@inproceedings{smirnov-2019-neural,
title = "Neural Network-based Models with Commonsense Knowledge for Machine Reading Comprehension",
author = "Smirnov, Denis",
editor = "Kovatchev, Venelin and
Temnikova, Irina and
{\v{S}}andrih, Branislava and
Nikolova, Ivelina",
booktitle = "Proceedings of the Student Research Workshop Associated with RANLP 2019",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-2014/",
doi = "10.26615/issn.2603-2821.2019_014",
pages = "90--94",
abstract = "State-of-the-art machine reading comprehension models are capable of producing answers for factual questions about a given piece of text. However, some type of questions requires commonsense knowledge which cannot be inferred from the given text passage. Thus, external semantic information could enhance the performance of these models. This PhD research proposal provides a brief overview of some existing machine reading comprehension datasets and models and outlines possible ways of their improvement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="smirnov-2019-neural">
<titleInfo>
<title>Neural Network-based Models with Commonsense Knowledge for Machine Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Smirnov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Student Research Workshop Associated with RANLP 2019</title>
</titleInfo>
<name type="personal">
<namePart type="given">Venelin</namePart>
<namePart type="family">Kovatchev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Irina</namePart>
<namePart type="family">Temnikova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Branislava</namePart>
<namePart type="family">Šandrih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivelina</namePart>
<namePart type="family">Nikolova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>State-of-the-art machine reading comprehension models are capable of producing answers for factual questions about a given piece of text. However, some type of questions requires commonsense knowledge which cannot be inferred from the given text passage. Thus, external semantic information could enhance the performance of these models. This PhD research proposal provides a brief overview of some existing machine reading comprehension datasets and models and outlines possible ways of their improvement.</abstract>
<identifier type="citekey">smirnov-2019-neural</identifier>
<identifier type="doi">10.26615/issn.2603-2821.2019_014</identifier>
<location>
<url>https://aclanthology.org/R19-2014/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>90</start>
<end>94</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Network-based Models with Commonsense Knowledge for Machine Reading Comprehension
%A Smirnov, Denis
%Y Kovatchev, Venelin
%Y Temnikova, Irina
%Y Šandrih, Branislava
%Y Nikolova, Ivelina
%S Proceedings of the Student Research Workshop Associated with RANLP 2019
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F smirnov-2019-neural
%X State-of-the-art machine reading comprehension models are capable of producing answers for factual questions about a given piece of text. However, some type of questions requires commonsense knowledge which cannot be inferred from the given text passage. Thus, external semantic information could enhance the performance of these models. This PhD research proposal provides a brief overview of some existing machine reading comprehension datasets and models and outlines possible ways of their improvement.
%R 10.26615/issn.2603-2821.2019_014
%U https://aclanthology.org/R19-2014/
%U https://doi.org/10.26615/issn.2603-2821.2019_014
%P 90-94
Markdown (Informal)
[Neural Network-based Models with Commonsense Knowledge for Machine Reading Comprehension](https://aclanthology.org/R19-2014/) (Smirnov, RANLP 2019)
ACL