@inproceedings{ranasinghe-etal-2019-semantic,
title = "Semantic Textual Similarity with {S}iamese Neural Networks",
author = "Ranasinghe, Tharindu and
Orasan, Constantin and
Mitkov, Ruslan",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1116",
doi = "10.26615/978-954-452-056-4_116",
pages = "1004--1011",
abstract = "Calculating the Semantic Textual Similarity (STS) is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. This paper evaluates Siamese recurrent architectures, a special type of neural networks, which are used here to measure STS. Several variants of the architecture are compared with existing methods",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ranasinghe-etal-2019-semantic">
<titleInfo>
<title>Semantic Textual Similarity with Siamese Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Constantin</namePart>
<namePart type="family">Orasan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Calculating the Semantic Textual Similarity (STS) is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. This paper evaluates Siamese recurrent architectures, a special type of neural networks, which are used here to measure STS. Several variants of the architecture are compared with existing methods</abstract>
<identifier type="citekey">ranasinghe-etal-2019-semantic</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_116</identifier>
<location>
<url>https://aclanthology.org/R19-1116</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>1004</start>
<end>1011</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Textual Similarity with Siamese Neural Networks
%A Ranasinghe, Tharindu
%A Orasan, Constantin
%A Mitkov, Ruslan
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F ranasinghe-etal-2019-semantic
%X Calculating the Semantic Textual Similarity (STS) is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. This paper evaluates Siamese recurrent architectures, a special type of neural networks, which are used here to measure STS. Several variants of the architecture are compared with existing methods
%R 10.26615/978-954-452-056-4_116
%U https://aclanthology.org/R19-1116
%U https://doi.org/10.26615/978-954-452-056-4_116
%P 1004-1011
Markdown (Informal)
[Semantic Textual Similarity with Siamese Neural Networks](https://aclanthology.org/R19-1116) (Ranasinghe et al., RANLP 2019)
ACL
- Tharindu Ranasinghe, Constantin Orasan, and Ruslan Mitkov. 2019. Semantic Textual Similarity with Siamese Neural Networks. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), pages 1004–1011, Varna, Bulgaria. INCOMA Ltd..