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Abstract 

In this paper we describe UMCC_DLSI-

(DDI) system which attempts to detect and 

classify drug entities in biomedical texts. 

We discuss the use of semantic class and 

words relevant domain, extracted with ISR-

WN (Integration of Semantic Resources 

based on WordNet) resource to obtain our 

goal. Following this approach our system 

obtained an F-Measure of 27.5% in the 

DDIExtraction 2013 (SemEval 2013 task 

9). 

1. Introduction 

To understand biological processes, we must 

clarify how some substances interact with our 

body and one to each other. One of these 

important relations is the drug-drug interactions 

(DDIs). They occur when one drug interacts 

with another or when it affects the level, or 

activity of another drug. DDIs can change the 

way medications act in the body, they can cause 

powerful, dangerous and unexpected side 

effects, and also they can make the medications 

less effective. 

As suggested by (Segura-Bedmar et al., 2011), 

“...the detection of DDI is an important research 

area in patient safety since these interactions 

can become very dangerous and increase health 

care costs”. More recent studies (Percha and 

Altman, 2013) reports that “…Recent estimates 

indicate that DDIs cause nearly 74000 

emergency room visits and 195000 

hospitalizations each year in the USA”.  

But, on the other hand, there is an expansion in 

the volume of published biomedical research, 

and therefore the underlying biomedical 

knowledge base (Cohen and Hersh, 2005). 

Unfortunately, as often happens, this 

information is unstructured or in the best case 

scenario semi-structured. 

As we can see in (Tari et al., 2010), “Clinical 

support tools often provide comprehensive lists 

of DDIs, but they usually lack the supporting 

scientific evidences and different tools can 

return inconsistent results”.  

Although, as mentioned (Segura-Bedmar et al., 

2011) “there are different databases supporting 

healthcare professionals in the detection of DDI, 

these databases are rarely complete, since their 

update periods can reach up to three years”. In 

addition to these and other difficulties, the great 

amount of drug interactions are frequently 

reported in journals of clinical pharmacology 

and technical reports, due to this fact, medical 

literature becomes most effective source for 

detection of DDI. Thereby, the management of 

DDI is a critical issue due to the overwhelming 

amount of information available on them 

(Segura-Bedmar et al., 2011). 
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1.1. Task Description 

With the aim of reducing the time the health care 

professionals invest on reviewing the literature, 

we present a feature-based system for drug 

detection and classification in biomedical texts. 

The DDIExtraction2013 task was divided into 

two subtasks: Recognition and classification of 

drug names (Task 9.1) and Extraction of drug-

drug interactions (Task 9.2). Our system was 

developed to be presented in the Task 9.1. In this 

case, participants were to detect and classify the 

drugs that were present in the test data set which 

was a set of sentences related to the biomedical 

domain obtained from a segmented corpus. The 

output consisted of a list mentioning all the 

detected drugs with information concerning the 

sentence it was detected from as well as its 

offset in that sentence (the position of the first 

and the last character of the drug in the sentence, 

0 being the first character of a sentence). Also 

the type of the drug should have been provided. 

As to the type, participants had to classify 

entities in one of these four groups1: 

 Drug: any chemical agent used for 

treatment, cure, prevention or diagnose of 

diseases, which have been approved for 

human usage. 

 Brand: any drug which firstly have been 

developed by a pharmaceutical company. 

 Group: any term in the text designating a 

relation among pharmaceutical substances. 

 No-Human: any chemical agent which 

affects the human organism. An active 

substance non-approved for human usage 

as medication. 

In the next section of the paper, we present 

related works (Section 2). In Section 3, we 

discuss the feature-based system we propose. 

Evaluation results are discussed in Section 4. 

Finally, we conclude and propose future work 

(Section 5). 

2. Related Work 

One of the most important workshops on the 

domain of Bioinformatics has been BioCreAtIve 

(Critical Assessment of Information Extraction 

                                                      

1 http://www.cs.york.ac.uk/semeval-2013/task9 

in Biology) (Hirschman et al., 2005). This 

workshop has improved greatly the Information 

Extraction techniques applied to the biological 

domain. The goal of the first BioCreAtIvE 

challenge was to provide a set of common 

evaluation tasks to assess the state-of-the-art for 

text mining applied to biological problems. The 

workshop was held in Granada, Spain on March 

28-31, 2004. 

