encodes pair-wise relative depths on a source dependency tree, which are differences between the depths of the two source words, in the encoder‘s self-attention. The experiments show that our proposed model achieves 0.5 point gain in BLEU on the Asian Scientific Paper Excerpt Corpus Japanese-to-English translation task.</abstract>
<identifier type="citekey">omote-etal-2019-dependency</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_099</identifier>
<location>
<url>https://aclanthology.org/R19-1099/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>854</start>
<end>861</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dependency-Based Relative Positional Encoding for Transformer NMT
%A Omote, Yutaro
%A Tamura, Akihiro
%A Ninomiya, Takashi
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F omote-etal-2019-dependency
%X This paper proposes a new Transformer neural machine translation model that incorporates syntactic distances between two source words into the relative position representations of the self-attention mechanism. In particular, the proposed model encodes pair-wise relative depths on a source dependency tree, which are differences between the depths of the two source words, in the encoder‘s self-attention. The experiments show that our proposed model achieves 0.5 point gain in BLEU on the Asian Scientific Paper Excerpt Corpus Japanese-to-English translation task.
%R 10.26615/978-954-452-056-4_099
%U https://aclanthology.org/R19-1099/
%U https://doi.org/10.26615/978-954-452-056-4_099
%P 854-861
Markdown (Informal)
[Dependency-Based Relative Positional Encoding for Transformer NMT](https://aclanthology.org/R19-1099/) (Omote et al., RANLP 2019)
ACL