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Welcome to SemEval-2014

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyse diverse semantic phenomena in text with the aim of extending the current state-
of-the-art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2014 is the eighth workshop in the series. The first three workshops, SensEval-1 (1998),
SensEval-2 (2001), and SensEval-3 (2004), focused on word sense disambiguation, each time growing
in the number of languages offered in the tasks and in the number of participating teams. In 2007, the
workshop was renamed as SemEval, and in the next four workshops SemEval-2007/2010/2012/2013 the
nature of the tasks evolved to include semantic analysis tasks outside of word sense disambiguation.
Starting in 2012, SemEval turned into a yearly event.

This volume contains papers accepted for presentation at the SemEval-2014 International Workshop on
Semantic Evaluation Exercises. SemEval-2014 was co-located with the 25th International Conference
on Computational Linguistics (COLING) in Dublin.

SemEval-2014 included the following 10 shared tasks:

1. Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic
Relatedness and Entailment

2. Grammar Induction for Spoken Dialogue Systems

3. Cross-Level Semantic Similarity

4. Aspect Based Sentiment Analysis

5. L2 Writing Assistant

6. Supervised Semantic Parsing of Spatial Robot Commands

7. Analysis of Clinical Text

8. Broad-Coverage Semantic Dependency Parsing

9. Sentiment Analysis in Twitter

10. Multilingual Semantic Textual Similarity

About 185 teams submitted more than 500 systems for the 10 tasks of SemEval-2014. This volume
contains both Task Description papers that describe each of the above tasks and System Description
papers that describe the systems that participated in the above tasks. A total of 10 task description papers
and 139 system description papers are included in this volume.

We are grateful to all program committee members for their high quality, elaborate and thoughtful
reviews. The papers in this proceedings have surely benefited from this feedback. We also thank
the COLING’2014 conference organizers for the local organization and the forum. Finally, we most
gratefully acknowledge the support of our sponsor, the ACL Special Interest Group on the Lexicon
(SIGLEX).

Welcome to SemEval-2014,
Preslav Nakov and Torsten Zesch
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Abstract

This paper presents the task on the evalu-
ation of Compositional Distributional Se-
mantics Models on full sentences orga-
nized for the first time within SemEval-
2014. Participation was open to systems
based on any approach. Systems were pre-
sented with pairs of sentences and were
evaluated on their ability to predict hu-
man judgments on (i) semantic relatedness
and (ii) entailment. The task attracted 21
teams, most of which participated in both
subtasks. We received 17 submissions in
the relatedness subtask (for a total of 66
runs) and 18 in the entailment subtask (65
runs).

1 Introduction

Distributional Semantic Models (DSMs) approx-
imate the meaning of words with vectors sum-
marizing their patterns of co-occurrence in cor-
pora. Recently, several compositional extensions
of DSMs (CDSMs) have been proposed, with the
purpose of representing the meaning of phrases
and sentences by composing the distributional rep-
resentations of the words they contain (Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011; Mitchell and Lapata, 2010; Socher et al.,
2012). Despite the ever increasing interest in the
field, the development of adequate benchmarks for
CDSMs, especially at the sentence level, is still
lagging. Existing data sets, such as those intro-
duced by Mitchell and Lapata (2008) and Grefen-
stette and Sadrzadeh (2011), are limited to a few
hundred instances of very short sentences with a
fixed structure. In the last ten years, several large

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

data sets have been developed for various com-
putational semantics tasks, such as Semantic Text
Similarity (STS)(Agirre et al., 2012) or Recogniz-
ing Textual Entailment (RTE) (Dagan et al., 2006).
Working with such data sets, however, requires
dealing with issues, such as identifying multiword
expressions, recognizing named entities or access-
ing encyclopedic knowledge, which have little to
do with compositionality per se. CDSMs should
instead be evaluated on data that are challenging
for reasons due to semantic compositionality (e.g.
context-cued synonymy resolution and other lexi-
cal variation phenomena, active/passive and other
syntactic alternations, impact of negation at vari-
ous levels, operator scope, and other effects linked
to the functional lexicon). These issues do not oc-
cur frequently in, e.g., the STS and RTE data sets.

With these considerations in mind, we devel-
oped SICK (Sentences Involving Compositional
Knowledge), a data set aimed at filling the void,
including a large number of sentence pairs that
are rich in the lexical, syntactic and semantic phe-
nomena that CDSMs are expected to account for,
but do not require dealing with other aspects of
existing sentential data sets that are not within
the scope of compositional distributional seman-
tics. Moreover, we distinguished between generic
semantic knowledge about general concept cate-
gories (such as knowledge that a couple is formed
by a bride and a groom) and encyclopedic knowl-
edge about specific instances of concepts (e.g.,
knowing the fact that the current president of the
US is Barack Obama). The SICK data set contains
many examples of the former, but none of the lat-
ter.

2 The Task

The Task involved two subtasks. (i) Relatedness:
predicting the degree of semantic similarity be-
tween two sentences, and (ii) Entailment: detect-
ing the entailment relation holding between them
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(see below for the exact definition). Sentence re-
latedness scores provide a direct way to evalu-
ate CDSMs, insofar as their outputs are able to
quantify the degree of semantic similarity between
sentences. On the other hand, starting from the
assumption that understanding a sentence means
knowing when it is true, being able to verify
whether an entailment is valid is a crucial chal-
lenge for semantic systems.

In the semantic relatedness subtask, given two
sentences, systems were required to produce a re-
latedness score (on a continuous scale) indicating
the extent to which the sentences were expressing
a related meaning. Table 1 shows examples of sen-
tence pairs with different degrees of semantic re-
latedness; gold relatedness scores are expressed on
a 5-point rating scale.

In the entailment subtask, given two sentences
A and B, systems had to determine whether the
meaning of B was entailed by A. In particular, sys-
tems were required to assign to each pair either
the ENTAILMENT label (when A entails B, viz.,
B cannot be false when A is true), the CONTRA-
DICTION label (when A contradicted B, viz. B is
false whenever A is true), or the NEUTRAL label
(when the truth of B could not be determined on
the basis of A). Table 2 shows examples of sen-
tence pairs holding different entailment relations.

Participants were invited to submit up to five
system runs for one or both subtasks. Developers
of CDSMs were especially encouraged to partic-
ipate, but developers of other systems that could
tackle sentence relatedness or entailment tasks
were also welcome. Besides being of intrinsic in-
terest, the latter systems’ performance will serve
to situate CDSM performance within the broader
landscape of computational semantics.

3 The SICK Data Set

The SICK data set, consisting of about 10,000 En-
glish sentence pairs annotated for relatedness in
meaning and entailment, was used to evaluate the
systems participating in the task. The data set
creation methodology is outlined in the following
subsections, while all the details about data gen-
eration and annotation, quality control, and inter-
annotator agreement can be found in Marelli et al.
(2014).

3.1 Data Set Creation

SICK was built starting from two existing data
sets: the 8K ImageFlickr data set1 and the
SemEval-2012 STS MSR-Video Descriptions data
set.2 The 8K ImageFlickr dataset is a dataset of
images, where each image is associated with five
descriptions. To derive SICK sentence pairs we
randomly chose 750 images and we sampled two
descriptions from each of them. The SemEval-
2012 STS MSR-Video Descriptions data set is a
collection of sentence pairs sampled from the short
video snippets which compose the Microsoft Re-
search Video Description Corpus. A subset of 750
sentence pairs were randomly chosen from this
data set to be used in SICK.

In order to generate SICK data from the 1,500
sentence pairs taken from the source data sets, a 3-
step process was applied to each sentence compos-
ing the pair, namely (i) normalization, (ii) expan-
sion and (iii) pairing. Table 3 presents an example
of the output of each step in the process.

The normalization step was carried out on the
original sentences (S0) to exclude or simplify in-
stances that contained lexical, syntactic or seman-
tic phenomena (e.g., named entities, dates, num-
bers, multiword expressions) that CDSMs are cur-
rently not expected to account for.

The expansion step was applied to each of the
normalized sentences (S1) in order to create up to
three new sentences with specific characteristics
suitable to CDSM evaluation. In this step syntac-
tic and lexical transformations with predictable ef-
fects were applied to each normalized sentence, in
order to obtain (i) a sentence with a similar mean-
ing (S2), (ii) a sentence with a logically contradic-
tory or at least highly contrasting meaning (S3),
and (iii) a sentence that contains most of the same
lexical items, but has a different meaning (S4) (this
last step was carried out only where it could yield
a meaningful sentence; as a result, not all normal-
ized sentences have an (S4) expansion).

Finally, in the pairing step each normalized
sentence in the pair was combined with all the
sentences resulting from the expansion phase and
with the other normalized sentence in the pair.
Considering the example in Table 3, S1a and S1b
were paired. Then, S1a and S1b were each com-
bined with S2a, S2b,S3a, S3b, S4a, and S4b, lead-

1http://nlp.cs.illinois.edu/HockenmaierGroup/data.html
2http://www.cs.york.ac.uk/semeval-

2012/task6/index.php?id=data
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Relatedness score Example

1.6
A: “A man is jumping into an empty pool”
B: “There is no biker jumping in the air”

2.9
A: “Two children are lying in the snow and are making snow angels”
B: “Two angels are making snow on the lying children”

3.6
A: “The young boys are playing outdoors and the man is smiling nearby”
B: “There is no boy playing outdoors and there is no man smiling”

4.9
A: “A person in a black jacket is doing tricks on a motorbike”
B: “A man in a black jacket is doing tricks on a motorbike”

Table 1: Examples of sentence pairs with their gold relatedness scores (on a 5-point rating scale).

Entailment label Example

ENTAILMENT
A: “Two teams are competing in a football match”
B: “Two groups of people are playing football”

CONTRADICTION
A: “The brown horse is near a red barrel at the rodeo”
B: “The brown horse is far from a red barrel at the rodeo”

NEUTRAL
A: “A man in a black jacket is doing tricks on a motorbike”
B: “A person is riding the bicycle on one wheel”

Table 2: Examples of sentence pairs with their gold entailment labels.

ing to a total of 13 different sentence pairs.
Furthermore, a number of pairs composed of

completely unrelated sentences were added to the
data set by randomly taking two sentences from
two different pairs.

The result is a set of about 10,000 new sen-
tence pairs, in which each sentence is contrasted
with either a (near) paraphrase, a contradictory or
strongly contrasting statement, another sentence
with very high lexical overlap but different mean-
ing, or a completely unrelated sentence. The ra-
tionale behind this approach was that of building
a data set which encouraged the use of a com-
positional semantics step in understanding when
two sentences have close meanings or entail each
other, hindering methods based on individual lex-
ical items, on the syntactic complexity of the two
sentences or on pure world knowledge.

3.2 Relatedness and Entailment Annotation

Each pair in the SICK dataset was annotated to
mark (i) the degree to which the two sentence
meanings are related (on a 5-point scale), and (ii)
whether one entails or contradicts the other (con-

sidering both directions). The ratings were col-
lected through a large crowdsourcing study, where
each pair was evaluated by 10 different subjects,
and the order of presentation of the sentences was
counterbalanced (i.e., 5 judgments were collected
for each presentation order). Swapping the order
of the sentences within each pair served a two-
fold purpose: (i) evaluating the entailment rela-
tion in both directions and (ii) controlling pos-
sible bias due to priming effects in the related-
ness task. Once all the annotations were collected,
the relatedness gold score was computed for each
pair as the average of the ten ratings assigned by
participants, whereas a majority vote scheme was
adopted for the entailment gold labels.

3.3 Data Set Statistics

For the purpose of the task, the data set was ran-
domly split into training and test set (50% and
50%), ensuring that each relatedness range and en-
tailment category was equally represented in both
sets. Table 4 shows the distribution of sentence
pairs considering the combination of relatedness
ranges and entailment labels. The “total” column

3



Original pair
S0a: A sea turtle is hunting for fish S0b: The turtle followed the fish

Normalized pair
S1a: A sea turtle is hunting for fish S1b: The turtle is following the fish

Expanded pairs
S2a: A sea turtle is hunting for food S2b: The turtle is following the red fish
S3a: A sea turtle is not hunting for fish S3b: The turtle isn’t following the fish
S4a: A fish is hunting for a turtle in the sea S4b: The fish is following the turtle

Table 3: Data set creation process.

indicates the total number of pairs in each range
of relatedness, while the “total” row contains the
total number of pairs in each entailment class.

SICK Training Set

relatedness CONTRADICT ENTAIL NEUTRAL TOTAL

1-2 range 0 (0%) 0 (0%) 471 (10%) 471

2-3 range 59 (1%) 2 (0%) 638 (13%) 699

3-4 range 498 (10%) 71 (1%) 1344 (27%) 1913

4-5 range 155 (3%) 1344 (27%) 352 (7%) 1851

TOTAL 712 1417 2805 4934

SICK Test Set

relatedness CONTRADICT ENTAIL NEUTRAL TOTAL

1-2 range 0 (0%) 1 (0%) 451 (9%) 452

2-3 range 59 (1%) 0 (0%) 615(13%) 674

3-4 range 496 (10%) 65 (1%) 1398 (28%) 1959

4-5 range 157 (3%) 1338 (27%) 326 (7%) 1821

TOTAL 712 1404 2790 4906

Table 4: Distribution of sentence pairs across the
Training and Test Sets.

4 Evaluation Metrics and Baselines

Both subtasks were evaluated using standard met-
rics. In particular, the results on entailment were
evaluated using accuracy, whereas the outputs on
relatedness were evaluated using Pearson correla-
tion, Spearman correlation, and Mean Squared Er-
ror (MSE). Pearson correlation was chosen as the
official measure to rank the participating systems.

Table 5 presents the performance of 4 base-
lines. The Majority baseline always assigns
the most common label in the training data
(NEUTRAL), whereas the Probability baseline
assigns labels randomly according to their rela-
tive frequency in the training set. The Overlap
baseline measures word overlap, again with
parameters (number of stop words and EN-
TAILMENT/NEUTRAL/CONTRADICTION
thresholds) estimated on the training part of the
data.

Baseline Relatedness Entailment
Chance 0 33.3%
Majority NA 56.7%
Probability NA 41.8%
Overlap 0.63 56.2%

Table 5: Performance of baselines. Figure of merit
is Pearson correlation for relatedness and accuracy
for entailment. NA = Not Applicable

5 Submitted Runs and Results

Overall, 21 teams participated in the task. Partici-
pants were allowed to submit up to 5 runs for each
subtask and had to choose the primary run to be in-
cluded in the comparative evaluation. We received
17 submissions to the relatedness subtask (for a
total of 66 runs) and 18 for the entailment subtask
(65 runs).

We asked participants to pre-specify a pri-
mary run to encourage commitment to a
theoretically-motivated approach, rather than
post-hoc performance-based assessment. Inter-
estingly, some participants used the non-primary
runs to explore the performance one could reach
by exploiting weaknesses in the data that are not
likely to hold in future tasks of the same kind
(for instance, run 3 submitted by The Meaning
Factory exploited sentence ID ordering informa-
tion, but it was not presented as a primary run).
Participants could also use non-primary runs to
test smart baselines. In the relatedness subtask
six non-primary runs slightly outperformed the
official winning primary entry,3 while in the
entailment task all ECNU’s runs but run 4 were
better than ECNU’s primary run. Interestingly,
the differences between the ECNU’s runs were

3They were: The Meaning Factory’s run3 (Pearson
0.84170) ECNU’s runs2 (0.83893) run5 (0.83500) and Stan-
fordNLP’s run4 (0.83462) and run2 (0.83103).
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due to the learning methods used.
We present the results achieved by primary runs

against the Entailment and Relatedness subtasks in
Table 6 and Table 7, respectively.4 We witnessed
a very close finish in both subtasks, with 4 more
systems within 3 percentage points of the winner
in both cases. 4 of these 5 top systems were the
same across the two subtasks. Most systems per-
formed well above the best baselines from Table
5.

The overall performance pattern suggests that,
owing perhaps to the more controlled nature of
the sentences, as well as to the purely linguistic
nature of the challenges it presents, SICK entail-
ment is “easier” than RTE. Considering the first
five RTE challenges (Bentivogli et al., 2009), the
median values ranged from 56.20% to 61.75%,
whereas the average values ranged from 56.45%
to 61.97%. The entailment scores obtained on
the SICK data set are considerably higher, being
77.06% for the median system and 75.36% for
the average system. On the other hand, the re-
latedness task is more challenging than the one
run on MSRvid (one of our data sources) at STS
2012, where the top Pearson correlation was 0.88
(Agirre et al., 2012).

6 Approaches

A summary of the approaches used by the sys-
tems to address the task is presented in Table 8.
In the table, systems in bold are those for which
the authors submitted a paper (Ferrone and Zan-
zotto, 2014; Bjerva et al., 2014; Beltagy et al.,
2014; Lai and Hockenmaier, 2014; Alves et al.,
2014; León et al., 2014; Bestgen, 2014; Zhao et
al., 2014; Vo et al., 2014; Biçici and Way, 2014;
Lien and Kouylekov, 2014; Jimenez et al., 2014;
Proisl and Evert, 2014; Gupta et al., 2014). For the
others, we used the brief description sent with the
system’s results, double-checking the information
with the authors. In the table, “E” and “R” refer
to the entailment and relatedness task respectively,
and “B” to both.

Almost all systems combine several kinds of
features. To highlight the role played by com-
position, we draw a distinction between compo-
sitional and non-compositional features, and di-
vide the former into ‘fully compositional’ (sys-

4ITTK’s primary run could not be evaluated due to tech-
nical problems with the submission. The best ITTK’s non-
primary run scored 78,2% accuracy in the entailment task and
0.76 r in the relatedness task.

ID Compose ACCURACY

Illinois-LH run1 P/S 84.6

ECNU run1 S 83.6

UNAL-NLP run1 83.1

SemantiKLUE run1 82.3

The Meaning Factory run1 S 81.6

CECL ALL run1 80.0

BUAP run1 P 79.7

UoW run1 78.5

Uedinburgh run1 S 77.1

UIO-Lien run1 77.0

FBK-TR run3 P 75.4

StanfordNLP run5 S 74.5

UTexas run1 P/S 73.2

Yamraj run1 70.7

asjai run5 S 69.8

haLF run2 S 69.4

RTM-DCU run1 67.2

UANLPCourse run2 S 48.7

Table 6: Primary run results for the entailment
subtask. The table also shows whether a sys-
tem exploits composition information at either the
phrase (P) or sentence (S) level.

tems that compositionally computed the meaning
of the full sentences, though not necessarily by as-
signing meanings to intermediate syntactic con-
stituents) and ‘partially compositional’ (systems
that stop the composition at the level of phrases).
As the table shows, thirteen systems used compo-
sition in at least one of the tasks; ten used compo-
sition for full sentences and six for phrases, only.
The best systems are among these thirteen sys-
tems.

Let us focus on such compositional methods.
Concerning the relatedness task, the fine-grained
analyses reported for several systems (Illinois-
LH, The Meaning Factory and ECNU) shows that
purely compositional systems currently reach per-
formance above 0.7 r. In particular, ECNU’s
compositional feature gives 0.75 r, The Meaning
Factory’s logic-based composition model 0.73 r,
and Illinois-LH compositional features combined
with Word Overlap 0.75 r. While competitive,
these scores are lower than the one of the best
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ID Compose r ρ MSE

ECNU run1 S 0.828 0.769 0.325

StanfordNLP run5 S 0.827 0.756 0.323

The Meaning Factory run1 S 0.827 0.772 0.322

UNAL-NLP run1 0.804 0.746 0.359

Illinois-LH run1 P/S 0.799 0.754 0.369

CECL ALL run1 0.780 0.732 0.398

SemantiKLUE run1 0.780 0.736 0.403

RTM-DCU run1 0.764 0.688 0.429

UTexas run1 P/S 0.714 0.674 0.499

UoW run1 0.711 0.679 0.511

FBK-TR run3 P 0.709 0.644 0.591

BUAP run1 P 0.697 0.645 0.528

UANLPCourse run2 S 0.693 0.603 0.542

UQeResearch run1 0.642 0.626 0.822

ASAP run1 P 0.628 0.597 0.662

Yamraj run1 0.535 0.536 2.665

asjai run5 S 0.479 0.461 1.104

Table 7: Primary run results for the relatedness
subtask (r for Pearson and ρ for Spearman corre-
lation). The table also shows whether a system ex-
ploits composition information at either the phrase
(P) or sentence (S) level.

purely non-compositional system (UNAL-NLP)
which reaches the 4th position (0.80 r UNAL-NLP
vs. 0.82 r obtained by the best system). UNAL-
NLP however exploits an ad-hoc “negation” fea-
ture discussed below.

In the entailment task, the best non-
compositional model (again UNAL-NLP)
reaches the 3rd position, within close reach of the
best system (83% UNAL-NLP vs. 84.5% obtained
by the best system). Again, purely compositional
models have lower performance. haLF CDSM
reaches 69.42% accuracy, Illinois-LH Word
Overlap combined with a compositional feature
reaches 71.8%. The fine-grained analysis reported
by Illinois-LH (Lai and Hockenmaier, 2014)
shows that a full compositional system (based
on point-wise multiplication) fails to capture
contradiction. It is better than partial phrase-based
compositional models in recognizing entailment
pairs, but worse than them on recognizing neutral
pairs.

Given our more general interest in the distri-
butional approaches, in Table 8 we also classify
the different DSMs used as ‘Vector Space Mod-

els’, ‘Topic Models’ and ‘Neural Language Mod-
els’. Due to the impact shown by learning methods
(see ECNU’s results), we also report the different
learning approaches used.

Several participating systems deliberately ex-
ploit ad-hoc features that, while not helping a true
understanding of sentence meaning, exploit some
systematic characteristics of SICK that should be
controlled for in future releases of the data set.
In particular, the Textual Entailment subtask has
been shown to rely too much on negative words
and antonyms. The Illinois-LH team reports that,
just by checking the presence of negative words
(the Negation Feature in the table), one can detect
86.4% of the contradiction pairs, and by combin-
ing Word Overlap and antonyms one can detect
83.6% of neutral pairs and 82.6% of entailment
pairs. This approach, however, is obviously very
brittle (it would not have been successful, for in-
stance, if negation had been optionally combined
with word-rearranging in the creation of S4 sen-
tences, see Section 3.1 above).

Finally, Table 8 reports about the use of external
resources in the task. One of the reasons we cre-
ated SICK was to have a compositional semantics
benchmark that would not require too many ex-
ternal tools and resources (e.g., named-entity rec-
ognizers, gazetteers, ontologies). By looking at
what the participants chose to use, we think we
succeeded, as only standard NLP pre-processing
tools (tokenizers, PoS taggers and parsers) and rel-
atively few knowledge resources (mostly, Word-
Net and paraphrase corpora) were used.

7 Conclusion

We presented the results of the first task on the
evaluation of compositional distributional seman-
tic models and other semantic systems on full sen-
tences, organized within SemEval-2014. Two sub-
tasks were offered: (i) predicting the degree of re-
latedness between two sentences, and (ii) detect-
ing the entailment relation holding between them.
The task has raised noticeable attention in the
community: 17 and 18 submissions for the relat-
edness and entailment subtasks, respectively, for a
total of 21 participating teams. Participation was
not limited to compositional models but the major-
ity of systems (13/21) used composition in at least
one of the subtasks. Moreover, the top-ranking
systems in both tasks use compositional features.
However, it must be noted that all systems also ex-
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ASAP R R R R R R R R R 

ASJAI B B B B B B B B E B R B 

BUAP B B B B E B E B 

UEdinburgh B B B B B E R B 

CECL B B B B B B 

ECNU B B B B B B B B B B B B B 

FBK-TR R R R E B E E B R E R R E 

haLF E E E E 

IITK B B B B B B B B B 

Illinois-LH B B B B B B B B B B B B 

RTM-DCU B B B B B 

SemantiKLUE B B B B B B B B 

StandfordNLP B B R R R B E 

The Meaning Factory R R R R R R B E R E B B R 

UANLPCourse B B B B B 

UIO-Lien E E 

UNAL-NLP B B B B R B B 

UoW B B B B B B 

UQeRsearch R R R R R R R 

UTexas B B B B B B B 

Yamarj B B B B 

Table 8: Summary of the main characteristics of the participating systems on R(elatedness), E(ntailment)
or B(oth)

ploit non-compositional features and most of them
use external resources, especially WordNet. Al-
most all the participating systems outperformed
the proposed baselines in both tasks. Further anal-
yses carried out by some participants in the task
show that purely compositional approaches reach
accuracy above 70% in entailment and 0.70 r for
relatedness. These scores are comparable with the
average results obtained in the task.
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Abstract

In this paper we present the SemEval-
2014 Task 2 on spoken dialogue gram-
mar induction. The task is to classify
a lexical fragment to the appropriate se-
mantic category (grammar rule) in order
to construct a grammar for spoken dia-
logue systems. We describe four sub-
tasks covering two languages, English and
Greek, and three speech application do-
mains, travel reservation, tourism and fi-
nance. The classification results are com-
pared against the groundtruth. Weighted
and unweighted precision, recall and f-
measure are reported. Three sites partic-
ipated in the task with five systems, em-
ploying a variety of features and in some
cases using external resources for training.
The submissions manage to significantly
beat the baseline, achieving a f-measure of
0.69 in comparison to 0.56 for the base-
line, averaged across all subtasks.

1 Introduction

This task aims to foster the application of com-
putational models of lexical semantics to the field
of spoken dialogue systems (SDS) for the problem
of grammar induction. Grammars constitute a vi-
tal component of SDS representing the semantics
of the domain of interest and allowing the system
to correctly respond to a user’s utterance.

The task has been developed in tight collabo-
ration between the research community and com-
mercial SDS grammar developers, under the aus-
pices of the EU-IST PortDial project1. Among the

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

1http://www.portdial.eu/

project aims is to help automate the grammar de-
velopment and localization process. Unlike previ-
ous approaches (Wang and Acero, 2006; Cramer,
2007) that have focused on full automation, Port-
Dial adopts a human-in-the-loop approach were
a developer bootstraps each grammar rule or re-
quest type with a few examples (use cases) and
then machine learning algorithms are used to pro-
pose grammar rule enhancements to the developer.
The enhancements are post-edited by the devel-
oper and new grammar rule suggestions are pro-
posed by the system, in an iterative fashion un-
til a grammar of sufficient quality is achieved. In
this task, we focus on a snapshot of this process,
where a portion of the grammar is already induced
and post-edited by the developer and new candi-
date fragments are rolling in order to be classified
to an existing rule (or rejected). The goal is to de-
velop machine learning algorithms for classifying
candidate lexical fragments to the correct grammar
rule (semantic category). The task is equally rel-
evant for both finite-state machine and statistical
grammar induction.

In this task the semantic hierarchy of SDS
grammars has two layers, namely, low- and high-
level. Low-level rules are similar to gazetteers
referring to terminal concepts that can be as rep-
resented as sets of lexical entries. For example,
the concept of city name can be represented as
<CITY> = (“London”, “Paris”, ...). High-level
rules are defined on top of low-level rules, while
they can be lexicalized as textual fragments (or
chunks), e.g., <TOCITY> = (“fly to <CITY>”,
...). Using the above examples the sentence “I
want to fly to Paris” will be first parsed as “I
want to fly to <CITY>” and finally as “I want to
<TOCITY>”.

In this task, we focus exclusively on high-level
rule induction, assuming that the low-level rules
are known. The problem of fragment extraction
and selection is simplified by investigating the
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binary classification of (already extracted) frag-
ments into valid and non-valid. The task boils
down mainly to a semantic similarity estimation
problem for the assignment of valid fragments into
high-level rules.

2 Prior Work

The manual development of grammars is a time-
consuming and tedious process that requires hu-
man expertise, posing an obstacle to the rapid port-
ing of SDS to new domains and languages. A
semantically coherent workflow for SDS gram-
mar development starts from the definition of low-
level rules and proceeds to high-level ones. This
process is also valid for the case of induction
algorithms. Automatic or machine-aided gram-
mar creation for spoken dialogue systems can
be broadly divided in two categories (Wang and
Acero, 2006): knowledge-based (or top-down)
and data-driven (or bottom-up) approaches.

Knowledge-based approaches rely on the man-
ual or semi-automatic development of domain-
specific grammars. They start from the domain on-
tology (or taxonomy), often in the form of seman-
tic frames. First, terminal concepts in the ontology
(that correspond to low-level grammar rules) get
populated with values, e.g., <CITY>, and then
high-level concepts (that correspond to high-level
grammar rules) get lexicalized creating grammar
fragments. Finally, phrase headers and trailers are
added to create full sentences. The resulting gram-
mars often suffer from limited coverage (poor re-
call). In order to improve coverage, regular ex-
pressions and word/phrase order permutations are
used, however at the cost of over-generalization
(poor precision). Moreover, knowledge-based
grammars are costly to create and maintain, as
they require domain and engineering expertise,
and they are not easily portable to new domains.
This led to the development of grammar authoring
tools that aim at facilitating the creation and adap-
tation of grammars. SGStudio (Semantic Gram-
mar Studio), (Wang and Acero, 2006), for exam-
ple, enables 1) example-based grammar learning,
2) grammar controls, i.e., building blocks and op-
erators for building more complex grammar frag-
ments (regular expressions, lists of concepts), and
3) configurable grammar structures, allowing for
domain-adaptation and word-spotting grammars.
The Grammatical Framework Resource Grammar
Library (GFRGL) (Ranta, 2004) enables the cre-

ation of multilingual grammars adopting an ab-
straction formalism, which aims to hide the lin-
guistic details (e.g., morphology) from the gram-
mar developer.

Data-driven approaches rely solely on corpora
(bottom-up) of transcribed utterances (Meng and
Siu, 2002; Pargellis et al., 2004). The induction
of low-level rules consists of two steps dealing
with the 1) identification of terms, and 2) assign-
ment of terms into rules. Standard tokenization
techniques can be used for the first step, however,
different approaches are required for the case of
multiword terms, e.g., “New York”. In such cases,
gazetteer lookup and named entity recognition can
be employed (if the respective resources and tools
are available), as well as corpus-based colloca-
tion metrics (Frantzi and Ananiadou, 1997). Typ-
ically, the identified terms are assigned into low-
level rules via clustering algorithms operating over
a feature space that is built according to the term
semantic similarity. The distributional hypothe-
sis of meaning (Harris, 1954) is a widely-used ap-
proach for estimating term similarity. A compar-
ative study of similarity metrics for the induction
of SDS low-level rules is presented in (Pargellis
et al., 2004), while the combination of metrics
was investigated in (Iosif et al., 2006). Different
clustering algorithms have been applied includ-
ing hard- (Meng and Siu, 2002) and soft-decision
(Iosif and Potamianos, 2007) agglomerative clus-
tering.

High-level rule induction is a less researched
area that consists of two main sub-problems: 1)
the extraction and selection of candidate frag-
ments from a corpus, and 2) assignment of terms
into rules. Regarding the first sub-problem,
consider the fragments “I want to depart from
<CITY> on” and “depart from <CITY>” for the
air travel domain. Both express the meaning of de-
parture city, however, the (semantics of the) latter
fragment are more concise and generalize better.
The application of syntactic parsers for segment
extraction is not straightforward since the output
is a full parse tree. Moreover, such parsers are
typically trained over annotated corpora of formal
language usage, while the SDS corpora often are
ungrammatical due to spontaneous speech. There
are few statistical parsing algorithms that rely only
on plain lexical features (Ponvert et al., 2011; Bisk
and Hockenmaier, 2012) however, as other algo-
rithms, one needs to decide where to prune the
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parse tree. In (Georgiladakis et al., 2014), the ex-
plicit extraction and selection of fragments is in-
vestigated following an example-driven approach
where few rule seeds are provided by the gram-
mar developer. The second sub-problem of high-
level rule induction deals with the formulation
of rules using the selected fragments. Each rule
is meant to consist of semantically similar frag-
ments. For this purpose, clustering algorithms can
be employed exploiting the semantic similarity be-
tween fragments as features. This is a challenging
problem since the fragments are multi-word struc-
tures whose overall meaning is composed accord-
ing to semantics of the individual constituents. Re-
cently, several models have been proposed regard-
ing phrase (Mitchell and Lapata, 2010) and sen-
tence similarity (Agirre et al., 2012), while an
approach towards addressing the issue of seman-
tic compositionality is presented in (Milajevs and
Purver, 2014).

The main drawback of data-driven approaches
is the problem of data sparseness, which may af-
fect the coverage of the grammar. A popular so-
lution to the data sparseness bottleneck is to har-
vest in-domain data from the web. Recently, this
has been an active research area both for SDS
systems and language modeling in general. Data
harvesting is performed in two steps: (i) query
formulation, and (ii) selection of relevant docu-
ments or sentences (Klasinas et al., 2013). Posing
the appropriate queries is important both for ob-
taining in-domain and linguistically diverse sen-
tences. In (Sethy et al., 2007), an in-domain lan-
guage model was used to identify the most ap-
propriate n-grams to use as web queries. An in-
domain language model was used in (Klasinas et
al., 2013) for the selection of relevant sentences.
A more sophisticated query formulation was pro-
posed in (Sarikaya, 2008), where from each in-
domain utterance a set of queries of varying length
and complexity was generated. These approaches
assume the availability of in-domain data (even if
limited) for the successful formulation of queries;
this dependency is also not eliminated when us-
ing a mildly lexicalized domain ontology to for-
mulate the queries, as in (Misu and Kawahara,
2006). Selecting the most relevant sentences that
get returned from web queries is typically done
using statistical similarity metrics between in do-
main data and retrieved documents, for example
the BLEU metric (Papineni et al., 2002) of n-

gram similarity in (Sarikaya, 2008) and a metric
of relative entropy (Kullback-Leibler) in (Sethy et
al., 2007). In cases where in-domain data is not
available, cf. (Misu and Kawahara, 2006), heuris-
tics (pronouns, sentence length, wh-questions) and
matches with out-of-domain language models can
be used to identify sentences for training SDS
grammars. In (Sarikaya, 2008), the produced
grammar fragments are also parsed and attached
to the domain ontology. Harvesting web data can
produce high-quality grammars while requiring up
to 10 times less in-domain data (Sarikaya, 2008).

Further, data-driven approaches induce syntac-
tic grammars but do not learn their corresponding
meanings, for this purpose an additional step is re-
quired of parsing the grammar fragments and at-
taching them to the domain ontology (Sarikaya,
2008). Also, in many cases it was observed
that the fully automated bottom-up paradigm re-
sults to grammars of moderate quality (Wang
and Acero, 2006), especially on corpora con-
taining longer sentences and more lexical vari-
ety (Cramer, 2007). Finally, algorithms focusing
on crosslingual grammar induction, like CLIoS
(Kuhn, 2004), are often even more resource-
intensive, as they require training corpora of par-
allel text and sometimes also a grammar for one of
the languages. Grammar quality can be improved
by introducing a human in the loop of grammar in-
duction (Portdial, 2014a); an expert that validates
the automatically created results (Meng and Siu,
2002).

3 Task Description

Next we describe in detail the candidate grammar
fragment classification SemEval task. This task
is part of a grammar rule induction scenario for
high-level rules. The evaluation focuses in spoken
dialogue system grammars for multiple domains
and languages.

3.1 Task Design

The goal of the task is to classify a number frag-
ment to the rules available in the grammar. For
each grammar we provide a training and develop-
ment set, i.e., a set of rules with the associated
fragments and the test set which is composed of
plain fragments. An excerpt of the train set for the
rule “<TOCITY>” is “ARRIVE AT <CITY>,
ARRIVES AT <CITY>, GOING TO <CITY>”
and of the test set “GOING INTO <CITY>, AR-
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RIVES INTO <CITY>”.
In preliminary experiments during the task de-

sign we noticed that if the test set consists of valid
fragments only, good classification performance is
achieved, even when using the naive baseline sys-
tem described later in this paper. To make the task
more realistic we have included a set of “junk”
fragments not corresponding to any specific rule.
Junk fragments were added both in the train set
where they are annotated as such and in the test
set. For this task we have artificially created the
junk fragments by removing or adding words from
legitimate fragments. Example junk fragments
used are “HOLD AT AT <TIME> TRY” and
“ANY CHOICE EXCEPT <AIRLINE> OR”, the
first one having a repetition of the word “AT”
while the second one should include one more
time the concept “<AIRLINE>” in the end to be
meaningful.

Junk fragments help better model a real-world
scenario, where the candidate fragments will in-
clude irrelevant examples too. For example, if
web corpora are used to extract the candidate frag-
ments grammatical mistakes and out-of-domain
sentences might appear. Similarly, if the transcrip-
tions from a deployed SDS system are used for
grammar induction, transcription errors might in-
troduce noise (Bechet et al., 2014).

Junk fragments account for roughly 5% of the
train test and 15% of the test set. The discrep-
ancy between train and test set ratios is due to a
conscious effort to model realistic train/test condi-
tions, where train data is manually processed and
does not include errors, while candidate fragments
are typically more noisy.

3.2 Datasets

We have provided four datasets, travel English,
travel Greek, tourism English and finance English.
The travel domain grammar covers flight, car and
hotel reservation utterances. The tourism domain
covers touristic information including accommo-
dation, restaurants and movies. The finance do-
main covers utterances of a bank client asking
questions about his bank account as well as re-
porting problems. In Table 1 are presented typical
examples of fragments for every subtask.

All grammars have been manually constructed
by a grammar developer. For the three English
grammars, a small corpus (between 500 and 2000
sentences) was initially available. The grammar

developer first identified terminal concepts, which
correspond to low-level rules. Typical examples
include city names for the travel domain, restau-
rant names for the tourism domain and credit card
names in the finance domain. After covering all
low-level rules the grammar developer proceeded
to identify high-level rules present in the corpus,
like the departure city in the travel domain, or the
user request type for a credit card. The gram-
mar developer was instructed to identify all rules
present in the corpus, but also spend some effort
to include rules not appearing in the corpus so that
the resulting grammar better covers the domain at
hand. For the case of Greek travel grammar no
corpus was initially available. The Greek gram-
mar was instead produced by manually translat-
ing the English one, accounting for the differences
in syntax between the two languages. The gram-
mars have been developed as part of the PortDial
FP7 project and are explained in detail in (Portdial,
2014b).

For the first three datasets that have been avail-
able from the beginning of the campaign we have
split the release into train, development and test
set. For the finance domain which was announced
when the test sets were released we only provided
the train and test set, to simulate a resource poor
scenario. The statistics of the datasets for all lan-
guage/domain pairs are given in Table 2.

In addition to the high-level rules we made
available the low-level rules for each grammar,
which although not used in the evaluation, can be
useful for expanding the high-level rules to cover
all lexicalizations expressed by the grammar.

3.3 Evaluation

For the evaluation of the task we have used preci-
sion, recall and f-measure, both weighted and un-
weighted.

If Rj denotes the set of fragments for one rule
and Cj the set of fragments classified to this rule
by a system then per-rule precision is computed by
the equation:

Prj =
|Rj ∩ Cj |
|Cj |

and per-rule recall by:

Rcj =
|Rj ∩ Cj |
|Rj |

F-measure is then computed by:
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Grammar Rule Fragment
Travel English <FLIGHTFROM> FLIGHT FROM <CITY>
Travel Greek <FLIGHTFROM> ΠTHΣH AΠO <CITY>

Tourism English <TRANSFERQ> TRANSFERS FROM <airportname> TO <cityname>
Finance English <CARDNAME> <BANKNAME> CARD

Table 1: Example grammar fragments for each application domain.

Grammar Rules Fragments
Train set Dev set Test set

Travel English 32 623 331 284
Travel Greek 35 616 340 324

Tourism English 24 694 334 285
Finance English 9 136 - 37

Table 2: Number of rules in the training, development and test sets for each application domain.

Fj =
2PrjRcj

Prj + Rcj

.
Precision for all the J rules Rj , 1 ≤ j ≤ J is

computed by the following equation:

Pr =
∑

j

Prjwj

In the unweighted case the weight wj has a fixed
value for all rules, so wj = 1

J . Taking into account
the fact that the rules are not balanced in terms of
fragments, a better way to compute for the weight
is wj = |Rj |∑

j |Rj | . In the latter, weighted, case the
total precision will better describe the results.

Recall is similarly computed using the same
weighting scheme as:

Rc =
∑

j

Rcjwj

3.4 Baseline
For comparison purposes we have developed a
naive baseline system. To classify a test fragment,
first its similarity with all the train fragments is
computed, and it is classified to the rule where
the most similar train fragment belongs. Fragment
similarity is computed as the ratio of their Longest
Common Substring (LCS) divided by the sum of
their lengths:

Sim(s, t) =
|LCS(s, t)|
|s|+ |t|

where s and t are two strings, |s| and |t| their
length in characters and |LCS(s, t)| the length of
their LCS. This is a very simple baseline, comput-
ing similarity without taking into account context
or semantics.

4 Participating Systems

Three teams have participated in the task with five
systems. All teams participated in all subtasks
with the exception of travel Greek, where only
two teams participated. An overview of core
system features is presented in Table 3. The
remainder of this section briefly describes each
of the submissions and then compares them. A
brief description for each system is provided in
the following paragraphs.

tucSage. The core of the tucSage system is
a combination of two components. The first
component is used for the selection of candidate
rule fragments from a corpus. Specifically, the
posterior probability of a candidate fragment
belonging to a rule is computed using a variety of
features. The feature set includes various lexical
features (e.g., the number of tokens), the fragment
perplexity computed using n-gram language
modeling, and features based on lexical similarity.
The second component is used for computing
the similarity between a candidate fragment and
a grammar rule. In total, two different types of
similarity metrics are used relying on the overlap
of character bigrams and contextual features.
These similarities are fused with the posterior
probabilities produced by the fragment selection
model. The contribution of the two components is
adjusted using an exponential weight.

SAIL-GRS. The SAIL-GRS system is based
on the well-established term frequency–inverse
document frequency (TF −IDF ) measurement.
This metric is adapted to the present task by
considering each grammar rule as a “document”.
For each rule, all its fragments are aggregated
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System Use of Features Similarity External Language-
acronym machine learn. used metrics corpora specific
Baseline no lexical Longest Common no no

Substring
tucSage yes: lexical, perplexity, character overlap, web no

random forests similarity-based , heuristic cosine similarity documents
SAIL-GRS no lexical cosine similarity no no

Biel no lexical, expansion of cosine Wikipedia yes
low-level rules similarity articles

Table 3: Overview of the characteristics of the participating systems.

and the frequency of the respective n-grams
(constituents) is computed. The inverse document
frequency is casted as inverse rule frequency
and it is computed for the extracted n-grams.
The process is performed for both unigrams and
bigrams.

Biel. The fundamental idea behind the Biel
system is the encoding of domain semantics via
topic modeling. For this purpose a background
document space is constructed using thousands
of Wikipedia articles. Particular focus is given
to the transformation of the initial document
space according to the paradigm of explicit
semantic analysis. For each domain, a topic
space is defined and a language-specific function
is employed for the mapping of documents. In
essence, the mapping function is an association
measurement that is based on TF−IDF scores.
An approximation regarding the construction of
the topic space is investigated in order to reduce
data sparsity, while a number of normalization
schemes are also presented.

Overall, only the tucSage system employs a ma-
chine learning-based approach (random forests),
while an unsupervised approach is followed by the
SAIL-GRS and Biel systems. All systems exploit
lexical information extracted from rule fragments.
This information is realized as the lexical surface
form of the constituents of fragments. For ex-
ample, consider the “depart for <CITY>” frag-
ment that corresponds to the high-level rule refer-
ring to the notion of departure city. The follow-
ing set of lexical features can be extracted from
the aforementioned fragment: (“depart”, “from”,
“<CITY>”). Unlike the other systems, the Biel
system utilizes low-level rules to expand high-
level rules with terminal concept instances. For
example, the “<CITY>” rule is not processed as
is, but it is represented as a list of city names
(“New York”, “Boston”, . . . ). The most rich fea-

ture set is used by the tucSage system which com-
bines lexical, perplexity and similarity features
with a set of heuristic rules. All three systems
employ the widely-used cosine similarity metric.
Both SAIL-GRS and Biel systems rely solely on
this metric during the assignment of an unknown
fragment to a high-level rule. A more sophis-
ticated approach is presented by tucSage, where
first a classifier is built for every grammar rule,
computing the probability of a fragment belong-
ing to this rule and then the similarity between the
fragment and the rule is computed. Classification
is then performed by combining the two scores.
Also, another difference regarding the employ-
ment of the cosine similarity deals with the com-
putation of the vectorial feature values. A simple
binary scheme is used in the tucSage system, while
variations of the term frequency-inverse document
frequency scheme are used in SAIL-GRS and Biel.
Besides cosine similarity, a similarity metric based
on the overlap of character bigrams is used by the
tucSage system. External corpora (i.e., corpora
that were not provided as part of the official task
data) were used by the tucSage and Biel systems.
Such corpora were meant as an additional source
of information with respect to the domains under
investigation. Regarding tucSage, the training data
were exploited in order to construct web search
queries for harvesting a collection of web docu-
ments from which a number of sentences were se-
lected for corpus creation. In the case of the Biel
system, a set of Wikipedia articles was exploited.
Language specific resources where used for the
Biel system, while the other two teams used lan-
guage agnostic methods.

5 Results

The results for all participating teams and the
baseline system are given in Table 4. The tucSage
team submitted three runs, the first one being the
primary, indicated with an asterisk in the results.
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Focusing on the weighted F-measure we see
that in all domains but the tourism English, at
least one submission manages to outperform the
baseline provided by the organizers. In travel En-
glish the baseline system achieves 0.51 weighted
f-measure, with two out of the three systems
achieving 0.68 and 0.58. The improvement over
the baseline is greater for the travel Greek sub-
task, where the baseline score of 0.26 is much
lower than the achieved 0.52 from tucSage. In the
tourism English subtask the best submitted sys-
tems managed to match the performance of the
baseline system, but not to exceed it. This can
be attributed to the good performance of the base-
line system, due to the fact that the tourism gram-
mar is composed of longer fragments than the rest,
helping the naive baseline system achieve top per-
formance exploiting lexical similarity only. We
can however assume that more complex systems
would beat the baseline if the test set fragments
were built using different lexicalizations, as would
be the case in unannotated data coming from de-
ployed SDS.