According to Hirschman, the first 

BioCreAtIvE assessment achieved a high level 

of international participation (27 groups from 10 

countries). The best system results for a basic 

task (gene name finding and normalization), 

where a balanced 80% precision/recall or better, 

which potentially makes them suitable for real 

applications in biology. The results for the 

advanced task (functional annotation from free 

text) were significantly lower, demonstrating the 

current limitations of text-mining approaches. 

The greatest contribution of BioCreAtIve was 

the creation and release of training and test data 

sets for both tasks (Hirschman et al., 2005). 

One of the seminal works where the issue of 

drug detection was mentioned was (Grönroos et 

al., 1995). Authors argue the problem can be 

solved by using a computerized information 

system, which includes medication data of 

individual patients as well as information about 

non-therapeutic drug-effects. Also, they suggest 

a computerized information system to build 

decision support modules that, automatically 

give alarms or alerts of important drug effects 

other than therapeutic effects. If these warnings 

concern laboratory tests, they would be checked 

by a laboratory physician and only those with 

clinical significance would be sent to clinicians. 

Here, it is important to note the appearance of 

the knowledgebase DrugBank 2 . Since its first 

release in 2006 (Wishart et al., 2008) it has been 

widely used to facilitate in silico drug target 

discovery, drug design, drug docking or 

screening, drug metabolism prediction, drug 

interaction prediction and general 

pharmaceutical education. DrugBank has also 

significantly improved the power and simplicity 

of its structure query and text query searches. 

                                                      

2 http://redpoll.pharmacy.ualberta.ca/drugbank/ 
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Later on, in 2010 Tari propose an approach 

that integrates text mining and automated 

reasoning to derive DDIs (Tari et al., 2010). 

Through the extraction of various facts of drug 

metabolism, they extract, not only the explicitly 

DDIs mentioned in text, but also the potential 

interactions that can be inferred by reasoning. 

This approach was able to find several potential 

DDIs that are not present in DrugBank. This 

analysis revealed that 81.3% of these 

interactions are determined to be correct. 

On the DDIExtraction 2011 (Segura-Bedmar et 

al., 2011) workshop (First Challenge Task on 

Drug-Drug Interaction Extraction) the best 

performance was achieved by the team WBI 

from Humboldt-Universitat, Berlin. This team 

combined several kernels and a case-based 

reasoning (CBR) system, using a voting 

approach. 

In this workshop relation extraction was 

frequently and successfully addressed by 

machine learning methods. Some of the more 

common used features were co-occurrences, 

character n-grams, Maximal Frequent 

Sequences, bag-of-words, keywords, etc. 

Another used technique is distant supervision. 

The first system evaluating distant supervision 

for drug-drug interaction was presented in 

(Bobić et al., 2012), they have proposed a 

constraint to increase the quality of data used for 

training based on the assumption that no self-

interaction of real-world objects are described in 

sentences. In addition, they merge information 

from IntAct and the University of Kansas 

Proteomics Service (KUPS) database in order to 

detect frequent exceptions from the distant 

supervision assumption and make use of more 

data sources. 

Another important work related to Biomedical 

Natural Language Processing was BioNLP 

(Björne et al., 2011) it is an application of 

natural language processing methods to analyze 

textual data on biology and medicine, often 

research articles. They argue that information 

extraction techniques can be used to mine large 

text datasets for relevant information, such as 

relations between specific types of entities. 

Inspired in the previews works the system we 

propose makes use of machine learning methods 

too, using some of the common features 

described above, such as the n-grams and 

keywords and co-occurrences, but we also add 

some semantic information to enrich those 

features. 

3. System Description  

As it has been mentioned before, the system was 

developed to detect and classify drugs in 

biomedical texts, so the process is performed in 

two main phases:  

 drug detection. 

 drug classification. 

Both phases are determined by the following 

stages, described in Figure 1: 

I. Preprocessing 

II. Feature extraction 

III. Classification 

 
 

 
 

 
 

 

Figure 1. Walkthrough system process. 
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of the sentence, by means of Freeling tool 3 . 

After that, it is able to generate candidates 

according to certain parameters (see section 3.3). 

Then, all the generated candidates are 

processed to extract the features needed for the 

learning methods, in order to determine which 

candidates are drugs. 

After the drugs are detected, the system 

generates a tagged corpus, following the 

provided training corpus structure, containing 

the detected entities, and then it proceeds to 

classify each one of them. To do so, another 

supervised learning algorithm was used (see 

section 3.3). 

