@inproceedings{ranasinghe-etal-2019-enhancing,
title = "Enhancing Unsupervised Sentence Similarity Methods with Deep Contextualised Word Representations",
author = "Ranasinghe, Tharindu and
Orasan, Constantin and
Mitkov, Ruslan",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1115",
doi = "10.26615/978-954-452-056-4_115",
pages = "994--1003",
abstract = "Calculating Semantic Textual Similarity (STS) plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. All modern state of the art STS methods rely on word embeddings one way or another. The recently introduced contextualised word embeddings have proved more effective than standard word embeddings in many natural language processing tasks. This paper evaluates the impact of several contextualised word embeddings on unsupervised STS methods and compares it with the existing supervised/unsupervised STS methods for different datasets in different languages and different domains",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ranasinghe-etal-2019-enhancing">
<titleInfo>
<title>Enhancing Unsupervised Sentence Similarity Methods with Deep Contextualised Word Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Constantin</namePart>
<namePart type="family">Orasan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Calculating Semantic Textual Similarity (STS) plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. All modern state of the art STS methods rely on word embeddings one way or another. The recently introduced contextualised word embeddings have proved more effective than standard word embeddings in many natural language processing tasks. This paper evaluates the impact of several contextualised word embeddings on unsupervised STS methods and compares it with the existing supervised/unsupervised STS methods for different datasets in different languages and different domains</abstract>
<identifier type="citekey">ranasinghe-etal-2019-enhancing</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_115</identifier>
<location>
<url>https://aclanthology.org/R19-1115</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>994</start>
<end>1003</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Unsupervised Sentence Similarity Methods with Deep Contextualised Word Representations
%A Ranasinghe, Tharindu
%A Orasan, Constantin
%A Mitkov, Ruslan
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F ranasinghe-etal-2019-enhancing
%X Calculating Semantic Textual Similarity (STS) plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. All modern state of the art STS methods rely on word embeddings one way or another. The recently introduced contextualised word embeddings have proved more effective than standard word embeddings in many natural language processing tasks. This paper evaluates the impact of several contextualised word embeddings on unsupervised STS methods and compares it with the existing supervised/unsupervised STS methods for different datasets in different languages and different domains
%R 10.26615/978-954-452-056-4_115
%U https://aclanthology.org/R19-1115
%U https://doi.org/10.26615/978-954-452-056-4_115
%P 994-1003
Markdown (Informal)
[Enhancing Unsupervised Sentence Similarity Methods with Deep Contextualised Word Representations](https://aclanthology.org/R19-1115) (Ranasinghe et al., RANLP 2019)
ACL