@inproceedings{vodolazova-lloret-2019-impact,
title = "The Impact of Rule-Based Text Generation on the Quality of Abstractive Summaries",
author = "Vodolazova, Tatiana and
Lloret, Elena",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1146/",
doi = "10.26615/978-954-452-056-4_146",
pages = "1275--1284",
abstract = "In this paper we describe how an abstractive text summarization method improved the informativeness of automatic summaries by integrating syntactic text simplification, subject-verb-object concept frequency scoring and a set of rules that transform text into its semantic representation. We analyzed the impact of each component of our approach on the quality of generated summaries and tested it on DUC 2002 dataset. Our experiments showed that our approach outperformed other state-of-the-art abstractive methods while maintaining acceptable linguistic quality and redundancy rate."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vodolazova-lloret-2019-impact">
<titleInfo>
<title>The Impact of Rule-Based Text Generation on the Quality of Abstractive Summaries</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tatiana</namePart>
<namePart type="family">Vodolazova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Lloret</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe how an abstractive text summarization method improved the informativeness of automatic summaries by integrating syntactic text simplification, subject-verb-object concept frequency scoring and a set of rules that transform text into its semantic representation. We analyzed the impact of each component of our approach on the quality of generated summaries and tested it on DUC 2002 dataset. Our experiments showed that our approach outperformed other state-of-the-art abstractive methods while maintaining acceptable linguistic quality and redundancy rate.</abstract>
<identifier type="citekey">vodolazova-lloret-2019-impact</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_146</identifier>
<location>
<url>https://aclanthology.org/R19-1146/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>1275</start>
<end>1284</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Impact of Rule-Based Text Generation on the Quality of Abstractive Summaries
%A Vodolazova, Tatiana
%A Lloret, Elena
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F vodolazova-lloret-2019-impact
%X In this paper we describe how an abstractive text summarization method improved the informativeness of automatic summaries by integrating syntactic text simplification, subject-verb-object concept frequency scoring and a set of rules that transform text into its semantic representation. We analyzed the impact of each component of our approach on the quality of generated summaries and tested it on DUC 2002 dataset. Our experiments showed that our approach outperformed other state-of-the-art abstractive methods while maintaining acceptable linguistic quality and redundancy rate.
%R 10.26615/978-954-452-056-4_146
%U https://aclanthology.org/R19-1146/
%U https://doi.org/10.26615/978-954-452-056-4_146
%P 1275-1284
Markdown (Informal)
[The Impact of Rule-Based Text Generation on the Quality of Abstractive Summaries](https://aclanthology.org/R19-1146/) (Vodolazova & Lloret, RANLP 2019)
ACL