3.1. Candidates generation 

Drugs and drug groups, as every entity in 

Natural Language, follow certain grammatical 

patterns. For instance, a drug is usually a noun 

or a set of nouns, or even a combination of verbs 

and nouns, especially verbs in the past participle 

tense and gerunds. But, one thing we noticed is 

that both drugs and drug groups end with a noun 

and as to drug groups that noun is often in the 

plural. 

Based on that idea, we decided to generate 

candidates starting from the end of each 

sentence and going forward. 

Generation starts with the search of a pivot 

word, which in this case is a noun. When the 

pivot is found, it is added to the candidates list, 

and then the algorithm takes the word before the 

pivot to see if it complies with one of the 

patterns i.e. if the word is a noun, an adjective, a 

gerund or past participle verb. If it does, then it 

and the pivot form another candidate.  

After that, the algorithm continues until it finds 

a word that does not comply with a pattern. In 

this case, it goes to the next pivot and stops 

when all the nouns in the sentence have been 

processed, or the first word of the sentence is 

reached. 

3.2. Feature Description 

For the DDIExtraction20134 task 9 three runs of 

the same system were performed with different 

                                                      

3 http://nlp.lsi.upc.edu/freeling/ 

features each time. The next sections describes 

the features we used. 

3.2.1. Most Frequent Semantic Classes 

(MFSC) 

Given a word, its semantic class label (Izquierdo 

et al., 2007) is obtained from WordNet using the 

ISR-WN resource (Gutiérrez et al., 2011; 2010). 

The semantic class is that associated to the most 

probable sense of the word. For each entity in 

the training set we take the words in the same 

sentence and for each word its semantic class is 

determined. This way, we identify the 4005 most 

frequent semantic classes associated to words 

surrounding the entities in the training set.  

For a candidate entity we use 400 features to 

encode information with regard to whether or 

not in its same sentence a word can be found 

belonging to one of the most frequent semantic 

classes. 

Each one of these features takes a value 

representing the distance (measured in words) a 

candidate is from the nearest word with same 

semantic class which represents the attribute.  

If the word is to the left of the candidate, the 

attribute takes a negative value, if it is to the 

right, the value is positive, and zero if no word 

with that semantic class is present in the 

sentence the candidate belongs to. 

To better understand that, consider A1 is the 

attribute which indicates if in the sentence of the 

candidate a word can be found belonging to the 

semantic class 1. Thus, the value of A1 is the 

distance the candidate is from the closest word 

with semantic class 1 in the sentence that is 

being analyzed. 

3.2.2. Candidate Semantic Class (CSC) 

The semantic class of candidates is also included 

in the feature set, if the candidate is a multi-

word, then the semantic class of the last word 

(the pivot word) is taken.  

 

                                                                                

4 http://www.cs.york.ac.uk/semeval-2013/task9/ 
5 This value was extracted from our previous experiment. 
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3.2.3. Most Frequent Semantic Classes 

from Entities (EMFSC) 

In order to add more semantic information, we 

decided to find the most frequent semantic 

classes among all the entities that were tagged in 

the training data set. We included, in the feature 

set, all the semantic classes with a frequency of 

eight or more, because all the classes we wanted 

to identify were represented in that threshold. In 

total, they make 29 more features. The values of 

every one of them, is the sum of the number of 

times it appears in the candidate.  

3.2.4. Candidate Semantic Class All 

Words (CSC-All) 

This feature is similar to CSC, but in this case 

the candidate is a multi-word, we not only look 

for the semantic class of the pivot, but also the 

whole candidate as one. 

3.2.5. Drug-related domains (DRD) 

Another group of eight attributes describes how 

many times each one of the candidates belongs 

to one of the following drug-related domains 

(DRD) (medicine, anatomy, biology, chemistry, 

physiology, pharmacy, biochemistry, genetics).  

These domains where extracted from WordNet 

Domains. In order to determine the domain that 

a word belongs to, the proposal of DRelevant 

(Vázquez et al., 2007; Vázquez et al., 2004) was 

used. 

To illustrate how the DRD features take their 

values, consider the following sentence: 

“…until the lipid response to Accutane is 

established.” 

One of the candidates the system generates 

would be “lipid response”. It is a two-word 

candidate, so we take the first word and see if it 

belongs to one of the above domains. If it does, 

then we add one to that feature. If the word does 

not belong to any of the domains, then its value 

will be zero. We do the same with the other 

word. In the end, we have a collection where 

every value corresponds to each one of the 

domains. For the example in question the 

collection would be:  

 

 

medicine 1 

anatomy 0 

biology 0 

chemistry 0 

physiology 1 

pharmacy 0 

biochemistry 0 

genetics 0 

Table 1. DRD value assignment example. 