In the finance domain, even though the amount
of training data is quite smaller than in all other
subtasks the submitted systems still manage to
outperform the baseline system. This means that
the submitted systems display robust performance
both in resource-rich and resource-poor condi-
tions.

6 Conclusion

The tucSage and SAIL-GRS systems are shown to
be portable across domains and languages, achiev-
ing performance that exceeds the baseline for three
out of four datasets. The highest performance of
the tucSage system compared to the SAIL-GRS
system may be attributed to the use of a model for
fragment selection. Interestingly, the simple vari-
ation of the TF−IDF scheme used by the SAIL
system achieved very good results being a close
second performer. The UNIBI system proposed
a very interesting new application of the frame-
work of topic modeling to the task of grammar in-
duction, however, the respective performance does
not exceed the state-of-the-art. The combination
of the tucSage and SAIL-GRS systems could give
better results.

team Weighted Unweighted
Pr. Rec. F-m. Pr. Rec. F-m.

Travel English
Baseline 0.40 0.69 0.51 0.38 0.67 0.48

tucSage1∗ 0.60 0.73 0.66 0.59 0.74 0.66
tucSage2 0.59 0.72 0.65 0.59 0.74 0.65
tucSage3 0.69 0.67 0.68 0.66 0.69 0.67

SAIL-GRS 0.54 0.62 0.58 0.57 0.66 0.61
Biel 0.13 0.39 0.20 0.09 0.34 0.14

Travel Greek
Baseline 0.17 0.65 0.26 0.16 0.73 0.26

tucSage1∗ 0.47 0.58 0.52 0.55 0.72 0.62
tucSage2 0.46 0.53 0.49 0.50 0.59 0.54
tucSage3 0.51 0.48 0.49 0.52 0.56 0.54

SAIL-GRS 0.46 0.51 0.49 0.49 0.62 0.55
Biel - - - - - -

Tourism English
Baseline 0.80 0.94 0.87 0.82 0.94 0.87

tucSage1∗ 0.79 0.94 0.86 0.76 0.91 0.83
tucSage2 0.78 0.93 0.85 0.73 0.90 0.80
tucSage3 0.80 0.93 0.86 0.77 0.90 0.83

SAIL-GRS 0.75 0.90 0.82 0.75 0.90 0.82
Biel 0.04 0.14 0.06 0.02 0.08 0.04

Finance English
Baseline 0.48 0.78 0.60 0.40 0.63 0.49

tucSage1∗ 0.61 0.81 0.70 0.43 0.54 0.48
tucSage2 0.55 0.74 0.63 0.40 0.51 0.45
tucSage3 0.52 0.67 0.58 0.39 0.43 0.41

SAIL-GRS 0.78 0.78 0.78 0.67 0.62 0.65
Biel 0.22 0.30 0.25 0.06 0.18 0.09

Average over all four tasks
Baseline 0.46 0.73 0.56 0.44 0.74 0.53

tucSage1∗ 0.62 0.77 0.69 0.58 0.73 0.65
tucSage2 0.60 0.73 0.66 0.56 0.69 0.61
tucSage3 0.63 0.69 0.65 0.59 0.65 0.61

SAIL-GRS 0.63 0.70 0.67 0.62 0.70 0.66
Biel 0.13 0.28 0.17 0.06 0.20 0.09

Table 4: Weighted and unweighted precision, re-
call and f-measure for all systems. Best perfor-
mance per metric and dataset shown in bold.
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Abstract

This paper introduces a new SemEval
task on Cross-Level Semantic Similarity
(CLSS), which measures the degree to
which the meaning of a larger linguistic
item, such as a paragraph, is captured by
a smaller item, such as a sentence. High-
quality data sets were constructed for four
comparison types using multi-stage an-
notation procedures with a graded scale
of similarity. Nineteen teams submitted
38 systems. Most systems surpassed the
baseline performance, with several attain-
ing high performance for multiple com-
parison types. Further, our results show
that comparisons of semantic representa-
tion increase performance beyond what is
possible with text alone.

1 Introduction
Given two linguistic items, semantic similarity
measures the degree to which the two items have
the same meaning. Semantic similarity is an es-
sential component of many applications in Nat-
ural Language Processing (NLP), and similarity
measurements between all types of text as well
as between word senses lend themselves to a va-
riety of NLP tasks such as information retrieval
(Hliaoutakis et al., 2006) or paraphrasing (Glick-
man and Dagan, 2003).

Semantic similarity evaluations have largely fo-
cused on comparing similar types of lexical items.
Most recently, tasks in SemEval (Agirre et al.,
2012) and *SEM (Agirre et al., 2013) have intro-
duced benchmarks for measuring Semantic Tex-
tual Similarity (STS) between similar-sized sen-
tences and phrases. Other data sets such as that

This work is licensed under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

of Rubenstein and Goodenough (1965) measure
similarity between word pairs, while the data sets
of Navigli (2006) and Kilgarriff (2001) offer a bi-
nary similar-dissimilar distinction between senses.
Notably, all of these evaluations have focused on
comparisons between a single type, in contrast to
application-based evaluations such as summariza-
tion and compositionality which incorporate tex-
tual items of different sizes, e.g., measuring the
quality of a paragraph’s sentence summarization.

Task 3 introduces a new evaluation where sim-
ilarity is measured between items of different
types: paragraphs, sentences, phrases, words and
senses. Given an item of the lexically-larger type,
a system measures the degree to which the mean-
ing of the larger item is captured in the smaller
type, e.g., comparing a paragraph to a sentence.
We refer to this task as Cross-Level Semantic Sim-
ilarity (CLSS). A major motivation of this task
is to produce semantic similarity systems that are
able to compare all types of text, thereby free-
ing downstream NLP applications from needing to
consider the type of text being compared. Task 3
enables assessing the extent to which the mean-
ing of the sentence “do u know where i can watch
free older movies online without download?” is
captured in the phrase “streaming vintage movies
for free”, or how similar is “circumscribe” to the
phrase “beating around the bush.” Furthermore,
by incorporating comparisons of a variety of item
sizes, Task 3 unifies in a single task multiple ob-
jectives from different areas of NLP such as para-
phrasing, summarization, and compositionality.

Because CLSS generalizes STS to items of dif-
ferent types, successful CLSS systems can directly
be applied to all STS-based applications. Fur-
thermore, CLSS systems can be used in other
similarity-based applications such as text simpli-
fication (Specia et al., 2012), keyphrase iden-
tification (Kim et al., 2010), lexical substitu-
tion (McCarthy and Navigli, 2009), summariza-
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tion (Spärck Jones, 2007), gloss-to-sense mapping
(Pilehvar and Navigli, 2014b), and modeling the
semantics of multi-word expressions (Marelli et
al., 2014) or polysemous words (Pilehvar and Nav-
igli, 2014a).

Task 3 was designed with three main objectives.
First, the task should include multiple types of
comparison in order to assess each type’s difficulty
and whether specialized resources are needed for
each. Second, the task should incorporate text
from multiple domains and writing styles to en-
sure that system performance is robust across text
types. Third, the similarity methods should be able
to operate at the sense level, thereby potentially
uniting text- and sense-based similarity methods
within a single framework.

2 Task Description

2.1 Objective

Task 3 is intended to serve as an initial task for
evaluating the capabilities of systems at measuring
all types of semantic similarity, independently of
the size of the text. To accomplish this objective,
systems were presented with items from four com-
parison types: (1) paragraph to sentence, (2) sen-
tence to phrase, (3) phrase to word, and (4) word to
sense. Given a pair of items, a system must assess
the degree to which the meaning of the larger item
is captured in the smaller item. WordNet 3.0 was
chosen as the sense inventory (Fellbaum, 1998).

2.2 Rating Scale

Following previous SemEval tasks (Agirre et al.,
2012; Jurgens et al., 2012), Task 3 recognizes that
two items’ similarity may fall within a range of
similarity values, rather than having a binary no-
tion of similar or dissimilar. Initially a six-point
(0–5) scale similar to that used in the STS tasks
was considered (Agirre et al., 2012); however, an-
notators found difficulty in deciding between the
lower-similarity options. After multiple revisions
and feedback from a group of initial annotators,
we developed a five-point Likert scale for rating a
pair’s similarity, shown in Table 1.1

The scale was designed to systematically order
a broad range of semantic relations: synonymy,
similarity, relatedness, topical association, and un-
relatedness. Because items are of different sizes,
the highest rating is defined as very similar rather

1Annotation materials along with all training and test
data are available on the task website http://alt.qcri.
org/semeval2014/task3/.

than identical to allow for some small loss in the
overall meaning. Furthermore, although the scale
is designed as a Likert scale, annotators were given
flexibility when rating items to use values between
the defined points in the scale, indicating a blend
of two relations. Table 2 provides examples of
pairs for each scale rating for all four comparison
type.

3 Task Data
Though several data sets exist for STS and com-
paring words and senses, no standard data set ex-
ists for CLSS. Therefore, we created a pilot data
set designed to test the capabilities of systems in a
variety of settings. The task data for all compar-
isons but word-to-sense was created using a three-
phase process. First, items of all sizes were se-
lected from publicly-available data sets. Second,
the selected items were used to produce a second
item of the next-smaller level (e.g., a sentence in-
spires a phrase). Third, the pairs of items were
annotated for their similarity. Because of the ex-
pertise required for working with word senses, the
word-to-sense data set was constructed by the or-
ganizers using a separate but similar process. In
the training and test data, each comparison type
had 500 annotated examples, for a total of 2000
pairs each for training and test. We first describe
the corpora used by Task 3 followed by the anno-
tation process. We then describe the construction
of the word-to-sense data set.

3.1 Corpora

Test and training data were constructed by draw-
ing from multiple publicly-available corpora and
then manually generating a paired item for com-
parison. To achieve our second objective for the
task, the data sets used to create item pairs in-
cluded texts from specific domains, social media,
and text with idiomatic or slang language. Table
3 summarizes the corpora and their distribution
across the test and training sets for each compari-
son type, with a high-level description of the genre
of the data. We briefly describe the corpora next.

The WikiNews, Reuters 21578, and Microsoft
Research (MSR) Paraphrase corpora are all drawn
from newswire text, with WikiNews being au-
thored by volunteer writers and the latter two cor-
pora written by professionals. Travel Guides was
drawn from the Berlitz travel guides data in the
Open American National Corpus (Ide and Suder-
man, 2004) and includes very verbose sentences
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4 – Very
Similar

The two items have very similar meanings and the most important ideas, concepts, or actions in the larger
text are represented in the smaller text. Some less important information may be missing, but the smaller
text is a very good summary of the larger text.

3 – Somewhat
Similar

The two items share many of the same important ideas, concepts, or actions, but include slightly different
details. The smaller text may use similar but not identical concepts (e.g., car vs. vehicle), or may omit a
few of the more important ideas present in the larger text.

2 – Somewhat
related but not
similar

The two items have dissimilar meaning, but share concepts, ideas, and actions that are related. The smaller
text may use related but not necessarily similar concepts (window vs. house) but should still share some
overlapping concepts, ideas, or actions with the larger text.

1 – Slightly
related

The two items describe dissimilar concepts, ideas and actions, but may share some small details or domain
in common and might be likely to be found together in a longer document on the same topic.

0 – Unrelated The two items do not mean the same thing and are not on the same topic.

Table 1: The five-point Likert scale used to rate the similarity of item pairs. See Table 2 for examples.

with many named entities. Wikipedia Science
was drawn from articles tagged with the cate-
gory Science on Wikipedia. Food reviews were
drawn from the SNAP Amazon Fine Food Re-
views data set (McAuley and Leskovec, 2013)
and are customer-authored reviews for a variety of
food items. Fables were taken from a collection of
Aesop’s Fables. The Yahoo! Answers corpus was
derived from the Yahoo! Answers data set, which
is a collection of questions and answers from the
Community Question Answering (CQA) site; the
data set is notable for having the highest degree of
ungrammaticality in our test set. SMT Europarl
is a collection of texts from the English-language
proceedings of the European parliament (Koehn,
2005); Europarl data was also used in the PPDB
corpus (Ganitkevitch et al., 2013), from which
phrases were extracted. Wikipedia was used to
generate two phrase data sets from (1) extracting
the definitional portion of an article’s initial sen-
tence, e.g., “An [article name] is a [definition],”
and (2) captions for an article’s images. Web
queries were gathered from online sources of real-
world queries. Last, the first and second authors
generated slang and idiomatic phrases based on
expressions contained in Wiktionary.

For all comparison types, the test data included
one genre that was not seen in the training data
in order to test the generalizability of the systems
on data from a novel domain. In addition, we
included a new type of challenge genre with Fa-
bles; unlike other domains, the sentences paired
with the fable paragraphs were potentially seman-
tic interpretations of the intent of the fable, i.e.,
the moral of the story. These interpretations often
have little textual overlap with the fable itself and
require a deeper interpretation of the paragraph’s

meaning in order to make the correct similarity
judgment.

Prior to the annotation process, all content was
filtered to ensure its size and format matched the
desired text type. By average, a paragraph in our
dataset consists of 3.8 sentences. Typos and gram-
matical mistakes in the community-produced con-
tent were left unchanged.

3.2 Annotation Process

A two-phase process was used to produce the test
and training data sets for all but word-to-sense.
Phase 1 generates the item pairs from source texts
and Phase 2 rates the pairs’ similarity.
Phase 1 In this phase, annotators were shown the
larger text of a comparison type and then asked
to produce the smaller text of the pair at a spec-
ified similarity; for example an annotator may be
shown a paragraph and asked to write a sentence
that is a “3” rating. Annotators were instructed to
leave the smaller text blank if they had difficulty
understanding the larger text.

The requested similarity ratings were balanced
to create a uniform distribution of similarity val-
ues. Annotators were asked only to generate rat-
ings of 1–4; pairs with a “0” rating were automat-
ically created by pairing the larger item with ran-
dom selections of text of the appropriate size from
the same corpus. The intent of Phase 1 is to pro-
duce varied item pairs with an expected uniform
distribution of similarity values along the rating
scale.

Four annotators participated in Phase 1 and
were paid a bulk rate of e110 for completing the
work. In addition to the four annotators, the first
two organizers also assisted in Phase 1: Both com-
pleted items from the SCIENTIFIC genre and the
first organizer produced 994 pairs, including all
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PARAGRAPH TO SENTENCE

Paragraph: Teenagers take aerial shots of their neigh-
bourhood using digital cameras sitting in old bottles which
are launched via kites - a common toy for children liv-
ing in the favelas. They then use GPS-enabled smart-
phones to take pictures of specific danger points - such as
rubbish heaps, which can become a breeding ground for
mosquitoes carrying dengue fever.

Rating Sentence
4 Students use their GPS-enabled cellphones to

take birdview photographs of a land in order
to find specific danger points such as rubbish
heaps.

3 Teenagers are enthusiastic about taking aerial
photograph in order to study their neighbour-
hood.

2 Aerial photography is a great way to identify
terrestrial features that aren’t visible from the
ground level, such as lake contours or river
paths.

1 During the early days of digital SLRs, Canon
was pretty much the undisputed leader in
CMOS image sensor technology.

0 Syrian President Bashar al-Assad tells the US
it will “pay the price” if it strikes against Syria.

SENTENCE TO PHRASE

Sentence: Schumacher was undoubtedly one of the very
greatest racing drivers there has ever been, a man who was
routinely, on every lap, able to dance on a limit accessible
to almost no-one else.

Rating Phrase
4 the unparalleled greatness of Schumacher’s

driving abilities
3 driving abilities
2 formula one racing
1 north-south highway
0 orthodontic insurance

PHRASE TO WORD

Phrase: loss of air pressure in a tire

Rating Word
4 flat-tire
3 deflation
2 wheel
1 parking
0 butterfly

WORD TO SENSE

Word: automobilen

Rating Sense
4 car1n (a motor vehicle with four wheels; usually

propelled by an internal combustion engine)
3 vehicle1

n (a conveyance that transports people
or objects)

2 bike1
n (a motor vehicle with two wheels and a

strong frame)
1 highway1

n (a major road for any form of motor
transport)

0 pen1
n (a writing implement with a point from

which ink flows)

Table 2: Example pairs and their ratings.

those for the METAPHORIC genre, and those that
the other annotators left blank.
Phase 2 Here, the item pairs produced in Phase
1 were rated for their similarity according to the
scale described in Section 2.2. An initial pilot
study showed that crowdsourcing was only mod-
erately effective for producing these ratings with
high agreement. Furthermore, the texts used in
Task 3 came from a variety of genres, such as
scientific domains, which some workers had dif-
ficulty understanding. While we note that crowd-
sourcing has been used in prior STS tasks for
generating similarity scores (Agirre et al., 2012;
Agirre et al., 2013), both tasks’ efforts encoun-
tered lower worker score correlations on some por-
tions of the dataset (Diab, 2013), suggesting that
crowdsourcing may not be reliable for judging the
similarity of certain types of text. See Section 3.5
for additional details.

Therefore, to ensure high quality, the first two
organizers rated all items independently. Because
the sentence-to-phrase and phrase-to-word com-
parisons contain slang and idiomatic language, a
third American English mother tongue annotator
was added for those data sets. The third annotator
was compensated e250 for their assistance.

Annotators were allowed to make finer-grained
distinctions in similarity using multiples of 0.25.
For all items, when any two annotators disagreed
by one or more scale points, we performed an
adjudication to determine the item’s rating in the
gold standard. The adjudication process revealed
that nearly all disagreements were due to annota-
tor mistakes, e.g., where one annotator had over-
looked a part of the text or had misunderstood the
text’s meaning. The final similarity rating for an
unadjudicated item was the average of its ratings.

3.3 Word-to-Sense

Word-to-sense comparison items were generated
in three phases. To increase the diversity and
challenge of the data set, the word-to-sense was
created for four types of words: (1) a word and
its intended meaning are in WordNet, (2) a word
was not in the WordNet vocabulary, e.g., the verb
“zombify,” (3) the word is in WordNet, but has a
novel meaning that is not in WordNet, e.g., the ad-
jective “red” referring to Communist, and (4) a set
of challenge words where one of the word’s senses
and a second sense are directly connected by an
edge in the WordNet network, but the two senses
are not always highly similar.
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Paragraph-to-Sentence Sentence-to-Phrase Phrase-to-Word
Corpus Genre Train Test Train Test Train Test

WikiNews Newswire 15.0 10.0 9.2 6.0
Reuters 21578 Newswire 20.2 15.0 5.0
Travel Guides Travel 15.2 10.0 15.0 9.8

Wikipedia Science Scientific – 25.6 – 14.8
Food Reviews Review 19.6 20.0

Fables Metaphoric 9.0 5.2
Yahoo! Answers CQA 21.0 14.2 17.6 17.4

SMT Europarl Newswire 35.4 14.4
MSR Paraphrase Newswire 10.0 10.0 8.8 6.0

Idioms Idiomatic 12.8 12.6 20.0 20.0
Slang Slang – 15.0 – 25.0
PPDB Newswire 10.0 10.0

Wikipedia Glosses Lexicographic 28.2 17.0
Wikipedia Image Captions Descriptive 23.0 17.0

Web Search Queries Search 5.0 5.0

Table 3: Percentages of the training and test data per source corpus.

In Phase 1, to select the first type of word,
lemmas in WordNet were ranked by frequency
in Wikipedia; the ranking was divided into ten
equally-sized groups, with words sampled evenly
from groups in order to control for word frequency
in the task data. For the second type, words not
present in WordNet were drawn from two sources:
examining words in Wikipedia, which we refer
to as out-of-vocabulary (OOV), and slang words.
For the third type, to identify words with a novel
sense, we examined Wiktionary entries and chose
novel, salient senses that were distinct from those
in WordNet. We refer to words with a novel mean-
ing as out-of-sense (OOS). Words of the fourth
type were chosen by hand. The part-of-speech dis-
tributions for all four types of items were balanced
as 50% noun, 25% verb, 25% adjective.

In Phase 2, each word was associated with a
particular WordNet sense for its intended mean-
ing, or the closest available sense in WordNet
for OOV or OOS items. To select a comparison
sense, we adopted a neighborhood search proce-
dure: All synsets connected by at most three edges
in the WordNet semantic network were shown.
Given a word and its neighborhood, the corre-
sponding sense for the item pair was selected by
matching the sense with an intended similarity for
the pair, much like how text items were gener-
ated in Phase 1. The reason behind using this
neighborhood-based selection process was to min-
imize the potential bias of consistently selecting
lower-similarity items from those further away in
the WordNet semantic network.

In Phase 3, given all word-sense pairs, annota-
tors were shown the definitions associated with the
intended meaning of the word and of the sense.

Definitions were drawn from WordNet or from
Wiktionary, if the word was OOV or OOS. An-
notators had access to the WordNet structure for
the compared sense in order to take into account
its parents and siblings.

3.4 Trial Data

The trial data set was created using a separate
process. Source text was drawn from WikiNews;
we selected the text for the larger item of each
level and then generated the text or sense of the
smaller. A total of 156 items were produced.
After, four fluent annotators independently rated
all items. Inter-annotator agreement rates varied
in 0.734–0.882, using Krippendorff’s α (Krippen-
dorff, 2004) on the interval scale.

3.5 Data Set Discussion

The resulting annotation process produced a high-
quality data set. First, Table 4 shows the inter-
annotator agreement (IAA) statistics for each
comparison type on both the full and unadjudi-
cated portions of the data set. IAA was measured
using Krippendorff’s α for interval data. Because
the disagreements that led to lower α in the full
data were resolved via adjudication, the quality of
the full data set is expected to be on par with that
of the unadjudicated data. The annotation quality
for Task 3 was further improved by manually ad-
judicating all significant disagreements.

In contrast, the data sets of current STS tasks
aggregated data from annotators with moderate
correlation with each other (Diab, 2013); STS-
2012 (Agirre et al., 2012) saw inter-annotator
Pearson correlations of 0.530–0.874 per data set
and STS-2013 (Agirre et al., 2013) had average
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Training Test
Data All Unadj. All Unadj.

Para.-to-Sent. 0.856 0.916 0.904 0.971
Sent.-to-Phr. 0.773 0.913 0.766 0.980
Phr.-to-Word 0.735 0.895 0.730 0.988

Word-to-Sense 0.681 0.895 0.655 0.952

Table 4: IAA rates for the task data.
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Figure 1: Similarity ratings distributions.

inter-annotator correlations of 0.377–0.832. How-
ever, we note that Pearson correlation and Krip-
pendorff’s α are not directly comparable (Artstein
and Poesio, 2008), as annotators’ scores may be
correlated, but completely disagree.

Second, the two-phase construction process
produced values that were evenly distributed
across the rating scale, shown in Figure 1 as the
distribution of the values for all data sets. How-
ever, we note that this creation procedure was very
resource intensive and, therefore, semi-automated
or crowdsourcing-based approaches for produc-
ing high-quality data will be needed to expand
the size of the data in future CLSS-based eval-
uations. Nevertheless, as a pilot task, the man-
ual effort was essential for ensuring a rigorously-
constructed data set for the initial evaluation.

4 Evaluation

Participation The ultimate goal of Task 3 is to
produce systems that can measure similarity for
multiple types of items. Therefore, we strongly
encouraged participating teams to submit systems
that were capable of generating similarity judg-
ments for multiple comparison types. However,
to further the analysis, participants were also per-
mitted to submit systems specialized to a single

domain. Teams were allowed at most three system
submissions, regardless of the number of compar-
ison types supported.

Scoring Systems were required to provide sim-
ilarity values for all items within a comparison
type. Following prior STS evaluations, systems
were scored for each comparison type using Pear-
son correlation. Additionally, we include a second
score using Spearman’s rank correlation, which is
only affected by differences in the ranking of items
by similarity, rather than differences in the similar-
ity values. Pearson correlation was chosen as the
official evaluation metric since the goal of the task
is to produce similar scores. However, Spearman’s
rank correlation provides an important metric for
assessing systems whose scores do not match hu-
man scores but whose rankings might, e.g., string-
similarity measures. Ultimately, a global ranking
was produced by ordering systems by the sum of
their Pearson correlation values for each of the
four comparison levels.

Baselines The official baseline system was
based on the Longest Common Substring (LCS),
normalized by the length of items using the
method of Clough and Stevenson (2011). Given
a pair, the similarity is reported as the normalized
length of the LCS. In the case of word-to-sense,
the LCS for a word-sense pair is measured be-
tween the sense’s definition in WordNet and the
definitions of each sense of the pair’s word, report-
ing the maximal LCS. Because OOV and slang
words are not in WordNet, the baseline reports the
average similarity value of non-OOV items. Base-
line scores were made public after the evaluation
period ended.

Because LCS is a simple procedure, a second
baseline based on Greedy String Tiling (GST)
(Wise, 1996) was added after the evaluation pe-
riod concluded. Unlike LCS, GST better handles
the transpositions of tokens across the two texts
and can still report high similarity when encoun-
tering reordered text. The minimum match length
for GST was set to 6.

5 Results
Nineteen teams submitted 38 systems. Of those
systems, 34 produced values for paragraph-to-
sentence and sentence-to-phrase comparisons, 22
for phrase-to-word, and 20 for word-to-sense.
Two teams submitted revised scores for their sys-
tems after the deadline but before the test set had
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Team System Para-2-Sent Sent-2-Phr Phr-2-Word Word-2-Sense Official Rank Spearman Rank
Meerkat Mafia pairingWords† 0.794 0.704 0.457 0.389
SimCompass run1 0.811 0.742 0.415 0.356 1 1
ECNU run1 0.834 0.771 0.315 0.269 2 2
UNAL-NLP run2 0.837 0.738 0.274 0.256 3 6
SemantiKLUE run1 0.817 0.754 0.215 0.314 4 4
UNAL-NLP run1 0.817 0.739 0.252 0.249 5 7
UNIBA run2 0.784 0.734 0.255 0.180 6 8
RTM-DCU run1† 0.845 0.750 0.305
UNIBA run1 0.769 0.729 0.229 0.165 7 10
UNIBA run3 0.769 0.729 0.229 0.165 8 11
BUAP run1 0.805 0.714 0.162 0.201 9 13
BUAP run2 0.805 0.714 0.142 0.194 10 9
Meerkat Mafia pairingWords 0.794 0.704 -0.044 0.389 11 12
HULTECH run1 0.693 0.665 0.254 0.150 12 16
GST Baseline 0.728 0.662 0.146 0.185
HULTECH run3 0.669 0.671 0.232 0.137 13 15
RTM-DCU run2† 0.785 0.698 0.221
RTM-DCU run3 0.780 0.677 0.208 14 17
HULTECH run2 0.667 0.633 0.180 0.169 15 14
RTM-DCU run1 0.786 0.666 0.171 16 18
RTM-DCU run3† 0.786 0.663 0.171
Meerkat Mafia SuperSaiyan 0.834 0.777 17 19
Meerkat Mafia Hulk2 0.826 0.705 18 20
RTM-DCU run2 0.747 0.588 0.164 19 22
FBK-TR run3 0.759 0.702 20 23
FBK-TR run1 0.751 0.685 21 24
FBK-TR run2 0.770 0.648 22 25
Duluth Duluth2 0.501 0.450 0.241 0.219 23 21
AI-KU run1 0.732 0.680 24 26
LCS Baseline 0.527 0.562 0.165 0.109
UNAL-NLP run3 0.708 0.620 25 27
AI-KU run2 0.698 0.617 26 28
TCDSCSS run2 0.607 0.552 27 29
JU-Evora run1 0.536 0.442 0.090 0.091 28 31
TCDSCSS run1 0.575 0.541 29 30
Duluth Duluth1 0.458 0.440 0.075 0.076 30 5
Duluth Duluth3 0.455 0.426 0.075 0.079 31 3
OPI run1 0.433 0.213 0.152 32 36
SSMT run1 0.789 33 34
DIT run1 0.785 34 32
DIT run2 0.784 35 33
UMCC DLSI SelSim run1 0.760 36 35
UMCC DLSI SelSim run2 0.698 37 37
UMCC DLSI Prob run1 0.023 38 38

Table 5: Task results. Systems marked with a † were submitted after the deadline but are positioned
where they would have ranked.

been released. These systems were scored and
noted in the results but were not included in the
official ranking.

Table 5 shows the performance of the participat-
ing systems across all the four comparison types in
terms of Pearson correlation. The two right-most
columns show system rankings by Pearson (Offi-
cial Rank) and Spearman’s ranks correlation.

The SimCompass system attained first place,
partially due to its superior performance on
phrase-to-word comparisons, providing an im-
provement of 0.10 over the second-best sys-
tem. The late-submitted version of the Meerkat

Mafia pairingWords† system corrected a bug in
the phrase-to-word comparison, which ultimately
would have attained first place due to large per-
formance improvements over SimCompass on
phrase-to-word and word-to-sense. ENCU and
UNAL-NLP systems rank respectively second and
third while the former being always in top-4 and
the latter being among the top-7 systems across the
four comparison types. Most systems were able
to surpass the naive LCS baseline; however, the
more sophisticated GST baseline (which accounts
for text transposition) outperforms two-thirds of
the systems. Importantly, both baselines perform
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poorly on smaller text, highlighting the impor-
tance of performing a semantic comparison, as op-
posed to a string-based one.

Within the individual comparison types, spe-
cialized systems performed well for the larger
text sizes. In the paragraph-to-sentence type, the
run1 system of UNAL-NLP provides the best of-
ficial result, with the late RTM-DCU run1† sys-
tem surpassing its performance slightly. Meerkat
Mafia provides the best performance in sentence-
to-phrase with its SuperSaiyan system and the
best performances in phrase-to-word and word-to-
sense with its late pairingWords† system.

Comparison-Type Analysis Performance
across the comparison types varied considerably,
with systems performing best on comparisons
between longer textual items. As a general trend,
both the baselines’ and systems’ performances
tend to decrease with the size of lexical items
in the comparison types. A main contributing
factor to this is the reliance on textual similarity
measures (such as the baselines), which perform
well when two items’ may share content. How-
ever, as the items’ content becomes smaller, e.g.,
a word or phrase, the textual similarity does not
necessarily provide a meaningful indication of
the semantic similarity between the two. This
performance discrepancy suggests that, in order
to perform well, CLSS systems must rely on
comparisons between semantic representations
rather than textual representations. The two
top-performing systems on these smaller levels,
Meerkat Mafia and SimCompass, used additional
resources beyond WordNet to expand a word or
sense to its definition or to represent words with
distributional representations.

Per-genre results and discussions Task 3 in-
cludes multiple genres within the data set for each
comparison type. Figure 2 shows the correlation
of each system for each of these genres, with sys-
tems ordered left to right according to their official
ranking in Table 5. An interesting observation is
that a system’s official rank does not always match
the rank from aggregating its correlations for each
genre individually. This difference suggests that
some systems provided good similarity judgments
on individual genres, but their range of similarity
values was not consistent between genres leading
to lower overall Pearson correlation. For instance,
in the phrase-to-word comparison type, the ag-
gregated per-genre performance of Duluth-1 and

Duluth-3 are among the best whereas their over-
all Pearson performance puts these systems among
the worst-performing ones in the comparison type.

Among the genres, CQA, SLANG, and ID-
IOMATIC prove to be the more difficult for sys-
tems to interpret and judge. These genres in-
cluded misspelled, colloquial, or slang language
which required converting the text into semantic
form in order to meaningfully compare it. Fur-
thermore, as expected, the METAPHORIC genre
was the most difficult, with no system perform-
ing well; we view the METAPHORIC genre as an
open challenge for future systems to address when
interpreting larger text. On the other hand, SCI-
ENTIFIC, TRAVEL, and NEWSWIRE tend to be
the easiest genres for paragraph-to-sentence and
sentence-to-phrase. All three genres tend to in-
clude many named entities or highly-specific lan-
guage, which are likely to be more preserved in the
more-similar paired items. Similarly, DESCRIP-
TIVE and SEARCH genres were easiest in phrase-
to-word, which also often featured specific words
that were preserved in highly-similar pairs. In
the case of word-to-sense, REGULAR proves to be
the least difficult genre. Interestingly, in word-
to-sense, most systems attained moderate perfor-
mance for comparisons with words not in Word-
Net (i.e., OOV) but had poor performance for
slang words, which were also OOV. This differ-
ence suggests that systems could be improved with
additional semantic resources for slang.

Spearman Rank Analysis Although the goal of
Task 3 is to have systems produce similarity judg-
ments, some applications may benefit from simply
having a ranking of pairs, e.g., ranking summa-
rizations by goodness. The Spearman rank corre-
lation measures the ability of systems to perform
such a ranking. Surprisingly, with the Spearman-
based ranking, the Duluth1 and Duluth3 systems
attain the third and fifth ranks – despite being
among the lowest ranked with Pearson. Both sys-
tems were unsupervised and produced similarity
values that did not correlate well with those of
humans. However, their Spearman ranks demon-
strate the systems ability to correctly identify rela-
tive similarity and suggests that such unsupervised
systems could improve their Pearson correlation
by using the training data to tune the range of sim-
ilarity values to match those of humans.
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Figure 2: A stacked histogram for each system, showing its Pearson correlations for genre-specific por-
tions of the gold-standard data, which may also be negative.

6 Conclusion
This paper introduces a new similarity task, Cross-
Level Semantic Similarity, for measuring the se-
mantic similarity of lexical items of different
sizes. Using a multi-phase annotation proce-
dure, we have produced a high-quality data set of
4000 items comprising of various genres, evenly-
split between training and test with four types of
comparison: paragraph-to-sentence, sentence-to-
phrase, phrase-to-word, and word-to-sense. Nine-
teen teams submitted 38 systems, with most teams
surpassing the baseline system and several sys-
tems achieving high performance in multiple types
of comparison. However, a clear performance
trend emerged where systems perform well only
when the text itself is similar, rather than its under-
lying meaning. Nevertheless, the results of Task 3
are highly encouraging and point to clear future
objectives for developing CLSS systems that op-
erate on more semantic representations rather than
text. In future work on CLSS evaluation, we first
intend to develop scalable annotation methods to
increase the data sets. Second, we plan to add new

evaluations where systems are tested according to
their performance in an application related to each
comparison-type, such as measuring the quality of
a paraphrase or summary.
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Abstract

Sentiment analysis is increasingly viewed
as a vital task both from an academic and
a commercial standpoint. The majority of
current approaches, however, attempt to
detect the overall polarity of a sentence,
paragraph, or text span, irrespective of the
entities mentioned (e.g., laptops) and their
aspects (e.g., battery, screen). SemEval-
2014 Task 4 aimed to foster research in the
field of aspect-based sentiment analysis,
where the goal is to identify the aspects
of given target entities and the sentiment
expressed for each aspect. The task pro-
vided datasets containing manually anno-
tated reviews of restaurants and laptops, as
well as a common evaluation procedure. It
attracted 163 submissions from 32 teams.

1 Introduction

With the proliferation of user-generated content on
the web, interest in mining sentiment and opinions
in text has grown rapidly, both in academia and
business. Early work in sentiment analysis mainly
aimed to detect the overall polarity (e.g., positive
or negative) of a given text or text span (Pang et
al., 2002; Turney, 2002). However, the need for a
more fine-grained approach, such as aspect-based
(or ‘feature-based’) sentiment analysis (ABSA),
soon became apparent (Liu, 2012). For example,
laptop reviews not only express the overall senti-
ment about a specific model (e.g., “This is a great

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

laptop”), but also sentiments relating to its spe-
cific aspects, such as the hardware, software, price,
etc. Subsequently, a review may convey opposing
sentiments (e.g., “Its performance is ideal, I wish
I could say the same about the price”) or objective
information (e.g., “This one still has the CD slot”)
for different aspects of an entity.

ABSA is critical in mining and summarizing
opinions from on-line reviews (Gamon et al.,
2005; Titov and McDonald, 2008; Hu and Liu,
2004a; Popescu and Etzioni, 2005). In this set-
ting, ABSA aims to identify the aspects of the en-
tities being reviewed and to determine the senti-
ment the reviewers express for each aspect. Within
the last decade, several ABSA systems of this kind
have been developed for movie reviews (Thet et
al., 2010), customer reviews of electronic products
like digital cameras (Hu and Liu, 2004a) or net-
book computers (Brody and Elhadad, 2010), ser-
vices (Long et al., 2010), and restaurants (Ganu et
al., 2009; Brody and Elhadad, 2010).

Previous publicly available ABSA benchmark
datasets adopt different annotation schemes within
different tasks. The restaurant reviews dataset of
Ganu et al. (2009) uses six coarse-grained aspects
(e.g., FOOD, PRICE, SERVICE) and four overall
sentence polarity labels (positive, negative, con-
flict, neutral). Each sentence is assigned one or
more aspects together with a polarity label for
each aspect; for example, “The restaurant was ex-
pensive, but the menu was great.” would be as-
signed the aspect PRICE with negative polarity and
FOOD with positive polarity. In the product re-
views dataset of Hu and Liu (2004a; 2004b), as-
pect terms, i.e., terms naming aspects (e.g., ‘ra-
dio’, ‘voice dialing’) together with strength scores
(e.g., ‘radio’: +2, ‘voice dialing’: −3) are pro-
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vided. No predefined inventory of aspects is pro-
vided, unlike the dataset of Ganu et al.

The SemEval-2014 ABSA Task is based on lap-
top and restaurant reviews and consists of four
subtasks (see Section 2). Participants were free to
participate in a subset of subtasks and the domains
(laptops or restaurants) of their choice.

2 Task Description

For the first two subtasks (SB1, SB2), datasets on
both domains (restaurants, laptops) were provided.
For the last two subtasks (SB3, SB4), datasets only
for the restaurant reviews were provided.

Aspect term extraction (SB1): Given a set of
review sentences, the task is to identify all as-
pect terms present in each sentence (e.g., ‘wine’,
‘waiter’, ‘appetizer’, ‘price’, ‘food’). We require
all the aspect terms to be identified, including as-
pect terms for which no sentiment is expressed
(neutral polarity). These will be useful for con-
structing an ontology of aspect terms and to iden-
tify frequently discussed aspects.

Aspect term polarity (SB2): In this subtask,
we assume that the aspect terms are given (as de-
scribed in SB1) and the task is to determine the po-
larity of each aspect term (positive, negative, con-
flict, or neutral). The conflict label applies when
both positive and negative sentiment is expressed
about an aspect term (e.g., “Certainly not the best
sushi in New York, however, it is always fresh”).
An alternative would have been to tag the aspect
term in these cases with the dominant polarity, but
this in turn would be difficult to agree on.

Aspect category detection (SB3): Given a
predefined set of aspect categories (e.g., PRICE,
FOOD) and a set of review sentences (but without
any annotations of aspect terms and their polari-
ties), the task is to identify the aspect categories
discussed in each sentence. Aspect categories are
typically coarser than the aspect terms as defined
in SB1, and they do not necessarily occur as terms
in the sentences. For example, in “Delicious but
expensive”, the aspect categories FOOD and PRICE

are not instantiated through specific aspect terms,
but are only inferred through the adjectives ‘deli-
cious’ and ‘expensive’. SB1 and SB3 were treated
as separate subtasks, thus no information linking
aspect terms to aspect categories was provided.

Aspect category polarity (SB4): For this sub-
task, aspect categories for each review sentence
are provided. The goal is to determine the polar-

ity (positive, negative, conflict, or neutral) of each
aspect category discussed in each sentence.

Subtasks SB1 and SB2 are useful in cases where
no predefined inventory of aspect categories is
available. In these cases, frequently discussed as-
pect terms of the entity can be identified together
with their overall sentiment polarities. We hope to
include an additional aspect term aggregation sub-
task in future (Pavlopoulos and Androutsopoulos,
2014b) to cluster near-synonymous (e.g., ‘money’,
‘price’, ‘cost’) or related aspect terms (e.g., ‘de-
sign’, ‘color’, ‘feeling’) together with their aver-
aged sentiment scores as shown in Fig. 1.

Figure 1: Aggregated aspect terms and average
sentiment polarities for a target entity.

Subtasks SB3 and SB4 are useful when a pre-
defined inventory of (coarse) aspect categories is
available. A table like the one of Fig. 1 can then
also be generated, but this time using the most
frequent aspect categories to label the rows, with
stars showing the proportion of reviews express-
ing positive vs. negative opinions for each aspect
category.

3 Datasets

3.1 Data Collection
The training and test data sizes are provided in Ta-
ble 1. The restaurants training data, consisting of
3041 English sentences, is a subset of the dataset
from Ganu et al. (2009), which included annota-
tions for coarse aspect categories (as in SB3) and
overall sentence polarities. We added annotations
for aspect terms occurring in the sentences (SB1),
aspect term polarities (SB2), and aspect category
polarities (SB4). Additional restaurant reviews
were collected and annotated (from scratch) in
the same manner and used as test data (800 sen-
tences). The laptops dataset contains 3845 English
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sentences extracted from laptop custumer reviews.
Human annotators tagged the aspect terms (SB1)
and their polarities (SB2); 3045 sentences were
used for training and 800 for testing (evaluation).

Domain Train Test Total
Restaurants 3041 800 3841
Laptops 3045 800 3845
Total 6086 1600 7686

Table 1: Sizes (sentences) of the datasets.

3.2 Annotation Process
For a given target entity (a restaurant or a lap-
top) being reviewed, the annotators were asked to
provide two types of information: aspect terms
(SB1) and aspect term polarities (SB2). For the
restaurants dataset, two additional annotation lay-
ers were added: aspect category (SB3) and aspect
category polarity (SB4).

The annotators used BRAT (Stenetorp et al.,
2012), a web-based annotation tool, which was
configured appropriately for the needs of the
ABSA task.1 Figure 2 shows an annotated sen-
tence in BRAT, as viewed by the annotators.

Stage 1: Aspect terms and polarities. During
a first annotation stage, the annotators tagged all
the single or multiword terms that named par-
ticular aspects of the target entity (e.g., “I liked
the service and the staff, but not the food” →
{‘service’, ‘staff’, ‘food’}, “The hard disk is very
noisy”→ {‘hard disk’}). They were asked to tag
only aspect terms explicitly naming particular as-
pects (e.g., “everything about it” or “it’s expen-
sive” do not name particular aspects). The as-
pect terms were annotated as they appeared, even
if misspelled (e.g., ‘warrenty’ instead of ‘war-
ranty’). Each identified aspect term also had to be
assigned a polarity label (positive, negative, neu-
tral, conflict). For example, “I hated their fajitas,
but their salads were great” → {‘fajitas’: nega-
tive, ‘salads’: positive}, “The hard disk is very
noisy”→ {‘hard disk’: negative}.

Each sentence of the two datasets was anno-
tated by two annotators, a graduate student (an-
notator A) and an expert linguist (annotator B).
Initially, two subsets of sentences (300 from each
dataset) were tagged by annotator A and the anno-
tations were inspected and validated by annotator

1Consult http://brat.nlplab.org/ for more in-
formation about BRAT.

B. The disagreements between the two annotators
were confined to borderline cases. Taking into ac-
count the types of these disagreements (discussed
below), annotator A was provided with additional
guidelines and tagged the remainder of the sen-
tences in both datasets.2 When A was not confi-
dent, a decision was made collaboratively with B.
When A and B disagreed, a decision was made
collaboratively by them and a third expert annota-
tor. Most disagreements fall into one of the fol-
lowing three types:
Polarity ambiguity: In several sentences, it was
unclear if the reviewer expressed positive or neg-
ative opinion, or no opinion at all (just reporting
a fact), due to lack of context. For example, in
“12.44 seconds boot time” it is unclear if the re-
viewer expresses a positive, negative, or no opin-
ion about the aspect term ‘boot time’. In future
challenges, it would be better to allow the annota-
tors (and the participating systems) to consider the
entire review instead of each sentence in isolation.
Multi-word aspect term boundaries: In sev-
eral cases, the annotators disagreed on the exact
boundaries of multi-word aspect terms when they
appeared in conjunctions or disjunctions (e.g.,
“selection of meats and seafoods”, “noodle and
rices dishes”, “school or office use”). In such
cases, we asked the annotators to tag as a sin-
gle aspect term the maximal noun phrase (the en-
tire conjunction or disjunction). Other disagree-
ments concerned the extent of the aspect terms
when adjectives that may or may not have a sub-
jective meaning were also present. For example,
if ‘large’ in “large whole shrimp” is part of the
dish name, then the guidelines require the adjec-
tive to be included in the aspect term; otherwise
(e.g., in “large portions”) ‘large’ is a subjectivity
indicator not to be included in the aspect term. De-
spite the guidelines, in some cases it was difficult
to isolate and tag the exact aspect term, because of
intervening words, punctuation, or long-term de-
pendencies.
Aspect term vs. reference to target entity: In
some cases, it was unclear if a noun or noun phrase
was used as the aspect term or if it referred to the
entity being reviewed as whole. In “This place
is awesome”, for example, ‘place’ most probably
refers to the restaurant as a whole (hence, it should
not be tagged as an aspect term), but in “Cozy

2The guidelines are available at: http://alt.qcri.
org/semeval2014/task4/data/uploads/.
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Figure 2: A sentence in the BRAT tool, annotated with four aspect terms (‘appetizers’, ‘salads’, ‘steak’,
‘pasta’) and one aspect category (FOOD). For aspect categories, the whole sentence is tagged.

place and good pizza” it probably refers to the am-
bience of the restaurant. A broader context would
again help in some of these cases.