3.2.6. Candidate word number (WNum) 

Because there are candidates that are a multi-

word and others that are not, it may be the case 

that a candidate, which is a multi-word, has an 

EMFSC bigger than others which are not a 

multi-word, just because more than one of the 

words that conform it, have a frequent semantic 

class.  

We decided to add a feature, called WNum, 

which would help us normalize the values of the 

EMFSC. The value of the feature would be the 

number of words the candidate has. Same thing 

happens with DRD. 

3.2.7. Candidate Domain (CD) 

The value of this nominal feature is the domain 

associated to the candidate. If the candidate is a 

multi-word; we get the domain of all the words 

as a whole. In both cases the domain for a single 

word as well as for a multi-word is determined 

using the relevant domains obtained by 

(Vázquez et al., 2007; Vázquez et al., 2004). 

3.2.8. Maximum Frequent 2-grams, 3-

grams 

Drugs usually contain sequences of characters 

that are very frequent in biomedical domain 

texts. These character sequences are called n-

grams, where n is the number of characters in 

the sequence. Because of that, we decided to add 

the ten most frequent n-grams with n between 

two and three. The selected n-grams are the 

following: “in” (frequency: 8170), “ne” (4789), 

“ine” (3485), “ti” (3234), “id” (2768), “an” 

(2704), “ro” (2688), “nt” (2593), “et” (2423), 

“en” (2414). 

These features take a value of one if the 

candidate has the corresponding character 

sequence and zero if it does not. For instance: if 
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we had the candidate “panobinostat” it will 

generate the following collection:  

“in” 1 

“ne” 0 

“ine” 0 

“ti” 0 

“id” 0 

“an” 1 

“ro” 0 

“nt” 0 

“et” 0 

“en” 0 

Table 2. MF 2-gram, 3-gram. 

3.2.9. Uppercase (UC), Uppercase All 

(UCA). Multi-word (MWord) and 

Number (N) 

Other features say if the first letter of the 

candidate is an uppercase; if all of the letters are 

uppercase (UCA); if it is a multi-word (MWord) 

and also if it is in the singular or in the plural 

(N).  

3.2.10. L1, L2, L3 and R1, R2, R3 

The Part-of-Speech tags of the closest three 

surrounding words of the candidates are also 

included. We named those features L1, L2, and 

L3 for POS tags to the left of the candidate, and 

R1, R2, and R3 for those to the right. 

3.2.11. POS-tagging combination (GC) 

Different values are assigned to candidates, in 

order to identify its POS-tagging combination. 

For instance: to the following entity “combined 

oral contraceptives” taken from DDI13-train-

TEES-analyses-130304.xml6 training file, which 

was provided for task 9.1, corresponds 5120. 

This number is the result of combining the four 

grammatical categories that really matter to us: 

R for adverb, V for verb, J for adjective, N for 

noun.  

A unique number was given to each 

combination of those four letters. We named this 

feature  GC. 

 

                                                      

6 http://www.cs.york.ac.uk/semeval-2013/task9 

3.2.12. In resource feature (InRe) 

A resource was created which contains all the 

drug entities that were annotated in the training 

corpus, so another attribute tells the system if the 

candidate is in the resource.  

Since all of the entities in the training data set 

were in the resource this attribute could take a 

value of one for all instances. Thus the classifier 

could classify correctly all instances in the 

training data set just looking to this attribute, 

which is not desirable. To avoid that problem, 

we randomly set its value to zero every 9/10 of 

the training instances. 

3.3. Classification 

All the features extracted in the previous stages 

are used in this stage to obtain the two models, 

one for drug detection phase, and the other for 

drug classification phase.  

We accomplished an extensive set of 

experiments in order to select the best classifier. 

All algorithms implemented in WEKA, except 

those that were designed specifically for a 

regression task, were tried. In each case we 

perform a 10-fold cross-validation. In all 

experiments the classifiers were settled with the 

default configuration. From those tests we select 

a decision tree, the C4.5 algorithm (Gutiérrez et 

al., 2011; 2010) implemented as the J48 

classifier in WEKA.  This classifier yields the 

better results for both drug detection and drug 

classification. 

The classifier was trained using a set of 463 

features, extracted from the corpus provided by 

SemEval 2013, the task 9 in question. 