We note that laptop reviews often evaluate each
laptop as a whole, rather than expressing opinions
about particular aspects. Furthermore, when they
express opinions about particular aspects, they of-
ten do so by using adjectives that refer implicitly
to aspects (e.g., ‘expensive’, ‘heavy’), rather than
using explicit aspect terms (e.g., ‘cost’, ‘weight’);
the annotators were instructed to tag only explicit
aspect terms, not adjectives implicitly referring to
aspects. By contrast, restaurant reviews contain
many more aspect terms (Table 2, last column).3

Dataset Pos. Neg. Con. Neu. Tot.
LPT-TR 987 866 45 460 2358
LPT-TE 341 128 16 169 654
RST-TR 2164 805 91 633 3693
RST-TE 728 196 14 196 1134

Table 2: Aspect terms and their polarities per do-
main. LPT and RST indicate laptop and restau-
rant reviews, respectively. TR and TE indicate the
training and test set.

Another difference between the two datasets
is that the neutral class is much more frequent
in (the aspect terms of) laptops, since laptop re-
views often mention features without expressing
any (clear) sentiment (e.g., “the latest version does
not have a disc drive”). Nevertheless, the positive
class is the majority in both datasets, but it is much
more frequent in restaurants (Table 2). The ma-
jority of the aspect terms are single-words in both
datasets (2148 in laptops, 4827 in restaurants, out
of 3012 and 4827 total aspect terms, respectively).

Stage 2: Aspect categories and polarities. In
this task, each sentence needs to be tagged with
the aspect categories discussed in the sentence.
The aspect categories are FOOD, SERVICE, PRICE,
AMBIENCE (the atmosphere and environment of

3We count aspect term occurrences, not distinct terms.

a restaurant), and ANECDOTES/MISCELLANEOUS

(sentences not belonging in any of the previous
aspect categories). 4 For example, “The restau-
rant was expensive, but the menu was great” is
assigned the aspect categories PRICE and FOOD.
Additionally, a polarity (positive, negative, con-
flict, neutral) for each aspect category should be
provided (e.g., “The restaurant was expensive, but
the menu was great”→ {PRICE: negative, FOOD:
positive}.

One annotator validated the existing aspect cat-
egory annotations of the corpus of Ganu et al.
(2009). The agreement with the existing anno-
tations was 92% measured as average F1. Most
disagreements concerned additions of missing as-
pect category annotations. Furthermore, the same
annotator validated and corrected (if needed) the
existing polarity labels per aspect category anno-
tation. The agreement for the polarity labels was
87% in terms of accuracy and it was measured
only on the common aspect category annotations.
The additional 800 sentences (not present in Ganu
et al.’s dataset) were used for testing and were an-
notated from scratch in the same manner. The dis-
tribution of the polarity classes per category is pre-
sented in Table 3. Again, ‘positive’ is the majority
polarity class while the dominant aspect category
is FOOD in both the training and test restaurant
sentences.

Determining the aspect categories of the sen-
tences and their polarities (Stage 2) was an easier
task compared to detecting aspect terms and their
polarities (Stage 1). The annotators needed less
time in Stage 2 and it was easier to reach agree-
ment. Exceptions were some sentences where it
was difficult to decide if the categories AMBIENCE

or ANECDOTES/MISCELLANEOUS applied (e.g.,
“One of my Fav spots in the city”). We instructed
the annotators to classify those sentences only in
ANECDOTES/MISCELLANEOUS, if they conveyed

4In the original dataset of Ganu et al. (2009), ANECDOTES
and MISCELLANEOUS were separate categories, but in prac-
tice they were difficult to distinguish and we merged them.
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Positive Negative Conflict Neutral Total
Category Train Test Train Test Train Test Train Test Train Test
FOOD 867 302 209 69 66 16 90 31 1232 418
PRICE 179 51 115 28 17 3 10 1 321 83
SERVICE 324 101 218 63 35 5 20 3 597 172
AMBIENCE 263 76 98 21 47 13 23 8 431 118
ANECD./MISC. 546 127 199 41 30 15 357 51 1132 234
Total 2179 657 839 159 163 52 500 94 3713 1025

Table 3: Aspect categories distribution per sentiment class.

general views about a restaurant, without explic-
itly referring to its atmosphere or environment.

3.3 Format and Availability of the Datasets

The datasets of the ABSA task were provided in
an XML format (see Fig. 3). They are avail-
able with a non commercial, no redistribution li-
cense through META-SHARE, a repository de-
voted to the sharing and dissemination of language
resources (Piperidis, 2012).5

4 Evaluation Measures and Baselines

The evaluation of the ABSA task ran in two
phases. In Phase A, the participants were asked
to return the aspect terms (SB1) and aspect cate-
gories (SB3) for the provided test datasets. Subse-
quently, in Phase B, the participants were given
the gold aspect terms and aspect categories (as
in Fig. 3) for the sentences of Phase A and they
were asked to return the polarities of the aspect
terms (SB2) and the polarities of the aspect cate-
gories of each sentence (SB4).6 Each participat-
ing team was allowed to submit up to two runs
per subtask and domain (restaurants, laptops) in
each phase; one constrained (C), where only the
provided training data and other resources (e.g.,
publicly available lexica) excluding additional an-
notated sentences could be used, and one uncon-
strained (U), where additional data of any kind
could be used for training. In the latter case, the
teams had to report the resources they used.

To evaluate aspect term extraction (SB1) and as-
pect category detection (SB3) in Phase A, we used

5The datasets can be downloaded from http://
metashare.ilsp.gr:8080/. META-SHARE (http:
//www.meta-share.org/) was implemented in the
framework of the META-NET Network of Excellence
(http://www.meta-net.eu/).

6Phase A ran from 9:00 GMT, March 24 to 21:00 GMT,
March 25, 2014. Phase B ran from 9:00 GMT, March 27 to
17:00 GMT, March 29, 2014.

the F1 measure, defined as usually:

F1 =
2 · P ·R
P + R

(1)

where precision (P ) and recall (R) are defined as:

P =
|S ∩G|
|S| , R =

|S ∩G|
|G| (2)

Here S is the set of aspect term or aspect category
annotations (in SB1 and SB3, respectively) that a
system returned for all the test sentences (of a do-
main), and G is the set of the gold (correct) aspect
term or aspect category annotations.

To evaluate aspect term polarity (SB2) and as-
pect category polarity (SB4) detection in Phase B,
we calculated the accuracy of each system, defined
as the number of correctly predicted aspect term
or aspect category polarity labels, respectively, di-
vided by the total number of aspect term or aspect
category annotations. Recall that we used the gold
aspect term and category annotations in Phase B.

We provided four baselines, one per subtask:7

Aspect term extraction (SB1) baseline: A se-
quence of tokens is tagged as an aspect term in
a test sentence (of a domain), if it is listed in a
dictionary that contains all the aspect terms of the
training sentences (of the same domain).
Aspect term polarity (SB2) baseline: For each
aspect term t in a test sentence s (of a particu-
lar domain), this baseline checks if t had been
encountered in the training sentences (of the do-
main). If so, it retrieves the k most similar to s
training sentences (of the domain), and assigns to
the aspect term t the most frequent polarity it had
in the k sentences. Otherwise, if t had not been en-
countered in the training sentences, it is assigned
the most frequent aspect term polarity label of the

7Implementations of the baselines and further information
about the baselines are available at: http://alt.qcri.
org/semeval2014/task4/data/uploads/.
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<sentence id="11351725#582163#9">
<text>Our waiter was friendly and it is a shame that he didnt have a supportive

staff to work with.</text>
<aspectTerms>

<aspectTerm term="waiter" polarity="positive" from="4" to="10"/>
<aspectTerm term="staff" polarity="negative" from="74" to="79"/>

</aspectTerms>
<aspectCategories>

<aspectCategory category="service" polarity="conflict"/>
</aspectCategories>

</sentence>

Figure 3: An XML snippet that corresponds to the annotated sentence of Fig. 2.

training set. The similarity between two sentences
is measured as the Dice coefficient of the sets of
(distinct) words of the two sentences. For exam-
ple, the similarity between “this is a demo” and
“that is yet another demo” is 2·2

4+5 = 0.44.
Aspect category extraction (SB3) baseline: For
every test sentence s, the k most similar to s train-
ing sentences are retrieved (as in the SB2 base-
line). Then, s is assigned the m most frequent as-
pect category labels of the k retrieved sentences;
m is the most frequent number of aspect category
labels per sentence among the k sentences.
Aspect category polarity (SB4): This baseline
assigns to each aspect category c of a test sentence
s the most frequent polarity label that c had in the
k most similar to s training sentences (of the same
domain), considering only training sentences that
have the aspect category label c. Sentence similar-
ity is computed as in the SB2 baseline.

For subtasks SB2 and SB4, we also use a major-
ity baseline that assigns the most frequent polarity
(in the training data) to all the aspect terms and as-
pect categories. The scores of all the baselines and
systems are presented in Tables 4–6.

5 Evaluation Results

The ABSA task attracted 32 teams in total and 165
submissions (systems), 76 for phase A and 89 for
phase B. Based on the human-annotation experi-
ence, the expectations were that systems would
perform better in Phase B (SB3, SB4, involving
aspect categories) than in Phase A (SB1, SB2, in-
volving aspect terms). The evaluation results con-
firmed our expectations (Tables 4–6).

5.1 Results of Phase A

The aspect term extraction subtask (SB1) attracted
24 teams for the laptops dataset and 24 teams for
the restaurants dataset; consult Table 4.

Laptops Restaurants
Team F1 Team F1

IHS RD. 74.55† DLIREC 84.01*
DLIREC 73.78* XRCE 83.98
DLIREC 70.4 NRC-Can. 80.18
NRC-Can. 68.56 UNITOR 80.09
UNITOR 67.95* UNITOR 79.96*
XRCE 67.24 IHS RD. 79.62†
SAP RI 66.6 UWB 79.35*
IITP 66.55 SeemGo 78.61
UNITOR 66.08 DLIREC 78.34
SeemGo 65.99 ECNU 78.24
ECNU 65.88 SAP RI 77.88
SNAP 62.4 UWB 76.23
DMIS 60.59 IITP 74.94
UWB 60.39 DMIS 72.73
JU CSE. 59.37 JU CSE. 72.34
lsis lif 56.97 Blinov 71.21*
USF 52.58 lsis lif 71.09
Blinov 52.07* USF 70.69
UFAL 48.98 EBDG 69.28*
UBham 47.49 UBham 68.63*
UBham 47.26* UBham 68.51
SINAI 45.28 SINAI 65.41
EBDG 41.52* V3 60.43*
V3 36.62* UFAL 58.88
COMMIT. 25.19 COMMIT. 54.38
NILCUSP 25.19 NILCUSP 49.04
iTac 23.92 SNAP 46.46

iTac 38.29
Baseline 35.64 Baseline 47.15

Table 4: Results for aspect term extraction (SB1).
Stars indicate unconstrained systems. The † indi-
cates a constrained system that was not trained on
the in-domain training dataset (unlike the rest of
the constrained systems), but on the union of the
two training datasets (laptops, restaurants).
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Restaurants Restaurants
Team F1 Team Acc.
NRC-Can. 88.57 NRC-Can. 82.92
UNITOR 85.26* XRCE 78.14
XRCE 82.28 UNITOR 76.29*
UWB 81.55* SAP RI 75.6
UWB 81.04 SeemGo 74.63
UNITOR 80.76 SA-UZH 73.07
SAP RI 79.04 UNITOR 73.07
SNAP 78.22 UWB 72.78
Blinov 75.27* UWB 72.78*
UBham 74.79* lsis lif 72.09
UBham 74.24 UBham 71.9
EBDG 73.98* EBDG 69.75
SeemGo 73.75 SNAP 69.56
SINAI 73.67 COMMIT. 67.7
JU CSE. 70.46 Blinov 65.65*
lsis lif 68.27 Ualberta. 65.46
ECNU 67.29 JU CSE. 64.09
UFAL 64.51 ECNU 63.41
V3 60.20* UFAL 63.21
COMMIT. 59.3 iTac 62.73*
iTac 56.95 ECNU 60.39*

SINAI 60.29
V3 47.21
Baseline 65.65

Baseline 63.89 Majority 64.09

Table 5: Results for aspect category detection
(SB3) and aspect category polarity (SB4). Stars
indicate unconstrained systems.

Overall, the systems achieved significantly
higher scores (+10%) in the restaurants domain,
compared to laptops. The best F1 score (74.55%)
for laptops was achieved by the IHS RD. team,
which relied on Conditional Random Fields (CRF)
with features extracted using named entity recog-
nition, POS tagging, parsing, and semantic anal-
ysis. The IHS RD. team used additional reviews
from Amazon and Epinions (without annotated
terms) to learn the sentiment orientation of words
and they trained their CRF on the union of the
restaurant and laptop training data that we pro-
vided; the same trained CRF classifier was then
used in both domains.

The second system, the unconstrained system of
DLIREC, also uses a CRF, along with POS and
dependency tree based features. It also uses fea-
tures derived from the aspect terms of the train-
ing data and clusters created from additional re-

views from YELP and Amazon. In the restaurants
domain, the unconstrained system of DLIREC
ranked first with an F1 of 84.01%, but the best
unconstrained system, that of XRCE, was very
close (83.98%). The XRCE system relies on a
parser to extract syntactic/semantic dependencies
(e.g., ‘dissapointed’–‘food’). For aspect term ex-
traction, the parser’s vocabulary was enriched with
the aspect terms of the training data and a term
list extracted from Wikipedia and Wordnet. A set
of grammar rules was also added to detect multi-
word terms and associate them with the corre-
sponding aspect category (e.g., FOOD, PRICE).

The aspect category extraction subtask (SB3)
attracted 18 teams. As shown in Table 5, the best
score was achieved by the system of NRC-Canada
(88.57%), which relied on five binary (one-vs-all)
SVMs, one for each aspect category. The SVMs
used features based on various types of n-grams
(e.g., stemmed) and information from a lexicon
learnt from YELP data, which associates aspect
terms with aspect categories. The latter lexicon
significantly improved F1. The constrained UN-
ITOR system uses five SVMs with bag-of-words
(BoW) features, which in the unconstrained sub-
mission are generalized using distributional vec-
tors learnt from Opinosis and TripAdvisor data.
Similarly, UWB uses a binary MaxEnt classifier
for each aspect category with BoW and TF-IDF
features. The unconstrained submission of UWB
also uses word clusters learnt using various meth-
ods (e.g., LDA); additional features indicate which
clusters the words of the sentence being classi-
fied come from. XRCE uses information identi-
fied by its syntactic parser as well as BoW features
to train a logistic regression model that assigns to
the sentence probabilities of belonging to each as-
pect category. A probability threshold, tuned on
the training data, is then used to determine which
categories will be assigned to the sentence.

5.2 Results of Phase B

The aspect term polarity detection subtask (SB2)
attracted 26 teams for the laptops dataset and 26
teams for the restaurants dataset. DCU and NRC-
Canada had the best systems in both domains (Ta-
ble 6). Their scores on the laptops dataset were
identical (70.48%). On the laptops dataset, the
DCU system performed slightly better (80.95%
vs. 80.15%). For SB2, both NRC-Canada and
DCU relied on an SVM classifier with features

33



mainly based on n-grams, parse trees, and sev-
eral out-of-domain, publicly available sentiment
lexica (e.g., MPQA, SentiWordnet and Bing Liu’s
Opinion Lexicon). NRC-Canada also used two
automatically compiled polarity lexica for restau-
rants and laptops, obtained from YELP and Ama-
zon data, respectively. Furthermore, NRC-Canada
showed by ablation experiments that the most use-
ful features are those derived from the sentiment
lexica. On the other hand, DCU used only publicly
available lexica, which were manually adapted by
filtering words that do not express sentiment in
laptop and restaurant reviews (e.g., ‘really’) and
by adding others that were missing and do express
sentiment (e.g., ‘mouthwatering’).

The aspect category polarity detection subtask
(SB4) attracted 20 teams. NRC-Canada again had
the best score (82.92%) using an SVM classifier.
The same feature set as in SB2 was used, but it
was further enriched to capture information re-
lated to each specific aspect category. The second
team, XRCE, used information from its syntactic
parser, BoW features, and an out-of-domain senti-
ment lexicon to train an SVM model that predicts
the polarity of each given aspect category.

6 Conclusions and Future Work

We provided an overview of Task 4 of SemEval-
2014. The task aimed to foster research in aspect-
based sentiment analysis (ABSA). We constructed
and released ABSA benchmark datasets contain-
ing manually annotated reviews from two domains
(restaurants, laptops). The task attracted 163 sub-
missions from 32 teams that were evaluated in four
subtasks centered around aspect terms (detecting
aspect terms and their polarities) and coarser as-
pect categories (assigning aspect categories and
aspect category polarities to sentences). The task
will be repeated in SemEval-2015 with additional
datasets and a domain-adaptation subtask.8 In the
future, we hope to add an aspect term aggrega-
tion subtask (Pavlopoulos and Androutsopoulos,
2014a).
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Laptops Restaurants
Team Acc. Team Acc.
DCU 70.48 DCU 80.95
NRC-Can. 70.48 NRC-Can. 80.15†
SZTE-NLP 66.97 UWB 77.68*
UBham 66.66 XRCE 77.68
UWB 66.66* SZTE-NLP 75.22
lsis lif 64.52 UNITOR 74.95*
USF 64.52 UBham 74.6
SNAP 64.06 USF 73.19
UNITOR 62.99 UNITOR 72.48
UWB 62.53 SeemGo 72.31
IHS RD. 61.62 lsis lif 72.13
SeemGo 61.31 UWB 71.95
ECNU 61.16 SA-UZH 70.98
ECNU 61.16* IHS RD. 70.81
SINAI 58.71 SNAP 70.81
SAP RI 58.56 ECNU 70.72
UNITOR 58.56* ECNU 70.72*
SA-UZH 58.25 INSIGHT. 70.72
COMMIT 57.03 SAP RI 69.92
INSIGHT. 57.03 EBDG 68.6
UMCC. 57.03* UMCC. 66.84*
UFAL 56.88 UFAL 66.57
UMCC. 56.11 UMCC. 66.57
EBDG 55.96 COMMIT 65.96
JU CSE. 55.65 JU CSE. 65.52
UO UA 55.19* Blinov 63.58*
V3 53.82 iTac 62.25*
Blinov 52.29* V3 59.78
iTac 51.83* SINAI 58.73
DLIREC 36.54 DLIREC 42.32*
DLIREC 36.54* DLIREC 41.71
IITP 66.97 IITP 67.37
Baseline 51.37 Baseline 64.28
Majority 52.14 Majority 64.19

Table 6: Results for the aspect term polarity sub-
task (SB2). Stars indicate unconstrained systems.
The † indicates a constrained system that was not
trained on the in-domain training dataset (unlike
the rest of the constrained systems), but on the
union of the two training datasets. IITP’s original
submission files were corrupted; they were resent
and scored after the end of the evaluation period.

annotation process, and Juli Bakagianni, who sup-
ported our use of the META-SHARE platform.
We are also very grateful to the participants for
their feedback. Maria Pontiki and Haris Papageor-
giou were supported by the IS-HELLEANA (09-
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72-922) and the POLYTROPON (KRIPIS-GSRT,
MIS: 448306) projects.
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Abstract

We present a new cross-lingual task for
SemEval concerning the translation of
L1 fragments in an L2 context. The
task is at the boundary of Cross-Lingual
Word Sense Disambiguation and Machine
Translation. It finds its application in the
field of computer-assisted translation, par-
ticularly in the context of second language
learning. Translating L1 fragments in an
L2 context allows language learners when
writing in a target language (L2) to fall
back to their native language (L1) when-
ever they are uncertain of the right word
or phrase.

1 Introduction

We present a new cross-lingual and application-
oriented task for SemEval that is situated in the
area where Word Sense Disambiguation and Ma-
chine Translation meet. Finding the proper trans-
lation of a word or phrase in a given context is
much like the problem of disambiguating between
multiple senses.

In this task participants are asked to build a
translation/writing assistance system that trans-
lates specifically marked L1 fragments in an L2
context to their proper L2 translation. This type
of translation can be applied in writing assistance
systems for language learners in which users write
in a target language, but are allowed to occasion-
ally back off to their native L1 when they are un-
certain of the proper lexical or grammatical form
in L2. The task concerns the NLP back-end rather
than any user interface.

Full-on machine translation typically concerns
the translation of complete sentences or texts from

This work is licensed under a Creative
Commons Attribution 4.0 International Licence:
http://creativecommons.org/licenses/by/4.0/

L1 to L2. This task, in contrast, focuses on smaller
fragments, side-tracking the problem of full word
reordering.

We focus on the following language combi-
nations of L1 and L2 pairs: English-German,
English-Spanish, French-English and Dutch-
English. Task participants could participate for all
language pairs or any subset thereof.

2 Task Description

We frame the task in the context of second lan-
guage learning, yielding a specific practical appli-
cation.

Participants build a translation assistance sys-
tem rather than a full machine translation system.
The L1 expression, a word or phrase, is translated
by the system to L2, given the L2 context already
present, including right-side context if available.
The aim here, as in all translation, is to carry the
semantics of the L1 fragment over to L2 and find
the most suitable L2 expression given the already
present L2 context.

Other than a limit on length (6 words), we do
not pose explicit constraints on the kinds of L1
fragments allowed. The number of L1 fragments
is limited to one fragment per sentence.

The task addresses both a core problem of
WSD, with cross-lingual context, and a sub-
problem of Phrase-based Statistical Machine
Translation; that of finding the most suitable trans-
lation of a word or phrase. In MT this would be
modelled by the translation model. In our task
the full complexity of full-sentential translation
is bypassed, putting the emphasis on the seman-
tic aspect of translation. Our task has specific
practical applications and a specific intended au-
dience, namely intermediate and advanced second
language learners, whom one generally wants to
encourage to use their target language as much as
possible, but who may often feel the need to fall
back to their native language.
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Currently, language learners are forced to fall
back to a bilingual dictionary when in doubt. Such
dictionaries do not take the L2 context into ac-
count and are generally more constrained to single
words or short expressions. The proposed applica-
tion would allow more flexible context-dependent
lookups as writing progresses. The task tests how
effectively participating systems accomplish this.

The following examples illustrate the task for
the four language pairs we offer:

• Input (L1=English,L2=Spanish): “Todo ello,
in accordance con los principios que siempre
hemos apoyado.”
Desired output: “Todo ello, de conformidad
con los principios que siempre hemos apoy-
ado.”

• Input (L1-English, L2=German): “Das,
was wir heute machen, is essentially ein
Ärgernis.”
Desired output: “Das, was wir heute machen,
ist im Grunde genommen ein Ärgernis.”

• Input (L1=French,L2=English): “I rentre à
la maison because I am tired.”
Desired output: “I return home because I am
tired.”

• Input (L1=Dutch, L2=English): “Workers
are facing a massive aanval op their employ-
ment and social rights.”
Desired output: “Workers are facing a mas-
sive attack on their employment and social
rights.”

The task can be related to two tasks that were
offered in previous years of SemEval: Lexical
Substitution (Mihalcea et al., 2010) and most no-
tably Cross-lingual Word Sense Disambiguation
(Lefever and Hoste, 2013).

When comparing our task to the Cross-Lingual
Word-Sense Disambiguation task, one notable dif-
ference is the fact that our task concerns not just
words, but also phrases. Another essential differ-
ence is the nature of the context; our context is in
L2 instead of L1. Unlike the Cross-Lingual Word
Sense Disambiguation task, we do not constrain
the L1 words or phrases that may be used for trans-
lation, except for a maximum length which we set
to 6 tokens, whereas Lefever and Hoste (2013)
only tested a select number of nouns. Our task
emphasizes a correct meaning-preserving choice

of words in which translations have to fit in the
L2 context. There is thus a clear morphosyntactic
aspect to the task, although less prominent than
in full machine translation, as the remainder of
the sentence, already in L2, does not need to be
changed. In the Cross-Lingual Word Sense Dis-
ambiguation tasks, the translations/senses were
lemmatised. We deliberately chose a different path
that allows for the envisioned application to func-
tion directly as a translation assistance system.

A pilot study was conducted to test the feasibil-
ity of the proposed translation system (van Gom-
pel and van den Bosch, 2014). It shows that L2
context information can be a useful cue in transla-
tion of L1 fragments to L2, improving over a non-
context-informed baseline.

3 Data

We did not provide training data for this task, as
we did not want to bias participating systems by
favouring a particular sort of material and method-
ology. Moreover, it would be a prohibitively large
task to manually collect enough training data of
the task itself. Participants were therefore free to
use any suitable training material such as parallel
corpora, wordnets, or bilingual lexica.

Trial and test data has been collected for the
task, both delivered in a simple XML format that
explicitly marks the fragments. System output of
participants adheres to the same format. The trial
set, released early on in the task, was used by par-
ticipants to develop and tune their systems on. The
test set corresponds to the final data released for
the evaluation period; the final evaluation was con-
ducted on this data.

The trial data was constructed in an automated
fashion in the way described in our pilot study
(van Gompel and van den Bosch, 2014). First a
phrase-translation table is constructed from a par-
allel corpus. We used the Europarl parallel corpus
(Koehn, 2005) and the Moses tools (Koehn et al.,
2007), which in turn makes use of GIZA++ (Och
and Ney, 2000). Only strong phrase pairs (ex-
ceeding a set threshold) were retained and weaker
ones were pruned. This phrase-translation table
was then used to create input sentences in which
the L2 fragments are swapped for their L1 coun-
terparts, effectively mimicking a fall-back to L1 in
an L2 context. The full L2 sentence acts as refer-
ence sentence. Finally, to ensure all fragments are
correct and sensible, a manual selection from this
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automatically generated corpus constituted the fi-
nal trial set.

In our pilot study, such a data set, even with-
out the manual selection stage, proved adequate to
demonstrate the feasibility of translating L1 frag-
ments in an L2 context (van Gompel and van den
Bosch, 2014). One can, however, rightfully argue
whether such data is sufficiently representative for
the task and whether it would adequately cover in-
stances where L2 language learners might experi-
ence difficulties and be inclined to fall back to L1.
We therefore created a more representative test set
for the task.

The actual test set conforms to much more
stringent constraints and was composed entirely
by hand from a wide variety of written sources.
Amongst these sources are study books and gram-
mar books for language learners, short bilingual
on-line stories aimed at language learners, gap-
exercises and cloze tests, and contemporary writ-
ten resources such as newspapers, novels, and
Wikipedia. We aimed for actual learner corpora,
but finding suitable learner corpora with sufficient
data proved hard. For German we could use the
the Merlin corpus (Abel et al., 2013). In example
(a) we see a real example of a fragment in a fall-
back language in an L2 context from the Merlin
corpus.

(a) Input: Das Klima hier ist Tropical und wir haben fast
keinen Winter
Reference: Das Klima hier ist tropisch und wir haben
fast keinen Winter.

For various sources bilingual data was avail-
able. For the ones that were monolingual (L2)
we resorted to manual translation. To ensure our
translations were correct, these were later indepen-
dently verified, and where necessary corrected by
native speakers.

A large portion of the test set comes from off-
line resources because we wanted to make sure
that a substantial portion of the test set could not
be found verbatim on-line. This was done to pre-
vent systems from solving the actual problem by
just attempting to just look up the sources through
the available context information.

Note that in general we aimed for the European
varieties of the different languages. However, for
English we did add the US spelling variants as al-
ternatives. A complete list of all sources used in
establishing the test set is available on our web-

site1.
We created a trial set and test set/gold standard

of 500 sentence pairs per language pair. Due to
the detection of some errors at a later stage, some
of which were caused by the tokenisation pro-
cess, we were forced to remove some sentences
from the test set and found ourselves slightly be-
low our aim for some of the language pairs. The
test set was delivered in both tokenised2 and unto-
kenised form. The trial set was delivered only in
tokenised form. Evaluation was conducted against
the tokenised version, but our evaluation script
was designed to be as lenient as possible regard-
ing differences in tokenisation. We explicitly took
cases into account where participant’s tokenisers
split contractions (such as Spanish “del” to “de”
+ “el”), whereas our tokeniser did not.

For a given input fragment, it may well be possi-
ble that there are multiple correct translations pos-
sible. In establishing our test set, we therefore paid
special attention to adding alternatives. To ensure
no alternatives were missed, all participant output
was aggregated in one set, effectively anonymis-
ing the systems, and valid but previously missed
alternatives were added to the gold standard.

4 Evaluation

Several metrics are available for automatic eval-
uation. First, we measure the absolute accuracy
a = c/n, where c is the number of fragment
translations from the system output that precisely
match the corresponding fragments in the refer-
ence translation, and n is the total number of trans-
latable fragments, including those for which no
translation was found. We also introduce a word-
based accuracy, which unlike the absolute accu-
racy gives some credits to mismatches that show
partial overlap with the reference translation. It as-
signs a score according to the longest consecutive
matching substring between output fragment and
reference fragment and is computed as follows:

wac =
|longestsubmatch(output, reference)|

max(|output|, |reference|)
(1)

The system with the highest word-based accu-
racy wins the competition. All matching is case-
sensitive.

1https://github.com/proycon/semeval2014task5
2Using ucto, available at https://github.com/proycon/ucto
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Systems may decide not to translate fragments
if they cannot find a suitable translation. A recall
metric simply measures the number of fragments
for which the system generated a translation, re-
gardless of whether that translation is correct or
not, as a proportion of the total number of frag-
ments.

In addition to these task-specific metrics, stan-
dard MT metrics such as BLEU, NIST, METEOR
and error rates such as WER, PER and TER, are
included in the evaluation script as well. Scores
such as BLEU will generally be high (> 0.95)
when computed on the full sentence, as a large
portion of the sentence is already translated and
only a specific fragment remains to be evaluated.
Nevertheless, these generic metrics are proven in
our pilot study to follow the same trend as the
more task-specific evaluation metrics, and will be
omitted in the result section for brevity.

It regularly occurs that multiple translations are
possible. As stated, in the creation of the test set
we have taken this into account by explicitly en-
coding valid alternatives. A match with any alter-
native in the reference counts as a valid match. For
word accuracy, the highest word accuracy amongst
all possible alternatives in the reference is taken.
Likewise, participant system output may contain
multiple alternatives as well, as we allowed two
different types of runs, following the example of
the Cross-Lingual Lexical Substitution and Cross-
Lingual Word Sense Disambiguation tasks:

• Best - The system may only output one, its
best, translation;

• Out of Five - The system may output up
to five alternatives, effectively allowing 5
guesses. Only the best match is counted. This
metric does not count how many of the five
are valid.

Participants could submit up to three runs per
language pair and evaluation type.

5 Participants

Six teams submitted systems, three of which par-
ticipated for all language pairs. In alphabetic or-
der, these are:

1. CNRC - Cyril Goutte, Michel Simard, Ma-
rine Carpuat - National Research Council
Canada – All language pairs

2. IUCL - Alex Rudnick, Liu Can, Levi King,
Sandra Kübler, Markus Dickinson - Indiana
University (US) – all language pairs

3. UEdin - Eva Hasler - University of Ed-
inburgh (UK) – all language pairs except
English-German

4. UNAL - Sergio Jiménez, Emilio Silva - Uni-
versidad Nacional de Colombia – English-
Spanish

5. Sensible - Liling Tan - Universität des Saar-
landes (Germany) and Nanyang Technolog-
ical University (Singapore) – all language
pairs

6. TeamZ - Anubhav Gupta - Université de
Franche-Comté (France) – English-Spanish,
English-German

Participants implemented distinct methodolo-
gies and implementations. One obvious avenue of
tackling the problem is through standard Statisti-
cal Machine Translation (SMT). The CNRC team
takes a pure SMT approach with few modifica-
tions. They employ their own Portage decoder and
directly send an L1 fragment in an L2 context, cor-
responding to a partial translation hypothesis with
only one fragment left to decode, to their decoder
(Goutte et al., 2014). The UEdin team applies a
similar method using the Moses decoder, marking
the L2 context so that the decoder leaves this con-
text as is. In addition they add a context similarity
feature for every phrase pair in the phrase transla-
tion table, which expresses topical similarity with
the test context. In order to properly decode, the
phrase table is filtered per test sentence (Hasler,
2014). The IUCL and UNAL teams do make use
of the information from word alignments or phrase
translation tables, but do not use a standard SMT
decoder. The IUCL system combines various in-
formation sources in a log-linear model: phrase
table, L2 Language Model, Multilingual Dictio-
nary, and a dependency-based collocation model,
although this latter source was not finished in time
for the system submission (Rudnick et al., 2014).
The UNAL system extracts syntactic features as a
means to relate L1 fragments with L2 context to
their L2 fragment translations, and uses memory-
based classifiers to achieve this (Silva-Schlenker
et al., 2014). The two systems on the lower end of
the result spectrum use different techniques alto-
gether. The Sensible team approaches the problem
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by attempting to emulate the manual post-editing
process human translators employ to correct MT
output (Tan et al., 2014), whereas TeamZ relies on
Wiktionary as the sole source (Gupta, 2014).

6 Results

The results of the six participating teams can be
viewed in consensed form in Table 1. This table
shows the highest word accuracy achieved by the
participants, in which multiple system runs have
been aggregated. A ranking can quickly be dis-
tilled from this, as the best score is marked in
bold. The system by the University of Edinburgh
emerges as the clear winner of the task. The full
results of the various system runs by the six par-
ticipants are shown in Tables 2 and 3, two pages
down, all three aforementioned evaluation metrics
are reported there and the systems are sorted by
word accuracy per language pair and evaluation
type.

Team en-es oof en-de oof
CNRC 0.745 0.887 0.717 0.868
IUCL 0.720 0.847 0.722 0.857
UEdin 0.827 0.949 - -
UNAL 0.809 0.880 - -
Sensible 0.351 0.231 0.233 0.306
TeamZ 0.333 0.386 0.293 0.385

fr-en oof nl-en oof
CNRC 0.694 0.839 0.610 0.723
IUCL 0.682 0.800 0.679 0.753
UEdin 0.824 0.939 0.692 0.811
UNAL - - - -
Sensible 0.116 0.14 0.152 0.171
TeamZ - - - -

Table 1: Highest word accuracy per team, per lan-
guage pair, and per evaluation type (out-of-five is
include in the “oof” column). The best score in
each column is marked in bold.

For the lowest-ranking participants, the score is
negatively impacted by the low recall; their sys-
tems could not find translations for a large number
of fragments.

Figures 1 (next page) and 2 (last page) show the
results for the best evaluation type for each sys-
tem run. Three bars are shown; from left to right
these represent accuracy (blue), word-accuracy
(green) and recall (red). Graphs for out-of-five
evaluation were omitted for brevity, but tend to fol-
low the same trend with scores that are somewhat

higher. These scores can be viewed on the result
website at http://github.com/proycon/
semeval2014task5/. The result website also
holds the system output and evaluation scripts with
which all graphs and tables can be reproduced.

We observe that the best scoring team in the
task (UEdin), as well as the CNRC team, both em-
ploy standard Statistical Machine Translation and
achieve high results. From this we can conclude
that standard SMT techniques are suitable for this
task. Teams IUCL and UNAL achieve similarly
good results, building on word and phrase align-
ment data as does SMT, yet not using a traditional
SMT decoder. TeamZ and Sensible, the two sys-
tems ranked lowest do not rely on any techniques
from SMT. To what extent the context-informed
measures of the various participants are effective
can not be judged from this comparison, but can
only be assessed in comparison to their own base-
lines. For this we refer to the system papers of the
participants.

7 Discussion

We did not specify any training data for the task.
The advantage of this is that participants were free
to build a wider variety of systems from various
sources, rather than introducing a bias towards for
instances statistical systems. The disadvantage,
however, is that a comparison of the various sys-
tems does not yield conclusive results regarding
the merit of their methodologies. Discrepancies
might at least be partly due to differences in train-
ing data, as it is generally well understood in MT
that more training data improves results. The base-
lines various participants describe in their system
papers provide more insight to the merit of their
approaches than a comparison between them.

In the creation of the test set, we aimed to mimic
intermediate to high-level language learners. We
also aimed at a fair distribution of different part-
of-speech categories and phrasal length. The dif-
ficulty of the task differs between language pairs,
though not intentionally so. We observe that the
Dutch-English set is the hardest and the Spanish-
English is the easiest in the task. One of the par-
ticipants implicitly observes this through measure-
ment of the number of Out-of-Vocabulary words
(Goutte et al., 2014). This implies that when com-
paring system performance between different lan-
guage pairs, one can not simply ascribe a lower
result to a system having more difficulty with said
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Figure 1: English to Spanish (top), English to German (middle) and French to English (bottom). The
three bars, left-to-right, represent Accuracy (blue), Word Accuracy (green) and Recall (red).
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System Acc W.Acc. Recall
English-Spanish (best)

UEdin-run2 0.755 0.827 1.0
UEdin-run1 0.753 0.827 1.0
UEdin-run3 0.745 0.82 1.0
UNAL-run2 0.733 0.809 0.994
UNAL-run1 0.721 0.794 0.994
CNRC-run1 0.667 0.745 1.0
CNRC-run2 0.651 0.735 1.0
IUCL-run1 0.633 0.72 1.0
IUCL-run2 0.633 0.72 1.0
Sensible-wtmxlingyu 0.239 0.351 0.819
TeamZ-run1 0.223 0.333 0.751
Sensible-wtm 0.145 0.175 0.470
Sensible-wtmxling 0.141 0.171 0.470

English-Spanish (out-of-five)
UEdin-run3 0.928 0.949 1.0
UEdin-run1 0.924 0.946 1.0
UEdin-run2 0.92 0.944 1.0
CNRC-run1 0.843 0.887 1.0
CNRC-run2 0.837 0.884 1.0
UNAL-run1 0.823 0.88 0.994
IUCL-run1 0.781 0.847 1.0
IUCL-run2 0.781 0.847 1.0
Sensible-wtmxlingyu 0.263 0.416 0.819
TeamZ-run1 0.277 0.386 0.751
Sensible-wtm 0.173 0.231 0.470
Sensible-wtmxling 0.169 0.228 0.470

English-German (best)
IUCL-run2 0.665 0.722 1.0
CNRC-run1 0.657 0.717 1.0
CNRC-run2 0.645 0.702 1.0
TeamZ-run1 0.218 0.293 0.852
IUCL-run1 0.198 0.252 1.0
Sensible-wtmxlingyu 0.162 0.233 0.878
Sensible-wtm 0.16 0.184 0.647
Sensible-wtmxling 0.152 0.178 0.647

English-German (out-of-five)
CNRC-run1 0.834 0.868 1.0
CNRC-run2 0.828 0.865 1.0
IUCL-run2 0.806 0.857 1.0
TeamZ-run1 0.307 0.385 0.852
IUCL-run1 0.228 0.317 1.0
Sensible-wtmxlingyu 0.18 0.306 0.878
Sensible-wtm 0.182 0.256 0.647
Sensible-wtmxling 0.174 0.25 0.647

Table 2: Full results for English-Spanish and
English-German.

language pair. This could rather be an intrinsic
property of the test set or the distance between the
languages.

Distance in syntactic structure between lan-
guages also defines the limits of this task. Dur-
ing composition of the test set it became clear that
backing off to L1 was not always possible when
syntax diverged to much. An example of this is
separable verbs in Dutch and German. Consider
the German sentence “Er ruft seine Mutter an”
(translation: “He calls his mother”). Imagine

System Acc W.Acc. Recall
French-English (best)

UEdin-run1 0.733 0.824 1.0
UEdin-run2 0.731 0.821 1.0
UEdin-run3 0.723 0.816 1.0
CNRC-run1 0.556 0.694 1.0
CNRC-run2 0.533 0.686 1.0
IUCL-run1 0.545 0.682 1.0
IUCL-run2 0.545 0.682 1.0
Sensible-wtmxlingyu 0.081 0.116 0.321
Sensible-wtm 0.055 0.067 0.210
Sensible-wtmxling 0.055 0.067 0.210

French-English (out-of-five)
UEdin-run2 0.909 0.939 1.0
UEdin-run1 0.905 0.938 1.0
UEdin-run3 0.907 0.937 1.0
CNRC-run1 0.739 0.839 1.0
CNRC-run2 0.731 0.834 1.0
IUCL-run1 0.691 0.8 1.0
IUCL-run2 0.691 0.8 1.0
Sensible-wtmxlingyu 0.085 0.14 0.321
Sensible-wtmxling 0.061 0.09 0.210
Sensible-wtm 0.061 0.089 0.210

Dutch-English (best)
UEdin-run1 0.575 0.692 1.0
UEdin-run2 0.567 0.688 1.0
UEdin-run3 0.565 0.688 1.0
IUCL-run1 0.544 0.679 1.0
IUCL-run2 0.544 0.679 1.0
CNRC-run1 0.45 0.61 1.0
CNRC-run2 0.444 0.609 1.0
Sensible-wtmxlingyu 0.115 0.152 0.335
Sensible-wtm 0.092 0.099 0.214
Sensible-wtmxling 0.088 0.095 0.214

Dutch-English (out-of-five)
UEdin-run1 0.733 0.811 1.0
UEdin-run3 0.727 0.808 1.0
UEdin-run2 0.725 0.808 1.0
IUCL-run1 0.634 0.753 1.0
IUCL-run2 0.634 0.753 1.0
CNRC-run1 0.606 0.723 1.0
CNRC-run2 0.602 0.721 1.0
Sensible-wtmxlingyu 0.123 0.171 0.335
Sensible-wtm 0.099 0.115 0.214
Sensible-wtmxling 0.096 0.112 0.214

Table 3: Full results for French-English and
Dutch-English.

a German language learner wanting to compose
such a sentence but wanting to fall back to En-
glish for the verb “to call”, which would translate
to German as “anrufen”. The possible input sen-
tence may still be easy to construe: “Er calls seine
Mutter”, but the solution to this problem would
require insertion at two different points, whereas
the task currently only deals with a substitution of
a single fragment. The reverse is arguably even
more complex and may stray too far from what
a language learner may do. Consider an English
language learner wanting to fall back to her na-
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tive German, struggling with the English transla-
tion for “anrufen”. She may compose a sentence
such as “He ruft his mother an”, which would
require translating two dependent fragments into
one.

We already have interesting examples in the
gold standard, such as example (b), showing syn-
tactic word-order changes confined to a single
fragment.

(b) Input: I always wanted iemand te zijn , but now I
realize I should have been more specific.
Reference: I always wanted to be somebody , but
now I realize I should have been more specific.
Participant output (aggregated): to be a person; it to
be; someone to his; to be somebody; person to be;
someone to; someone to be; to be anybody; to anyone;
to be someone; a person to have any; to be someone
else

Another question we can ask, but have not in-
vestigated, is whether a language learner would
insert the proper morphosyntactic form of an L1
word given the L2 context, or whether she may
be inclined to fall back to a normal form such
as an infinitive. Especially in the above case of
separable verbs someone may be more inclined to
circumvent the double fragments and provide the
input: “He anrufen his mother“, but in simpler
cases the same issue arises as well. Consider an
English learner falling back to her native Croatian,
a Slavic language which heavily declines nouns.
If she did not know the English word “book” and
wanted to write “He gave the book to him”, she
could use either the Croatian word “knjigu” in its
accusative declension or fall back to the normal
form “knjiga”. A proper writing assistant system
would have to account for both options.

We can analyse which of the sentences in the
test data participants struggled with most. First
we look at the number of sentences that produce
an average word accuracy of zero, measured per
sentence over all systems and runs in the out-of-
five metric. This means no participant was close
to the correct output. There were 6 such sentences
in English-Spanish, 17 in English-German, 6 in
French-English, and 32 in Dutch-English.

A particularly difficult context from the Span-
ish set is when a subjunctive verb form was re-
quired, but an indicative verb form was submit-
ted by the systems, such as in the sentence: “Es-
pero que los frenos del coche funcionen bien.”.
Though this may be deduced from context (the
word “Espero”, expressing hope yet doubt, be-
ing key here), it is often subtle and hard to cap-

ture. Another problematic case that recurs in the
German and Dutch data sets is compound nouns.
The English fragment “work motivation” should
translate into the German compound “Arbeitsmo-
tivation” or “Arbeitsmoral”, yet participants were
not able to find the actual compound noun. Beside
compound nouns, other less frequent multi-word
expressions are also amongst the difficult cases.
Sparsity or complete absence in training data of
these expressions is why systems struggle here.

Another point of discussion is the fact that we
enriched the test set by adding previously unavail-
able alternative translations from an aggregated
pool of system output. This might draw criticism
for possibly introducing a bias, also considering
the fact that the decision to include a particular al-
ternative for a given context is not always straight-
forward and at times subjective. We, however,
contend that this is the best way to ensure that
valid system output is not discarded and reduce the
number of false negatives. The effect of this mea-
sure has been an increase in (word) accuracy for
all systems, without significant impact on ranking.

8 Conclusion

In this SemEval task we showed that systems can
translate L1 fragments in an L2 context, a task
that finds application in computer-assisted trans-
lation and computer-assisted language learning.
The localised translation of a fragment in a cross-
lingual context makes it a novel task in the field.
Though the task has its limits, we argue for its
practical application in a language-learning set-
ting: as a writing assistant and dictionary replace-
ment. Six contestants participated in the task,
and used an ensemble of techniques from Statis-
tical Machine Translation and Word Sense Disam-
biguation. Most of the task organizers’ time went
into manually establishing a gold standard based
on a wide variety of sources, most aimed at lan-
guage learners, for each of the four language pairs
in the task. We have been positively surprised by
the good results of the highest ranking systems.
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Figure 2: Dutch to English.
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Abstract 

SemEval-2014 Task 6 aims to advance 

semantic parsing research by providing a 

high-quality annotated dataset to com-

pare and evaluate approaches. The task 

focuses on contextual parsing of robotic 

commands, in which the additional con-

text of spatial scenes can be used to guide 

a parser to control a robot arm. Six teams 

submitted systems using both rule-based 

and statistical methods. The best per-

forming (hybrid) system scored 92.5% 

and 90.5% for parsing with and without 

spatial context. However, the best per-

forming statistical system scored 87.35% 

and 60.84% respectively, indicating that 

generalized understanding of commands 

given to a robot remains challenging, de-

spite the fixed domain used for the task. 

1 Introduction 

Semantic parsers analyze sentences to produce 

formal meaning representations that are used for 

the computational understanding of natural lan-

guage. Recently, state-of-the-art semantic pars-

ing methods have used for a variety of applica-

tions, including question answering (Kwiat-

kowski et al., 2013; Krishnamurthy and Mitchell, 

2012), dialog systems (Artzi and Zettlemoyer, 

2011), entity relation extraction (Kate and 

Mooney, 2010) and robotic control (Tellex, 

2011; Kim and Mooney, 2012). 

Different parsers can be distinguished by the 

level of supervision they require during training. 

Fully supervised training typically requires an 

annotated dataset that maps natural language 

(NL) to a formal meaning representation such as 

logical form. However, because annotated data is  

 

often not available, a recent trend in semantic 

parsing research has been to eschew supervised 

training in favour of either unsupervised or 

weakly-supervised methods that utilize addi-

tional information. For example, Berant and Li-

ang (2014) use a dataset of 5,810 question-

answer pairs without annotated logical forms to 

induce a parser for a question-answering system. 

In comparison, Poon (2013) converts NL ques-

tions into formal queries via indirect supervision 

through database interaction. 

In contrast to previous work, the shared task 

described in this paper uses the Robot Com-

mands Treebank (Dukes, 2013a), a new dataset 

made available for supervised semantic parsing. 

The chosen domain is robotic control, in which 

NL commands are given to a robot arm used to 

manipulate shapes on an 8 x 8 game board. De-

spite the fixed domain, the task is challenging as 

correctly parsing commands requires understand-

ing spatial context. For example, the command in 

Figure 1 may have several plausible interpreta-

tions, given different board configurations. 

 

 

‘Move the pyramid on the blue cube on the gray one.’ 

 

Figure 1: Example scene with a contextual spatial 

command from the Robot Commands Treebank. 

This work is licensed under a Creative Commons Attribution 

4.0 International License. License details: 
http://creativecommons.org/licenses/by/4.0 
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The task is inspired by the classic AI system 

SHRLDU, which responded to NL commands to 

control a robot for a similar game board (Wino-

grad, 1972), although that system is reported to 

not have generalized well (Dreyfus, 2009; Mit-

kov, 1999). More recent research in command 

understanding has focused on parsing jointly 

with grounding, the process of mapping NL de-

scriptions of entities within an environment to a 

semantic representation. Previous work includes 

Tellex et al. (2011), who develop a small corpus 

of commands for a simulated fork lift robot, with 

grounding performed using a factor graph. Simi-

larly, Kim and Mooney (2012) perform joint 

parsing and grounding using a corpus of naviga-

tion commands. In contrast, this paper focuses on 

parsing using additional situational context for 

disambiguation and by using a larger NL dataset, 

in comparison to previous robotics research. 

In the remainder of this paper, we describe the 

task, the dataset and the metrics used for evalua-

tion. We then compare the approaches used by 

participant systems and conclude with suggested 

improvements for future work. 

2 Task Description 

The long term research goal encouraged by the 

task is to develop a system that will robustly 

execute NL robotic commands. In general, this is 

a highly complex problem involving computa-

tional processing of language, spatial reasoning, 

contextual awareness and knowledge representa-

tion. To simplify the problem, participants were 

provided with additional tools and resources, 

allowing them to focus on developing a semantic 

parser for a fixed domain that would fit into an 

existing component architecture. Figure 2 shows 

how these components interact. 

 

Semantic parser: Systems submitted by partici-

pants are semantic parsers that accept an NL 

command as input, mapping this to a formal Ro-

bot Control Language (RCL), described further 

in section 3.3. The Robot Commands Treebank 

used for the both training and evaluation is an 

annotated corpus that pairs NL commands with 

contextual RCL statements. 

 

Spatial planner: A spatial planner is provided 

as an open Java API
1
. Commands in the treebank 

are specified in the context of spatial scenes. By 

interfacing with the planner,  participant systems 

                                                 
1
 https://github.com/kaisdukes/train-robots  

 
 
Figure 2: Integrated command understanding system. 

 

have access to this additional information. For 

example, given an RCL fragment for the expres-

sion ‘the red cube on the blue block’, the planner 

will ground the entity, returning a list of zero or 

more board coordinates corresponding to possi-

ble matches. The planner also validates com-

mands to determine if they are compatible with 

spatial context. It can therefore be used to con-

strain the search space of possible parses, as well 

as enabling early resolution of attachment ambi-

guity during parsing. 

 

Robotic simulator: The simulated environment 

consists of an 8 x 8 board that can hold prisms 

and cubes which occur in eight different colors. 

The robot’s gripper can move to any discrete po-

sition within an 8 x 8 x 8 space above the board. 

The planner uses the simulator to enforce physi-

cal laws within the game. For example, a block 

cannot remain unsupported in empty space due 

to gravity. Similarly, prisms cannot lie below 

other block types. In the integrated system, the 

parser uses the planner for context, then provides 

the final RCL statement to the simulator which 

executes the command by moving the robot arm 

to update the board. 

3 Data 

3.1 Data Collection 

For the shared task, 3,409 sentences were se-

lected from the treebank. This data size compares 

with related corpora used for semantic parsing 

such as the ATIS (Zettlemoyer and Collins, 

2007), GeoQuery (Kate et al., 2005), Jobs (Tang 

and Mooney, 2001) and RoboCup (Kuhlmann et 

al., 2004) datasets, consisting of 4,978; 880; 640 

and 300 sentences respectively.  

The treebank was developed via a game with a 

purpose (www.TrainRobots.com), in which play-

ers were shown  before  and after  configurations 

Semantic parser 

Spatial planner 

Robotic simulator 

NL command 
parsing 

RCL 

spatial context 
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Figure 3: Semantic tree from the treebank with an elliptical anaphoric node and its annotated antecedent. 

 

and asked to give a corresponding command to a 

hypothetical robot arm. To make the game more 

competitive and to promote data quality, players 

rated each other’s sentences and were rewarded 

with points for accurate entries (Dukes, 2013b). 

3.2 Annotation 

In total, over 10,000 commands were collected 

through the game. During an offline annotation 

phase, sentences were manually mapped to RCL. 

However, due to the nature of the game, players 

were free to enter arbitrarily complex sentences 

to describe moves, not all of which could be rep-

resented by RCL. In addition, some commands 

were syntactically well-formed, but not compati-

ble with the corresponding scenes. The 3,409 

commands selected for the task had RCL state-

ments that  were both understood by the  planner 

(sequence: 

  (event: 

    (action: take) 

    (entity: 

      (id: 1) 

      (color: cyan) 

      (type: prism) 

      (spatial-relation: 

        (relation: above) 

        (entity: 

          (color: white) 

          (type: cube))))) 

  (event: 

    (action: drop) 

    (entity: 

      (type: reference) 

      (reference-id: 1)) 

    (destination: 

      (spatial-relation: 

        (relation: above) 

        (entity: 

          (color: blue) 

          (color: green) 

          (type: stack)))))) 

Figure 4: RCL representation with co-referencing. 

and when given to the robotic simulator resulted 

in the expected move being made between before 

and after board configurations. Due to this extra 

validation step, all RCL statements provided for 

the task were contextually well-formed. 

3.3 Robot Control Language 

RCL is a novel linguistically-oriented semantic 

representation. An RCL statement is a semantic 

tree (Figure 3) where leaf nodes generally align 

to words in the corresponding sentence, and non-

leaves are tagged using a pre-defined set of cate-

gories. RCL is designed to annotate rich linguis-

tic structure, including ellipsis (such as ‘place [it] 

on’), anaphoric references (‘it’ and ‘one’), multi-

word spatial expressions (‘on top of’) and lexical 

disambiguation (‘one’ and ‘place’). Due to ellip-

sis, unaligned words and multi-word expressions, 

a leaf node may align to zero, one or more words 

in a sentence. Figure 4 shows the RCL syntax for 

the tree in Figure 3, as accepted by the spatial 

planner and the simulator. As these components 

do not require NL word alignment data, this ad-

ditional information was made available to task 

participants for training via a separate Java API. 

The tagset used to annotate RCL nodes can be 

divided into general tags (that are arguably ap-

plicable to other domains) and specific tags that 

were customized for the domain in the task (Ta-

bles 1 and 2 overleaf, respectively). The general 

elements are typed entities (labelled with seman-

tic features) that are connected using relations 

and events. This universal formalism is not do-

main-specific, and is inspired by semantic frames 

(Fillmore and Baker, 2001), a practical represen-

tation used for NL understanding systems (Dzik-

ovska, 2004; UzZaman and Allen, 2010; Coyne 

et al., 2010; Dukes, 2009). 

In the remainder of this section we summarize 

aspects of RCL that are relevant to the task; a 
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more detailed description is provided by Dukes 

(2013a; 2014). In an RCL statement such as Fig-

ure 4, a preterminal node together with its child 

leaf node correspond to a feature-value pair 

(such as the feature color and the constant blue). 

Two special features which are distinguished by 

the planner are id and reference-id, which are 

used for co-referencing such as for annotating 

anaphora and their antecedents. The remaining 

features model the simulated robotic domain. For 

RCL Element Description 

action 
Aligned to a verbal group in NL, 

e.g. ‘drop’ or ‘pick up’. 

cardinal Number (e.g. 2 or ‘three’). 

color Colored attribute of an entity. 

destination A spatial destination. 

entity Entity within the domain. 

event Specification of a command. 

id Id for anaphoric references. 

indicator Spatial attribute of an entity. 

measure Used for distance metrics. 

reference-id A resolved reference. 

relation Relation type (e.g. ‘above’). 

sequence 
Used to specify a sequence of 

events or statements. 

spatial-relation 

Used to specify a spatial relation 

between two entities or to de-

scribe a location. 

type Used to specify an entity type. 

Table 1: Universal semantic elements in RCL. 

Category Values 

Actions move, take, drop 

Relations 

left, right, above, below, 

forward, backward, adjacent, 

within, between, nearest, near, 

furthest, far, part 

Indicators 

left, leftmost, right, rightmost, 

top, highest, bottom, lowest, 

front, back, individual, furthest, 

nearest, center 

entity types 

cube, prism, corner, board stack, 

row, column, edge, tile, robot, 

region, reference, type-reference 

Colors 
blue, cyan, red, yellow, 

green, magenta, gray, white 

Table 2: Semantic categories customized for the task. 

example, the values of the action feature are the 

moves used to control the robotic arm, while 

values of the type and relation features are the 

entity and relation types understood by the spa-

tial planner (Table 2). As well as qualitative rela-

tions (such as ‘below’ or ‘above’), the planner 

also accepts spatial relations that include quanti-

tative measurements, such as in ‘two squares left 

of the red prism’ (Figure 5). 

 

 

Fig.ure 5: A quantitative relation with a landmark. 

RCL distinguishes between relations which 

relate entities and indicators, which are attributes 

of entities (such as ‘left’ in ‘the left cube’). For 

the task, participants are asked to map NL sen-

tences to well-formed RCL by identifying spatial 

relations and indicators, then parsing higher-level 

entities and events. Finally, a well-formed RCL 

tree with an event (or sequence of events) at top-

level is given the simulator for execution. 

4 Evaluation Metrics 

Out of the 3,400 sentences annotated for the task, 

2,500 sentences were provided to participants for 

system training. During evaluation, trained sys-

tems were presented with 909 previously unseen 

sentences and asked to generate corresponding 

RCL statements, with access to the spatial plan-

ner for additional context. To keep the evaluation 

process as simple as possible, each parser’s out-

put for a sentence was scored as correct if it ex-

actly matched the expected RCL statement in the 

treebank. Participants were asked to calculate 

two metrics, P and NP, which are the proportion 

of exact matches with and without using the spa-

tial planner respectively: 
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System Authors Statistical? Strategy P NP NP - P 

UW-MRS Packard Hybrid Rule-based ERG + Berkeley parser 92.50 90.50 -2.00 

AT&T Labs Stoyanchev et al. Statistical Statistical maximum entropy parser 87.35 60.84 -26.51 

RoBox Evang and Bos Statistical CCG parser + structured perceptron 86.80 79.21 -7.59 

Shrdlite Ljunglöf Rule-based Hand crafted domain-specific grammar 86.10 51.50 -34.60 

KUL-Eval Mattelaer et al. Statistical CCG parser 71.29 57.76 -13.53 

UWM Kate Statistical KRISP parser N/A 45.98 N/A 

 

Table 3: System results for supervised semantic parsing of the Robot Commands Treebank 

(P = parsing with integrated spatial planning, NP = parsing without integrated spatial planning, 

NP - P = drop in performance without integrated spatial planning, N/A = performance not available). 

 

 

These metrics contrast with measures for par-

tially correct parsed structures, such as Parseval 

(Black et al., 1991) or the leaf-ancestor metric 

(Sampson and Babarczy, 2003). The rationale for 

using a strict match is that in the integrated sys-

tem, a command will only be executed if it is 

completely understood, as both the spatial plan-

ner and the simulator require well-formed RCL. 

5 Systems and Results 

Six teams participated in the shared task using a 

variety of strategies (Table 3). The last measure 

in the table gives the performance drop without 

spatial context. The value NP - P = -2 for the 

best performing system suggests this as an upper 

bound for the task. The different values of this 

measure indicate the sensitivity to (or possibly 

reliance on) context to guide the parsing process. 

In the remainder of this section we compare the 

approaches and results of the six systems. 

 

UW-MRS: Packard (2014) achieved the best 

score for parsing both with and without spatial 

context, at 92.5% and 90.5%, respectively, using 

a hybrid system that combines a rule-based 

grammar with the Berkeley parser (Petrov et al., 

2006). The rule-based component uses the Eng-

lish Resource Grammar, a broad coverage hand-

written HPSG grammar for English. The ERG 

produces a ranked list of Minimal Recursion 

Semantics (MRS) structures that encode predi-

cate argument relations (Copestake et al., 2005). 

Approximately 80 rules were then used to con-

vert MRS to RCL. The highest ranked result that 

is validated by the spatial planner was selected as 

the output of the rule-based system. Using this 

approach, Packard reports scores of P = 82.4% 

and NP = 80.3% for parsing the evaluation data. 

To further boost performance, the Berkeley 

parser was used for back-off. To train the parser, 

the RCL treebank was converted to phrase struc-

ture by removing non-aligned nodes and insert-

ing additional nodes to ensure one-to-one align-

ment with words in NL sentences. Performance 

of the Berkeley parser alone was NP = 81.5% (no 

P-measure was available as spatial planning was 

not integrated). 

To combine components, the ERG was used 

initially, with fall back to the Berkeley parser 

when no contextually compatible RCL statement 

was produced. The hybrid approach improved 

accuracy considerably, with P = 92.5% and NP = 

90.5%. Interestingly, Packard also performs pre-

cision and recall analysis, and reports that the 

rule-based component had higher precision, 

while the statistical component had higher recall, 

with the combined system outperforming each 

separate component in both precision and recall. 

 

AT&T Labs Research: The system by Stoy-

anchev et al. (2014) scored second best for con-

textual parsing and third best for parsing without 

using the spatial planner (P = 87.35% and NP = 

60.84%). In contrast to Packard’s UW-MRS 

submission, the AT&T system is a combination 

of three statistical models for tagging, parsing 

and reference resolution. During the tagging 

phase, a two-stage sequence tagger first assigns a 

part-of-speech tag to each word in a sentence, 

followed by an RCL feature-value pair such as 

(type: cube) or (color: blue), with unaligned 

words tagged as ‘O’. For parsing, a constituency 

parser was trained using non-lexical RCL trees. 

Finally, anaphoric references were resolved us-

ing a maximum entropy feature model. When 

combined, the three components generate a list 

of weighted RCL trees, which are filtered by the 

spatial planner. Without integrated planning, the 

most-probable parse tree is selected. 

In their evaluation, Stoyanchev et al. report 

accuracy scores for the separate phases as well as 

for the combined system. For the tagger, they 

report an accuracy score of 95.2%, using the 
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standard split of 2,500 sentences for training and 

909 for evaluation. To separately measure the 

joint accuracy of the parser together with refer-

ence resolution, gold-standard tags were used 

resulting in a performance of P = 94.83% and NP 

= 67.55%. However, using predicted tags, the 

system’s final performance dropped to P = 

87.35% and NP = 60.84%. To measure the effect 

of less supervision, the models were additionally 

trained on only 500 sentences. In this scenario, 

the tagging model degraded significantly, while 

the parsing and reference resolution models per-

formed nearly as well. 

 

RoBox: Using Combinatory Categorial Grammar 

(CCG) as a semantic parsing framework has 

been previously shown to be suitable for translat-

ing NL into logical form. Inspired by previous 

work using a CCG parser in combination with a 

structured perceptron (Zettlemoyer and Collins, 

2007), RoBox (Evang and Bos, 2014) was the 

best performing CCG system in the shared task 

scoring P = 86.8% and NP = 79.21%. 

Using a similar approach to UW-MRS for its 

statistical component, RCL trees were interpreted 

as phrase-structure and converted to CCG deriva-

tions for training. During decoding, RCL state-

ments were generated directly by the CCG 

parser. However, in contrast to the approach used 

by the AT&T system, RoBox interfaces with the 

planner during parsing instead of performing 

spatial validation a post-processing step. This 

enables early resolution of attachment ambiguity 

and helps constrain the search space. However, 

the planner is only used to validate entity ele-

ments, so that event and sequence elements were 

not validated. As a further difference to the 

AT&T system, anaphora resolution was not per-

formed using a statistical model. Instead, multi-

ple RCL trees were generated with different can-

didate anaphoric references, which were filtered 

out contextually using the spatial planner. 

RoBox suffered only a 7.59% absolute drop in 

performance without using spatial planning, sec-

ond only to UW-MRS at 2%. Evang and Bos 

perform error analysis on RoBox and report that 

most errors relate to ellipsis, the ambiguous word 

one, anaphora or attachment ambiguity. They 

suggest that the system could be improved with 

better feature selection or by integrating the CCG 

parser more closely with the spatial planner. 

 

Shrdlite: The Shrdlite system by Ljunglöf 

(2014), inspired by the Classic SHRDLU system 

by Winograd (1972), is a purely rule-based sys-

tem that was shown to be effective for the task. 

Scoring P = 86.1% and NP = 51.5%, Shrdlite 

ranked fourth for parsing with integrated plan-

ning, and fifth without using spatial context. 

However, it suffered the largest absolute drop in 

performance without planning (34.6 points), in-

dicating that integration with the planner is es-

sential for the system’s reported accuracy. 

Shrdlite uses a hand-written compact unifica-

tion grammar for the fragment of English appear-

ing in the training data. The grammar is small, 

consisting of only 25 grammatical rules and 60 

lexical rules implemented as a recursive-descent 

parser in Prolog. The lexicon consists of 150 

words (and multi-word expressions) divided into 

23 lexical categories, based on the RCL pre-

terminal nodes found in the treebank. In a post-

processing phase, the resulting parse trees are 

normalized to ensure that they are well-formed 

by using a small set of supplementary rules. 

However, the grammar is highly ambiguous 

resulting in multiple parses for a given input sen-

tence. These are filtered by the spatial planner. If 

multiple parse trees were found to be compatible 

with spatial context (or when not using the plan-

ner), the tree with the smallest number of nodes 

was selected as the parser’s final output. Addi-

tionally, because both the training and evaluation 

data were collected via crowdsourcing, sentences 

occasionally contain spelling errors, which were 

intentionally included in the task. To handle mis-

spelt words, Shrdlite uses Levenshtein edit dis-

tance with a penalty to reparse sentences when 

the parser initially fails to produce any analysis. 

 

KUL-Eval: The CCG system by Mattelaer et al. 

(2014) uses a different approach to the RoBox 

system described previously. KUL-Eval scored P 

= 71.29% and NP = 57.76% in comparison to the 

RoBox scores of P = 86.8% and NP = 79.21%. 

During training, the RCL treebank was con-

verted to λ-expressions. This process is fully re-

versible, so that no information in an RCL tree is 

lost during conversion. In contrast to RoBox, but 

in common with the AT&T parser, KUL-Eval 

performs spatial validation as a post-processing 

step and does not integrate the planner directly 

into the parsing process. A probabilistic CCG is 

used for parsing, so that multiple λ-expressions 

are returned (each with an associated confidence 

measure) that are translated into RCL. Finally, in 

the validation step, the spatial planner is used to 

discard RCL statements that are incompatible 

with spatial context and the remaining most-

probable parse is returned as the system’s output. 
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Mattelaer et al. note that in several cases the 

parser produced partially correct statements but 

that these outputs did not contribute to the final 

score, given the strictly matching measures used 

for the P and NP metrics. However, well-formed 

RCL statements are required by the spatial plan-

ner and robotic simulator for the integrated sys-

tem to robustly execute the specified NL com-

mand. Partially correct structures included state-

ments which almost matched the expected RCL 

tree with the exception of incorrect feature-

values, or the addition or deletion of nodes. The 

most common errors were feature-values with 

incorrect entity types (such as ‘edge’ and ‘re-

gion’) and mismatched spatial relations (such as 

confusing ‘above’ and ‘within’ and confusing 

‘right’, ‘left’ and ‘front’). 

 

UWM: The UWM system submitted by Kate 

(2014) uses an existing semantic parser, KRISP, 

for the shared task. KRISP (Kernel-based Robust 

Interpretation for Semantic Parsing) is a trainable 

semantic parser (Kate and Mooney, 2006) that 

uses Support Vector Machines (SVMs) as the 

machine learning method with a string subse-

quence kernel. As well as training data consisting 

of RCL paired with NL commands, KRISP re-

quired a context-free grammar for RCL, which 

was hand-written for UWM. During training, id 

nodes were removed from the RCL trees. These 

were recovered after parsing in a post-processing 

phase to resolve anaphora by matching to the 

nearest preceding antecedent. 

In contrast to other systems submitted for the 

task, UWM does not interface with the spatial 

planner and parses purely non-contextually. Be-

cause the planner was not used, the system’s ac-

curacy was negatively impacted by simple issues 

that may have been easily resolved using spatial 

context. For example, in RCL, the verb ‘place’ 

can map to either drop or move actions, depend-

ing on whether or not a block is held in the grip-

per in the corresponding spatial scene. Without 

using spatial context, it is hard to distinguish be-

tween these cases during parsing. 

The system scored a non-contextual measure 

of NP = 45.98%, with Kate reporting a 51.18% 

best F-measure (at 72.67% precision and 39.49% 

recall). No P-measure was reported as the spatial 

planner was not used. Due to memory constraints 

when training the SVM classifiers, only 1,500 

out of 2,500 possible sentences were used from 

the treebank to build the parsing model. How-

ever, it may be possible to increasing the size of 

training data in future work through sampling. 

6 Discussion 

The six systems evaluated for the task employed 

a variety of semantic parsing strategies. With the 

exception of one submission, all systems inter-

faced with the spatial planner, either in a post-

processing phase, or directly during parsing to 

enable early disambiguation and to help con-

strain the search space. An open question that 

remains following the task is how applicable 

these methods would be to other domains. Sys-

tems that relied heavily on the planner to guide 

the parsing process could only be adapted to do-

mains for a which a planner could conceivably 

exist. For example, nearly all robotic tasks such 

as such as navigation, object manipulation and 

task execution involve aspects of planning. NL 

question-answering interfaces to databases or 

knowledge stores are also good candidates for 

this approach, since parsing NL questions into a 

semantic representation within the context of a 

database schema or an ontology could be guided 

by a query planner. 

However, approaches with a more attractive 

NP - P measure (such as UW-MRS and RoBox) 

are arguably more easily generalized to other 

domains, as they are less reliant on a planner. 

Additionally, the usual arguments for rule-based 

systems verses supervised statistical systems ap-

ply to any discussion on domain adaptation: rule-

based systems require human manual effort, 

while supervised statistical systems required an-

notated data for the new domain. 

In comparing the best two statistical systems 

(AT&T and RoBox) it is interesting to note that 

these performed similarly with integrated plan-

ning (P = 87.35% and 86.80%, respectively), but 

differed considerably without planning (NP = 

60.84% and 79.21%). As these two systems em-

ployed different parsers (a constituency parser  

and a CCG parser), it is difficult to perform a 

direct comparison to understand why the AT&T 

system is more reliant on spatial context. It 

would also be interesting to understand, in fur-

ther work, why the two CCG-based systems dif-

fered considerably in their P and NP scores. 

It is also surprising that the best performing 

system, UW-MRS, suffered only a 2% drop in 

performance without using the planner, demon-

strating clearly that in the majority of sentences 

in the evaluation data, spatial context is not actu-

ally required to perform semantic parsing. Al-

though as shown by the NP - P scores, spatial 

context can dramatically boost performance of 

certain approaches for the task when used. 
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7 Conclusion and Future Work 

This paper described a new task for SemEval: 

Supervised Semantic Parsing of Robotic Spatial 

Commands. Despite its novel nature, the task 

attracted high-quality submissions from six 

teams, using a variety of semantic parsing strate-

gies. 

It is hoped that this task will reappear at Se-

mEval. Several lessons were learnt from this first 

version of the shared task which can be used to 

improve the task in future. One issue which sev-

eral participants noted was the way in which the 

treebank was split into training and evaluation 

datasets. Out of the 3,409 sentences in the tree-

bank, the first 2,500 sequential sentences were 

chosen for training. Because this data was not 

randomized, certain syntactic structures were 

only found during evaluation and were not pre-

sent in the training data. Although this may have 

affected results, all participants evaluated their 

systems against the same datasets. Based on par-

ticipant feedback, in addition to reporting P and 

NP-measures, it would also be illuminating to 

include a metric such as Parseval F1-scores to 

measure partial accuracy. An improved version 

of the task could also feature a better dataset by 

expanding the treebank, not only in terms of size 

but also in terms of linguistic structure. Many 

commands captured in the annotation game are 

not yet represented in RCL due to linguistic phe-

nomena such as negation and conditional state-

ments. 

Looking forward, a more promising approach 

to improving the spatial planner could be prob-

abilistic planning, so that semantic parsers could 

interface with probabilistic facts with confidence 

measures. This approach is particularly suitable 

for robotics, where sensors often supply noisy 

signals about the robot’s environment. 
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Abstract

This paper describes the SemEval-2014,
Task 7 on the Analysis of Clinical Text
and presents the evaluation results. It fo-
cused on two subtasks: (i) identification
(Task A) and (ii) normalization (Task B)
of diseases and disorders in clinical reports
as annotated in the Shared Annotated Re-
sources (ShARe)1 corpus. This task was
a follow-up to the ShARe/CLEF eHealth
2013 shared task, subtasks 1a and 1b,2 but
using a larger test set. A total of 21 teams
competed in Task A, and 18 of those also
participated in Task B. For Task A, the
best system had a strict F1-score of 81.3,
with a precision of 84.3 and recall of 78.6.
For Task B, the same group had the best
strict accuracy of 74.1. The organizers
have made the text corpora, annotations,
and evaluation tools available for future re-
search and development at the shared task
website.3

1 Introduction

A large amount of very useful information—both
for medical researchers and patients—is present
in the form of unstructured text within the clin-
ical notes and discharge summaries that form a
patient’s medical history. Adapting and extend-
ing natural language processing (NLP) techniques
to mine this information can open doors to bet-
ter, novel, clinical studies on one hand, and help
patients understand the contents of their clini-
cal records on the other. Organization of this

1
http://share.healthnlp.org

2
https://sites.google.com/site/shareclefehealth/

evaluation
3
http://alt.qcri.org/semeval2014/task7/
This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

shared task helps establish state-of-the-art bench-
marks and paves the way for further explorations.
It tackles two important sub-problems in NLP—
named entity recognition and word sense disam-
biguation. Neither of these problems are new to
NLP. Research in general-domain NLP goes back
to about two decades. For an overview of the
development in the field through roughly 2009,
we refer the refer to Nadeau and Sekine (2007).
NLP has also penetrated the field of bimedical
informatics and has been particularly focused on
biomedical literature for over the past decade. Ad-
vances in that sub-field has also been documented
in surveys such as one by Leaman and Gonza-
lez (2008). Word sense disambiguation also has
a long history in the general NLP domain (Nav-
igli, 2009). In spite of word sense annotations in
the biomedical literature, recent work by Savova
et al. (2008) highlights the importance of annotat-
ing them in clinical notes. This is true for many
other clinical and linguistic phenomena as the var-
ious characteristics of the clinical narrative present
a unique challenge to NLP. Recently various ini-
tiatives have led to annotated corpora for clini-
cal NLP research. Probably the first comprehen-
sive annotation performed on a clinical corpora
was by Roberts et al. (2009), but unfortunately
that corpus is not publicly available owing to pri-
vacy regulations. The i2b2 initiative4 challenges
have focused on such topics as concept recog-
nition (Uzuner et al., 2011), coreference resolu-
tion (Uzuner et al., 2012), temporal relations (Sun
et al., 2013) and their datasets are available to the
community. More recently, the Shared Annotated
Resources (ShARe)1 project has created a corpus
annotated with disease/disorder mentions in clini-
cal notes as well as normalized them to a concept
unique identifier (CUI) within the SNOMED-CT
subset of the Unified Medical Language System5

4
http://www.i2b2.org

5
https://uts.nlm.nih.gov/home.html
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Train Development Test

Notes 199 99 133

Words 94K 88K 153K

Disorder mentions 5,816 5,351 7,998
CUI-less mentions 1,639 (28%) 1,750 (32%) 1,930 (24%)
CUI-ied mentions 4,117 (72%) 3,601 (67%) 6,068 (76%)
Contiguous mentions 5,165 (89%) 4,912 (92%) 7,374 (92%)
Discontiguous mentions 651 (11%) 439 (8%) 6,24 (8%)

Table 1: Distribution of data in terms of notes and disorder mentions across the training, development
and test sets. The disorders are further split according to two criteria – whether they map to a CUI or
whether they are contiguous.

(UMLS) (Campbell et al., 1998). The task of nor-
malization is a combination of word/phrase sense
disambiguation and semantic similarity where a
phrase is mapped to a unique concept in an on-
tology (based on the description of that concept in
the ontology) after disambiguating potential am-
biguous surface words, or phrases. This is espe-
cially true with abbreviations and acronyms which
are much more common in clinical text (Moon et
al., 2012). The SemEval-2014 task 7 was one of
nine shared tasks organized at the SemEval-2014.
It was designed as a follow up to the shared tasks
organized during the ShARe/CLEF eHealth 2013
evaluation (Suominen et al., 2013; Pradhan et al.,
2013; Pradhan et al., 2014). Like the previous
shared task, we relied on the ShARe corpus, but
with more data for training and a new test set. Fur-
thermore, in this task, we provided the options to
participants to utilize a large corpus of unlabeled
clinical notes. The rest of the paper is organized as
follows. Section 2 describes the characteristics of
the data used in the task. Section 3 describes the
tasks in more detail. Section 4 explains the evalu-
ation criteria for the two tasks. Section 5 lists the
participants of the task. Section 6 discusses the re-
sults on this task and also compares them with the
ShARe/CLEF eHealth 2013 results, and Section 7
concludes.

2 Data

The ShARe corpus comprises annotations over
de-identified clinical reports from a US intensive
care department (version 2.5 of the MIMIC II
database 6) (Saeed et al., 2002). It consists of
discharge summaries, electrocardiogram, echocar-
diogram, and radiology reports. Access to data
was carried out following MIMIC user agreement
requirements for access to de-identified medical

6
http://mimic.physionet.org – Multiparameter Intelligent

Monitoring in Intensive Care

data. Hence, all participants were required to reg-
ister for the evaluation, obtain a US human sub-
jects training certificate7, create an account to the
password-protected MIMIC site, specify the pur-
pose of data usage, accept the data use agree-
ment, and get their account approved. The anno-
tation focus was on disorder mentions, their var-
ious attributes and normalizations to an UMLS
CUI. As such, there were two parts to the annota-
tion: identifying a span of text as a disorder men-
tion and normalizing (or mapping) the span to a
UMLS CUI. The UMLS represents over 130 lex-
icons/thesauri with terms from a variety of lan-
guages and integrates resources used world-wide
in clinical care, public health, and epidemiology.
A disorder mention was defined as any span of text
which can be mapped to a concept in SNOMED-
CT and which belongs to the Disorder semantic
group8. It also provided a semantic network in
which every concept is represented by its CUI
and is semantically typed (Bodenreider and Mc-
Cray, 2003). A concept was in the Disorder se-
mantic group if it belonged to one of the follow-
ing UMLS semantic types: Congenital Abnormal-
ity; Acquired Abnormality; Injury or Poisoning;
Pathologic Function; Disease or Syndrome; Men-
tal or Behavioral Dysfunction; Cell or Molecu-
lar Dysfunction; Experimental Model of Disease;
Anatomical Abnormality; Neoplastic Process; and
Signs and Symptoms. The Finding semantic type
was left out as it is very noisy and our pilot study
showed lower annotation agreement on it. Follow-
ing are the salient aspects of the guidelines used to

7The course was available free of charge on the Internet, for example,
via the CITI Collaborative Institutional Training Initiative at
https://www.citiprogram.org/Default.asp
or, the US National Institutes of Health (NIH) at
http://phrp.nihtraining.com/users.

8Note that this definition of Disorder semantic group did not include the
Findings semantic type, and as such differed from the one of UMLS Seman-
tic Groups, available at http://semanticnetwork.nlm.nih.gov/
SemGroups
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annotate the data.

• Annotations represent the most specific dis-
order span. For example, small bowel ob-
struction is preferred over bowel obstruction.
• A disorder mention is a concept in the

SNOMED-CT portion of the Disorder se-
mantic group.
• Negation and temporal modifiers are not con-

sidered part of the disorder mention span.
• All disorder mentions are annotated—even

the ones related to a person other than the pa-
tient and including acronyms and abbrevia-
tions.
• Mentions of disorders that are coreferen-

tial/anaphoric are also annotated.

Following are a few examples of disorder men-
tions from the data.

Patient found to have lower extremity DVT. (E1)

In example (E1), lower extremity DVT is marked
as the disorder. It corresponds to CUI C0340708
(preferred term: Deep vein thrombosis of lower
limb). The span DVT can be mapped to CUI
C0149871 (preferred term: Deep Vein Thrombo-
sis), but this mapping would be incorrect because
it is part of a more specific disorder in the sen-
tence, namely lower extremity DVT.

A tumor was found in the left ovary. (E2)

In example (E2), tumor ... ovary is annotated as a
discontiguous disorder mention. This is the best
method of capturing the exact disorder mention
in clinical notes and its novelty is in the fact that
either such phenomena have not been seen fre-
quently enough in the general domain to gather
particular attention, or the lack of a manually
curated general domain ontology parallel to the
UMLS.

Patient admitted with low blood pressure. (E3)

There are some disorders that do not have a rep-
resentation to a CUI as part of the SNOMED CT
within the UMLS. However, if they were deemed
important by the annotators then they were anno-
tated as CUI-less mentions. In example (E3), low
blood pressure is a finding and is normalized as
a CUI-less disorder. We constructed the annota-
tion guidelines to require that the disorder be a
reasonable synonym of the lexical description of a
SNOMED-CT disorder. There are a few instances
where the disorders are abbreviated or shortened

in the clinical note. One example is w/r/r, which
is an abbreviation for concepts wheezing (CUI
C0043144), rales (CUI C0034642), and ronchi
(CUI C0035508). This abbreviation is also some-
times written as r/w/r and r/r/w. Another is gsw for
gunshot wound and tachy for tachycardia. More
details on the annotation scheme is detailed in the
guidelines9 and in a forthcoming manuscript. The
annotations covered about 336K words. Table 1
shows the quantity of the data and the split across
the training, development and test sets as well as
in terms of the number of notes and the number of
words.

2.1 Annotation Quality

Each note in the training and development set was
annotated by two professional coders trained for
this task, followed by an open adjudication step.
By the time we reached annotating the test data,
the annotators were quite familiar with the anno-
tation and so, in order to save time, we decided
to perform a single annotation pass using a senior
annotator. This was followed by a correction pass
by the same annotator using a checklist of frequent
annotation issues faced earlier. Table 2 shows the
inter-annotator agreement (IAA) statistics for the
adjudicated data. For the disorders we measure the
agreement in terms of the F1-score as traditional
agreement measures such as Cohen’s kappa and
Krippendorf’s alpha are not applicable for measur-
ing agreement for entity mention annotation. We
computed agreements between the two annotators
as well as between each annotator and the final ad-
judicated gold standard. The latter is to give a
sense of the fraction of corrections made in the
process of adjudication. The strict criterion con-
siders two mentions correct if they agree in terms
of the class and the exact string, whereas the re-
laxed criteria considers overlapping strings of the

9http://goo.gl/vU8KdW

Disorder CUI
Relaxed Strict Relaxed Strict

F1 F1 Acc. Acc.

A1-A2 90.9 76.9 77.6 84.6
A1-GS 96.8 93.2 95.4 97.3
A2-GS 93.7 82.6 80.6 86.3

Table 2: Inter-annotator (A1 and A2) and gold
standard (GS) agreement as F1-score for the Dis-
order mentions and their normalization to the
UMLS CUI.
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Institution User ID Team ID

University of Pisa, Italy attardi UniPI
University of Lisbon, Portugal francisco ULisboa
University of Wisconsin, Milwaukee, USA ghiasvand UWM
University of Colorado, Boulder, USA gung CLEAR
University of Guadalajara, Mexico herrera UG
Taipei Medical University, Taiwan hjdai TMU
University of Turku, Finland kaewphan UTU
University of Szeged, Hungary katona SZTE-NLP
Queensland University of Queensland, Australia kholghi QUT AEHRC
KU Leuven, Belgium kolomiyets KUL
Universidade de Aveiro, Portugal nunes BioinformaticsUA
University of the Basque Country, Spain oronoz IxaMed
IBM, India parikh ThinkMiners
easy data intelligence, India pathak ezDI
RelAgent Tech Pvt. Ltd., India ramanan RelAgent
Universidad Nacional de Colombia, Colombia riveros MindLab-UNAL
IIT Patna, India sikdar IITP
University of North Texas, USA solomon UNT
University of Illinois at Urbana Champaign, USA upadhya CogComp
The University of Texas Health Science Center at Houston, USA wu UTH CCB
East China Normal University, China yi ECNU

Table 3: Participant organization and the respective User IDs and Team IDs.

same class as correct. The reason for checking
the class is as follows. Although we only use the
disorder mention in this task, the corpus has been
annotated with some other UMLS types as well
and therefore there are instances where a differ-
ent UMLS type is assigned to the same character
span in the text by the second annotator. If exact
boundaries are not taken into account then the IAA
agreement score is in the mid-90s. For the task of
normalization to CUIs, we used accuracy to assess
agreement. For the relaxed criterion, all overlap-
ping disorder spans with the same CUI were con-
sidered correct. For the strict criterion, only disor-
der spans with identical spans and the same CUI
were considered correct.

3 Task Description

The participants were evaluated on the following
two tasks:

• Task A – Identification of the character spans
of disorder mentions.

• Task B – Normalizing disorder mentions to
SNOMED-CT subset of UMLS CUIs.

For Task A, participants were instructed to develop
a system that predicts the spans for disorder men-
tions. For Tasks B, participants were instructed
to develop a system that predicts the UMLS CUI
within the SNOMED-CT vocabulary. The input to
Task B were the disorder mention predictions from
Task A. Task B was optional. System outputs ad-
hered to the annotation format. Each participant
was allowed to submit up to three runs. The en-

tire set of unlabeled MIMIC clinical notes (exclud-
ing the test notes) were made available to the par-
ticipants for potential unsupervised approaches to
enhance the performance of their systems. They
were allowed to use additional annotations in their
systems, but this counted towards the total allow-
able runs; systems that used annotations outside
of those provided were evaluated separately. The
evaluation for all tasks was conducted using the
blind, withheld test data. The participants were
provided a training set containing clinical text as
well as pre-annotated spans and named entities for
disorders (Tasks A and B).

4 Evaluation Criteria

The following evaluation criteria were used:

• Task A – The system performance was eval-
uated against the gold standard using the
F1-score of the Precision and Recall values.
There were two variations: (i) Strict; and (ii)
Relaxed. The formulae for computing these
metrics are mentioned below.

Precision = P =
Dtp

Dtp + Dfp
(1)

Recall = R =
Dtp

Dtp + Dfn
(2)

Where, Dtp = Number of true positives dis-
order mentions; Dfp = Number of false pos-
itives disorder mentions; Dfn = Number of
false negative disorder mentions. In the strict
case, a span was counted as correct if it was
identical to the gold standard span, whereas
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Task A
Strict Relaxed

Team ID User ID Run P R F1 P R F1 Data
(%) (%) (%) (%) (%) (%)

UTH CCB wu 0 84.3 78.6 81.3 93.6 86.6 90.0 T+D
UTH CCB wu 1 80.8 80.5 80.6 91.6 90.7 91.1 T+D
UTU kaewphan 1 76.5 76.7 76.6 88.6 89.9 89.3 T+D
UWM ghiasvand 0 78.7 72.6 75.5 91.1 85.6 88.3 T+D
UTH CCB wu 2 68.0 84.9 75.5 83.8 93.5 88.4 T+D
UTU kaewphan 0 77.3 72.4 74.8 90.1 85.6 87.8 T
IxaMed oronoz 1 68.1 78.6 73.0 87.2 89.0 88.1 T+D
UWM ghiasvand 0 77.5 67.9 72.4 90.9 81.2 85.8 T
RelAgent ramanan 0 74.1 70.1 72.0 89.5 84.0 86.7 T+D
IxaMed oronoz 0 72.9 70.1 71.5 88.5 80.8 84.5 T+D
ezDI pathak 1 75.0 68.2 71.4 91.5 82.7 86.9 T
CLEAR gung 0 80.7 63.6 71.2 92.0 72.3 81.0 T
ezDI pathak 0 75.0 67.7 71.2 91.4 81.9 86.4 T
ULisboa francisco 0 75.3 66.3 70.5 91.4 81.5 86.2 T
ULisboa francisco 1 75.2 66.0 70.3 90.9 80.6 85.5 T
ULisboa francisco 2 75.2 66.0 70.3 90.9 80.6 85.5 T
BioinformaticsUA nunes 0 81.3 60.5 69.4 92.9 69.3 79.4 T+D
ThinkMiners parikh 0 73.4 65.0 68.9 89.2 80.2 84.4 T
ThinkMiners parikh 1 74.9 61.7 67.7 90.7 75.8 82.6 T
ECNU yi 0 75.4 61.1 67.5 89.8 72.2 80.0 T+D
UniPI attardi 2 71.2 60.1 65.2 89.7 76.6 82.6 T+D
UNT solomon 0 64.7 62.8 63.8 81.5 79.9 80.7 T+D
UniPI attardi 1 65.9 61.2 63.5 90.2 77.5 83.4 T+D
BioinformaticsUA nunes 2 75.3 53.8 62.8 86.5 62.1 72.3 T+D
BioinformaticsUA nunes 1 60.0 62.1 61.0 69.8 72.3 71.0 T+D
UniPI attardi 0 53.9 68.4 60.2 77.8 88.5 82.8 T+D
CogComp upadhya 1 63.9 52.9 57.9 82.3 68.3 74.6 T+D
CogComp upadhya 2 64.1 52.0 57.4 82.9 67.5 74.4 T+D
CogComp upadhya 0 63.6 51.5 56.9 81.9 66.5 73.4 T+D
TMU hjdai 0 52.4 57.6 54.9 91.4 76.5 83.3 T+D
MindLab-UNAL riveros 2 56.1 53.4 54.7 76.9 67.7 72.0 T
MindLab-UNAL riveros 1 57.8 51.5 54.5 77.7 65.4 71.0 T
TMU hjdai 1 62.2 42.9 50.8 89.9 65.2 75.6 T+D
IITP sikdar 0 50.0 47.9 48.9 81.5 79.7 80.6 T+D
IITP sikdar 1 47.3 45.8 46.5 78.9 77.6 78.2 T+D
IITP sikdar 2 45.0 48.1 46.5 76.9 82.6 79.6 T+D
MindLab-UNAL riveros 0 32.1 56.5 40.9 43.9 72.5 54.7 T
SZTE-NLP katona 1 54.7 25.2 34.5 88.4 40.1 55.1 T
SZTE-NLP katona 2 54.7 25.2 34.5 88.4 40.1 55.1 T
QUT AEHRC kholghi 0 38.7 29.8 33.7 90.6 70.9 79.5 T+D
SZTE-NLP katona 0 57.1 20.5 30.2 91.8 32.5 48.0 T
KUL kolomiyets 0 65.5 17.8 28.0 72.1 19.6 30.8 P
UG herrera 0 11.4 23.4 15.3 25.9 49.0 33.9 P

Table 4: Performance on test data for participating systems on Task A – Identification of disorder men-
tions.