As it was mentioned before, three runs were 

performed for the competition. Run (1) used the 

following features for drug detection: MFSC 

(only 200 frequent semantic classes), MF 2-

grams, 3-grams, UC, UCA, MWord, N, L1, L2, 

L3, R1, R2, R3, CSC, CD, WNum, GC and 

InRe.  

Drug classification in this run used the same 

features except for CD, WNum, and GC. Run 

(2) has all the above features, but we added the 

remaining 200 sematic classes that we left out in 

Run (1) to the detection and the classification 

models. In Run (3), we added EMFSC feature to 

the detection and the classification models. 
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4. Results 

In the task, the results of the participants were 

compared to a gold-standard and evaluated 

according to various evaluation criteria:  

 Exact evaluation, which demands not only 

boundary match, but also the type of the 

detected drug has to be the same as that of 

the gold-standard. 

 Exact boundary matching (regardless of 

the type). 

 Partial boundary matching (regardless of 

the type) 

 Type matching. 

Precision and recall were calculated using the 

scoring categories proposed by MUC 7: 

 COR: the output of the system and the 

gold-standard annotation agree. 

 INC: the output of the system and the 

gold-standard annotation disagree. 

 PAR: the output of the system and the 

gold-standard annotation are not identical 

but has some overlapping text. 

 MIS: the number of gold-standard entities 

that were not identify by the system. 

 SPU: the number of entities labeled by the 

system that are not in the gold-standard. 

Table 3 , Table 4 and Table 5 show the system 

results in the DDIExtraction2013 competition 

for Run (1).  

Run (2) and Run (3) results are almost the 

same as Run (1). It is an interesting result since 

in those runs 200 additional features were 

supplied to the classifier.  In feature evaluation, 

using CfsSubsetEval and GeneticSearch with 

WEKA we found that all these new features 

were ranked as worthless for the classification. 

On the other hand, the following features were 

the ones that really influenced the classifiers: 

MFSC (215 features only), MF 2-grams, 3-

grams (“ne”, “ine”, “ti”, “ro”, “et”, “en”), 

WNum, UC, UCA, L1, R1, CSC, CSC-All, CD, 

DRD (anatomy, physiology, pharmacy, 

biochemistry), InRe, GC and EMFS, specifically 

music.n.01, substance.n.01, herb.n.01, 

artifact.n.01, nutriment.n.01, nonsteroidal_anti-

inflammatory.n.01, causal_agent.n.01 have a 

                                                      

7http://www.itl.nist.gov/iaui/894.02/related_projects/muc/m

uc_sw/muc_sw_manual.html 

frequency of 8, 19, 35, 575, 52, 80, 63 

respectively.  

Measure Strict 
Exact 

Matching 

Partial 

Matching 
Type 

COR 319 354 354 388 

INC 180 145 0 111 

PAR 0 0 145 0 

MIS 187 187 187 187 

SPU 1137 1137 1137 1137 

Precision 0.19 0.22 0.22 0.24 

Recall 0.47 0.52 0.62 0.57 

Table 3. Run (1), all scores. 

Measure Drug Brand Group Drug_n 

COR 197 20 93 9 

INC 23 2 43 1 

PAR 0 0 0 0 

MIS 131 37 19 111 

SPU 754 47 433 14 

Precision 0.2 0.29 016 0.38 

Recall 0.56 0.34 0.6 0.07 

F1 0.3 0.31 0.26 0.12 

Table 4. Scores for entity types, exact matching in 

Run (1). 

 Precision Recall F1 

Macro average 0.26 0.39 0.31 

Strict matching 0.19 0.46 0.27 

Table 5. Macro average and Strict matching measures 

in Run (1). 

5. Conclusion and future works 

In this paper we show the description of 

UMCC_DLSI-(DDI) system, which is able to 

detect and classify drugs in biomedical texts 

with acceptable efficacy. It introduces in this 

thematic the use of semantic information such as 

semantic classes and the relevant domain of the 

words, extracted with ISR-WN resource. With 

this approach we obtained an F-Measure of 

27.5% in the Semeval DDI Extraction2013 task 

9.  

As further work we propose to eliminate some 

detected bugs (i.e. repeated instances, 

multiwords missed) and enrich our knowledge 

base (ISR-WN), using biomedical sources as 

UMLS8, SNOMED9 and OntoFis10. 

                                                      

8 http://www.nlm.nih.gov/research/umls 
9 http://www.ihtsdo.org/snomed-ct/ 
10 http://rua.ua.es/dspace/handle/10045/14216 
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