Task A
Strict Relaxed

Team ID User ID Run P R F1 P R F1 Data
(%) (%) (%) (%) (%) (%)

hjdai TMU 1 0.687 0.922 0.787 0.952 1.000 0.975 T
wu UTH CCB 0 0.877 0.710 0.785 0.962 0.789 0.867 T
wu UTH CCB 1 0.828 0.747 0.785 0.941 0.853 0.895 T

Best ShARe/CLEF-2013 performance 0.800 0.706 0.750 0.925 0.827 0.873 T

ghiasvand UWM 0 0.827 0.675 0.743 0.958 0.799 0.871 T
pathak ezDI 0 0.813 0.670 0.734 0.954 0.800 0.870 T
pathak ezDI 1 0.809 0.667 0.732 0.954 0.801 0.871 T
wu UTH CCB 2 0.657 0.790 0.717 0.806 0.893 0.847 T
francisco ULisboa 1 0.803 0.646 0.716 0.954 0.781 0.858 T
francisco ULisboa 2 0.803 0.646 0.716 0.954 0.781 0.858 T
francisco ULisboa 0 0.796 0.642 0.711 0.959 0.793 0.868 T
oronoz IxaMed 0 0.766 0.650 0.703 0.936 0.752 0.834 T
oronoz IxaMed 1 0.660 0.721 0.689 0.899 0.842 0.870 T
hjdai TMU 0 0.667 0.414 0.511 0.912 0.591 0.717 T
sikdar IITP 0 0.525 0.430 0.473 0.862 0.726 0.788 T
sikdar IITP 2 0.467 0.440 0.453 0.812 0.775 0.793 T
sikdar IITP 1 0.493 0.410 0.448 0.828 0.706 0.762 T

Table 5: Performance on development data for participating systems on Task A – Identification of disor-
der mentions.
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in the relaxed case, a span overlapping with
the gold standard span was also considered
correct.

• Task B – Accuracy was used as the perfor-
mance measure for Task 1b. It was defined as
follows:

Accuracystrict =
Dtp ∩Ncorrect

Tg
(3)

Accuracyrelaxed =
Dtp ∩Ncorrect

Dtp
(4)

Where, Dtp = Number of true positive disor-
der mentions with identical spans as in the
gold standard; Ncorrect = Number of cor-
rectly normalized disorder mentions; and Tg

= Total number of disorder mentions in the
gold standard. For Task B, the systems were
only evaluated on annotations they identified
in Task A. Relaxed accuracy only measured
the ability to normalize correct spans. There-
fore, it was possible to obtain very high val-
ues for this measure by simply dropping any
mention with a low confidence span.

5 Participants

A total of 21 participants from across the world
participated in Task A and out of them 18 also par-
ticipated in Task B. Unfortunately, although inter-
ested, the ThinkMiners team (Parikh et al., 2014)
could not participate in Task B owing to some
UMLS licensing issues. The participating organi-
zations along with the contact user’s User ID and
their chosen Team ID are mentioned in Table 3.
Eight teams submitted three runs, six submitted
two runs and seven submitted just one run. Out
of these, only 13 submitted system description pa-
pers. We based our analysis on those system de-
scriptions.

6 System Results

Tables 4 and 6 show the performance of the sys-
tems on Tasks A and B. None of the systems used
any additional annotated data so we did not have
to compare them separately. Both tables mention
performance of all the different runs that the sys-
tems submitted. Given the many variables, we de-
liberately left the decision on how many and how
to define these runs to the individual participant.
They used various different ways to differentiate
their runs. Some, for example, UTU (Kaewphan et

al., 2014), did it based on the composition of train-
ing data, i.e., whether they used just the training
data or both the training and the development data
for training the final system, which highlighted
the fact that adding development data to training
bumped the F1-score on Task A by about 2 percent
points. Some participants, however, did not make
use of the development data in training their sys-
tems. This was partially due to the fact that we had
not explicitly mentioned in the task description
that participants were allowed to use the develop-
ment data for training their final models. In order
to be fair, we allowed some users an opportunity
to submit runs post evaluation where they used the
exact same system that they used for evaluation
but used the development data as well. We added
a column to the results tables showing whether the
participant used only the training data (T) or both
training and development data (T+D) for training
their system. It can be seen that even though the
addition of development data helps, there are still
systems that perform in the lower percentile who
have used both training and development data for
training, indicating that both the features and the
machine learning classifier contribute to the mod-
els. A novel aspect of the SemEval-2014 shared
task that differentiates it from the ShARE/CLEF
task—other than the fact that it used more data and
a new test set—is the fact that SemEval-2014 al-
lowed the use of a much larger set of unlabeled
MIMIC notes to inform the models. Surprisingly,
only two of the systems (ULisboa (Leal et al.,
2014) and UniPi (Attardi et al., 2014)) used the
unlabeled MIMIC corpus to generalize the lexical
features. Another team—UTH CCB(Zhang et al.,
2014)—used off-the-shelf Brown clusters10 as op-
posed to training them on the unlabeled MIMIC
II data. For Task B, the accuracy of a system
using the strict metric was positively correlated
with its recall on the disorder mentions that were
input to it (i.e., recall for Task A), and did not
get penalized for lower precision. Therefore one
could essentially gain higher accuracy in Task B
by tuning a system to provide the highest men-
tion recall in Task A potentially at the cost of pre-
cision and the overall F1-score and using those
mentions as input for Task B. This can be seen
from the fact that the run 2 for UTH CCB (Zhang
et al., 2014) system with the lowest F1-score has

10Personal conversation with the participants as it was not
very clear in the system description paper.
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Task B
Strict Relaxed

Team ID User ID Run Acc. Acc. Data
(%) (%)

UTH CCB wu 2 74.1 87.3 T+D
UTH CCB wu 1 70.8 88.0 T+D
UTH CCB wu 0 69.4 88.3 T+D
UWM ghiasvand 0 66.0 90.9 T+D
RelAgent ramanan 0 63.9 91.2 T+D
UWM ghiasvand 0 61.7 90.8 T
IxaMed oronoz 0 60.4 86.2 T+D
UTU kaewphan 1 60.1 78.3 T+D
ezDI pathak 1 59.9 87.8 T
ezDI pathak 0 59.2 87.4 T
UTU kaewphan 0 57.7 79.7 T
BioinformaticsUA nunes 1 53.1 85.5 T+D
BioinformaticsUA nunes 0 52.7 87.0 T+D
CLEAR gung 0 52.5 82.5 T
TMU hjdai 0 48.9 84.9 T+D
UNT solomon 0 47.0 74.8 T+D
UniPI attardi 0 46.7 68.3 T+D
BioinformaticsUA nunes 2 46.3 86.1 T+D
MindLab-UNAL riveros 2 46.1 86.3 T
IxaMed oronoz 1 43.9 55.8 T+D
MindLab-UNAL riveros 0 43.5 77.1 T
UniPI attardi 1 42.8 69.9 T+D
UniPI attardi 2 41.7 69.3 T+D
MindLab-UNAL riveros 1 41.1 79.7 T
ULisboa francisco 2 40.5 61.5 T
ULisboa francisco 1 40.4 61.2 T
ULisboa francisco 0 40.2 60.6 T
ECNU yi 0 36.4 59.5 T+D
TMU hjdai 1 35.8 83.4 T+D
IITP sikdar 0 33.3 69.6 T+D
IITP sikdar 2 33.2 69.1 T+D
IITP sikdar 1 31.9 69.6 T+D
CogComp upadhya 1 25.3 47.9 T+D
CogComp upadhya 2 24.8 47.7 T+D
CogComp upadhya 0 24.4 47.3 T+D
KUL kolomiyets 0 16.5 92.8 P
UG herrera 0 12.5 53.4 P

Table 6: Performance on test data for participat-
ing systems on Task B – Normalization of disorder
mentions to UMLS (SNOMED-CT subset) CUIs.

Task B
Strict Relaxed

Team ID User ID Run Acc. Acc. Data
(%) (%)

TMU hjdai 0 0.716 0.777 T
TMU hjdai 1 0.716 0.777 T
UTH CCB wu 2 0.713 0.903 T
UTH CCB wu 1 0.680 0.910 T
UTH CCB wu 0 0.647 0.910 T
UWM ghiasvand 0 0.623 0.923 T
ezDI pathak 0 0.603 0.900 T
ezDI pathak 1 0.600 0.899 T

Best ShARe/CLEF-2013 performance 0.589 0.895 T

IxaMed oronoz 0 0.556 0.855 T
IxaMed oronoz 1 0.421 0.584 T
ULisboa francisco 2 0.388 0.601 T
ULisboa francisco 1 0.385 0.596 T
ULisboa francisco 0 0.377 0.588 T
IITP sikdar 2 0.318 0.724 T
IITP sikdar 0 0.312 0.725 T
IITP sikdar 1 0.299 0.730 T

Table 7: Performance on development data
for some participating systems on Task B –
Normalization of disorder mentions to UMLS
(SNOMED-CT subset) CUIs.

the best accuracy for Task B and vice-versa for
run 0 with run 1 in between the two. In order to
fairly compare the performance between two sys-
tems one would have to provide perfect mentions
as input to Task B. One of the systems—UWM
Ghiasvand and Kate (2014)—did run some abla-
tion experiments using gold standard mentions as
input to Task B and obtained a best performance
of 89.5F1-score (Table 5 of Ghiasvand and Kate
(2014)) as opposed to 62.3 F1-score (Table 7) in
the more realistic setting which is a huge differ-
ence. In the upcoming SemEval-2014 where this
same evaluation is going to carried out under Task
14, we plan to perform supplementary evaluation
where gold disorder mentions would be input to
the system while attempting Task B. An inter-
esting outcome of planning a follow-on evalua-
tion to the ShARe/CLEF eHealth 2013 task was
that we could, and did, use the test data from the
ShARe/CLEF eHealth 2013 task as the develop-
ment set for this evaluation. After the main eval-
uation we asked participants to provide the sys-
tem performance on the development set using the
same number and run convention that they submit-
ted for the main evaluation. These results are pre-
sented in Tables 5 and 7. We have inserted the best
performing system score from the ShARe/CLEF
eHealth 2013 task in these tables. For Task A, re-
ferring to Tables 4 and 5, there is a boost of 3.7
absolute percent points for the F1-score over the
same task (Task 1a) in the ShARe/CLEF eHealth
2013. For Task B, referring to Tables 6 and 7, there
is a boost of 13.7 percent points for the F1-score
over the same task (Task 1b) in the ShARe/CLEF
eHealth 2013 evaluation. The participants used
various approaches for tackling the tasks, rang-
ing from purely rule-based/unsupervised (RelA-
gent (Ramanan and Nathan, 2014), (Matos et
al., 2014), KUL11) to a hybrid of rules and ma-
chine learning classifiers. The top performing sys-
tems typically used the latter. Various versions
of the IOB formulation were used for tagging the
disorder mentions. None of the standard varia-
tions on the IOB formulation were explicitly de-
signed or used to handle discontiguous mentions.
Some systems used novel variations on this ap-
proach. Probably the simplest variation was ap-
plied by the UWM team (Ghiasvand and Kate,
2014). In this formulation the following labeled
sequence “the/O left/B atrium/I is/O moderately/O

11Personal communication with participant.
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dilated/I” can be used to represent the discontigu-
ous mention left atrium...dilated, and can be con-
structed as such from the output of the classifica-
tion. The most complex variation was the one used
by the UTH CCB team (Zhang et al., 2014) where
they used the following set of tags—B, I, O, DB,
DI, HB, HI. This variation encodes discontiguous
mentions by adding four more tags to the I, O and
B tags. These are variations of the B and I tags
with either a D or a H prefix. The prefix H indi-
cates that the word or word sequence is the shared
head, and the prefix D indicates otherwise. An-
other intermediate approach used by the ULisboa
team (Leal et al., 2014) with the tagset—S, B, I,
O, E and N. Here, S represents the single token
entity to be recognized, E represents the end of an
entity (which is part of one of the prior IOB vari-
ations) and an N tag to identify non-contiguous
mentions. They don’t provide an explicit exam-
ple usage of this tag set in their paper. Yet another
variation was used by the SZTE-NLP team (Ka-
tona and Farkas, 2014). This used tags B, I, L, O
and U. Here, L is used for the last token similar to
E earlier, and U is used for a unit-token mention,
similar to S earlier. We believe that the only ap-
proach that can distinguish between discontiguous
disorders that share the same head word/phrase is
the one used by the UTH CCB team (Zhang et
al., 2014). The participants used various machine
learning classifiers such as MaxEnt, SVM, CRF in
combination with rich syntactic and semantic fea-
tures to capture the disorder mentions. As men-
tioned earlier, a few participants used the avail-
able unlabeled data and also off-the-shelf clusters
to better generalize features. The use of vector
space models such as cosine similarities as well
as continuous distributed word vector representa-
tions was useful in the normalization task. They
also availed of tools such as MetaMap and cTakes
to generate features as well as candidate CUIs dur-
ing normalizations.

7 Conclusion

We have created a reference standard with high
inter-annotator agreement and evaluated systems
on the task of identification and normalization
of diseases and disorders appearing in clinical
reports. The results have demonstrated that an
NLP system can complete this task with reason-
ably high accuracy. We plan to annotate another
evaluation using the same data as part of the in

the SemEval-2015, Task 1412 adding another task
of template filling where the systems will iden-
tify and normalize ten attributes the identified dis-
ease/disorder mentions.
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Abstract

Task 8 at SemEval 2014 defines Broad-
Coverage Semantic Dependency Pars-
ing (SDP) as the problem of recovering
sentence-internal predicate–argument rela-
tionships for all content words, i.e. the se-
mantic structure constituting the relational
core of sentence meaning. In this task
description, we position the problem in
comparison to other sub-tasks in compu-
tational language analysis, introduce the se-
mantic dependency target representations
used, reflect on high-level commonalities
and differences between these representa-
tions, and summarize the task setup, partic-
ipating systems, and main results.

1 Background and Motivation

Syntactic dependency parsing has seen great ad-
vances in the past decade, in part owing to rela-
tively broad consensus on target representations,
and in part reflecting the successful execution of a
series of shared tasks at the annual Conference for
Natural Language Learning (CoNLL; Buchholz &
Marsi, 2006; Nivre et al., 2007; inter alios). From
this very active research area accurate and efficient
syntactic parsers have developed for a wide range
of natural languages. However, the predominant
data structure in dependency parsing to date are
trees, in the formal sense that every node in the de-
pendency graph is reachable from a distinguished
root node by exactly one directed path.

This work is licenced under a Creative Commons At-
tribution 4.0 International License. Page numbers and the
proceedings footer are added by the organizers: http://
creativecommons.org/licenses/by/4.0/.

Unfortunately, tree-oriented parsers are ill-suited
for producing meaning representations, i.e. mov-
ing from the analysis of grammatical structure to
sentence semantics. Even if syntactic parsing ar-
guably can be limited to tree structures, this is not
the case in semantic analysis, where a node will
often be the argument of multiple predicates (i.e.
have more than one incoming arc), and it will often
be desirable to leave nodes corresponding to se-
mantically vacuous word classes unattached (with
no incoming arcs).

Thus, Task 8 at SemEval 2014, Broad-Coverage
Semantic Dependency Parsing (SDP 2014),1 seeks
to stimulate the dependency parsing community
to move towards more general graph processing,
to thus enable a more direct analysis of Who did
What to Whom? For English, there exist several
independent annotations of sentence meaning over
the venerable Wall Street Journal (WSJ) text of the
Penn Treebank (PTB; Marcus et al., 1993). These
resources constitute parallel semantic annotations
over the same common text, but to date they have
not been related to each other and, in fact, have
hardly been applied for training and testing of data-
driven parsers. In this task, we have used three
different such target representations for bi-lexical
semantic dependencies, as demonstrated in Figure 1
below for the WSJ sentence:

(1) A similar technique is almost impossible to apply to
other crops, such as cotton, soybeans, and rice.

Semantically, technique arguably is dependent on
the determiner (the quantificational locus), the mod-
ifier similar, and the predicate apply. Conversely,
the predicative copula, infinitival to, and the vac-

1See http://alt.qcri.org/semeval2014/
task8/ for further technical details, information on how to
obtain the data, and official results.
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A similar technique is almost impossible to apply to other crops , such as cotton , soybeans and rice .

A1 A2

(a) Partial semantic dependencies in PropBank and NomBank.

A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.
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(b) DELPH-IN Minimal Recursion Semantics–derived bi-lexical dependencies (DM).
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(c) Enju Predicate–Argument Structures (PAS).
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(d) Parts of the tectogrammatical layer of the Prague Czech-English Dependency Treebank (PCEDT).

Figure 1: Sample semantic dependency graphs for Example (1).

uous preposition marking the deep object of ap-
ply can be argued to not have a semantic contri-
bution of their own. Besides calling for node re-
entrancies and partial connectivity, semantic depen-
dency graphs may also exhibit higher degrees of
non-projectivity than is typical of syntactic depen-
dency trees.

In addition to its relation to syntactic dependency
parsing, the task also has some overlap with Se-
mantic Role Labeling (SRL; Gildea & Jurafsky,
2002). In much previous work, however, target
representations typically draw on resources like
PropBank and NomBank (Palmer et al., 2005; Mey-
ers et al., 2004), which are limited to argument
identification and labeling for verbal and nominal
predicates. A plethora of semantic phenomena—
for example negation and other scopal embedding,
comparatives, possessives, various types of modi-
fication, and even conjunction—typically remain
unanalyzed in SRL. Thus, its target representations
are partial to a degree that can prohibit seman-
tic downstream processing, for example inference-
based techniques. In contrast, we require parsers
to identify all semantic dependencies, i.e. compute
a representation that integrates all content words in
one structure. Another difference to common inter-
pretations of SRL is that the SDP 2014 task defini-

tion does not encompass predicate disambiguation,
a design decision in part owed to our goal to focus
on parsing-oriented, i.e. structural, analysis, and in
part to lacking consensus on sense inventories for
all content words.

Finally, a third closely related area of much cur-
rent interest is often dubbed ‘semantic parsing’,
which Kate and Wong (2010) define as “the task of
mapping natural language sentences into complete
formal meaning representations which a computer
can execute for some domain-specific application.”
In contrast to most work in this tradition, our SDP
target representations aim to be task- and domain-
independent, though at least part of this general-
ity comes at the expense of ‘completeness’ in the
above sense; i.e. there are aspects of sentence mean-
ing that arguably remain implicit.

2 Target Representations

We use three distinct target representations for se-
mantic dependencies. As is evident in our run-
ning example (Figure 1), showing what are called
the DM, PAS, and PCEDT semantic dependencies,
there are contentful differences among these anno-
tations, and there is of course not one obvious (or
even objective) truth. In the following paragraphs,

64



we provide some background on the ‘pedigree’ and
linguistic characterization of these representations.

DM: DELPH-IN MRS-Derived Bi-Lexical De-
pendencies These semantic dependency graphs
originate in a manual re-annotation of Sections 00–
21 of the WSJ Corpus with syntactico-semantic
analyses derived from the LinGO English Re-
source Grammar (ERG; Flickinger, 2000). Among
other layers of linguistic annotation, this resource—
dubbed DeepBank by Flickinger et al. (2012)—
includes underspecified logical-form meaning rep-
resentations in the framework of Minimal Recur-
sion Semantics (MRS; Copestake et al., 2005).
Our DM target representations are derived through
a two-step ‘lossy’ conversion of MRSs, first to
variable-free Elementary Dependency Structures
(EDS; Oepen & Lønning, 2006), then to ‘pure’
bi-lexical form—projecting some construction se-
mantics onto word-to-word dependencies (Ivanova
et al., 2012). In preparing our gold-standard
DM graphs from DeepBank, the same conversion
pipeline was used as in the system submission of
Miyao et al. (2014). For this target representa-
tion, top nodes designate the highest-scoping (non-
quantifier) predicate in the graph, e.g. the (scopal)
degree adverb almost in Figure 1.2

PAS: Enju Predicate-Argument Structures
The Enju parsing system is an HPSG-based parser
for English.3 The grammar and the disambigua-
tion model of this parser are derived from the Enju
HPSG treebank, which is automatically converted
from the phrase structure and predicate–argument
structure annotations of the PTB. The PAS data
set is extracted from the WSJ portion of the Enju
HPSG treebank. While the Enju treebank is an-
notated with full HPSG-style structures, only its
predicate–argument structures are converted into
the SDP data format for use in this task. Top
nodes in this representation denote semantic heads.
Again, the system description of Miyao et al. (2014)
provides more technical detail on the conversion.

PCEDT: Prague Tectogrammatical Bi-Lexical
Dependencies The Prague Czech-English De-
pendency Treebank (PCEDT; Hajič et al., 2012)4

is a set of parallel dependency trees over the WSJ

2Note, however, that non-scopal adverbs act as mere in-
tersective modifiers, e.g. loudly is a predicate in DM, but the
main verb provides the top node in structures like Abrams
sang loudly.

3See http://kmcs.nii.ac.jp/enju/.
4See http://ufal.mff.cuni.cz/pcedt2.0/.

id form lemma pos top pred arg1 arg2

#20200002
1 Ms. Ms. NNP − + _ _
2 Haag Haag NNP − − compound ARG1
3 plays play VBZ + + _ _
4 Elianti Elianti NNP − − _ ARG2
5 . . . − − _ _

Table 1: Tabular SDP data format (showing DM).

texts from the PTB, and their Czech translations.
Similarly to other treebanks in the Prague family,
there are two layers of syntactic annotation: an-
alytical (a-trees) and tectogrammatical (t-trees).
PCEDT bi-lexical dependencies in this task have
been extracted from the t-trees. The specifics of
the PCEDT representations are best observed in the
procedure that converts the original PCEDT data to
the SDP data format; see Miyao et al. (2014). Top
nodes are derived from t-tree roots; i.e. they mostly
correspond to main verbs. In case of coordinate
clauses, there are multiple top nodes per sentence.

3 Graph Representation

The SDP target representations can be character-
ized as labeled, directed graphs. Formally, a se-
mantic dependency graph for a sentence x =
x1, . . . , xn is a structure G = (V,E, `V , `E) where
V = {1, . . . , n} is a set of nodes (which are in
one-to-one correspondence with the tokens of the
sentence); E ⊆ V × V is a set of edges; and `V

and `E are mappings that assign labels (from some
finite alphabet) to nodes and edges, respectively.
More specifically for this task, the label `V (i) of a
node i is a tuple consisting of four components: its
word form, lemma, part of speech, and a Boolean
flag indicating whether the corresponding token
represents a top predicate for the specific sentence.
The label `E(i→ j) of an edge i→ j is a seman-
tic relation that holds between i and j. The exact
definition of what constitutes a top node and what
semantic relations are available differs among our
three target representations, but note that top nodes
can have incoming edges.

All data provided for the task uses a column-
based file format (dubbed the SDP data format)
similar to the one of the 2009 CoNLL Shared Task
(Hajič et al., 2009). As in that task, we assume gold-
standard sentence and token segmentation. For
ease of reference, each sentence is prefixed by a
line with just a unique identifier, using the scheme
2SSDDIII, with a constant leading 2, two-digit sec-
tion code, two-digit document code (within each
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section), and three-digit item number (within each
document). For example, identifier 20200002 de-
notes the second sentence in the first file of PTB
Section 02, the classic Ms. Haag plays Elianti. The
annotation of this sentence is shown in Table 1.

With one exception, our fields (i.e. columns in
the tab-separated matrix) are a subset of the CoNLL
2009 inventory: (1) id, (2) form, (3) lemma, and
(4) pos characterize the current token, with token
identifiers starting from 1 within each sentence. Be-
sides the lemma and part-of-speech information, in
the closed track of our task, there is no explicit
analysis of syntax. Across the three target represen-
tations in the task, fields (1) and (2) are aligned and
uniform, i.e. all representations annotate exactly
the same text. On the other hand, fields (3) and (4)
are representation-specific, i.e. there are different
conventions for lemmatization, and part-of-speech
assignments can vary (but all representations use
the same PTB inventory of PoS tags).

The bi-lexical semantic dependency graph over
tokens is represented by two or more columns start-
ing with the obligatory, binary-valued fields (5)
top and (6) pred. A positive value in the top
column indicates that the node corresponding to
this token is a top node (see Section 2 below). The
pred column is a simplification of the correspond-
ing field in earlier tasks, indicating whether or not
this token represents a predicate, i.e. a node with
outgoing dependency edges. With these minor dif-
ferences to the CoNLL tradition, our file format can
represent general, directed graphs, with designated
top nodes. For example, there can be singleton
nodes not connected to other parts of the graph,
and in principle there can be multiple tops, or a
non-predicate top node.

To designate predicate–argument relations, there
are as many additional columns as there are pred-
icates in the graph (i.e. tokens marked + in the
pred column); these additional columns are called
(7) arg1, (8) arg2, etc. These colums contain
argument roles relative to the i-th predicate, i.e. a
non-empty value in column arg1 indicates that
the current token is an argument of the (linearly)
first predicate in the sentence. In this format, graph
reentrancies will lead to a token receiving argument
roles for multiple predicates (i.e. non-empty argi

values in the same row). All tokens of the same sen-
tence must always have all argument columns filled
in, even on non-predicate words; in other words,
all lines making up one block of tokens will have
the same number n of fields, but n can differ across

DM PAS PCEDT

(1) # labels 51 42 68
(2) % singletons 22.62 4.49 35.79
(3) # edge density 0.96 1.02 0.99
(4) %g trees 2.35 1.30 56.58
(5) %g projective 3.05 1.71 53.29
(6) %g fragmented 6.71 0.23 0.56
(7) %n reentrancies 27.35 29.40 9.27
(8) %g topless 0.28 0.02 0.00
(9) # top nodes 0.9972 0.9998 1.1237

(10) %n non-top roots 44.71 55.92 4.36

Table 2: Contrastive high-level graph statistics.

sentences, depending on the count of graph nodes.

4 Data Sets

All three target representations are annotations of
the same text, Sections 00–21 of the WSJ Cor-
pus. For this task, we have synchronized these
resources at the sentence and tokenization levels
and excluded from the SDP 2014 training and test-
ing data any sentences for which (a) one or more of
the treebanks lacked a gold-standard analysis; (b) a
one-to-one alignment of tokens could not be estab-
lished across all three representations; or (c) at least
one of the graphs was cyclic. Of the 43,746 sen-
tences in these 22 first sections of WSJ text, Deep-
Bank lacks analyses for close to 15%, and the Enju
Treebank has gaps for a little more than four per-
cent. Some 500 sentences show tokenization mis-
matches, most owing to DeepBank correcting PTB
idiosyncrasies like 〈G.m.b, H.〉, 〈S.p, A.〉, and
〈U.S., .〉, and introducing a few new ones (Fares
et al., 2013). Finally, 232 of the graphs obtained
through the above conversions were cyclic. In total,
we were left with 34,004 sentences (or 745,543
tokens) as training data (Sections 00–20), and 1348
testing sentences (29,808 tokens), from Section 21.

Quantitative Comparison As a first attempt at
contrasting our three target representations, Table 2
shows some high-level statistics of the graphs com-
prising the training data.5 In terms of distinctions

5These statistics are obtained using the ‘official’ SDP
toolkit. We refer to nodes that have neither incoming nor
outgoing edges and are not marked as top nodes as singletons;
these nodes are ignored in subsequent statistics, e.g. when
determining the proportion of edges per node (3) or the per-
centages of rooted trees (4) and fragmented graphs (6). The
notation ‘%n’ denotes (non-singleton) node percentages, and
‘%g’ percentages over all graphs. We consider a root node any
(non-singleton) node that has no incoming edges; reentrant
nodes have at least two incoming edges. Following Sagae and
Tsujii (2008), we consider a graph projective when there are
no crossing edges (in a left-to-right rendering of nodes) and no
roots are ‘covered’, i.e. for any root j there is no edge i→ k
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Directed Undirected

DM PAS PCEDT DM PAS PCEDT

DM − .6425 .2612 − .6719 .5675
PAS .6688 − .2963 .6993 − .5490

PCEDT .2636 .2963 − .5743 .5630 −

Table 3: Pairwise F1 similarities, including punctu-
ation (upper right diagonals) or not (lower left).

drawn in dependency labels (1), there are clear dif-
ferences between the representations, with PCEDT
appearing linguistically most fine-grained, and PAS
showing the smallest label inventory. Unattached
singleton nodes (2) in our setup correspond to
tokens analyzed as semantically vacuous, which
(as seen in Figure 1) include most punctuation
marks in PCEDT and DM, but not PAS. Further-
more, PCEDT (unlike the other two) analyzes some
high-frequency determiners as semantically vacu-
ous. Conversely, PAS on average has more edges
per (non-singleton) nodes than the other two (3),
which likely reflects its approach to the analysis of
functional words (see below).

Judging from both the percentage of actual trees
(4), the proportions of projective graphs (5), and the
proportions of reentrant nodes (7), PCEDT is much
more ‘tree-oriented’ than the other two, which at
least in part reflects its approach to the analysis
of modifiers and determiners (again, see below).
We view the small percentages of graphs without
at least one top node (8) and of graphs with at
least two non-singleton components that are not
interconnected (6) as tentative indicators of general
well-formedness. Intuitively, there should always
be a ‘top’ predicate, and the whole graph should
‘hang together’. Only DM exhibits non-trivial (if
small) degrees of topless and fragmented graphs,
and these may indicate imperfections in the Deep-
Bank annotations or room for improvement in the
conversion from full MRSs to bi-lexical dependen-
cies, but possibly also exceptions to our intuitions
about semantic dependency graphs.

Finally, in Table 3 we seek to quantify pairwise
structural similarity between the three representa-
tions in terms of unlabeled dependency F1 (dubbed
UF in Section 5 below). We provide four variants
of this metric, (a) taking into account the direc-
tionality of edges or not and (b) including edges
involving punctuation marks or not. On this view,
DM and PAS are structurally much closer to each
other than either of the two is to PCEDT, even more

such that i < j < k.

so when discarding punctuation. While relaxing
the comparison to ignore edge directionality also
increases similarity scores for this pair, the effect
is much more pronounced when comparing either
to PCEDT. This suggests that directionality of se-
mantic dependencies is a major source of diversion
between DM and PAS on the one hand, and PCEDT
on the other hand.

Linguistic Comparison Among other aspects,
Ivanova et al. (2012) categorize a range of syntac-
tic and semantic dependency annotation schemes
according to the role that functional elements take.
In Figure 1 and the discussion of Table 2 above, we
already observed that PAS differs from the other
representations in integrating into the graph aux-
iliaries, the infinitival marker, the case-marking
preposition introducing the argument of apply (to),
and most punctuation marks;6 while these (and
other functional elements, e.g. complementizers)
are analyzed as semantically vacuous in DM and
PCEDT, they function as predicates in PAS, though
do not always serve as ‘local’ top nodes (i.e. the se-
mantic head of the corresponding sub-graph): For
example, the infinitival marker in Figure 1 takes the
verb as its argument, but the ‘upstairs’ predicate
impossible links directly to the verb, rather than to
the infinitival marker as an intermediate.

At the same time, DM and PAS pattern alike
in their approach to modifiers, e.g. attributive ad-
jectives, adverbs, and prepositional phrases. Un-
like in PCEDT (or common syntactic dependency
schemes), these are analyzed as semantic predi-
cates and, thus, contribute to higher degrees of
node reentrancy and non-top (structural) roots.
Roughly the same holds for determiners, but here
our PCEDT projection of Prague tectogrammatical
trees onto bi-lexical dependencies leaves ‘vanilla’
articles (like a and the) as singleton nodes.

The analysis of coordination is distinct in the
three representations, as also evident in Figure 1.
By design, DM opts for what is often called
the Mel’čukian analysis of coordinate structures
(Mel’čuk, 1988), with a chain of dependencies
rooted at the first conjunct (which is thus consid-
ered the head, ‘standing in’ for the structure at
large); in the DM approach, coordinating conjunc-
tions are not integrated with the graph but rather
contribute different types of dependencies. In PAS,
the final coordinating conjunction is the head of the

6In all formats, punctuation marks like dashes, colons, and
sometimes commas can be contentful, i.e. at times occur as
both predicates, arguments, and top nodes.
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employee stock investment plans

compound compound compound

employee stock investment plans
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employee stock investment plans
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Figure 2: Analysis of nominal compounding in DM, PAS, and PCEDT, respectively .

structure and each coordinating conjunction (or in-
tervening punctuation mark that acts like one) is a
two-place predicate, taking left and right conjuncts
as its arguments. Conversely, in PCEDT the last
coordinating conjunction takes all conjuncts as its
arguments (in case there is no overt conjunction, a
punctuation mark is used instead); additional con-
junctions or punctuation marks are not connected
to the graph.7

A linguistic difference between our representa-
tions that highlights variable granularities of anal-
ysis and, relatedly, diverging views on the scope
of the problem can be observed in Figure 2. Much
noun phrase–internal structure is not made explicit
in the PTB, and the Enju Treebank from which
our PAS representation derives predates the brack-
eting work of Vadas and Curran (2007). In the
four-way nominal compounding example of Fig-
ure 2, thus, PAS arrives at a strictly left-branching
tree, and there is no attempt at interpreting seman-
tic roles among the members of the compound ei-
ther; PCEDT, on the other hand, annotates both the
actual compound-internal bracketing and the as-
signment of roles, e.g. making stock the PAT(ient)
of investment. In this spirit, the PCEDT annota-
tions could be directly paraphrased along the lines
of plans by employees for investment in stocks. In
a middle position between the other two, DM dis-
ambiguates the bracketing but, by design, merely
assigns an underspecified, construction-specific de-
pendency type; its compound dependency, then,
is to be interpreted as the most general type of de-
pendency that can hold between the elements of
this construction (i.e. to a first approximation either
an argument role or a relation parallel to a prepo-
sition, as in the above paraphrase). The DM and
PCEDT annotations of this specific example hap-
pen to diverge in their bracketing decisions, where
the DM analysis corresponds to [...] investments
in stock for employees, i.e. grouping the concept

7As detailed by Miyao et al. (2014), individual con-
juncts can be (and usually are) arguments of other predicates,
whereas the topmost conjunction only has incoming edges in
nested coordinate structures. Similarly, a ‘shared’ modifier of
the coordinate structure as a whole would take as its argument
the local top node of the coordination in DM or PAS (i.e. the
first conjunct or final conjunction, respectively), whereas it
would depend as an argument on all conjuncts in PCEDT.

employee stock (in contrast to ‘common stock’).
Without context and expert knowledge, these de-

cisions are hard to call, and indeed there has been
much previous work seeking to identify and anno-
tate the relations that hold between members of a
nominal compound (see Nakov, 2013, for a recent
overview). To what degree the bracketing and role
disambiguation in this example are determined by
the linguistic signal (rather than by context and
world knowledge, say) can be debated, and thus the
observed differences among our representations in
this example relate to the classic contrast between
‘sentence’ (or ‘conventional’) meaning, on the one
hand, and ‘speaker’ (or ‘occasion’) meaning, on
the other hand (Quine, 1960; Grice, 1968). In
turn, we acknowledge different plausible points of
view about which level of semantic representation
should be the target representation for data-driven
parsing (i.e. structural analysis guided by the gram-
matical system), and which refinements like the
above could be construed as part of a subsequent
task of interpretation.

5 Task Setup

Training data for the task, providing all columns in
the file format sketched in Section 3 above, together
with a first version of the SDP toolkit—including
graph input, basic statistics, and scoring—were
released to candidate participants in early Decem-
ber 2013. In mid-January, a minor update to the
training data and optional syntactic ‘companion’
analyses (see below) were provided, and in early
February the description and evaluation of a sim-
ple baseline system (using tree approximations and
the parser of Bohnet, 2010). Towards the end of
March, an input-only version of the test data was
released, with just columns (1) to (4) pre-filled; par-
ticipants then had one week to run their systems on
these inputs, fill in columns (5), (6), and upwards,
and submit their results (from up to two different
runs) for scoring. Upon completion of the testing
phase, we have shared the gold-standard test data,
official scores, and system results for all submis-
sions with participants and are currently preparing
all data for general release through the Linguistic
Data Consortium.
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DM PAS PCEDT

LF LP LR LF LM LP LR LF LM LP LR LF LM

Peking 85.91 90.27 88.54 89.40 26.71 93.44 90.69 92.04 38.13 78.75 73.96 76.28 11.05
Priberam 85.24 88.82 87.35 88.08 22.40 91.95 89.92 90.93 32.64 78.80 74.70 76.70 09.42

Copenhagen- 80.77 84.78 84.04 84.41 20.33 87.69 88.37 88.03 10.16 71.15 68.65 69.88 08.01Malmö
Potsdam 77.34 79.36 79.34 79.35 07.57 88.15 81.60 84.75 06.53 69.68 66.25 67.92 05.19
Alpage 76.76 79.42 77.24 78.32 09.72 85.65 82.71 84.16 17.95 70.53 65.28 67.81 06.82

Linköping 72.20 78.54 78.05 78.29 06.08 76.16 75.55 75.85 01.19 60.66 64.35 62.45 04.01

DM PAS PCEDT

LF LP LR LF LM LP LR LF LM LP LR LF LM

Priberam 86.27 90.23 88.11 89.16 26.85 92.56 90.97 91.76 37.83 80.14 75.79 77.90 10.68
CMU 82.42 84.46 83.48 83.97 08.75 90.78 88.51 89.63 26.04 76.81 70.72 73.64 07.12
Turku 80.49 80.94 82.14 81.53 08.23 87.33 87.76 87.54 17.21 72.42 72.37 72.40 06.82

Potsdam 78.60 81.32 80.91 81.11 09.05 89.41 82.61 85.88 07.49 70.35 67.33 68.80 05.42
Alpage 78.54 83.46 79.55 81.46 10.76 87.23 82.82 84.97 15.43 70.98 67.51 69.20 06.60

In-House 75.89 92.58 92.34 92.46 48.07 92.09 92.02 92.06 43.84 40.89 45.67 43.15 00.30

Table 4: Results of the closed (top) and open tracks (bottom). For each system, the second column (LF)
indicates the averaged LF score across all target representations), which was used to rank the systems.

Evaluation Systems participating in the task
were evaluated based on the accuracy with which
they can produce semantic dependency graphs for
previously unseen text, measured relative to the
gold-standard testing data. The key measures for
this evaluation were labeled and unlabeled preci-
sion and recall with respect to predicted dependen-
cies (predicate–role–argument triples) and labeled
and unlabeled exact match with respect to complete
graphs. In both contexts, identification of the top
node(s) of a graph was considered as the identifi-
cation of additional, ‘virtual’ dependencies from
an artificial root node (at position 0). Below we
abbreviate these metrics as (a) labeled precision,
recall, and F1: LP, LR, LF; (b) unlabeled precision,
recall, and F1: UP, UR, UF; and (c) labeled and
unlabeled exact match: LM, UM.

The ‘official’ ranking of participating systems, in
both the closed and the open tracks, is determined
based on the arithmetic mean of the labeled depen-
dency F1 scores (i.e. the geometric mean of labeled
precision and labeled recall) on the three target rep-
resentations (DM, PAS, and PCEDT). Thus, to be
considered for the final ranking, a system had to
submit semantic dependencies for all three target
representations.

Closed vs. Open Tracks The task was sub-
divided into a closed track and an open track, where
systems in the closed track could only be trained
on the gold-standard semantic dependencies dis-
tributed for the task. Systems in the open track, on
the other hand, could use additional resources, such

as a syntactic parser, for example—provided that
they make sure to not use any tools or resources
that encompass knowledge of the gold-standard
syntactic or semantic analyses of the SDP 2014
test data, i.e. were directly or indirectly trained or
otherwise derived from WSJ Section 21.

This restriction implies that typical off-the-shelf
syntactic parsers had to be re-trained, as many data-
driven parsers for English include this section of
the PTB in their default training data. To simplify
participation in the open track, the organizers pre-
pared ready-to-use ‘companion’ syntactic analyses,
sentence- and token-aligned to the SDP data, in
two formats, viz. PTB-style phrase structure trees
obtained from the parser of Petrov et al. (2006) and
Stanford Basic syntactic dependencies (de Marn-
effe et al., 2006) produced by the parser of Bohnet
and Nivre (2012).

6 Submissions and Results

From 36 teams who had registered for the task,
test runs were submitted for nine systems. Each
team submitted one or two test runs per track. In
total, there were ten runs submitted to the closed
track and nine runs to the open track. Three teams
submitted to both the closed and the open track.
The main results are summarized and ranked in
Table 4. The ranking is based on the average LF
score across all three target representations, which
is given in the LF column. In cases where a team
submitted two runs to a track, only the highest-
ranked score is included in the table.
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Team Track Approach Resources

Linköping C extension of Eisner’s algorithm for DAGs, edge-factored
structured perceptron

—

Potsdam C & O graph-to-tree transformation, Mate companion
Priberam C & O model with second-order features, decoding with dual decom-

position, MIRA
companion

Turku O cascade of SVM classifiers (dependency recognition, label
classification, top recognition)

companion,
syntactic n-grams,
word2vec

Alpage C & O transition-based parsing for DAGs, logistic regression, struc-
tured perceptron

companion,
Brown clusters

Peking C transition-based parsing for DAGs, graph-to-tree transforma-
tion, parser ensemble

—

CMU O edge classification by logistic regression, edge-factored struc-
tured SVM

companion

Copenhagen-Malmö C graph-to-tree transformation, Mate —
In-House O existing parsers developed by the organizers grammars

Table 5: Overview of submitted systems, high-level approaches, and additional resources used (if any).

In the closed track, the average LF scores across
target representations range from 85.91 to 72.20.
Comparing the results for different target represen-
tations, the average LF scores across systems are
85.96 for PAS, 82.97 for DM, and 70.17 for PCEDT.
The scores for labeled exact match show a much
larger variation across both target representations
and systems.8

In the open track, we see very similar trends.
The average LF scores across target representations
range from 86.27 to 75.89 and the corresponding
scores across systems are 88.64 for PAS, 84.95
for DM, and 67.52 for PCEDT. While these scores
are consistently higher than in the closed track,
the differences are small. In fact, for each of the
three teams that submitted to both tracks (Alpage,
Potsdam, and Priberam) improvements due to the
use of additional resources in the open track do not
exceed two points LF.

7 Overview of Approaches

Table 5 shows a summary of the systems that sub-
mitted final results. Most of the systems took
a strategy to use some algorithm to process (re-
stricted types of) graph structures, and apply ma-
chine learning like structured perceptrons. The
methods for processing graph structures are clas-
sified into three types. One is to transform graphs
into trees in the preprocessing stage, and apply con-
ventional dependency parsing systems (e.g. Mate;
Bohnet, 2010) to the converted trees. Some sys-
tems simply output the result of dependency pars-
ing (which means they inherently lose some depen-

8Please see the task web page at the address indicated
above for full labeled and unlabeled scores.

dencies), while the others apply post-processing
to recover non-tree structures. The second strat-
egy is to use a parsing algorithm that can directly
generate graph structures (in the spirit of Sagae &
Tsujii, 2008; Titov et al., 2009). In many cases
such algorithms generate restricted types of graph
structures, but these restrictions appear feasible for
our target representations. The last approach is
more machine learning–oriented; they apply classi-
fiers or scoring methods (e.g. edge-factored scores),
and find the highest-scoring structures by some de-
coding method.

It is difficult to tell which approach is the best;
actually, the top three systems in the closed and
open tracks selected very different approaches. A
possible conclusion is that exploiting existing sys-
tems or techniques for dependency parsing was
successful; for example, Peking built an ensemble
of existing transition-based and graph-based depen-
dency parsers, and Priberam extended an existing
dependency parser. As we indicated in the task de-
scription, a novel feature of this task is that we have
to compute graph structures, and cannot assume
well-known properties like projectivity and lack of
reentrancies. However, many of the participants
found that our representations are mostly tree-like,
and this fact motivated them to apply methods that
have been well studied in the field of syntactic de-
pendency parsing.

Finally, we observe that three teams participated
in both the closed and open tracks, and all of them
reported that adding external resources improved
accuracy by a little more than one point. Systems
with (only) open submissions extensively use syn-
tactic features (e.g. dependency paths) from exter-
nal resources, and they are shown effective even
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with simple machine learning models. Pre-existing,
tree-oriented dependency parsers are relatively ef-
fective, especially when combined with graph-to-
tree transformation. Comparing across our three
target representations, system scores show a ten-
dency PAS > DM > PCEDT, which can be taken as
a tentative indicator of relative levels of ‘parsabil-
ity’. As suggested in Section 4, this variation most
likely correlates at least in part with diverging de-
sign decisions, e.g. the inclusion of relatively local
and deterministic dependencies involving function
words in PAS, or the decision to annotate contex-
tually determined speaker meaning (rather than
‘mere’ sentence meaning) in at least some construc-
tions in PCEDT.

8 Conclusions and Outlook

We have described the motivation, design, and out-
comes of the SDP 2014 task on semantic depen-
dency parsing, i.e. retrieving bi-lexical predicate–
argument relations between all content words
within an English sentence. We have converted to
a common format three existing annotations (DM,
PAS, and PCEDT) over the same text and have put
this to use for the first time in training and testing
data-driven semantic dependency parsers. Building
on strong community interest already to date and
our belief that graph-oriented dependency parsing
will further gain importance in the years to come,
we are preparing a similar (slightly modified) task
for SemEval 2015. Candidate modifications and
extensions will include cross-domain testing and
evaluation at the level of ‘complete’ predications
(in contrast to more lenient per-dependency F1 used
this year). As optional new sub-tasks, we plan on
offering cross-linguistic variation and predicate (i.e.
semantic frame) disambiguation for at least some of
the target representations. To further probe the role
of syntax in the recovery of semantic dependency
relations, we will make available to participants
a wider selection of syntactic analyses, as well as
add a third (idealized) ‘gold’ track, where syntactic
dependencies are provided directly from available
syntactic annotations of the underlying treebanks.
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Abstract
We describe the Sentiment Analysis in
Twitter task, ran as part of SemEval-2014.
It is a continuation of the last year’s task
that ran successfully as part of SemEval-
2013. As in 2013, this was the most popu-
lar SemEval task; a total of 46 teams con-
tributed 27 submissions for subtask A (21
teams) and 50 submissions for subtask B
(44 teams). This year, we introduced three
new test sets: (i) regular tweets, (ii) sarcas-
tic tweets, and (iii) LiveJournal sentences.
We further tested on (iv) 2013 tweets, and
(v) 2013 SMS messages. The highest F1-
score on (i) was achieved by NRC-Canada
at 86.63 for subtask A and by TeamX at
70.96 for subtask B.

1 Introduction

In the past decade, new forms of communica-
tion have emerged and have become ubiquitous
through social media. Microblogs (e.g., Twitter),
Weblogs (e.g., LiveJournal) and cell phone mes-
sages (SMS) are often used to share opinions and
sentiments about the surrounding world, and the
availability of social content generated on sites
such as Twitter creates new opportunities to au-
tomatically study public opinion.

Working with these informal text genres
presents new challenges for natural language pro-
cessing beyond those encountered when work-
ing with more traditional text genres such as
newswire. The language in social media is very
informal, with creative spelling and punctuation,
misspellings, slang, new words, URLs, and genre-
specific terminology and abbreviations, e.g., RT
for re-tweet and #hashtags1.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1Hashtags are a type of tagging for Twitter messages.

Moreover, tweets and SMS messages are short:
a sentence or a headline rather than a document.

How to handle such challenges so as to automat-
ically mine and understand people’s opinions and
sentiments has only recently been the subject of
research (Jansen et al., 2009; Barbosa and Feng,
2010; Bifet et al., 2011; Davidov et al., 2010;
O’Connor et al., 2010; Pak and Paroubek, 2010;
Tumasjan et al., 2010; Kouloumpis et al., 2011).

Several corpora with detailed opinion and sen-
timent annotation have been made freely avail-
able, e.g., the MPQA newswire corpus (Wiebe et
al., 2005), the movie reviews corpus (Pang et al.,
2002), or the restaurant and laptop reviews cor-
pora that are part of this year’s SemEval Task 4
(Pontiki et al., 2014). These corpora have proved
very valuable as resources for learning about the
language of sentiment in general, but they do not
focus on tweets. While some Twitter sentiment
datasets were created prior to SemEval-2013, they
were either small and proprietary, such as the i-
sieve corpus (Kouloumpis et al., 2011) or focused
solely on message-level sentiment.

Thus, the primary goal of our SemEval task is
to promote research that will lead to better un-
derstanding of how sentiment is conveyed in So-
cial Media. Toward that goal, we created the Se-
mEval Tweet corpus as part of our inaugural Sen-
timent Analysis in Twitter Task, SemEval-2013
Task 2 (Nakov et al., 2013). It contains tweets
and SMS messages with sentiment expressions an-
notated with contextual phrase-level and message-
level polarity. This year, we extended the corpus
by adding new tweets and LiveJournal sentences.

Another interesting phenomenon that has been
studied in Twitter is the use of the #sarcasm hash-
tag to indicate that a tweet should not be taken lit-
erally (González-Ibáñez et al., 2011; Liebrecht et
al., 2013). In fact, sarcasm indicates that the mes-
sage polarity should be flipped. With this in mind,
this year, we also evaluate on sarcastic tweets.
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In the remainder of this paper, we first describe
the task, the dataset creation process and the eval-
uation methodology. We then summarize the char-
acteristics of the approaches taken by the partici-
pating systems, and we discuss their scores.

2 Task Description

As SemEval-2013 Task 2, we included two sub-
tasks: an expression-level subtask and a message-
level subtask. Participants could choose to partici-
pate in either or both. Below we provide short de-
scriptions of the objectives of these two subtasks.

Subtask A: Contextual Polarity Disambiguation
Given a message containing a marked in-
stance of a word or a phrase, determine
whether that instance is positive, negative or
neutral in that context. The instance bound-
aries were provided: this was a classification
task, not an entity recognition task.

Subtask B: Message Polarity Classification
Given a message, decide whether it is of
positive, negative, or neutral sentiment.
For messages conveying both positive and
negative sentiment, the stronger one is to be
chosen.

Each participating team was allowed to submit
results for two different systems per subtask: one
constrained, and one unconstrained. A constrained
system could only use the provided data for train-
ing, but it could also use other resources such as
lexicons obtained elsewhere. An unconstrained
system could use any additional data as part of
the training process; this could be done in a super-
vised, semi-supervised, or unsupervised fashion.

Note that constrained/unconstrained refers to
the data used to train a classifier. For example,
if other data (excluding the test data) was used to
develop a sentiment lexicon, and the lexicon was
used to generate features, the system would still
be constrained. However, if other data (excluding
the test data) was used to develop a sentiment lexi-
con, and this lexicon was used to automatically la-
bel additional Tweet/SMS messages and then used
with the original data to train the classifier, then
such a system would be considered unconstrained.

3 Datasets

In this section, we describe the process of collect-
ing and annotating the 2014 testing tweets, includ-
ing the sarcastic ones, and LiveJournal sentences.

Corpus Positive Negative Objective
/ Neutral

Twitter2013-train 5,895 3,131 471
Twitter2013-dev 648 430 57
Twitter2013-test 2,734 1,541 160
SMS2013-test 1,071 1,104 159
Twitter2014-test 1,807 578 88
Twitter2014-sarcasm 82 37 5
LiveJournal2014-test 660 511 144

Table 1: Dataset statistics for Subtask A.

3.1 Datasets Used

For training and development, we released the
Twitter train/dev/test datasets from SemEval-2013
task 2, as well as the SMS test set, which uses mes-
sages from the NUS SMS corpus (Chen and Kan,
2013), which we annotated for sentiment in 2013.

We further added a new 2014 Twitter test set,
as well as a small set of tweets that contained
the #sarcasm hashtag to determine how sarcasm
affects the tweet polarity. Finally, we included
sentences from LiveJournal in order to determine
how systems trained on Twitter perform on other
sources. The statistics for each dataset and for
each subtask are shown in Tables 1 and 2.

Corpus Positive Negative Objective
/ Neutral

Twitter2013-train 3,662 1,466 4,600
Twitter2013-dev 575 340 739
Twitter2013-test 1,572 601 1,640
SMS2013-test 492 394 1,207
Twitter2014-test 982 202 669
Twitter2014-sarcasm 33 40 13
LiveJournal2014-test 427 304 411

Table 2: Dataset statistics for Subtask B.

3.2 Annotation

We annotated the new tweets as in 2013: by iden-
tifying tweets from popular topics that contain
sentiment-bearing words by using SentiWordNet
(Baccianella et al., 2010) as a filter. We altered the
annotation task for the sarcastic tweets, displaying
them to the Mechanical Turk annotators without
the #sarcasm hashtag; the Turkers had to deter-
mine whether the tweet is sarcastic on their own.
Moreover, we asked Turkers to indicate the degree
of sarcasm as (a) definitely sarcastic, (b) probably
sarcastic, and (c) not sarcastic.

As in 2013, we combined the annotations using
intersection, where a word had to appear in 2/3
of the annotations to be accepted. An annotated
example from each source is shown in Table 3.
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Source Example Polarity
Twitter Why would you [still]- wear shorts when it’s this cold?! I [love]+ how Britain see’s a

bit of sun and they’re [like ’OOOH]+ LET’S STRIP!’
positive

SMS [Sorry]- I think tonight [cannot]- and I [not feeling well]- after my rest. negative
LiveJournal [Cool]+ posts , dude ; very [colorful]+ , and [artsy]+ . positive
Twitter Sarcasm [Thanks]+ manager for putting me on the schedule for Sunday negative

Table 3: Example of polarity for each source of messages. The target phrases are marked in [. . .], and
are followed by their polarity; the sentence-level polarity is shown in the last column.

3.3 Tweets Delivery
We did not deliver the annotated tweets to the par-
ticipants directly; instead, we released annotation
indexes, a list of corresponding Twitter IDs, and
a download script that extracts the correspond-
ing tweets via the Twitter API.2 We provided the
tweets in this manner in order to ensure that Twit-
ter’s terms of service are not violated. Unfor-
tunately, due to this restriction, the task partici-
pants had access to different number of training
tweets depending on when they did the download-
ing. This varied between a minimum of 5,215
tweets and the full set of 10,882 tweets. On av-
erage the teams were able to collect close to 9,000
tweets; for teams that did not participate in 2013,
this was about 8,500. The difference in training
data size did not seem to have had a major impact.
In fact, the top two teams in subtask B (coooolll
and TeamX) trained on less than 8,500 tweets.

4 Scoring

The participating systems were required to per-
form a three-way classification for both subtasks.
A particular marked phrase (for subtask A) or an
entire message (for subtask B) was to be classi-
fied as positive, negative or objective/neutral. We
scored the systems by computing a score for pre-
dicting positive/negative phrases/messages. For
instance, to compute positive precision, ppos, we
find the number of phrases/messages that a sys-
tem correctly predicted to be positive, and we di-
vide that number by the total number it predicted
to be positive. To compute positive recall, rpos,
we find the number of phrases/messages correctly
predicted to be positive and we divide that number
by the total number of positives in the gold stan-
dard. We then calculate F1-score for the positive
class as follows Fpos = 2(ppos+rpos)

ppos∗rpos
. We carry

out a similar computation for Fneg, for the nega-
tive phrases/messages. The overall score is then
F = (Fpos + Fneg)/2.

2https://dev.twitter.com

We used the two test sets from 2013 and the
three from 2014, which we combined into one test
set and we shuffled to make it hard to guess which
set a sentence came from. This guaranteed that
participants would submit predictions for all five
test sets. It also allowed us to test how well sys-
tems trained on standard tweets generalize to sar-
castic tweets and to LiveJournal sentences, with-
out the participants putting extra efforts into this.
The participants were also not informed about the
source the extra test sets come from.

We provided the participants with a scorer that
outputs the overall score F and a confusion matrix
for each of the five test sets.

5 Participants and Results

The results are shown in Tables 4 and 5, and the
team affiliations are shown in Table 6. Tables 4
and 5 contain results on the two progress test sets
(tweets and SMS messages), which are the official
test sets from the 2013 edition of the task, and on
the three new official 2014 testsets (tweets, tweets
with sarcasm, and LiveJournal). The tables fur-
ther show macro- and micro-averaged results over
the 2014 datasets. There is an index for each re-
sult showing the relative rank of that result within
the respective column. The participating systems
are ranked by their score on the Twitter-2014 test-
set, which is the official ranking for the task; all
remaining rankings are secondary.

As we mentioned above, the participants were
not told that the 2013 test sets would be included
in the big 2014 test set, so that they do not over-
tune their systems on them. However, the 2013
test sets were made available for development, but
it was explicitly forbidden to use them for training.
Still, some participants did not notice this restric-
tion, which resulted in their unusually high scores
on Twitter2013-test; we did our best to identify
all such cases, and we asked the authors to submit
corrected runs. The tables mark such resubmis-
sions accordingly.
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Most of the submissions were constrained, with
just a few unconstrained: 7 out of 27 for subtask
A, and 8 out of 50 for subtask B. In any case, the
best systems were constrained. Some teams par-
ticipated with both a constrained and an uncon-
strained system, but the unconstrained system was
not always better than the constrained one: some-
times it was worse, sometimes it performed the
same. Thus, we decided to produce a single rank-
ing, including both constrained and unconstrained
systems, where we mark the latter accordingly.

5.1 Subtask A

Table 4 shows the results for subtask A, which at-
tracted 27 submissions from 21 teams. There were
seven unconstrained submissions: five teams sub-
mitted both a constrained and an unconstrained
run, and two teams submitted an unconstrained
run only. The best systems were constrained. All
participating systems outperformed the majority
class baseline by a sizable margin.

5.2 Subtask B

The results for subtask B are shown in Table 5.
The subtask attracted 50 submissions from 44
teams. There were eight unconstrained submis-
sions: six teams submitted both a constrained and
an unconstrained run, and two teams submitted an
unconstrained run only. As for subtask A, the best
systems were constrained. Again, all participating
systems outperformed the majority class baseline;
however, some systems were very close to it.

6 Discussion

Overall, we observed similar trends as in
SemEval-2013 Task 2. Almost all systems used
supervised learning. Most systems were con-
strained, including the best ones in all categories.
As in 2013, we observed several cases of a team
submitting a constrained and an unconstrained run
and the constrained run performing better.

It is unclear why unconstrained systems did not
outperform constrained ones. It could be because
participants did not use enough external data or
because the data they used was too different from
Twitter or from our annotation method. Or it could
be due to our definition of unconstrained, which
labels as unconstrained systems that use additional
tweets directly, but considers unconstrained those
that use additional tweets to build sentiment lexi-
cons and then use these lexicons.

As in 2013, the most popular classifiers were
SVM, MaxEnt, and Naive Bayes. Moreover, two
submissions used deep learning, coooolll (Harbin
Institute of Technology) and ThinkPositive (IBM
Research, Brazil), which were ranked second and
tenth on subtask B, respectively.

The features used were quite varied, includ-
ing word-based (e.g., word and character n-
grams, word shapes, and lemmata), syntactic, and
Twitter-specific such as emoticons and abbrevia-
tions. The participants still relied heavily on lex-
icons of opinion words, the most popular ones
being the same as in 2013: MPQA, SentiWord-
Net and Bing Liu’s opinion lexicon. Popular this
year was also the NRC lexicon (Mohammad et
al., 2013), created by the best-performing team in
2013, which is top-performing this year as well.

Preprocessing of tweets was still a popular tech-
nique. In addition to standard NLP steps such
as tokenization, stemming, lemmatization, stop-
word removal and POS tagging, most teams ap-
plied some kind of Twitter-specific processing
such as substitution/removal of URLs, substitu-
tion of emoticons, word normalization, abbrevi-
ation lookup, and punctuation removal. Finally,
several of the teams used Twitter-tuned NLP tools
such as part of speech and named entity taggers
(Gimpel et al., 2011; Ritter et al., 2011).

The similarity of preprocessing techniques,
NLP tools, classifiers and features used in 2013
and this year is probably partially due to many
teams participating in both years. As Table 6
shows, 18 out of the 46 teams are returning teams.

Comparing the results on the progress Twit-
ter test in 2013 and 2014, we can see that NRC-
Canada, the 2013 winner for subtask A, have
now improved their F1 score from 88.93 to 90.14,
which is the 2014 best score. The best score on the
Progress SMS in 2014 of 89.31 belongs to ECNU;
this is a big jump compared to their 2013 score of
76.69, but it is less compared to the 2013 best of
88.37 achieved by GU-MLT-LT. For subtask B, on
the Twitter progress testset, the 2013 winner NRC-
Canada improves their 2013 result from 69.02 to
70.75, which is the second best in 2014; the win-
ner in 2014, TeamX, achieves 72.12. On the SMS
progress test, the 2013 winner NRC-Canada im-
proves its F1 score from 68.46 to 70.28. Overall,
we see consistent improvements on the progress
testset for both subtasks: 0-1 and 2-3 points abso-
lute for subtasks A and B, respectively.
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Uncon- 2013: Progress 2014: Official 2014: Average
# System strain.? Tweet SMS Tweet Tweet Live- Macro Micro

sarcasm Journal
1 NRC-Canada 90.141 88.034 86.631 77.135 85.492 83.082 85.611

2 SentiKLUE 90.112 85.168 84.832 79.323 85.611 83.251 85.152

3 CMUQ-Hybrid∗ 88.944 87.985 84.403 76.996 84.213 81.873 84.053

4 CMU-Qatar∗ 89.853 88.083 83.454 78.074 83.895 81.804 83.564

5 ECNU X 87.296 89.262 82.935 73.718 81.697 79.447 81.856

6 ECNU 87.287 89.311 82.676 73.719 81.678 79.358 81.757

7 Think Positive X 88.065 87.656 82.057 76.747 80.9012 79.906 81.159

8 Kea∗ 84.8310 84.1410 81.228 65.9417 81.1611 76.1113 80.7010

9 Lt 3 86.288 85.267 81.029 70.7613 80.4413 77.4111 80.3313

10 senti.ue 84.0511 78.7216 80.5410 82.751 81.906 81.735 81.478

11 LyS 85.699 81.4412 79.9211 71.6710 83.954 78.5110 82.215

12 UKPDIPF 80.4515 79.0514 79.6712 65.6318 81.429 75.5714 80.3311

13 UKPDIPF X 80.4516 79.0515 79.6713 65.6319 81.4210 75.5715 80.3312

14 TJP 81.1314 84.419 79.3014 71.2012 78.2715 76.2612 78.3915

15 SAP-RI 80.3217 80.2613 77.2615 70.6414 77.6818 75.1917 77.3216

16 senti.ue∗ X 83.8012 82.9311 77.0716 80.022 79.7014 78.939 78.8314

17 SAIL 78.4718 74.4620 76.8917 65.5620 70.6222 71.0221 72.5721

18 columbia nlp� 81.5013 74.5519 76.5418 61.7622 78.1916 72.1619 77.1118

19 IIT-Patna 76.5420 75.9918 76.4319 71.4311 77.9917 75.2816 77.2617

20 Citius X 76.5919 69.3121 75.2120 68.4015 75.8220 73.1418 75.3819

21 Citius 74.7121 61.4425 73.0321 65.1821 71.6421 69.9522 71.9022

22 IITPatna 70.9123 77.0417 72.2522 66.3216 76.0319 71.5320 74.4520

23 SU-sentilab 74.3422 62.5824 68.2623 53.3125 69.5323 63.7024 68.5923

24 Univ. Warwick∗ 62.2526 60.1226 67.2824 58.0824 64.8925 63.4225 65.4825

25 Univ. Warwick∗ X 64.9125 63.0123 67.1725 60.5923 67.4624 65.0723 67.1424

26 DAEDALUS 67.4224 63.9222 60.9826 45.2727 61.0126 55.7526 60.5026

27 DAEDALUS X 61.9527 55.9727 58.1127 49.1926 58.6527 55.3227 58.1727

Majority baseline 38.1 31.5 42.2 39.8 33.4

Table 4: Results for subtask A. The ∗ indicates system resubmissions (because they initially trained on
Twitter2013-test), and the � indicates a system that includes a task co-organizer as a team member. The
systems are sorted by their score on the Twitter2014 test dataset; the rankings on the individual datasets
are indicated with a subscript. The last two columns show macro- and micro-averaged results across the
three 2014 test datasets.

Finally, note that for both subtasks, the best sys-
tems on the Twitter-2014 dataset are those that per-
formed best on the 2013 progress Twitter dataset:
NRC-Canada for subtask A, and TeamX (Fuji Xe-
rox Co., Ltd.) for subtask B.

It is interesting to note that the best results
for Twitter2014-test are lower than those for
Twitter2013-test for both subtask A (86.63 vs.
90.14) and subtask B (70.96 vs 72.12). This is
so despite the baselines for Twitter2014-test be-
ing higher than those for Twitter2013-test: 42.2 vs.
38.1 for subtask A, and 34.6 vs. 29.2 for subtask
B. Most likely, having access to Twitter2013-test
at development time, teams have overfitted on it. It
could be also the case that some of the sentiment
dictionaries that were built in 2013 have become
somewhat outdated by 2014.

Finally, note that while some teams such as
NRC-Canada performed well across all test sets,
other such as TeamX, which used a weighting
scheme tuned specifically for class imbalances in
tweets, were only strong on Twitter datasets.

7 Conclusion

We have described the data, the experimental
setup and the results for SemEval-2014 Task 9.
As in 2013, our task was the most popular one at
SemEval-2014, attracting 46 participating teams:
21 in subtask A (27 submissions) and 44 in sub-
task B (50 submissions).

We introduced three new test sets for 2014: an
in-domain Twitter dataset, an out-of-domain Live-
Journal test set, and a dataset of tweets contain-
ing sarcastic content. While the performance on
the LiveJournal test set was mostly comparable
to the in-domain Twitter test set, for most teams
there was a sharp drop in performance for sarcas-
tic tweets, highlighting better handling of sarcas-
tic language as one important direction for future
work in Twitter sentiment analysis.

We plan to run the task again in 2015 with the
inclusion of a new sub-evaluation on detecting sar-
casm with the goal of stimulating research in this
area; we further plan to add one more test domain.
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Uncon- 2013: Progress 2014: Official 2014: Average
# System strain.? Tweet SMS Tweet Tweet Live- Macro Micro

sarcasm Journal
1 TeamX 72.121 57.3626 70.961 56.503 69.4415 65.633 69.995

2 coooolll 70.403 67.682 70.142 46.6624 72.905 63.2312 70.512

3 RTRGO 69.105 67.513 69.953 47.0923 72.206 63.0813 70.153

4 NRC-Canada 70.752 70.281 69.854 58.161 74.841 67.621 71.371

5 TUGAS 65.6413 62.7711 69.005 52.8712 69.7913 63.896 68.848

6 CISUC KIS∗ 67.568 65.906 67.956 55.495 74.462 65.972 70.024

7 SAIL 66.8011 56.9828 67.777 57.262 69.3417 64.794 68.0610

8 SWISS-CHOCOLATE 64.8118 66.435 67.548 49.4616 73.254 63.4210 69.156

9 Synalp-Empathic 63.6523 62.5412 67.439 51.0615 71.759 63.4111 68.579

10 Think Positive X 68.157 63.209 67.0410 47.8521 66.9624 60.6218 66.4715

11 SentiKLUE 69.066 67.404 67.0211 43.3630 73.993 61.4614 68.947

12 JOINT FORCES X 66.6112 62.2013 66.7912 45.4026 70.0212 60.7417 67.3912

13 AMI ERIC 70.094 60.2920 66.5513 48.1920 65.3226 60.0221 65.5820

14 AUEB 63.9221 64.328 66.3814 56.164 70.7511 64.435 67.7111

15 CMU-Qatar∗ 65.1117 62.9510 65.5315 40.5238 65.6325 57.2327 64.8724

16 Lt 3 65.5614 64.787 65.4716 47.7622 68.5620 60.6019 66.1217

17 columbia nlp� 64.6019 59.8421 65.4217 40.0240 68.7919 58.0825 65.9619

18 LyS 66.9210 60.4519 64.9218 42.4033 69.7914 59.0422 66.1018

19 NILC USP 65.3915 61.3516 63.9419 42.0634 69.0218 58.3424 65.2121

20 senti.ue 67.349 59.3423 63.8120 55.316 71.3910 63.507 66.3816

21 UKPDIPF 60.6529 60.5617 63.7721 54.597 71.927 63.438 66.5313

22 UKPDIPF X 60.6530 60.5618 63.7722 54.598 71.928 63.439 66.5314

23 SU-FMI∗� 60.9628 61.6715 63.6223 48.3419 68.2421 60.0720 64.9123

24 ECNU 62.3127 59.7522 63.1724 51.4314 69.4416 61.3515 65.1722

25 ECNU X 63.7222 56.7329 63.0425 49.3317 64.0831 58.8223 63.0427

26 Rapanakis 58.5232 54.0235 63.0126 44.6927 59.7137 55.8031 61.2832

27 Citius X 63.2524 58.2824 62.9427 46.1325 64.5429 57.8726 63.0626

28 CMUQ-Hybrid∗ 63.2225 61.7514 62.7128 40.9537 65.1427 56.2730 63.0028

29 Citius 62.5326 57.6925 61.9229 41.0036 62.4033 55.1133 61.5131

30 KUNLPLab 58.1233 55.8931 61.7230 44.6028 63.7732 56.7029 62.0029

31 senti.ue∗ X 65.2116 56.1630 61.4731 54.099 68.0822 61.2116 63.7125

32 UPV-ELiRF 63.9720 55.3633 59.3332 37.4642 64.1130 53.6337 60.4933

33 USP Biocom 58.0534 53.5736 59.2133 43.5629 67.8023 56.8628 61.9630

34 DAEDALUS X 58.9431 54.9634 57.6434 35.2644 60.9935 51.3039 58.2635

35 IIT-Patna 52.5840 51.9637 57.2535 41.3335 60.3936 52.9938 57.9736

36 DejaVu 57.4336 55.5732 57.0236 42.4632 64.6928 54.7234 59.4634

37 GPLSI 57.4935 46.6342 56.0637 53.9010 57.3241 55.7632 56.4737

38 BUAP 56.8537 44.2744 55.7638 51.5213 53.9444 53.7436 54.9739

39 SAP-RI 50.1844 49.0041 55.4739 48.6418 57.8640 53.9935 56.1738

40 UMCC DLSI Sem 51.9641 50.0138 55.4040 42.7631 53.1245 50.4340 54.2042

41 IBM EG 54.5138 46.6243 52.2641 34.1446 59.2438 48.5543 54.3441

42 Alberta 53.8539 49.0540 52.0642 40.4039 52.3846 48.2844 51.8544

43 lsis lif 46.3846 38.5647 52.0243 34.6445 61.0934 49.2541 54.9040

44 SU-sentilab 50.1745 49.6039 49.5244 31.4947 55.1142 45.3747 51.0945

45 SINAI 50.5942 57.3427 49.5045 31.1549 58.3339 46.3346 52.2643

46 IITPatna 50.3243 40.5646 48.2246 36.7343 54.6843 46.5445 50.2946

47 Univ. Warwick 39.1748 29.5049 45.5647 39.7741 39.6049 41.6448 43.1948

48 UMCC DLSI Graph 43.2447 36.6648 45.4948 53.1511 47.8147 48.8242 46.5647

49 Univ. Warwick X 34.2350 24.6350 45.1149 31.4048 29.3450 35.2849 38.8849

50 DAEDALUS 36.5749 40.8645 33.0350 28.9650 40.8348 34.2750 35.8150

Majority baseline 29.2 19.0 34.6 27.7 27.2

Table 5: Results for subtask B. The ∗ indicates system resubmissions (because they initially trained on
Twitter2013-test), and the � indicates a system that includes a task co-organizer as a team member. The
systems are sorted by their score on the Twitter2014 test dataset; the rankings on the individual datasets
are indicated with a subscript. The last two columns show macro- and micro-averaged results across the
three 2014 test datasets.

In the 2015 edition of the task, we might also
remove the constrained/unconstrained distinction.

Finally, as there are multiple opinions about a
topic in Twitter, we would like to focus on detect-
ing the sentiment trend towards a topic.
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Subtasks Team Affiliation 2013?
B Alberta University of Alberta
B AMI ERIC AMI Software R&D and Université de Lyon (ERIC LYON 2) yes
B AUEB Athens University of Economics and Business yes
B BUAP Benemérita Universidad Autónoma de Puebla
B CISUC KIS University of Coimbra

A, B Citius University of Santiago de Compostela
A, B CMU-Qatar Carnegie Mellon University, Qatar
A, B CMUQ-Hybrid Carnegie Mellon University, Qatar (different from the above)
A, B columbia nlp Columbia University yes

B cooolll Harbin Institute of Technology
A, B DAEDALUS Daedalus

B DejaVu Indian Institute of Technology, Kanpur
A, B ECNU East China Normal University yes

B GPLSI University of Alicante
B IBM EG IBM Egypt

A, B IITPatna Indian Institute of Technology, Patna
A, B IIT-Patna Indian Institute of Technology, Patna (different from the above)

B JOINT FORCES Zurich University of Applied Sciences
A Kea York University, Toronto yes
B KUNLPLab Koç University
B lsis lif Aix-Marseille University yes

A, B Lt 3 Ghent University
A, B LyS Universidade da Coruña

B NILC USP University of São Paulo yes
A, B NRC-Canada National Research Council Canada yes

B Rapanakis Stamatis Rapanakis
B RTRGO Retresco GmbH and University of Gothenburg yes

A, B SAIL Signal Analysis and Interpretation Laboratory yes
A, B SAP-RI SAP Research and Innovation
A, B senti.ue Universidade de Évora yes
A, B SentiKLUE Friedrich-Alexander-Universität Erlangen-Nürnberg yes

B SINAI University of Jaén yes
B SU-FMI Sofia University

A, B SU-sentilab Sabanci University yes
B SWISS-CHOCOLATE ETH Zurich
B Synalp-Empathic University of Lorraine
B TeamX Fuji Xerox Co., Ltd.

A, B Think Positive IBM Research, Brazil
A TJP University of Northumbria at Newcastle Upon Tyne yes
B TUGAS Instituto de Engenharia de Sistemas e Computadores, yes

Investigação e Desenvolvimento em Lisboa
A, B UKPDIPF Ubiquitous Knowledge Processing Lab

B UMCC DLSI Graph Universidad de Matanzas and Univarsidad de Alicante yes
B UMCC DLSI Sem Universidad de Matanzas and Univarsidad de Alicante (different from above) yes

A, B Univ. Warwick University of Warwick
B UPV-ELiRF Universitat Politècnica de València
B USP Biocom University of São Paulo and Federal University of São Carlos

Table 6: Participating teams, their affiliations, subtasks they have taken part in, and an indication about
whether the team participated in SemEval-2013 Task 2.
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Abstract
In Semantic Textual Similarity, systems
rate the degree of semantic equivalence
between two text snippets. This year,
the participants were challenged with new
data sets for English, as well as the in-
troduction of Spanish, as a new language
in which to assess semantic similarity.
For the English subtask, we exposed the
systems to a diversity of testing scenar-
ios, by preparing additional OntoNotes-
WordNet sense mappings and news head-
lines, as well as introducing new gen-
res, including image descriptions, DEFT
discussion forums, DEFT newswire, and
tweet-newswire headline mappings. For
Spanish, since, to our knowledge, this is
the first time that official evaluations are
conducted, we used well-formed text, by
featuring sentences extracted from ency-
clopedic content and newswire. The an-
notations for both tasks leveraged crowd-
sourcing. The Spanish subtask engaged 9
teams participating with 22 system runs,
and the English subtask attracted 15 teams
with 38 system runs.

1 Introduction and motivation

Given two snippets of text, Semantic Textual Sim-
ilarity (STS) captures the notion that some texts
are more similar than others, measuring their de-
gree of semantic equivalence. Textual similar-
ity can range from complete unrelatedness to ex-
act semantic equivalence, and a graded similar-
ity intuitively captures the notion of intermediate
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This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
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shades of similarity, as pairs of text may differ
from some minor nuanced aspects of meaning, to
relatively important semantic differences, to shar-
ing only some details, or to simply being related
to the same topic (cf. Section 2).

One of the goals of the STS task is to create a
unified framework for combining several seman-
tic components that otherwise have historically
tended to be evaluated independently and with-
out characterization of impact on NLP applica-
tions. By providing such a framework, STS al-
lows for an extrinsic evaluation of these modules.
Moreover, such an STS framework itself could in
turn be evaluated intrinsically and extrinsically as
a grey/black box within various NLP applications
such as Machine Translation (MT), Summariza-
tion, Generation, Question Answering (QA), etc.

STS is related to both Textual Entailment (TE)
and Paraphrasing, but differs in a number of ways
and it is more directly applicable to a number of
NLP tasks. STS is different from TE inasmuch
as it assumes bidirectional graded equivalence be-
tween the pair of textual snippets. In the case of
TE the equivalence is directional, e.g. a car is a
vehicle, but a vehicle is not necessarily a car. STS
also differs from both TE and Paraphrasing (in as
far as both tasks have been defined to date in the
literature) in that, rather than being a binary yes/no
decision (e.g. a vehicle is not a car), we define
STS to be a graded similarity notion (e.g. a ve-
hicle and a car are more similar than a wave and
a car). A quantifiable graded bidirectional notion
of textual similarity is useful for a myriad of NLP
tasks such as MT evaluation, information extrac-
tion, question answering, summarization, etc.

In 2012 we held the first pilot task at SemEval
2012, as part of the *SEM 2012 conference, with
great success: 35 teams participated with 88 sys-
tem runs (Agirre et al., 2012). In addition, we held
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year dataset pairs source
2012 MSRpar 1500 newswire
2012 MSRvid 1500 videos
2012 OnWN 750 glosses
2012 SMTnews 750 MT eval.
2012 SMTeuroparl 750 MT eval.
2013 HDL 750 newswire
2013 FNWN 189 glosses
2013 OnWN 561 glosses
2013 SMT 750 MT eval.
2014 HDL 750 newswire headlines
2014 OnWN 750 glosses
2014 Deft-forum 450 forum posts
2014 Deft-news 300 news summary
2014 Images 750 image descriptions
2014 Tweet-news 750 tweet-news pairs

Table 2: English subtask: Summary of train (2012
and 2013) and test (2014) datasets.

a DARPA sponsored workshop at Columbia Uni-
versity.1 In 2013, STS was selected as the offi-
cial Shared Task of the *SEM 2013 conference,
with two subtasks: The Core task, which is sim-
ilar to the 2012 task; and a Pilot task on Typed-
similarity between semi-structured records. The
Core task attracted 34 participants with 89 runs,
and the Typed-similarity task attracted 6 teams
with 14 runs.

For STS 2014 we defined two subtasks: En-
glish and Spanish. For the English subtask we pro-
vided five test datasets: two datasets that extend
already released genres (the OntoNotes-WordNet
sense mappings and news headlines) and three
new genres: image descriptions, DEFT discus-
sion forum data and newswire, as well as tweet-
newswire headline mappings. Participants could
use all datasets released in 2012 and 2013 as train-
ing data. The Spanish subtask introduced two di-
verse datasets on different genres, namely ency-
clopedic descriptions extracted from the Spanish
Wikipedia and contemporary Spanish newswire.
For the Spanish subtask, the participants had ac-
cess to a limited amount of labeled data, consist-
ing of 65 sentence pairs, which they could use for
training.

2 Task Description

2.1 English Subtask
The English dataset comprises pairs of news head-
lines (HDL), pairs of glosses (OnWN), image de-
scriptions (Images), DEFT-related discussion fo-
rums (Deft-forum) and news (Deft-news), and

1http://www.cs.columbia.edu/˜weiwei/
workshop/

tweet comments and newswire headline mappings
(Tweets).

For HDL, we used naturally occurring news
headlines gathered by the Europe Media Moni-
tor (EMM) engine (Best et al., 2005) from sev-
eral different news sources. EMM clusters to-
gether related news. Our goal was to generate
a balanced data set across the different similar-
ity ranges, hence we built two sets of headline
pairs: (i) a set where the pairs come from the same
EMM cluster, (ii) and another set where the head-
lines come from a different EMM cluster, then
we computed the string similarity between those
pairs. Accordingly, we sampled 375 headline pairs
of headlines that occur in the same EMM cluster,
aiming for pairs equally distributed between min-
imal and maximal similarity using simple string
similarity. We sampled other 375 pairs from the
different EMM cluster in the same manner.

For OnWN, we used the sense definition pairs
of OntoNotes (Hovy et al., 2006) and WordNet
(Fellbaum, 1998). Different from previous tasks,
the two definition sentences in a pair belong to dif-
ferent senses. We sampled 750 pairs based on a
string similarity ranging from 0.5 to 1.

The Images data set is a subset of the PAS-
CAL VOC-2008 data set (Rashtchian et al., 2010),
which consists of 1,000 images and has been used
by a number of image description systems. It was
also sampled from string similarity values between
0.6 and 1.

Deft-forum and Deft-news are from DEFT
data.2 Deft-forum contains the forum post sen-
tences, and Deft-news are news summaries. We
selected 450 pairs for Deft-forum and 300 pairs for
Deft-news. They are sampled evenly from string
similarities falling in the interval 0.6 to 1.

The Tweets data set contains tweet-news pairs
selected from the corpus released in (Guo et al.,
2013), where each pair contains a sentence that
pertains to the news title, while the other one rep-
resents a Twitter comment on that particular news.
They are evenly sampled from string similarity
values between 0.5 and 1.

Table 1 shows the explanations and values as-
sociated with each score between 5 and 0. As
in prior years, we used Amazon Mechanical Turk
(AMT)3 to crowdsource the annotation of the En-
glish pairs.4 Annotators are presented with the

2LDC2013E19, LDC2012E54
3www.mturk.com
4For STS 2013, we used CrowdFlower as a front-end to
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Score English Spanish
5/4 The two sentences are completely equivalent, as they mean the same thing.

The bird is bathing in the sink.
Birdie is washing itself in the water basin.

El pájaro se esta bañando en el lavabo.
El pájaro se está lavando en el aguamanil.

4 The two sentences are mostly equivalent, but some unimportant details differ.
In May 2010, the troops attempted to invade
Kabul.
The US army invaded Kabul on May 7th last
year, 2010.

3 The two sentences are roughly equivalent, but some important information differs/missing.
John said he is considered a witness but not a
suspect.
”He is not a suspect anymore.” John said.

John dijo que él es considerado como testigo, y
no como sospechoso.
“Él ya no es un sospechoso,” John dijo.

2 The two sentences are not equivalent, but share some details.
They flew out of the nest in groups.
They flew into the nest together.

Ellos volaron del nido en grupos.
Volaron hacia el nido juntos.

1 The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

La mujer está tocando el violı́n.
La joven disfruta escuchar la guitarra.

0 The two sentences are completely dissimilar.
John went horse back riding at dawn with a
whole group of friends.
Sunrise at dawn is a magnificent view to take
in if you wake up early enough for it.

Al amanecer, Juan se fue a montar a caballo
con un grupo de amigos.
La salida del sol al amanecer es una magnı́fica
vista que puede presenciar si usted se despierta
lo suficientemente temprano para verla.

Table 1: Similarity scores with explanations and examples for the English and Spanish subtasks, where
the sentences in Spanish are translations of the English ones.
A similarity score of 5 in English is mirrored by a maximum score of 4 in Spanish; the definitions pertaining to scores 3 and 4
in English were collapsed under a score of 3 in Spanish, with the definition ”The two sentences are mostly equivalent, but some
details differ.”

detailed instructions provided in Figure 1, and
are asked to label each STS sentence pair on our
six point scale, selecting from a dropdown box.
Five sentence pairs are presented to each annota-
tor at once, per human intelligence task (HIT), at
a payrate of $0.20; we collect five separate anno-
tations per sentence pair. Annotators were only el-
igible to work on the task if they had the Mechan-
ical Turk Master Qualification. This is a special

Amazon Mechanical Turk, since it provides numerous useful
tools to assist in running a successful annotation project using
crowdsourcing, such as support for hidden ’golden’ questions
that can be used both to train annotators and to automatically
stop people who repeatedly make mistakes from contribut-
ing to the task. However, in 2013, CrowdFlower dropped
Amazon Mechanical Turk as an annotation source. When we
tried running pairs for STS 2014 on CrowdFlower using the
same templates that were successfully used for the 2013 task,
we found that we obtained significantly degraded annotation
quality, with an average Pearson (AMT provider vs. rest of
AMT providers) of only 22.8%. In contrast, when we ran the
task for 2014 on AMT, we obtained a one-vs-rest annotation
of 73.6%.

qualification conferred by AMT (using a priority
statistical model) to annotators who consistently
maintain a very high level of quality across a vari-
ety of tasks from numerous requesters). Access to
these skilled workers entails a 20% surcharge.

To monitor the quality of the annotations, we
use the gold dataset of 105 pairs that were manu-
ally annotated by the task organizers during STS
2013. We include one of these gold pairs in each
set of five sentence pairs, where the gold pairs are
indistinguishable from the rest. Unlike when we
ran on CrowdFlower for STS 2013, the gold pairs
are not used for training purposes, nor are workers
automatically banned from the task if they make
too many mistakes on annotating them. Rather, the
gold pairs are only used to help in identifying and
removing the data associated with poorly perform-
ing annotators. With few exceptions, 90% of the
answers from each individual annotator fall within
+/-1 of the answers selected by the organizers for
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Figure 1: Annotation instructions for English subtask.

the gold dataset.
The distribution of scores obtained from the

AMT providers in the Deft-forum, Deft-news,
OnWN and tweet-news datasets is roughly uni-
form across the different grades of similarity, al-
though the scores are slightly higher for tweet-
news. Compared to the other data sets, the scores
for OnWN, were more bimodal, ranging between
4.6 to 5 and 0 to 0.4, when compared to middle
values (2.6-3.4).

In order to assess the annotation quality, we
measure the correlation of each annotator with the
average of the rest of the annotators, and then aver-
age the results. This approach to estimate the qual-
ity is identical to the method used for evaluations
(see Section 3), and it can thus be considered as
the upper bound of the systems. The inter-tagger
correlation for each English dataset is as follows:
• HDL: 79.4%
• OnWN: 67.2%
• Deft-forum: 58.6%
• Deft-news: 70.7%
• Images: 83.6%
• Tweets-news: 74.4%
The correlation figures are generally high (over

70%), with the exception of the OnWN and Deft
datasets, which score 67.2% and 58.6%, respec-
tively. The reason for the low inter-tagger correla-

tion on OnWN compared to the higher correlations
in previous years is that we only used unmapped
sense definitions, i.e., the two sentences in a pair
belong to two different senses. For the Deft-forum
dataset, we found that similarity values tend to be
lower than in the other datasets, and more annota-
tion disagreements happen in these low similarity
values.

2.2 Spanish Subtask

The Spanish subtask follows a setup similar to the
English subtask, except that the similarity scores
were adapted to fit a range from 0 to 4 (see Table
1). We thought that the distinction between a score
of 3 and 4 for the English task will pose more dif-
ficulty for us in conveying into Spanish, as the sole
difference between the two lies in how the annota-
tors perceive the importance of additional details
or missing information with respect to the core se-
mantic interpretation of the pair. As this aspect en-
tails a subjective judgement, and since it is the first
time that a Spanish STS evaluation is organized,
we casted the annotation guidelines into straight-
forward and unambiguous instructions, and thus
opted to use a similarity range from 0 to 4.

Prior to the evaluation window, we released 65
Spanish sentence pairs for trial / training. In or-
der to evaluate system performance under differ-
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ent scenarios, we developed two test datasets, one
extracted from the Spanish Wikipedia5 (December
2013 dump) and one from contemporary news ar-
ticles collected from media in Spanish (February
2014).

2.2.1 Spanish Wikipedia
The Wikipedia dump was processed using the
Parse::MediaWikiDump Perl library. We removed
all titles, html tags, wiki tags and hyperlinks
(keeping only the surface forms). Each article was
split into paragraphs, where the first paragraph
was considered to be the article’s abstract, while
the remaining ones were deemed to be its content.
Each of these were split into sentences using the
Perl library Uplug::PreProcess::SentDetect, and
only the sentences longer than eight words were
used. We iteratively computed the lexical simi-
larity6 between every sentence in the abstract and
every sentence in the content, and retained those
pairs whose sentence length ratio was higher than
0.5, and their similarity scored over 0.35.

The final set of sentence pairs was split into five
bins, and their scores normalized to range from
0 to 1. The more interesting and difficult pairs
were found, perhaps not surprisingly, in bins 0 and
1, where synonyms/short paraphrases where more
frequent. An example extracted from those bins,
where the text in italics highlights the differences
between the two sentences:
• “America” es el segundo continente más

grande del planeta, después de Asia.
“America” is the second largest continent in the world,

following Asia.

• America corresponde a la segunda masa de
tierra más grande del planeta, luego de Asia.
America is the second largest land mass on the planet,

after Asia.

The Spanish verb “Es” maps to (En:7 is), ”cor-
responde a” (En: corresponds to), the phrase “el
segundo continente” (En: the second continent) is
equivalent to “la segunda masa de tierra” (the sec-
ond land mass), and “despues” (En: following) to
“luego” (En: after). Despite the difference in vo-
cabulary choice, the two sentences are paraphrases
of each other.

From the candidate pairs, we manually selected
324 sentence pairs, in order to ensure a diverse

5es.wikipedia.org
6Algorithm based on the Linux diff command (Algo-

rithm::Diff Perl module).
7“En” stands for English.

and challenging set. This set was annotated in two
ways, first by two graduate students in Computer
Science who are native speakers of Spanish, and
second by using AMT.

The AMT framework was set up to contain
seven sentence pairs per HIT, where six of them
were part of the test dataset, while one was used
for control. AMT providers were eligible to com-
plete a task if they had more than 500 accepted
HITs, with 90%+ acceptance rate.8 We paid $0.30
per HIT, and each HIT was annotated by five AMT
providers. We sought to ensure that only Spanish
speaking annotators would complete the HITs by
providing all the information related to the task (its
title, abstract, description, guidelines and exam-
ples), as well as the control pair in Spanish only.
The participants were instructed to label the pairs
on a scale from 0 to 4 (see Table 1). Each sentence
pair was followed by a comment text box, which
the AMT providers used to provide the topic of the
sentences, corrections, etc.

The two students achieved a Pearson correla-
tion of 0.6974 on the Wikipedia dataset. To see
how their judgement compares to the crowd wis-
dom, we averaged the AMT scores for each pair,
and computed their correlation with our annota-
tors, obtaining 0.824 and 0.742, respectively. Sur-
prisingly enough, both these correlation values are
higher than the correlation among the annotators
themselves. When averaging the annotator scores
and comparing them with the AMT providers’
average score per pair, the correlation becomes
0.8546, indicating that the task is well defined,
and that the annotations contributed by the AMT
providers are of satisfactory quality. Given these
scores, the gold standard was annotated using the
average AMT provider judgement per pair.

2.2.2 Spanish News
The second Spanish dataset was extracted from
news articles published in Spanish language me-
dia from around the world in February 2014. The
hyperlinks to the articles were obtained by pars-
ing the ”International” page of Spanish Google
News,9 which aggregates or clusters in real time
articles describing a particular event from a di-
verse pool of news sites, where each grouping

8Initially, Amazon had automatically upgraded our anno-
tation task to require Master level providers (as those partici-
pating in the English annotations), yet after approximately 4
days, no HIT had been completed.

9news.google.es
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is labeled with the title of one of the predomi-
nant articles. By leveraging these clusters of links
pointing to the sites where the articles were orig-
inally published, we are able to gather raw text
that has a high probability of containing seman-
tically similar sentences. We encountered several
difficulties while mining the articles, ranging from
each article having its own formatting depend-
ing on the source site, to advertisements, cookie
requirements, to encoding for Spanish diacritics.
We used the lynx text-based browser,10 which was
able to standardize the raw articles to a degree.
The output of the browser was processed using a
rule based approach taking into account continu-
ous text span length, ratio of symbols and num-
bers to the text, etc., in order to determine when
a paragraph is part of the article content. After
that, a second pass over the predictions corrected
mislabeled paragraphs if they were preceded and
followed by paragraphs identified as content. All
the content pertaining to articles on the same event
was joined, sentence split, and diff pairwise simi-
larities were computed. The set of candidate sen-
tences followed the same requirements as for the
Wikipedia dataset, namely length ratio higher than
0.5 and similarity score over 0.35. From these, we
manually extracted 480 sentence pairs which were
deemed to pose a challenge to an automated sys-
tem.

Due to the high correlations obtained between
the AMT providers’ scores and the annotators’
scores on Wikipedia, the news dataset was only
annotated using AMT, following exactly the same
task setup as for Wikipedia.

3 Evaluation

Evaluation of STS is still an open issue.
STS experiments have traditionally used Pearson
product-moment correlation between the system
scores and the GS scores, or, alternatively, Spear-
man rank order correlation. In addition, we also
need a method to aggregate the results from each
dataset into an overall score. The analysis per-
formed in (Agirre and Amigó, In prep) shows that
Pearson and averaging across datasets are the best
suited combination in general. In particular, Pear-
son is more informative than Spearman, in that
Spearman only takes the rank differences into ac-
count, while Pearson does account for value dif-
ferences as well. The study also showed that other

10lynx.browser.org

alternatives need to be considered, depending on
the requirements of the target application.

We leave application-dependent evaluations for
future work, and focus on average Pearson correla-
tion. When averaging, we weight each individual
correlation by the size of the dataset. In order to
compute statistical significance among system re-
sults, we use a one-tailed parametric test based on
Fisher’s z-transformation (Press et al., 2002, equa-
tion 14.5.10). In addition, English subtask partic-
ipants could provide an optional confidence mea-
sure between 0 and 100 for each of their predic-
tions. Team RTM-DCU is the only one who has
provided these, and the evaluation of their runs us-
ing weighted Pearson (Pozzi et al., 2012) is listed
at the end of Table 3.

Participants11 could take part in the shared task
with a maximum of 3 system runs per subtask.

3.1 English Subtask

In order to provide a simple word overlap baseline
(Baseline-tokencos), we tokenize the input sen-
tences splitting on white spaces, and then repre-
sent each sentence as a vector in the multidimen-
sional token space. Each dimension has 1 if the to-
ken is present in the sentence, 0 otherwise. Vector
similarity is computed using the cosine similarity
metric.

We also run the freely available system, Take-
Lab (Šarić et al., 2012), which yielded state of the
art performance in STS 2012 and strong results
out-of-the-box in 2013.12

15 teams participated in the English subtask,
submitting 38 system runs. One team submitted
the results past the deadline, as explicitly marked
in Table 3. After the submission deadline expired,
the organizers published the gold standard and par-
ticipant submissions on the task website, in order
to ensure a transparent evaluation process.

Table 3 shows the results of the English sub-
task, with runs listed in alphabetical order. The
correlation in each dataset is given, followed

11Participating teams: Bielefeld SC (McCrae et al.,
2013), BUAP (Vilariño et al., 2014), DLS@CU (Sultan et
al., 2014b), FBK-TR (Vo et al., 2014), IBM EG (no in-
formation), LIPN (Buscaldi et al., 2014), Meerkat Mafia
(Kashyap et al., 2014), NTNU (Lynum et al., 2014), RTM-
DCU (Biçici and Way, 2014), SemantiKLUE (Proisi et al.,
2014), StanfordNLP (Socher et al., 2014), TeamZ (Gupta,
2014), UMCC DLSI SemSim (Chavez et al., 2014), UNAL-
NLP (Jimenez et al., 2014), UNED (Martinez-Romo et al.,
2011), UoW (Rios, 2014).

12Code is available at http://ixa2.si.ehu.es/
stswiki
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Run Name deft deft Headl images OnWN tweet Weighted mean Rank
forum news news

Baseline-tokencos 0.353 0.596 0.510 0.513 0.406 0.654 0.507 -
TakeLab 0.333 0.716 0.720 0.742 0.793 0.650 0.678 -
Bielefeld SC-run1 0.211 0.432 0.321 0.368 0.367 0.415 0.354 32
Bielefeld SC-run2 0.211 0.431 0.311 0.356 0.361 0.409 0.347 33
BUAP-EN-run1 0.456 0.686 0.689 0.697 0.654 0.771 0.671 19
DLS@CU-run1 0.483 0.766 0.765 0.821 0.723 0.764 0.734 7
DLS@CU-run2 0.483 0.766 0.765 0.821 0.859 0.764 0.761 1
FBK-TR-run1 0.322 0.523 0.547 0.601 0.661 0.462 0.535 25
FBK-TR-run2 0.167 0.421 0.485 0.521 0.572 0.359 0.441 28
FBK-TR-run3 0.305 0.405 0.471 0.489 0.551 0.438 0.459 27
IBM EG-run1 0.474 0.743 0.737 0.801 0.760 0.730 0.722 8
IBM EG-run2 0.464 0.641 0.710 0.747 0.732 0.696 0.684 15
LIPN-run1 0.454 0.640 0.653 0.809 - 0.551 0.508 26
LIPN-run2 0.084 - - - - - 0.010 35
Meerkat Mafia-Hulk 0.449 0.785 0.757 0.790 0.787 0.757 0.735 6
Meerkat Mafia-pairingWords 0.471 0.763 0.760 0.801 0.875 0.779 0.761 2
Meerkat Mafia-SuperSaiyan 0.492 0.771 0.767 0.768 0.802 0.765 0.741 5
NTNU-run1 0.437 0.714 0.722 0.800 0.835 0.411 0.663 20
NTNU-run2 0.508 0.766 0.753 0.813 0.777 0.792 0.749 4
NTNU-run3 0.531 0.781 0.784 0.834 0.850 0.675 0.755 3
SemantiKLUE-run1 0.337 0.608 0.728 0.783 0.848 0.632 0.687 14
SemantiKLUE-run2 0.349 0.643 0.733 0.773 0.855 0.640 0.694 13
StanfordNLP-run1 0.319 0.635 0.636 0.758 0.627 0.669 0.627 22
StanfordNLP-run2 0.304 0.679 0.621 0.715 0.625 0.636 0.610 24
StanfordNLP-run3 0.342 0.650 0.602 0.754 0.609 0.638 0.614 23
UMCC DLSI SemSim-run1 0.475 0.662 0.632 0.742 0.813 0.675 0.682 16
UMCC DLSI SemSim-run2 0.469 0.662 0.625 0.739 0.814 0.654 0.676 18
UMCC DLSI SemSim-run3 0.283 0.385 0.267 0.436 0.603 0.278 0.381 30
UNAL-NLP-run1 0.504 0.721 0.762 0.807 0.782 0.614 0.711 12
UNAL-NLP-run2 0.383 0.730 0.765 0.771 0.827 0.403 0.657 21
UNAL-NLP-run3 0.461 0.722 0.761 0.778 0.843 0.658 0.721 9
UNED-run22 p np 0.104 0.315 0.037 0.324 0.509 0.490 0.310 34
UNED-runS5K 10 np 0.118 0.506 0.057 0.498 0.488 0.579 0.379 31
UNED-runS5K 3 np 0.094 0.564 0.018 0.607 0.577 0.670 0.431 29
UoW-run1 0.342 0.751 0.754 0.776 0.799 0.737 0.714 11
UoW-run2 0.342 0.587 0.754 0.788 0.799 0.628 0.682 17
UoW-run3 0.342 0.763 0.754 0.788 0.799 0.753 0.721 10
†RTM-DCU-run1 0.434 0.697 0.620 0.699 0.806 0.688 0.671
†RTM-DCU-run2 0.397 0.681 0.613 0.666 0.799 0.669 0.651
†RTM-DCU-run3 0.308 0.556 0.630 0.647 0.800 0.553 0.608
†RTM-DCU-run1 0.418 0.685 0.622 0.698 0.833 0.687 0.673
†RTM-DCU-run2 0.383 0.674 0.609 0.663 0.826 0.669 0.653
†RTM-DCU-run3 0.273 0.553 0.633 0.644 0.825 0.568 0.611

Table 3: English evaluation results. Results at the top correspond to out-of-the-box systems. Results at
the bottom correspond to results using the confidence score.
Notes: “-” for not submitted, “†” for post-deadline submission.
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by the mean correlation (the official measure),
and the rank of the run. The highest correla-
tions are for OnWN (87.5%, by Meerkat Mafia)
and images (83.4%, by NTNU), followed by
Tweets (79.2%, by NTNU), HEADL (78.4%, by
NTNU) and deft news and forums (78.1% and
53.1%, respectively, by NTNU). Compared to the
inter-annotator agreement correlation, the ranking
among datasets is very similar, with the exception
of OnWN, as it gets the best score but has very low
agreement. One possible reason is that the partic-
ipants used previously available data. The results
of the best 4 top system runs are significantly dif-
ferent (p-value < 0.05) from the 5th top scoring
system run and below. The top 4 systems did not
show statistical significant variation among them.

Only three runs (cf. lower rows in Table 3) in-
cluded non-uniform confidence scores, barely af-
fecting their ranking.

Interestingly, the two top performing systems
on the English STS sub-task are both unsuper-
vised. DLS@CU (Sultan et al., 2014b) presents
an unsupervised algorithm which predicts the STS
score based on the proportion of word alignments
in the two sentences. Two related words are
aligned depending on how similar the two words
are, and also on how similar the contexts of the
words are in the respective sentences (Sultan et al.,
2014a). Meerkat Mafia pairingWords (Kashyap
et al., 2014) also follows a fully unsupervised ap-
proach. The authors train LSA on an English cor-
pus of three billion words using a sliding window
approach, resulting in a vocabulary size of 29,000
words associated with 300 dimensions. They ac-
count for named entities and out-of-vocabulary
words by leveraging external resources such as
DBpedia13 and Wordnik.14 In Spanish, the sys-
tem equivalent to this run ranked second following
a cross-lingual approach, by applying the English
system to the translated version of the dataset (see
3.2).

The Table also shows the results of TakeLab,
which was trained with all datasets from previ-
ous years. TakeLab would rank 18th, ten absolute
points below the best system, a smaller difference
than in 2013.

13dbpedia.org
14wordnick.com

3.2 Spanish Subtask

The Spanish subtask attracted 9 teams with 22
participating systems, out of which 16 were su-
pervised and 6 unsupervised. The participants
were from both Spanish (Colombia, Cuba, Mex-
ico, Spain), and non-Spanish speaking countries
(two teams from France, Germany, Ireland, UK,
US). The evaluation results appear in Table 4.

The top ranking system is the 2nd run of
UMCC DLSI SemSim (Chavez et al., 2014),
which achieves a weighted correlation of 0.807. It
entails a cross-lingual approach, as it leverages a
SVM-based English framework, by mapping the
Spanish words to their English equivalent using
the most common sense in WordNet 3.0. The clas-
sifier uses a combination of features, such as those
derived from traditional knowledge-based ((Lea-
cock and Chodorow, 1998; Wu and Palmer, 1994;
Lin, 1998), and others) and corpus-based metrics
(LSA (Landauer et al., 1997)), paired with lexi-
cal features (such as Dice-Similarity, Euclidean-
distance, etc.). It is trained on a cumulative En-
glish STS dataset comprising train and test data
released as part of tasks in SemEval2012 (Agirre
et al., 2012) and *Sem 2013 (Agirre et al., 2013),
as well as training data available from tasks 1 and
10 in SemEval 2014. Interestingly enough, run 2
of the system performs better than run 1, despite
the fact that it uses half the features, and focuses
on string based similarity measures only. This dif-
ference between runs is noticed on the Wikipedia
dataset only, and it amounts to 4% Pearson corre-
lation. While the system had a robust performance
on the Spanish subtask, for English, its overall
rank was 16, 18, and 33, respectively.

Coming in close at only 0.3% difference, is
Meerkat-Mafia PairingAvg (run 2) (Kashyap et
al., 2014), which also follows a cross-lingual ap-
proach, by applying the system the team devel-
oped for the English subtask to the translated ver-
sion of the datasets (see 3.1). The interesting as-
pect of their work is that in their first submission
(run 1), they only consider the similarity result-
ing from the sentence pair translation through the
Google Translate service.15 In the second run,
they expand each sentence to 20 possible combi-
nations by accounting for the multiple translation
meanings of a given word, and considering the av-
erage similarity of all resulting pairs. While the
first run achieves a weighted correlation of 73.8%,

15translate.google.com
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Run Name System type Wikipedia News Weighted mean Rank
Bielefeld-SC-run1 unsupervised* 0.263 0.554 0.437 22
Bielefeld-SC-run2 unsupervised* 0.265 0.555 0.438 21
BUAP-run1 supervised 0.550 0.679 0.627 17
BUAP-run2 unsupervised 0.640 0.764 0.714 14
RTM-DCU-run1 supervised 0.422 0.700 0.588 18
RTM-DCU-run2 supervised 0.369 0.625 0.522 20
RTM-DCU-run3 supervised 0.424 0.641 0.554 19
LIPN-run1 supervised 0.652 0.826 0.756 11
LIPN-run2 supervised 0.716 0.832 0.785 6
LIPN-run3 supervised 0.716 0.809 0.771 10
Meerkat-Mafia-run1 unsupervised 0.668 0.785 0.738 13
Meerkat-Mafia-run2 unsupervised 0.743 0.845 0.804 2
Meerkat-Mafia-run3 supervised 0.738 0.822 0.788 5
TeamZ-run1 supervised 0.610 0.717 0.674 15
TeamZ-run2 supervised 0.604 0.710 0.667 16
UMCC-DLSI-run1 supervised 0.741 0.825 0.791 4
UMCC-DLSI-run2 supervised 0.7802 0.825 0.807 1
UNAL-NLP-run1 weakly supervised 0.7803 0.815 0.801 3
UNAL-NLP-run2 supervised 0.757 0.783 0.772 9
UNAL-NLP-run3 supervised 0.689 0.796 0.753 12
UoW-run1 supervised 0.748 0.800 0.779 7
UoW-run2 supervised 0.748 0.800 0.779 8

Table 4: Spanish evaluation results in terms of Pearson correlation.

the second one performs significantly better at
80.4%, indicating that the additional context may
also include multiple instances of accurate trans-
lations, hence significantly impacting the overall
similarity score. In English, the system equiva-
lent to run 2 in Spanish, namely Meerkat Mafia-
pairingWords, achieves a competitive ranked per-
formance across all six datasets, ranking second,
at an order of 10−4 distance from the top sys-
tem. This supports the claim that, despite its unsu-
pervised nature, the system is quite versatile and
highly competitive with the top performing super-
vised frameworks, and that it may achieve an even
higher performance in Spanish if accurate sen-
tence translations were provided.

Overall, most systems were cross-lingual, rely-
ing on different translation approaches, such as 1)
translating the test data into English (as the two
systems above), and then exporting the score ob-
tained for the English sentences back to Spanish,
or 2) performing automatic translation of the En-
glish training data, and learning a classifier di-
rectly in Spanish. (Buscaldi et al., 2014) supple-
mented their training dataset with human annota-
tions conducted in Spanish, using definition pairs
extracted from a Spanish dictionary. A different
angle was explored by (Rios, 2014), who proposed
a multilingual framework using transfer learning
across English and Spanish by training on tradi-
tional lexical, knowledge-based and corpus-based
features. The semantic similarity task was ap-

proached from a monolingual perspective as well
(Gupta, 2014), by focusing on Spanish resources,
such as the trial data we released as part of the
subtask, and the Spanish WordNet;16 these were
leveraged using meta-learning over variations of
overlap-based metrics. Following the same line,
(Biçici and Way, 2014) pursued language inde-
pendent methods, who avoided relying on task or
domain specific information through the usage of
referential translation machines. This approach
models textual semantic similarity as a decision in
terms of translation quality between two datasets
(in our case Spanish STS trial and test data) given
relevant examples from an in-language reference
corpus.

In comparison to the correlations obtained in the
English subtask, where the highest weighted mean
was 76.1%, for Spanish, we obtained 80.7%, prob-
ably due to the more formal nature of the datasets,
since Wikipedia and news articles employ mostly
well formed and grammatically correct sentences,
and we selected all snippets to be longer than 8
words. The overall correlation scores obtained for
English were hurt by the deft-forum data, which
scored significantly lower (at a maximum corre-
lation of 50.8%), when compared to all the other
datasets whose correlation was higher than 70%.
The OnWN data was most similar to our test sets,
and it attained a maximum of 85.9%.

16grial.uab.es/descarregues.php
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4 Conclusion

This year’s STS task comprised a multilingual
flair, by introducing Spanish datasets alongside the
English ones. In English, the datasets sought to ex-
pose the participating teams to more diverse sce-
narios compared to the previous years, by intro-
ducing image descriptions, forum and newswire
genre, and tweet-newswire headline mappings.
For Spanish, two datasets were developed consist-
ing of encyclopedic and newswire text acquired
from Spanish sources. Overall, the English sub-
task attracted 15 teams (with 38 system varia-
tions), while the Spanish subtask had 9 teams
(with 22 system runs). Most teams from the Span-
ish subtask have also submitted runs for the En-
glish evaluations.
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Abstract

In this paper, we describe our unsupervised
method submitted to the Cross-Level Se-
mantic Similarity task in Semeval 2014 that
computes semantic similarity between two
different sized text fragments. Our method
models each text fragment by using the co-
occurrence statistics of either occurred words
or their substitutes. The co-occurrence mod-
eling step provides dense, low-dimensional
embedding for each fragment which allows
us to calculate semantic similarity using
various similarity metrics. Although our
current model avoids the syntactic infor-
mation, we achieved promising results and
outperformed all baselines.

1 Introduction

Semantic similarity is a measure that specifies the
similarity of one text’s meaning to another’s. Se-
mantic similarity plays an important role in vari-
ous Natural Language Processing (NLP) tasks such
as textual entailment (Berant et al., 2012), summa-
rization (Lin and Hovy, 2003), question answering
(Surdeanu et al., 2011), text classification (Sebas-
tiani, 2002), word sense disambiguation (Schütze,
1998) and information retrieval (Park et al., 2005).

There are three main approaches to computing
the semantic similarity between two text fragments.
The first approach uses Vector Space Models (see
Turney & Pantel (2010) for an overview) where
each text is represented as a bag-of-word model.
The similarity between two text fragments can then
be computed with various metrics such as cosine
similarity. Sparseness in the input nature is the
key problem for these models. Therefore, later
works such as Latent Semantic Indexing (?) and

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

Topic Models (Blei et al., 2003) overcome spar-
sity problems via reducing the dimensionality of
the model by introducing latent variables. The sec-
ond approach blends various lexical and syntactic
features and attacks the problem through machine
learning models. The third approach is based on
word-to-word similarity alignment (Pilehvar et al.,
2013; Islam and Inkpen, 2008).

The Cross-Level Semantic Similarity (CLSS) task
in SemEval 20141 (Jurgens et al., 2014) provides
an evaluation framework to assess similarity meth-
ods for texts in different volumes (i.e., lexical lev-
els). Unlike previous SemEval and *SEM tasks
that were interested in comparing texts with simi-
lar volume, this task consists of four subtasks (para-
graph2sentence, sentence2phrase, phrase2word and
word2sense) that investigate the performance of
systems based on pairs of texts of different sizes.
A system should report the similarity score of a
given pair, ranging from 4 (two items have very
similar meanings and the most important ideas,
concepts, or actions in the larger text are repre-
sented in the smaller text) to 0 (two items do not
mean the same thing and are not on the same topic).

In this paper, we describe our two unsupervised
systems that are based on co-occurrence statistics
of words. The only difference between the sys-
tems is the input they use. The first system uses the
words directly (after lemmatization, stop-word re-
moval and excluding the non-alphanumeric char-
acters) in text while the second system utilizes the
most likely substitutes consulted by a 4-gram lan-
guage model for each observed word position (i.e.,
context). Note that we participated two subtasks
which are paragraph2sentence and sentence2phrase.

The remainder of the paper proceeds as follows.
Section 2 explains the preprocessing part, the dif-
ference between the systems, co-occurrence mod-
eling, and how we calculate the similarity between

1http://alt.qcri.org/semeval2014/
task3/
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Type-ID Lemma
Sent-33 choose
Sent-33 buy
Sent-33 gift
Sent-33 card
Sent-33 hard
Sent-33 decision

Table 1: Instance id-word pairs for a given sen-
tence.

two texts after co-occurrence modeling has been
done. Section 3 discusses the results of our sys-
tems and compares them to other participants’. Sec-
tion 4 discusses the findings and concludes with
plans for future work.

2 Algorithm

This section explains preprocessing steps of the
data and the details of our two systems2. Both
systems rely on the co-occurrence statistics. The
slight difference between the two is that the first
one uses the words that occur in the given text
fragment (e.g., paragraph, sentence), whereas the
latter employs co-occurrence statistics on 100 sub-
stitute samples for each word within the given text
fragment.

2.1 Data Preprocessing
Two AI-KU systems can be distinguished by their
inputs. One uses the raw input words, whereas the
other uses words’ likely substitutes according to a
language model.

AI-KU1: This system uses the words that were
in the text. All words are transformed into lower-
case equivalents. Lemmatization3 and stop-word
removal were performed, and non-alphanumeric
characters were excluded. Table 1 displays the
pairs for the following sentence which is an in-
stance from paragraph2sentence test set:

“Choosing what to buy with a $35 gift
card is a hard decision.”

Note that the input that we used to model co-
occurrence statistics consists of all such pairs for
each fragment in a given subtask.

2The code to replicate our work can be found
at https://github.com/osmanbaskaya/
semeval14-task3.

3Lemmatization is carried out with Stanford CoreNLP
and transforms a word into its canonical or base form.

AI-KU2: Previously, the utilization of high prob-
ability substitutes and their co-occurrence statis-
tics achieved notable performance on Word Sense
Induction (WSI) (Baskaya et al., 2013) and Part-
of-Speech Induction (Yatbaz et al., 2012) prob-
lems. AI-KU2 represents each context of a word
by finding the most likely 100 substitutes suggested
by the 4-gram language model we built from ukWaC4

(Ferraresi et al., 2008), a 2-billion word web-gathered
corpus. Since S-CODE algorithm works with dis-
crete input, for each context we sample 100 substi-
tute words with replacement using their probabili-
ties. Table 2 illustrates the context and substitutes
of each context using a bigram language model.
No lemmatization, stop-word removal and lower-
case transformation were performed.

2.2 Co-Occurrence Modeling
This subsection will explain the unsupervised method
we employed to model co-occurrence statistics: the
Co-occurrence data Embedding (CODE) method
(Globerson et al., 2007) and its spherical exten-
sion (S-CODE) proposed by Maron et al. (2010).
Unlike in our WSI work, where we ended up with
an embedding for each word in the co-occurrence
modeling step in this task, we model each text unit
such as a paragraph, a sentence or a phrase, to ob-
tain embeddings for each instance.

Input data for S-CODE algorithm consist of instance-
id and each word in the text unit for the first sys-
tem (Table 1 illustrates the pairs for only one text
fragment) instance-ids and 100 substitute samples
of each word in text for the second system. In
the initial step, S-CODE puts all instance-ids and
words (or substitutes, depending on the system)
randomly on an n-dimensional sphere. If two dif-
ferent instances have the same word or substitute,
then these two instances attract one another — oth-
erwise they repel each other. When S-CODE con-
verges, instances that have similar words or sub-
stitutes will be closely located or else, they will be
distant from each other.

AI-KU1: According to the training set perfor-
mances for various n (i.e., number of dimensions
for S-CODE algorithm), we picked 100 for both
tasks.

AI-KU2: We picked n to be 200 and 100 for
paragraph2sentence and sentence2phrase subtasks,
respectively.

4Available here: http://wacky.sslmit.unibo.it
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Word Context Substitutes
the <s> dog The (0.12), A (0.11), If (0.02), As (0.07), Stray (0.001),..., wn (0.02)

dog the cat (0.007), dog (0.005), animal (0.002), wolve (0.001), ..., wn (0.01)
bites dog . runs (0.14), bites (0.13), catches (0.04), barks (0.001), ..., wn (0.01)

Table 2: Contexts and substitute distributions when a bigram language model is used. w and n denote an
arbitrary word in the vocabulary and the vocabulary size, respectively.

System Pearson Spearman

Pa
ra

gr
ap

h-
2-

Se
nt

en
ce AI-KU1 0.671 0.676

AI-KU2 0.542 0.531
LCS 0.499 0.602
lch 0.584 0.596
lin 0.568 0.562
JI 0.613 0.644

Table 3: Paragraph-2-Sentence subtask scores for
the training data. Subscripts in AI-KU systems
specify the run number.

Since this step is unsupervised, we tried to en-
rich the data with ukWaC, however, enrichment
with ukWaC did not work well on the training data.
To this end, proposed scores were obtained using
only the training and the test data provided by or-
ganizers.

2.3 Similarity Calculation
When the S-CODE converges, there is an n-dimen-
sional embedding for each textual level (e.g., para-
graph, sentence, phrase) instance. We can use a
similarity metric to calculate the similarity between
these embeddings. For this task, systems should
report only the similarity between two specific cross
level instances. Note that we used cosine simi-
larity to calculate similarity between two textual
units. This similarity is the eventual similarity for
two instances; no further processing (e.g., scaling)
has been done.

In this task, two correlation metrics were used
to evaluate the systems: Pearson correlation and
Spearman’s rank correlation. Pearson correlation
tests the degree of similarity between the system’s
similarity ratings and the gold standard ratings. Spear-
man’s rank correlation measures the degree of sim-
ilarity between two rankings; similarity ratings pro-
vided by a system and the gold standard ratings.

System Pearson Spearman

Se
nt

en
ce

-2
-P

hr
as

e AI-KU1 0.607 0.568
AI-KU2 0.620 0.579

LCS 0.500 0.582
lch 0.484 0.491
lin 0.492 0.470
JI 0.465 0.465

Table 4: Sentence2phrase subtask scores for the
training data.

3 Evaluation Results

Tables 3 and 4 show the scores for Paragraph-2-
Sentence and Sentence-2-Phrase subtasks on the
training data, respectively. These tables contain
the best individual scores for the performance met-
rics, Normalized Longest Common Substring (LCS)
baseline, which was given by task organizers, and
three additional baselines: lin (Lin, 1998), lch (Lea-
cock and Chodorow, 1998), and the Jaccard In-
dex (JI) baseline. lin uses the information content
(Resnik, 1995) of the least common subsumer of
concepts A and B. Information content (IC) indi-
cates the specificity of a concept; the least com-
mon subsumer of a concept A and B is the most
specific concept from which A and B are inherited.
lin similarity5 returns the difference between two
times of the IC of the least common subsumer of
A and B, and the sum of IC of both concepts. On
the other hand, lch is a score denoting how similar
two concepts are, calculated by using the shortest
path that connects the concept and the maximum
depth of the taxonomy in which the concepts oc-
cur6 (please see Pedersen et al. (2004) for further
details of these measures). These two baselines
were calculated as follows. First, using the Stan-

5lin similarity = 2 ∗ IC(lcs)/(IC(A) + IC(B)) where
lcs indicates the least common subsumer of concepts A and
B.

6The exact formulation is −log(L/2d) where L is the
shortest path length and d is the taxonomy depth.
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System Pearson Spearman
Pa

ra
gr

ap
h-

2-
Se

nt
en

ce
Best 0.837 0.821

2nd Best 0.834 0.820
3rd Best 0.826 0.817
AI-KU1 0.732 0.727
AI-KU2 0.698 0.700

LCS 0.527 0.613
lch 0.629 0.627
lin 0.612 0.601
JI 0.640 0.687

Table 5: Paragraph-2-Sentence subtask scores for
the test data. Best indicates the best correlation
score for the subtask. LCS stands for Normalized
Longest Common Substring. Subscripts in AI-KU
systems specify the run number.

ford Part-of-Speech Tagger (Toutanova and Man-
ning, 2000) we tagged words across all textual lev-
els. After tagging, we found the synsets of each
word matched with its part-of-speech using Word-
Net 3.0 (Miller and Fellbaum, 1998). For each
synset of a word in the shorter textual unit (e.g.,
sentence is shorter than paragraph), we calculated
the lin/lch measure of each synset of all words
in the longer textual unit and picked the highest
score. When we found the scores for all words,
we calculated the mean to find out the similarity
between one pair in the test set. Finally, Jaccard
Index baseline was used to simply calculate the
number of words in common (intersection) with
two cross textual levels, normalized by the total
number of words (union). Table 5 and 6 demon-
strate the AI-KU runs on the test data. Next, we
present our results pertaining to the test data.

Paragraph2Sentence: Both systems outperformed
all the baselines for both metrics. The best score
for this subtask was .837 and our systems achieved
.732 and .698 on Pearson and did similar on Spear-
man metric. These scores are promising since our
current unsupervised systems are based on bag-of-
words approach — they do not utilize any syntac-
tic information.

Sentence2Phrase: In this subtask, AI-KU sys-
tems outperformed all baselines with the excep-
tion of the AI-KU2 system which performed slightly
worse than LCS on Spearman metric. Performances
of systems and baselines were lower than Para-

System Pearson Spearman

Se
nt

en
ce

-2
-P

hr
as

e

Best 0.777 0.642
2nd Best 0.771 0.760
3rd Best 0.760 0.757
AI-KU1 0.680 0.646
AI-KU2 0.617 0.612

LCS 0.562 0.626
lch 0.526 0.544
lin 0.501 0.498
JI 0.540 0.555

Table 6: Sentence2phrase subtask scores for the
test data.

graph2Sentence subtask, since smaller textual units
(such as phrases) make the problem more difficult.

4 Conclusion

In this work, we introduced two unsupervised sys-
tems that utilize co-occurrence statistics and rep-
resent textual units as dense, low dimensional em-
beddings. Although current systems are based on
bag-of-word approach and discard the syntactic in-
formation, they achieved promising results in both
paragraph2sentence and sentence2phrase subtasks.
For future work, we will extend our algorithm by
adding syntactic information (e.g, dependency pars-
ing output) into the co-occurrence modeling step.

References
Osman Baskaya, Enis Sert, Volkan Cirik, and Deniz

Yuret. 2013. AI-KU: Using substitute vectors and
co-occurrence modeling for word sense induction
and disambiguation. In Proceedings of the Second
Joint Conference on Lexical and Computational Se-
mantics (*SEM), Volume 2: Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 300–306.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2012. Learning entailment relations by global graph
structure optimization. Computational Linguistics,
38(1):73–111.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. The Journal of
Machine Learning Research, 3:993–1022.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukwac, a very large web-derived corpus of english.
In In Proceedings of the 4th Web as Corpus Work-
shop (WAC-4).

95



Amir Globerson, Gal Chechik, Fernando Pereira, and
Naftali Tishby. 2007. Euclidean embedding of co-
occurrence data. Journal of Machine Learning Re-
search, 8(10).

Aminul Islam and Diana Inkpen. 2008. Semantic text
similarity using corpus-based word similarity and
string similarity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 2(2):10.

David Jurgens, Mohammed Taher Pilehvar, and
Roberto Navigli. 2014. Semeval-2014 task 3:
Cross-level semantic similarity. In Proceedings of
the 8th International Workshop on Semantic Evalu-
ation (SemEval-2014). August 23-24, 2014, Dublin,
Ireland.

Claudia Leacock and Martin Chodorow. 1998. Com-
bining local context and wordnet similarity for word
sense identification. WordNet: An electronic lexical
database, 49(2):265–283.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology-Volume 1, pages 71–78.

Dekang Lin. 1998. An information-theoretic defini-
tion of similarity. In ICML, volume 98, pages 296–
304.

Yariv Maron, Michael Lamar, and Elie Bienenstock.
2010. Sphere Embedding: An Application to Part-
of-Speech Induction. In J Lafferty, C K I Williams,
J Shawe-Taylor, R S Zemel, and A Culotta, editors,
Advances in Neural Information Processing Systems
23, pages 1567–1575.

George Miller and Christiane Fellbaum. 1998. Word-
net: An electronic lexical database.

Eui-Kyu Park, Dong-Yul Ra, and Myung-Gil Jang.
2005. Techniques for improving web retrieval ef-
fectiveness. Information processing & management,
41(5):1207–1223.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. Wordnet:: Similarity: measuring the re-
latedness of concepts. In Demonstration Papers at
HLT-NAACL 2004, pages 38–41.

Mohammad Taher Pilehvar, David Jurgens, and
Roberto Navigli. 2013. Align, disambiguate and
walk: A unified approach for measuring semantic
similarity. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2013).

Philip Resnik. 1995. Using information content to
evaluate semantic similarity in a taxonomy. arXiv
preprint cmp-lg/9511007.

Hinrich Schütze. 1998. Automatic word sense dis-
crimination. Computational Linguistics, 24(1):97–
123.

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM computing surveys
(CSUR), 34(1):1–47.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2011. Learning to rank answers to non-
factoid questions from web collections. Computa-
tional Linguistics, 37(2):351–383.

Kristina Toutanova and Christopher D Manning. 2000.
Enriching the knowledge sources used in a maxi-
mum entropy part-of-speech tagger. In Proceedings
of the 2000 Joint SIGDAT conference on Empirical
methods in natural language processing and very
large corpora: held in conjunction with the 38th An-
nual Meeting of the Association for Computational
Linguistics-Volume 13, pages 63–70.

Peter D. Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: Vector Space Models of Se-
mantics. Journal of Artificial Intelligence Research,
37:141–188.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic
representations of word context. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 940–951.

96



Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 97–103,
Dublin, Ireland, August 23-24, 2014.

Alpage: Transition-based Semantic Graph Parsing with Syntactic
Features

Corentin Ribeyre? ◦ Eric Villemonte de la Clergerie? Djamé Seddah? �
?Alpage, INRIA

◦Univ Paris Diderot, Sorbonne Paris Cité
� Université Paris Sorbonne

firstname.lastname@inria.fr

Abstract

This paper describes the systems deployed
by the ALPAGE team to participate to the
SemEval-2014 Task on Broad-Coverage
Semantic Dependency Parsing. We de-
veloped two transition-based dependency
parsers with extended sets of actions to
handle non-planar acyclic graphs. For the
open track, we worked over two orthog-
onal axes – lexical and syntactic – in or-
der to provide our models with lexical and
syntactic features such as word clusters,
lemmas and tree fragments of different
types.

1 Introduction

In recent years, we have seen the emergence
of semantic parsing, relying on various tech-
niques ranging from graph grammars (Chiang et
al., 2013) to transitions-based dependency parsers
(Sagae and Tsujii, 2008). Assuming that obtain-
ing predicate argument structures is a necessary
goal to move from syntax to accurate surface se-
mantics, the question of the representation of such
structures arises. Regardless of the annotation
scheme that should be used, one of the main is-
sues of semantic representation is the construction
of graph structures, that are inherently harder to
generate than the classical tree structures.

In that aspect, the shared task’s proposal (Oepen
et al., 2014), to evaluate different syntactic-
semantic schemes (Ivanova et al., 2012; Hajic et
al., 2006; Miyao and Tsujii, 2004) could not ar-
rive at a more timely moment when state-of-the-art
surface syntactic parsers regularly reach, or cross,
a 90% labeled dependency recovery plateau for a

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/.

wide range of languages (Nivre et al., 2007a; Sed-
dah et al., 2013).

The two systems we present both extend
transition-based parsers in order to be able to gen-
erate acyclic dependency graphs. The first one
follows the standard greedy search mechanism of
(Nivre et al., 2007b), while the second one fol-
lows a slightly more global search strategy (Huang
and Sagae, 2010; Goldberg et al., 2013) by rely-
ing on dynamic programming techniques. In addi-
tion to building graphs directly, the main original-
ity of our work lies in the use of different kinds of
syntactic features, showing that using syntax for
pure deep semantic parsing improves global per-
formance by more than two points.

Although not state-of-the-art, our systems per-
form very honorably compared with other single
systems in this shared task and pave quite an in-
teresting way for further work. In the remainder
of this paper, we present the parsers and their ex-
tensions for building graphs; we then present our
syntactic features and discuss our results.

2 Systems Description

Shift-reduce transition-based parsers essentially
rely on configurations formed of a stack and a
buffer, with stack transitions used to go from a
configuration to the next one, until reaching a fi-
nal configuration. Following Kübler et al. (2009),
we define a configuration by c = (σ, β,A) where
σ denotes a stack of words wi, β a buffer of
words, and A a set of dependency arcs of the form
(wi, r, wj), with wi the head, wj the dependent,
and r a label in some set R.

However, despite their overall similarities,
transition-based systems may differ on many as-
pects, such as the exact definition of the configura-
tions, the set of transitions extracted from the con-
figurations, the way the search space is explored
(at parsing and training time), the set of features,
the way the transition weights are learned and ap-
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(σ,wi|β,A) ` (σ|wi, β, A) (shift) BOTH
(σ|wj |wi, β, A) ` (σ|wi, β, A ∪ (wi, r, wj)) (left-reduce) S&T PARSER
(σ|wj |wi, β, A) ` (σ|wj , β, A ∪ (wj , r, wi)) (right-reduce) S&T PARSER
(σ|wj |wi, β, A) ` (σ|wj |wi, β, A ∪ (wi, r, wj)) (left-attach) BOTH
(σ|wj |wi, β, A) ` (σ|wj , wi|β,A ∪ (wj , r, wi) (right-attach) BOTH
(σ|wi, β, A) ` (σ, β,A) (pop0) BOTH
(σ|wj |wi, β, A) ` (σ|wi, β, A) (pop1) DYALOG-SR
(σ|wj |wi, β, A) ` (σ|wi|wj , β, A) (swap) DYALOG-SR

Figure 1: An extended set of transitions for building dependency graphs.

plied, etc.
For various reasons, we started our experiments

with two rather different transition-based parsers,
which have finally converged on several aspects.
In particular, the main convergence concerns the
set of transitions needed to parse the three pro-
posed annotation schemes. To be able to attach
zero, one, or more heads to a word, it is necessary
to clearly dissociate the addition of a dependency
from the reduction of a word (i.e. its removal from
the stack). Following Sagae and Tsujii (2008), as
shown in Figure 1, beside the usual shift and re-
duce transitions of the arc-standard strategy, we
introduced the new left and right attach actions for
adding new dependencies (while keeping the de-
pendent on the stack) and two reduce pop0 and
pop1 actions to remove a word from the stack af-
ter attachement of its dependents. All transitions
adding an edge should also satisfy the condition
that the new edge does not create a cycle or mul-
tiple edges between the same pair of nodes. It is
worth noting that the pop actions may also be used
to remove words with no heads.

2.1 Sagae & Tsujii’s DAG Parser

Our first parsing system is a partial rewrite, with
several extensions, of the Sagae and Tsujii (2008)
DAG parser (henceforth S&T PARSER). We mod-
ified it to handle dependency graphs, in particu-
lar non-governed words using pop0 transitions.
This new transition removes the topmost stack el-
ement when all its dependents have been attached
(through attach or reduce transitions). Thus, we
can handle partially connected graphs, since a
word can be discarded when it has no incoming
arc.

We used two different learning algorithms:
(i) the averaged perceptron because of its good
balance between training time and performance
(Daume, 2006), (ii) the logistic regression model
(maximum entropy (Ratnaparkhi, 1997)). For the
latter, we used the truncated gradient optimiza-

tion (Langford et al., 2009), implemented in Clas-
sias (Okazaki, 2009), in order to estimate the pa-
rameters. These algorithms have been used inter-
changeably to test their performance in terms of F-
score. But the difference was negligeable in gen-
eral.

2.2 DYALOG-SR

Our second parsing system is DYALOG-SR
(Villemonte De La Clergerie, 2013), which has
been developed to participate to the SPMRL’13
shared task. Coded on top of tabular logic
programming system DYALOG, it implements
a transition-based parser relying on dynamic
programming techniques, beams, and an aver-
aged structured perceptron, following ideas from
(Huang and Sagae, 2010; Goldberg et al., 2013).

It was initially designed to follow an arc-
standard parsing strategy, relying on shift and
left/right reduce transitions. To deal with depen-
dency graphs and non governed words, we first
added the two attach transitions and the pop0
transition. But because there exist some overlap
between the reduce and attach transitions leading
to some spurious ambiguities, we finally decided
to remove the left/right reduce transitions and to
complete with the pop1 transition. In order to
handle some cases of non-projectivty with mini-
mal modifications of the system, we also added
a swap transition. The parsing strategy is now
closer to the arc-eager one, with an oracle sug-
gesting to attach as soon as possible.

2.3 Tree Approximations

In order to stack several dependency parsers, we
needed to transform our graphs into trees. We re-
port here the algorithms we used.

The first one uses a simple strategy. For nodes
with multiple incoming edges, we keep the longest
incoming edge. Singleton nodes (with no head)
are attached with a _void_-labeled edge (by
decreasing priority) to the immediately adjacent

98



Wordσ1 Lemmaσ1 POSσ1

leftPOSσ1 rightPOSσ1
leftLabelσ1

rightLabelσ1
Wordσ2 Lemmaσ2

POSσ2 leftPOSσ2 rightPOSσ2
leftLabelσ2 rightLabelσ2

Wordσ3

POSσ3 Wordβ1 Lemmaβ1

POSβ1 Wordβ2 Lemmaβ2

POSβ2 POSβ3 a d12 d
′
11

Table 1: Baseline features for S&T PARSER.

node N , or the virtual root node (token 0). This
strategy already improves over the baseline, pro-
vided by the task organisers, on the PCEDT by 5
points.

The second algorithm tries to preserve more
edges: when it is possible, the deletion of a re-
entrant edge is replaced by reversing its direction
and changing its label l into <l. We do this for
nodes with no incoming edges by reversing the
longest edge only if this action does not create cy-
cles. The number of labels increases, but many
more edges are kept, leading to better results on
DM and PAS corpora.

3 Feature Engineering

3.1 Closed Track
For S&T PARSER we define Wordβi (resp.
Lemmaβi and POSβi) as the word (resp. lemma
and part-of-speech) at position i in the queue. The
same goes for σi, which is the position i in the
stack. Let di,j be the distance between Wordσi
and Wordσj . We also define d′i,j , the distance be-
tween Wordβi and Wordσj . In addition, we define
leftPOSσi (resp. leftLabelσi) the part-of-speech
(resp. the label if any) of the word immediately
at the left handside of σi, and the same goes for
rightPOSσi (resp. rightLabelσi). Finally, a is the
previous predicted action by the parser. Table 1
reports our baseline features.

For DYALOG-SR we have the following lexi-
cal features lex, lemma, cat, and morphosyn-
tactic mstag. They apply to next unread word
(*I, say lemmaI), the three next lookahead
words (*I2 to *I4), and (when present) to the
3 stack elements (*0 to *2), their two leftmost
and rightmost children (before b[01]*[012]
and after a[01]*[012]). We have dependency
features such as the labels of the two leftmost
and rightmost edges ([ab][01]label[012]),
the left and right valency (number of depen-
dency, [ab]v[012]) and domains (set of de-

pendency labels, [ab]d[012]). Finally, we
have 3 (discretized) distance features between the
next word and the stack elements (delta[01])
and between the two topmost stack elements
(delta01). Most feature values are atomic (ei-
ther numerical or symbolic), but they can also be
(recursively) a list of values, for instance for the
mstag and domain features. For dealing with
graphs, features were added about the incoming
edges to the 3 topmost stack elements, similar to
valency (ngov[012]) and domain (gov[012]).
For the PCEDT scheme, because of the high num-
ber of dependency labels, the 30 most unfrequent
ones were replaced by a generic label when used
as feature value.

Besides, for the PCEDT and DM corpora, static
and dynamic guiding features have been tried
for DYALOG-SR, provided by MATE (Bohnet,
2010) (trained on versions of these corpora pro-
jected to trees, using a 10-fold cross valida-
tion). The two static features mate_label and
mate_distance are attached to each token h,
indicating the label and the relative distance to its
governor d (if any). At runtime, dynamic features
are also added relative to the current configuration:
if a semantic dependency (h, l, d) has been pre-
dicted by MATE, and the topmost 2 stack elements
are either (h, d) or (d, h), a feature suggesting a
left or right attachment for l is added.

We did the same for S&T PARSER, except that
we used a simple but efficient hack: instead of
keeping the labels predicted by our parser, we re-
placed them by MATE predictions whenever it was
possible.

3.2 Open Track
For this track, we combined the previously de-
scribed features (but the MATE-related ones) with
various lexical and syntactic features, our intu-
ition being that syntax and semantic are inter-
dependent, and that syntactic features should
therefore help semantic parsing. In particular, we
have considered the following bits of information.

Unsupervized Brown clusters To reduce lexi-
cal sparsity, we extracted 1,000 clusters from the
BNC (Leech, 1992) preprocessed following Wag-
ner et al. (2007). We extended them with capi-
talization, digit features and 3 letters suffix signa-
tures, leading to a vocabulary size reduced by half.

Constituent tree fragments They were part of
the companion data provided by the organizers.
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They consist of fragments of the syntactic trees
and can be used either as enhanced parts of speech
or as features.

Spinal elementary trees A full set of parses was
reconstructed from the tree fragments. Then we
extracted a spine grammar (Seddah, 2010), us-
ing the head percolation table of the Bikel (2002)
parser, slightly modified to avoid determiners to be
marked as head in some configurations.

Predicted MATE dependencies Also provided
in the companion data, they consist in the parses
built by the MATE parsers, trained on the Stanford
dependency version of the PTB. We combined the
labels with a distance δ = t − h where t is the
token number and h the head number.

Constituent head paths Inspired by Björkelund
et al. (2013), we used the MATE dependencies to
extract the shortest path between a token and its
lexical head and included the path length (in terms
of traversed nodes) as feature.

Tree frag. MATE labels+δ Spines trees Head Paths

Train 648 1305 637 27,670
Dev 272 742 265 3,320
Test 273 731 268 2,389

Table 2: Syntactic features statistics.

4 Results and Discussion

We present here the results on section 21 (test set)1

for both systems. We report in Table 3, the differ-
ent runs we submitted for the final evaluation of
the shared task. We also report improvements be-
tween the two tracks.

Both systems show relatively close F-measures,
with correct results on every corpus. If we com-
pare the results more precisely, we observe that in
general, DYALOG-SR tends to behave better for
the unlabeled metrics. Its main weakness is on
MRS scheme, for both tracks.2

1Dev set results are available online at
http://goo.gl/w3XcpW.

2The main and still unexplained problem of DYALOG-
SR was that using larger beams has no impact, and often a
negative one, when using the attach and pop transitions. Ex-
cept for PAS and PCEDT where a beam of size 4 worked
best for the open track, all other results were obtained for
beams of size 1. This situation is in total contradiction with
the large impact of beam previously observed for the arc stan-
dard strategy during the SPMRL’13 shared task and during
experiments led on the French TreeBank (Abeillé et al., 2003)
(FTB). Late experiments on the FTB using the attach and
pop actions (but delaying attachments as long as possible) has

On the other hand, it is worth noting that syn-
tactic features greatly improve semantic parsing.
In fact, we report in Figure 2(a) the improvement
of the five most frequent labels and, in Figure 2(b),
the five best improved labels with a frequency over
0.5% in the training set, which represent 95% of
the edges in the DM Corpus. As we can see, syn-
tactic information allow the systems to perform
better on coordination structures and to reduce am-
biguity between modifiers and verbal arguments
(such as the ARG3 label).

We observed the same behaviour on the PAS
corpus, which contains also predicate-argument
structures. For PCEDT, the results show that syn-
tactic features give only small improvements, but
the corpus is harder because of a large set of labels
and is closer to syntactic structures than the two
others.

Of course, we only scratched the surface with
our experiments and we plan to further investigate
the impact of syntactic information during seman-
tic parsing. We especially plan to explore the deep
parsing of French, thanks to the recent release of
the Deep Sequoia Treebank (Candito et al., 2014).

5 Conclusion

In this paper, we presented our results on the task
8 of the SemEval-2014 Task on Broad-Coverage
Semantic Dependency Parsing. Even though the
results do not reach state-of-the-art, they compare
favorably with other single systems and show that
syntactic features can be efficiently used for se-
mantic parsing.

In future work, we will continue to investigate
this idea, by combining with more complex sys-
tems and more efficient machine learning tech-
niques, we are convinced that we can come closer
to state of the art results. and that syntax is the key
for better semantic parsing.
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Abstract

In this paper we describe the ASAP sys-
tem (Automatic Semantic Alignment for
Phrases)1 which participated on the Task
1 at the SemEval-2014 contest (Marelli et
al., 2014a). Our assumption is that STS
(Semantic Text Similarity) follows a func-
tion considering lexical, syntactic, seman-
tic and distributional features. We demon-
strate the learning process of this function
without any deep preprocessing achieving
an acceptable correlation.

1 Introduction

Evaluation of compositional semantic models on
full sentences through semantic relatedness and
textual entailment, title of this task on SemEval,
aims to collect systems and approaches able
to predict the difference of meaning between
phrases and sentences based on their included
words (Baroni and Zamparelli, 2010; Grefenstette
and Sadrzadeh, 2011; Mitchell and Lapata, 2010;
Socher et al., 2012).

Our contribution is in the use of complemen-
tary features in order to learn the function STS,
a part of this challenge. Rather than specifying
rules, constraints and lexicons manually, we advo-
cate a system for automatically acquiring linguis-
tic knowledge using machine learning (ML) meth-
ods. For this we apply some preprocessing tech-
niques over the training set in order to find differ-
ent types of features. Related to the semantic as-
pect, we make use of known semantic relatedness
and similarity measures on WordNet, in this case,
applied to see the relatedness/similarity between
phrases from sentences.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1This work was supported by the Crowds project-
PTDC/EIA-EIA/115014/2009

Considering the problem of modeling a text cor-
pus to find short descriptions of documents, we
aim an efficient processing of large collections
while preserving the essential statistical relation-
ships that are useful for, in this case, similarity
judgment. Therefore we also apply topic model-
ing in order to get topic distribution over each sen-
tence set. These features are then used to feed an
ensemble algorithm to learn the STS function.

2 Background

2.1 WordNet

WordNet (Miller, 1995) is a computational lexicon
of English created and maintained at Princeton
University. It encodes concepts in terms of sets of
synonyms (called synsets). A synset can be seen
as a set of word senses all expressing the same
meaning. Each word sense uniquely identifies
a single synset. For instance, car#n#1 uses
the notation followed by WordNet and subscript
word#p#n where p denotes the part-of-speech
tag and n the word’s sense identifier, respec-
tively. In this case, the corresponding synset
car#n#1, auto#n#1, automobile#n#1,
machine#n#6, motorcar#n#1 is uniquely
determined. As words are not always so ambigu-
ous, a word w#p is said to be monosemous when
it can convey only one meaning. Alternatively,
w#p is polysemous if it can convey more mean-
ings each one represented by a sense number s in
w#p#s. For each synset, WordNet provides the
following information: A gloss, that is, a textual
definition of the synset; Semantic relations, which
connect pairs of synsets. In this context we focus
our attention on the Hypernym/Hyponym relation
which refers to inheritance between nouns, also
known as an is-a, or kind-of relation and their
respective inverses. Y is a hypernym of X if
every X is a (kind of) Y (motor vehicle#n#1 is a
hypernym of car#n#1 and, conversely, car#n#1 is

104



a hyponym of vehicle#n#1).

2.2 Semantic similarity
There are mainly two approaches to semantic sim-
ilarity. First approach is making use of a large cor-
pus and gathering statistical data from this corpus
to estimate a score of semantic similarity. Second
approach makes use of the relations and the en-
tries of a thesaurus (Lesk, 1986), which is gener-
ally a hand-crafted lexical database such as Word-
Net (Banerjee and Pedersen, 2003). Hybrid ap-
proaches combines both methods (Jiang and Con-
rath, 1997). Semantic similarity can be seen
as a different measure from semantic related-
ness since the former compute the proximity be-
tween concepts in a given concept hierarchy (e.g.
car#n#1 is similar tomotorcycle#n); while the
later the common use of both concepts together
(e.g. car#n#1 is related to tire#n).

The Lesk algorithm (Lesk, 1986) uses dictio-
nary definitions (glosses) to disambiguate a poly-
semous word in a sentence context. The major ob-
jective of his idea is to count the number of words
that are shared between two glosses, but, some-
times, dictionary glosses are often quite brief, and
may not include sufficient vocabulary to identify
related sense. In this sense, Banerjee and Peder-
sen (Banerjee and Pedersen, 2003) adapted this al-
gorithm to use WordNet as the dictionary for the
word definitions and extended this metric to use
the rich network of relationships between concepts
present in WordNet.

The Jiang and Conrath similarity measure
(Jiang and Conrath, 1997) computes the informa-
tion shared between two concepts. The shared
information is determined by Information content
of the most specific subsume of the two concepts
in the hierarchy. Furthermore this measure com-
bines the distance between this subsuming concept
and the other two concepts, counting the edge-
based distance from them in the WordNet Hyper-
nym/Hyponym hierarchy.

2.3 Topic Modeling
Topic models are based upon the idea that docu-
ments are mixtures of topics, where a topic is a
probability distribution over words. A topic model
is a generative model for documents: it specifies
a simple probabilistic procedure by which docu-
ments can be generated. To make a new document,
one chooses a distribution over topics. Then, for
each word in that document, one chooses a topic at

random according to this distribution, and draws a
word from that topic.

Latent Dirichilet allocation (LDA) is a genera-
tive probabilistic topic model of a corpus (Blei et
al., 2003). The basic idea is that documents are
represented as random mixtures over latent top-
ics, where each topic is characterized by a distri-
bution over words. This process does not make
any assumptions about the order of words as they
appear in documents. The only information rel-
evant to the model is the number of times words
are produced. This is known as the bag-of-words
assumption. The main variables of interest in the
model are the topic-word distributions Φ and the
topic distributions θ for each document.

3 Proposed Approach

Our approach to STS is mainly founded on the
idea of learning a regression function that com-
putes that similarity using other variable/features
as components. Before obtaining those features,
sentences are preprocessed trough known state-of-
the-art Natural Language techniques. The result-
ing preprocessed sentences are then lexically, syn-
tactically and semantically decomposed in order to
obtain different partial similarities. These partial
similarities are the features used in the supervised
learning. These specific stages in our system are
explained in detail in the following sections.

3.1 Natural Language Preprocessing

Before computing partial similarities considering
different properties of sentences, we need to apply
some known Natural Language techniques. For
this purpose, we chose OpenNLP2 as an open-
source tool suite which contains a variety of Java-
based NLP components. Our focus is here on three
core NLP components: tokenization, POS tagging
and chunking. Besides the fact OpenNLP also of-
fers a stemmer for English we adopted other im-
plementation self-contained in the specific frame-
work for Topic Modeling (detailed in section 3.3).

OpenNLP is a homogeneous package based on
a single machine learning approach, maximum en-
tropy (ME) (Berger et al., 1996). Each OpenNLP
tool requires an ME model that contains statis-
tics about the components default features com-
bining diverse contextual information. OpenNLP
offers the possibility of both create component or
use pre-built models create for different languages.

2http://opennlp.sourceforge.net
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On one side, components can be trained and cus-
tomizable models are built for the language and/or
domain in study. On the other, the availability
of pre-trained models allows the immediate appli-
cation of such tools on a new problem. We fol-
lowed the second approach since the sentences are
of common-sense and not about a specific domain
and are in English3.

3.2 Feature Engineering

Features, sometimes called attributes, encode in-
formation from raw data that allows machine
learning algorithms estimate an unknown value.
We focus on, what we call, light features since
they are completely automatic and unsupervised
computed, non-requiring a specific labeled dataset
for this phase. Each feature is computed as a par-
tial similarity metric, which will later feed the pos-
terior regression analysis. This process is fully
automatized, being all features extracted using a
pipeline from OpenNLP and other tools that will
be introduced in the specific stage where they are
used. For convenience and an easier identification
in the later machine learning process, we set for
each feature an id in the form f#n, n ∈ {1..65}.
3.2.1 Lexical Features
Some basic similarity metrics are used as features
related exclusively with word forms. In this set
we include: number of negative words4 for each
sentence (f1 and f2 respectively), and the abso-
lute value of the difference of these counts (f3 =
|f1− f2|); the absolute value of the difference of
overlapping words for each sentence pair (f4..7)5.

3.2.2 Syntactic Features
OpenNLP tokenization, POS (Part-of-Speech)
tagging6 and text chunking applied on a pipeline
fashion allows the identification of (NPs) Noun
Phrases, VPs (Verbal Phrases) and (Prepositional
Phrases) in sentences. Heuristically, these NPs are

3OpenNLP offers, for the vast majority of components, at
least one pre-trained model for this language.

4The Snowball stop word list(Porter, 2001) was used and
those words expressing negation were identified (such as:
never, not, neither, no, nobody, aren’t, isn’t, don’t, doesn’t,
hasn’t, hadn’t, haven’t)

5Thanks to the SemEval organizers in making avail-
able the python script which computes baselines com-
pute overlap baseline.py which was applied using different
setting for stop word removal, from 0 to 3.

6As alternative models are available, the Maxent
model with tag dictionary was used on this compo-
nent. Available at http://opennlp.sourceforge.net/models-
1.5/en-pos-maxent.bin

further identified as subjects if they are in the be-
ginning of sentences. This kind of shallow parser
will be useful to identify the syntactic structure of
sentences. Considering only this property, differ-
ent features were computed as the absolute value
of the difference of the number of NPs (f8), VPs
(f9) and PPs(f10) for each sentence pair.

3.2.3 Semantic Features
WordNet::Similarity (Pedersen et al., 2004) is a
freely available software package for measuring
the semantic similarity or relatedness between a
pair of concepts (or word senses). At this stage we
have for each sentence the subject identified as the
first NP beginning a sentence.

This NP can be composed of a simple or com-
pound noun, in a root form (lemma) or in a
inflected form (plural) (e.g. electrics or eco-
nomic electric cars). WorNet::Similarity pack-
age also contains a lemmatizer, in the mod-
ule WordNet::QueryData, which compare a in-
flected word form and return all WordNet entries
which can be the root form of this word. This
search is made in all four morphological cate-
gories in WordNet (Adjectives, Adverbs, Nouns
and Verbs), except when indicated the POS in
the end of the queried word, the lemmatizer only
see in that specific category (e.g. flies#n re-
turns flies#n, fly#n, while flies returns more
entries: flies#n, fly#n, fly#v). Therefore, a
lemmatized is successively applied over the Sub-
jects found for each pair of sentences. The com-
pound subjects are reduced from left to right until
a head noun been found as a valid WordNet en-
try (e.g. the subject economicelectriccars is re-
duced until the valid entry electriccar which is
present on WordNet).

After all the subjects been found and a valid
WordNet entry has been matched semantic simi-
larity (f11) (Jiang and Conrath, 1997) and seman-
tic relatedness (f12) (Lesk, 1986) is computed
for each sentence pair. In the case where pair
word#n has multiple senses, the one that maxi-
mizes partial similarity is selected.

3.3 Distributional Features

The distribution of topics over documents (in our
case, sentences) may contribute to model Distri-
butional Semantic in texts since in the way that
the model is defined, there is no notion of mu-
tual exclusivity that restricts words to be part of
one topic only. This allows topic models to cap-
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ture polysemy, where the same word has multiple
meanings. In this sense we can see topics as nat-
ural word sense contexts where words appear in
different topics with distinct senses.

Gensim (Řehůřek and Sojka, 2010) is a machine
learning framework for Topic Modeling which
includes several preprocessing techniques such
as stop-word removal and TF-IDF. TF-IDF is a
standard statistical method that combines the fre-
quency of a term in a particular document with its
inverse document frequency in general use (Salton
and Buckley, 1988). This score is high for rare
terms that appear frequently in a document and are
therefore more likely to be significant. In a prag-
matic view, tf -idft,d assigns to term t a weight in
document d that is: highest when t occurs many
times within a small number of documents; lower
when the term occurs fewer times in a document,
or occurs in many documents; lowest when the
term occurs in virtually all documents.

Gensim computes a distribution of 25 topics
over sentences not and using TF-IDF (f13...37
and f38...63). Each feature is the absolute value
of the difference of topici (i.e. topic[i] =
|topic[i]s1 − topic[i]s2|). Euclidean distance over
the difference of topic distribution between sen-
tence pairs in each case (without and with TF-IDF)
was also considered as a feature (f64 and f65).

3.4 Supervised Learning

WEKA(Hall et al., 2009) is a large collection of
state-of-the-art machine learning algorithms writ-
ten in Java. WEKA contains tools for classifica-
tion, regression, classifier ensemble, and others.
Considering the developer version 3.7.117 we used
the following experiment setup considering the 65
features previously computed for both sentence
dataset (train and test) (Marelli et al., 2014b).

One of four approaches is commonly adopted
for building classifier ensembles each one focus-
ing a different level of action. Approach A con-
cerns the different ways of combining the results
from the classifiers, but there is no evidence that
this strategy is better than using different mod-
els (Approach B). At feature level (Approach C)
different feature subsets can be used for the clas-
sifiers, either if they use the same classification
model or not. Finally, the data sets can be modified
so that each classifier in the ensemble is trained on
its own data set (Approach D).

7http://www.cs.waikato.ac.nz/ml/weka/downloading.html

Different methods for generating and combin-
ing models exist, like Stacking (Seewald, 2002)
(Approach B). These combined models share
sometimes however the disadvantage of being dif-
ficult to analyse, once they can comprise dozens of
individual classifiers. Stacking is used to combine
different types of classifiers and it demands the use
of another learner algorithm to predict which of
the models would be the most reliable for each
case. This combination is done using a meta-
learner, another learner scheme that combines the
output of the base learners. The base learners
are generally called level-0 models, and the meta-
learner is a level-1 model. The predictions of the
base learners are input to the meta-learner.

In WEKA, there is a meta classifier called
”Stacking”.We use this stacking ensemble com-
bining two level-0 models: a K-Nearest Neigh-
bour classifier (K = 1) (Aha et al., 1991); and
a Linear Regression model without any attribute
selection method (−S1) and the ridge parameter
by default (1.0 exp−8). The meta-classifier was
M5P which implements base routines for gener-
ating M5 Model trees and rules (Quinlan, 1992;
Wang and Witten, 1997).

4 Conclusions and Future Work

Our contribution is in the use of complementary
features in order to learn the function of STS, a
part of the challenge of building Compositional
Distributional Semantic Models. For this we ap-
plied some preprocessing tasks over the sentence
set in order to find lexical, syntactic, semantic and
distributional features. On the semantic aspect, we
made use of known semantic relatedness and sim-
ilarity measures on WordNet, in this case, applied
to see the relatedness/similarity between phrases
from sentences. We also applied topic modeling
in order to get topic distributions over set of sen-
tences. These features were then used to feed an
ensemble learning algorithm in order to learn the
STS function. This was achieved with a Pearson’s
r of 0.62780. One direction to follow is to find
where the ensemble is failing and try to comple-
ment the feature set with more semantic features.
Indeed, we plan to explore different topic distribu-
tion varying number of topics in order to maximize
the log likelihood. Also we would like to select the
most relevant feature from this set. We are moti-
vated after this first participation in continuing to
improve the system here proposed.
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Abstract
The Tag&Parse approach to semantic
parsing first assigns semantic tags to each
word in a sentence and then parses the
tag sequence into a semantic tree. We
use statistical approach for tagging, pars-
ing, and reference resolution stages. Each
stage produces multiple hypotheses which
are re-ranked using spatial validation. We
evaluate the Tag&Parse approach on a cor-
pus of Robotic Spatial Commands as part
of the SemEval Task6 exercise. Our sys-
tem accuracy is 87.35% and 60.84% with
and without spatial validation.

1 Introduction
In this paper we describe a system participating
in the SemEval2014 Task-6 on Supervised Seman-
tic Parsing of Robotic Spatial Commands. It pro-
duces a semantic parse of natural language com-
mands addressed to a robot arm designed to move
objects on a grid surface. Each command directs
a robot to change position of an object given a
current configuration. A command uniquely iden-
tifies an object and its destination, for example
“Move the turquoise pyramid above the yellow
cube”. System output is a Robot Control Lan-
guage (RCL) parse (see Figure 1) which is pro-
cessed by the robot arm simulator. The Robot Spa-
tial Commands dataset (Dukes, 2013) is used for
training and testing.

Our system uses a Tag&Parse approach which
separates semantic tagging and semantic parsing
stages. It has four components: 1) semantic tag-
ging, 2) parsing, 3) reference resolution, and 4)
spatial validation. The first three are trained using
LLAMA (Haffner, 2006), a supervised machine
learning toolkit, on the RCL-parsed sentences.

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

For semantic tagging, we train a maximum en-
tropy sequence tagger for assigning a semantic la-
bel and value to each word in a sentence, such as
type cube or color blue. For parsing, we train a
constituency parser on non-lexical RCL semantic
trees. For reference resolution, we train a maxi-
mum entropy model that identifies entities for ref-
erence tags found by previous components. All of
these components can generate multiple hypothe-
ses. Spatial validation re-ranks these hypotheses
by validating them against the input spatial con-
figuration. The top hypothesis after re-ranking is
returned by the system.

Separating tagging and parsing stages has sev-
eral advantages. A tagging stage allows the system
flexibility to abstract from possible grammatical or
spelling errors in a command. It assigns a seman-
tic category to each word in a sentence. Words not
contributing to the semantic meaning are assigned
‘O’ label by the tagger and are ignored in the fur-
ther processing. Words that are misspelled can po-
tentially receive a correct tag when a word simi-
larity feature is used in building a tagging model.
This will be especially important when process-
ing output of spoken commands that may contain
recognition errors.

The remainder of the paper is organized thusly.
In Section 2 we describe each of the components
used in our system. In Section 3 we describe the
results reported for SemEval2014 and evaluation
of each system component. We summarize our
findings and present future work in Section 4.

2 System

2.1 Sequence Tagging
A sequence tagging approach is used for condi-
tional inference of tags given a word sequence.
It is used for many natural language tasks, such
as part of speech (POS) and named entity tag-
ging (Toutanova and others, 2003; Carreras et al.,
2003). We train a sequence tagger for assign-
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Figure 1: RCL tree for a sentence Move the turquoise pyramid above the yellow cube.

Word index tag label
Move 1 action move
the 2 O -
turquoise 3 color cyan
pyramid 4 type prism
above 5 relation above
the 6 O -
yellow 7 color yellow
cube 8 type cube

Table 1: Tagging labels for a sentence Move the
turquoise pyramid above the yellow cube.

ing a combined semantic tag and label (such as
type cube) to each word in a command. The tags
used for training are extracted from the leaf-level
nodes of the RCL trees. Table 2 shows tags and
labels for a sample sentence “Move the turquoise
pyramid above the yellow cube” extracted from
the RCL parse tree (see Figure 1). In some cases,
a label is the same as a word (yellow, cube) while
in other cases, it differs (turquoise - cyan, pyramid
- prism).

We train a sequence tagger using LLAMA max-
imum entropy (maxent) classification (Haffner,
2006) to predict the combined semantic tag and
label of each word. Neighboring words, immedi-
ately neighboring semantic tags, and POS tags are
used as features, where the POS tagger is another
sequence tagging model trained on the Penn Tree-
bank (Marcus et al., 1993). We also experimented
with a tagger that assigns tags and labels in sep-
arate sequence tagging models, but it performed
poorly.

2.2 Parsing
We use a constituency parser for building RCL
trees. The input to the parser is a sequence of
tags assigned by a sequence tagger, such as “ac-
tion color type relation color type” for the exam-

ple in Figure 1.
The parser generates multiple RCL parse tree

hypotheses sorted in the order of their likelihood.
The likelihood of a tree T given a sequence of tags
T is determined using a probabilistic context free
grammar (PCFG) G:

P (T |S) =
∏
r∈T

PG(r) (1)

The n-best parses are obtained using the CKY
algorithm, recording the n-best hyperedge back-
pointers per constituent along the lines of (Huang
and Chiang, 2005). G was obtained and PG was
estimated from a corpus of non-lexical RCL trees
generated by removing all nodes descendant from
the tag nodes (action, color, etc.). Parses may con-
tain empty nodes not corresponding to any tag in
the input sequence. These are hypothesized by the
parser at positions in between input tags and in-
serted as edges according to the PCFG, which has
probabilistic rules for generating empty nodes.

2.3 Reference Resolution
Reference resolution identifies the most prob-
able antecedent for each anaphor within a
text (Hirschman and Chinchor, 1997). It applies
when multiple candidates antecedents are present.
For example, in a sentence “Pick up the red cube
standing on a grey cube and place it on top of
the yellow one”, the anaphor it has two candidate
antecedents corresponding to entity segments the
red cube and a grey cube. In our system, anaphor
and antecedents are represented by reference tags
occurring in one sentence. A reference tag is ei-
ther assigned by a sequence tagger to one of the
words (e.g. to a pronoun) or is inserted into a
tree by the parser (e.g. ellipsis). We train a bi-
nary maxent model for this task using LLAMA.
The input is a pair consisting of an anaphor and
a candidate antecedent, along with their features.
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Features that are used include the preceding and
following words as well as the tags/labels of both
the anaphor and candidate antecedent. The refer-
ence resolution component selects the antecedent
for which the model returns the highest score.

2.4 Spatial Validation
SemEval2014 Task6 provided a spatial planner
which takes an RCL command as an input and
determines if that command is executable in the
given spatial context. At each step described in
2.1∼2.3, due to the statistical nature of our ap-
proach, multiple hypotheses can be easily com-
puted with different confidence values. We used
the spatial planner to validate the final output RCL
commands from the three steps by checking if the
RCLs are executable or not. We generate multi-
ple tagger output hypotheses. For each tagger out-
put hypothesis, we generate multiple parser out-
put hypotheses. For each parser output hypothe-
sis, we generate multiple reference resolution out-
put hypotheses. The resulting output hypotheses
are ranked in the order of confidence scores with
the highest tagging output scores ranked first, fol-
lowed by the parsing output scores, and, finally,
reference resolution output scores. The system re-
turns the result of the top scored command that is
valid according to the spatial validator.

In many applications, there can be a tool or
method to validate tag/parse/reference outputs
fully or partially. Note that in our system the val-
idation is performed after all output is generated.
Tightly coupled validation, such as checking va-
lidity of a tagged entity or a parse constituent,
could help in computing hypotheses at each step
(e.g., feature values based on possible entities or
actions) and it remains as future work.

3 Results

In this section, we present evaluation results on the
three subsets of the data summarized in Table 3. In
the TEST2500 data set, the models are trained on
the initial 2500 sentences of the Robot Commands
Treebank and evaluated on the last 909 sentences
(this corresponds to the data split of the SemEval
task). In TEST500 data set, the models are trained
on the initial 500 sentences of the training set and
evaluated on the last 909 test sentences. We re-
port these results to analyze the models’ perfor-
mance on a reduced training size. In DEV2500
data set, models are trained on 90% of the initial
2500 sentences and evaluated on 10% of the 2500

# Dataset Avg # hyp Accuracy
1 TEST2500 1-best 1 86.0%
2 TEST2500 max-5 3.34 95.2%
3 TEST500 1-best 1 67.9%
4 TEST500 max-5 4.25 83.8%
5 DEV2500 1-best 1 90.8%
6 DEV2500 max-5 2.9 98.0%

Table 3: Tagger accuracy for 1-best and maximum
of 5-best hypotheses (max-5).

sentences using a random data split. We observe
that sentence length and standard deviation of test
sentences in the TEST2500 data set is higher than
on the training sentences while in the DEV2500
data set training and test sentence length and stan-
dard deviation are comparable.

3.1 Semantic Tagging
Table 3 presents sentence accuracy of the seman-
tic tagging stage. Tagging accuracy is evaluated
on 1-best and on max-5 best tagger outputs. In
the max-5 setting the number of hypotheses gen-
erated by the tagger varies for each input with the
average numbers reported in Table 3. Tagging ac-
curacy on TEST2500 using 1-best is 86.0%. Con-
sidering max-5 best tagging sequences, the accu-
racy is 95.2%. On the TEST500 data set tagging
accuracy is 67.9% and 83.8% on 1-best and max-
5 best sequences respectively, approximately 8%
points lower than on TEST2500 data set. On the
DEV2500 data set tagging accuracy is 90.8% and
98.0% on 1-best and max-5 best sequences, 4.8%
and 2.8% points higher than on the TEST2500
data set. The higher performance on DEV2500 in
comparison to the TEST2500 can be explained by
the higher complexity of the test sentences in com-
parison to the training sentences in the TEST2500
data set.

3.2 RCL Parsing
Parsing was evaluated using the EVALB scoring
metric (Collins, 1997). Its 1-best F-measure accu-
racy on gold standard TEST2500 and DEV2500
semantic tag sequences was 96.17% and 95.20%,
respectively. On TEST500, its accuracy remained
95.20%. On TEST2500 with system provided in-
put sequences, its accuracy was 94.79% for 869
out of 909 sentences that were tagged correctly.

3.3 System Accuracy
Table 4 presents string accuracy of automatically
generated RCL parse trees on each data set. The
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Name Train #sent Train Sent. len. (stdev) Test #sent Test Sent. Len. (stdev)
TEST2500 2500 13.44 (5.50) 909 13.96 (5.59)
TEST500 500 14.62(5.66) 909 13.96 (5.59)
DEV2500 2250 13.43 ( 5.53) 250 13.57 (5.27)

Table 2: Number of sentences, average length and standard deviation of the data sets.

results are obtained by comparing system output
RCL parse string with the reference RCL parse
string. For each data set, we ran the system
with and without spatial validation. We ran RCL
parser and reference resolution on automatically
assigned semantic tags (Auto) and oracle tagging
(Orcl). We observed that some tag labels can be
verified systematically and corrected them with
simple rules: e.g., change “front” to “forward”
because relation specification in (Dukes, 2013)
doesn’t have “front” even though annotations in-
cluded cases with “front” as relation.

The system performance on TEST2500 data
set using automatically assigned tags and no spa-
tial validation is 60.84%. In this mode, the sys-
tem uses 1-best parser and 1-best tagger output.
With spatial validation, which allows the system to
re-rank parser and tagger hypotheses, the perfor-
mance increases by 27% points to 87.35%. This
indicates that the parser and the tagger component
often produce a correct output which is not ranked
first. Using oracle tags without / with spatial vali-
dation on TEST2500 data set the system accuracy
is 67.55% / 94.83%, 7% points above the accuracy
using predicted tags.

The system performance on TEST500 data set
using automatically assigned tags with / with-
out spatial validation is 48.95% / 74.92%, ap-
proximately 12% points below the performance
on TEST2500 (Row 1). Using oracle tags with-
out / with spatial validation the performance on
TEST500 data set is 63.89% / 94.94%. The per-
formance without spatial validation is only 4% be-
low TEST2500, while with spatial validation the
performance on TEST2500 and TEST500 is the
same. These results indicate that most perfor-
mance degradation on a smaller data set is due to
the semantic tagger.

The system performance on DEV2500 data set
using automatically assigned tags without / with
spatial validation is 68.0% / 96.80% (Row 5), 8%
points above the performance on TEST2500 (Row
1). With oracle tags, the performance is 69.60%
/ 98.0%, which is 2-3% points above TEST2500
(Row 2). These results indicate that most perfor-
mance improvement on a better balanced data set

# Dataset Tag Accuracy without / with
spatial validation

1 TEST2500 Auto 60.84 / 87.35
2 TEST2500 Orcl 67.55 / 94.83
3 TEST500 Auto 48.95 / 74.92
4 TEST500 Orcl 63.89 / 94.94
5 DEV2500 Auto 68.00 / 96.80
6 DEV2500 Orcl 69.60 / 98.00

Table 4: System accuracy with and without spatial
validation using automatically assigned tags and
oracle tags (OT).

DEV2500 is due to better semantic tagging.

4 Summary and Future Work
In this paper, we present the results of semantic
processing for natural language robot commands
using Tag&Parse approach. The system first tags
the input sentence and then applies non-lexical
parsing to the tag sequence. Reference resolution
is applied to the resulting parse trees. We com-
pare the results of the models trained on the data
sets of size 500 (TEST500) and 2500 (TEST2500)
sentences. We observe that sequence tagging
model degrades significantly on a smaller data set.
Parsing and reference resolution models, on the
other hand, perform nearly as well on both train-
ing sizes. We compare the results of the models
trained on more (DEV2500) and less (TEST2500)
homogeneous training/testing data sets. We ob-
serve that a semantic tagging model is more sen-
sitive to the difference between training and test
set than parsing model degrading significantly a
less homogeneous data set. Our results show that
1) both tagging and parsing models will benefit
from an improved re-ranking, and 2) our parsing
model is robust to a data size reduction while tag-
ging model requires a larger training data set.

In future work we plan to explore how
Tag&Parse approach will generalize in other do-
mains. In particular, we are interested in using
a combination of domain-specific tagging models
and generic semantic parsing (Das et al., 2010) for
processing spoken commands in a dialogue sys-
tem.
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2003. A Simple Named Entity Extractor Using Ad-
aBoost. In Proceedings of the CoNLL, pages 152–
157, Edmonton, Canada.

Michael Collins. 1997. Three Generative Lexicalized
Models for Statistical Parsing. In Proceedings of the
35th Annual Meeting of the ACL, pages 16–23.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A. Smith. 2010. Probabilistic Frame-
Semantic Parsing. In HLT-NAACL, pages 948–956.

Kais Dukes. 2013. Semantic Annotation of Robotic
Spatial Commands. In Language and Technology
Conference (LTC).

Patrick Haffner. 2006. Scaling large margin classifiers
for spoken language understanding. Speech Com-
munication, 48(3-4):239–261.

Lynette Hirschman and Nancy Chinchor. 1997. MUC-
7 Coreference Task Definition. In Proceedings of
the Message Understanding Conference (MUC-7).
Science Applications International Corporation.

Liang Huang and David Chiang. 2005. Better K-
best Parsing. In Proceedings of the Ninth Inter-
national Workshop on Parsing Technology, Parsing
’05, pages 53–64, Stroudsburg, PA, USA.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-Rich Part-
of-Speech Tagging with a Cyclic Dependency Net-
work. In Proceedings of the 2003 Conference of the
NAACL on Human Language Technology - Volume
1, pages 173–180.

113



Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 114–118,
Dublin, Ireland, August 23-24, 2014.

AUEB: Two Stage Sentiment Analysis of Social Network Messages

Rafael Michael Karampatsis, John Pavlopoulos and Prodromos Malakasiotis
mpatsis13@gmail.com, annis@aueb.gr, rulller@aueb.gr

Department of Informatics
Athens University of Economics and Business

Patission 76, GR-104 34 Athens, Greece

Abstract

This paper describes the system submit-
ted for the Sentiment Analysis in Twitter
Task of SEMEVAL 2014 and specifically
the Message Polarity Classification sub-
task. We used a 2–stage pipeline approach
employing a linear SVM classifier at each
stage and several features including mor-
phological features, POS tags based fea-
tures and lexicon based features.

1 Introduction

Recently, Twitter has gained significant popularity
among the social network services. Lots of users
often use Twitter to express feelings or opinions
about a variety of subjects. Analysing this kind of
content can lead to useful information for fields,
such as personalized marketing or social profiling.
However such a task is not trivial, because the lan-
guage used in Twitter is often informal presenting
new challenges to text analysis.

In this paper we focus on sentiment analysis,
the field of study that analyzes people’s sentiment
and opinions from written language (Liu, 2012).
Given some text (e.g., tweet), sentiment analysis
systems return a sentiment label, which most often
is positive, negative, or neutral. This classification
can be performed directly or in two stages; in the
first stage the system examines whether the text
carries sentiment and in the second stage, the sys-
tem decides for the sentiment’s polarity (i.e., posi-
tive or negative).1 This decomposition is based on
the assumption that subjectivity detection and sen-
timent polarity detection are different problems.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1For instance a 2–stage approach is better suited to sys-
tems that focus on subjectivity detection; e.g., aspect based
sentiment analysis systems which extract aspect terms only
from evaluative texts.

We choose to follow the 2–stage approach, be-
cause it allows us to focus on each of the two prob-
lems separately (e.g., features, tuning, etc.). In the
following we will describe the system with which
we participated in the Message Polarity Classi-
fication subtask of Sentiment Analysis in Twit-
ter (Task 9) of SEMEVAL 2014 (Rosenthal et al.,
2014). Specifically Section 2 describes the data
provided by the organizers of the task. Sections 3
and 4 present our system and its performance re-
spectively. Finally, Section 5 concludes and pro-
vides hints for future work.

2 Data

At first, we describe the data used for this year’s
task. For system tuning the organizers released the
training and development data of SEMEVAL 2013
Task 2 (Wilson et al., 2013). Both these sets are
allowed to be used for training. The organizers
also provided the test data of the same Task to be
used for development only. As argued in (Malaka-
siotis et al., 2013) these data suffer from class im-
balance. Concerning the test data, they contained
8987 messages broken down in the following 5
datasets:

– LJ14: 2000 sentences from LIVEJOURNAL.

– SMS13: SMS test data from last year.

– TW13: Twitter test data from last year.

– TW14: 2000 new tweets.

– TWSARC14: 100 tweets containing sarcasm.

The details of the test data were made available to
the participants only after the end of the Task. Re-
call that SMS13 and TW13 were also provided as
development data. In this way the organizers were
able to check, i) the progress of the systems since
last year’s task, and ii) the generalization capabil-
ity of the participating systems.

114



3 System Overview

The main objective of our system is to detect
whether a message M expresses positive, negative
or no sentiment. To achieve that we follow a 2–
stage approach. During the first stage we detect
whether M expresses sentiment (“subjective”) or
not; this process is called subjectivity detection.
In the second stage we classify the “subjective”
messages of the first stage as “positive” or “neg-
ative”. Both stages utilize a Support Vector Ma-
chine (SVM (Vapnik, 1998)) classifier with lin-
ear kernel.2 Similar approaches have also been
proposed in (Pang and Lee, 2004; Wilson et al.,
2005; Barbosa and Feng, 2010; Malakasiotis et al.,
2013). Finally, we note that the 2–stage approach,
in datasets such the one here (Malakasiotis et al.,
2013), alleviates the class imbalance problem.

3.1 Data preprocessing

A very essential part of our system is data pre-
processing. At first, each message M is passed
through a twitter specific tokenizer and part-of-
speech (POS) tagger (Owoputi et al., 2013) to ob-
tain the tokens and the corresponding POS tags,
which are necessary for some sets of features.3

We then use a dictionary to replace any slang with
the actual text.4 We also normalize the text of
each message by combining a trie data structure
(De La Briandais, 1959) with an English dictio-
nary.5 In more detail, we replace every token of M
not in the dictionary with the most similar word of
the dictionary. Finally, we obtain POS tags of all
the new tokens.

3.2 Sentiment lexicons

Another key attribute of our system is the use of
sentiment lexicons. We have used the following:

– HL (Hu and Liu, 2004).

– SENTIWORDNET (Baccianella et al., 2010).

– SENTIWORDNET lexicon with POS tags
(Baccianella et al., 2010).

– AFINN (Nielsen, 2011).

– MPQA (Wilson et al., 2005).
2We used the LIBLINEAR distribution (Fan et al., 2008)
3Tokens could be words, emoticons, hashtags, etc. No

lemmatization or stemming has been applied
4See http://www.noslang.com/dictionary/.
5We used the OPENOFFICE dictionary

– NRC Emotion lexicon (Mohammad and Tur-
ney, 2013).

– NRC S140 lexicon (Mohammad et al.,
2013).

– NRC Hashtag lexicon (Mohammad et al.,
2013).

– The three lexicons created from the training
data in (Malakasiotis et al., 2013).

Note that concerning the MPQA Lexicon we
applied preprocessing similar to Malakasiotis et al.
(2013) to obtain the following sub–lexicons:

S+ : Contains strong subjective expressions with
positive prior polarity.

S− : Contains strong subjective expressions with
negative prior polarity.

S± : Contains strong subjective expressions with
either positive or negative prior polarity.

S0 : Contains strong subjective expressions with
neutral prior polarity.

W+ : Contains weak subjective expressions with
positive prior polarity.

W− : Contains weak subjective expressions with
negative prior polarity.

W± : Contains weak subjective expressions with
either positive or negative prior polarity.

W0 : Contains weak subjective expressions with
neutral prior polarity.

3.3 Feature engineering

Our system employs several types of features
based on morphological attributes of the mes-
sages, POS tags, and lexicons of section 3.2.6

3.3.1 Morphological features
– The existence of elongated tokens (e.g.,

“baaad”).

– The number of elongated tokens.

– The existence of date references.

– The existence of time references.
6All the features are normalized to [−1, 1]
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– The number of tokens that contain only upper
case letters.

– The number of tokens that contain both upper
and lower case letters.

– The number of tokens that start with an upper
case letter.

– The number of exclamation marks.

– The number of question marks.

– The sum of exclamation and question marks.

– The number of tokens containing only excla-
mation marks.

– The number of tokens containing only ques-
tion marks.

– The number of tokens containing only excla-
mation or question marks.

– The number of tokens containing only ellip-
sis (...).

– The existence of a subjective (i.e., positive or
negative) emoticon at the message’s end.

– The existence of an ellipsis and a link at the
message’s end.

– The existence of an exclamation mark at the
message’s end.

– The existence of a question mark at the mes-
sage’s end.

– The existence of a question or an exclamation
mark at the message’s end.

– The existence of slang.

3.3.2 POS based features
– The number of adjectives.

– The number of adverbs.

– The number of interjections.

– The number of verbs.

– The number of nouns.

– The number of proper nouns.

– The number of urls.

– The number of subjective emoticons.7

– The number of positive emoticons.8

– The number of negative emoticons.9

– The average, maximum and minimum F1

scores of the message’s POS bigrams for the
subjective and the neutral classes.10

– The average, maximum and minimum F1

scores of the message’s POS bigrams for the
positive and the negative classes.11

For a bigram b and a class c, F1 is calculated as:

F1(b, c) =
2 · Pre(b, c) ·Rec(b, c)

Pre(b, c) + Rec(b, c)
(1)

where:

Pre(b, c) =
#messages of c containing b

#messages containing b
(2)

Rec(b, c) =
#messages of c containing b

#messages of c
(3)

3.3.3 Sentiment lexicon based features
For each lexicon we use seven different features
based on the scores provided by the lexicon for
each word present in the message.12

– Sum of scores.

– Maximum of scores.

– Minimum of scores.

– Average of scores.

– The count of words with scores.

– The score of the last word of the message that
appears in the lexicon.

– The score of the last word of the message.

7This feature is used only for subjectivity detection.
8This feature is used only for polarity detection.
9This feature is used only for polarity detection.

10This feature is used only for subjectivity detection.
11This feature is used only for polarity detection.
12If a word does not appear in the lexicon it is assigned

with a score of 0 and it is not considered in the calculation of
the average, maximum, minimum and count scores. Also, we
have removed from SENTIWORDNET any instances having
positive and negative scores that sum to zero. Moreover, the
MPQA lexicon does not provide scores, so, for each word in
the lexicon we assume a score equal to 1.
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We also created features based on the Pre and
F1 scores of MPQA and the train data generated
lexicons in a similar manner to that described in
(Malakasiotis et al., 2013), with the difference that
the features are stage dependent. Thus, for subjec-
tivity detection we use the subjective and neutral
classes and for polarity detection we use the posi-
tive and negative classes to compute the scores.

3.3.4 Miscellaneous features

Negation. Negation not only is a good subjec-
tivity indicator but it also may change the
polarity of a message. We therefore add 7
more features, one indicating the existence
of negation, and the remaining six indicat-
ing the existence of negation that precedes
words from lexicons S±, S+, S−, W±, W+

and W−.13 Each feature is used in the appro-
priate stage.14 We have not implement this
type of feature for other lexicons but it might
be a good addition to the system.

Carnegie Mellon University’s Twitter clusters.
Owoputi et al. (2013) released a dataset of
938 clusters containing words coming from
tweets. Words of the same clusters share
similar attributes. We try to exploit this
observation by adding 938 features, each of
which indicates if a message’s token appears
or not in the corresponding attributes.

3.4 Feature Selection

To allow our model to better scale on unseen data
we have performed feature selection. More specif-
ically, we first merged training and development
data of SEMEVAL 2013 Task 2. Then, we ranked
the features with respect to their information gain
(Quinlan, 1986) on this dataset. To obtain the best
set of features we started with a set containing the
top 50 features and we kept adding batches of 50
features until we have added all of them. At each
step we evaluated the corresponding feature set on
the TW13 and SMS13 datasets and chose the fea-
ture set with the best performance. This resulted in
a system which used the top 900 features for Stage
1 and the top 1150 features for Stage 2.

13We use a list of words with negation. We assume that a
token precedes a word if it is in a distance of at most 5 tokens.

14The features concerning S± and W± are used in subjec-
tivity detection and the remaining four in polarity detection.

Test Set AUEB Median Best
LJ14 70.75 65.48 74.84
SMS13 64.32 57.53 70.28
TW13 63.92 62.88 72.12
TW14 66.38 63.03 70.96
TWSARC14 56.16 45.77 58.16
AVGall 64.31 56.56 68.78
AVG14 64.43 57.97 67.62

Table 1: F1(±) scores per dataset.

Test Set Ranking
LJ14 9/50
SMS13 8/50
TW13 21/50
TW14 14/50
TWSARC14 4/50
AVGall 6/50
AVG14 5/50

Table 2: Rankings of our system.

4 Experimental Results

The official measure of the Task is the average F1

score of the positive and negative classes (F1(±)).
Table 1 illustrates the F1(±) score per evaluation
dataset achieved by our system along with the me-
dian and best F1(±). In the same table AVGall

corresponds to the average F1(±) across the five
datasets while AVG14 corresponds to the average
F1(±) across LJ14, TW14 and TWSARC14. We
observe that in all cases our results are above the
median. Table 2 illustrates the ranking of our sys-
tem according to F1(±). Our system ranked 6th
according to AVGall and 5th according to AVG14

among the 50 participating systems. Note that our
best results were achieved on the new test sets
(LJ14, TW14, TWSARC14) meaning that our sys-
tem has a good generalization ability.

5 Conclusion and future work

In this paper we presented our approach for the
Message Polarity Classification subtask of the
Sentiment Analysis in Twitter Task of SEMEVAL

2014. We proposed a 2–stage pipeline approach,
which first detects sentiment and then decides
about its polarity. The results indicate that our sys-
tem handles well the class imbalance problem and
has a good generalization ability. A possible ex-
planation is that we do not use bag-of-words fea-
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tures which often suffer from over–fitting. Never-
theless, there is still some room for improvement.
A promising direction would be to improve the
1st stage (subjectivity detection) either by adding
more data or by adding more features, mostly be-
cause the performance of stage 1 greatly affects
that of stage 2. Finally, the addition of more data
for the negative class on stage 2 might be a good
improvement because it would further reduce the
class imbalance of the training data for this stage.
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Abstract

In this paper, we consider the application
of topic modelling to the task of induct-
ing grammar rules. In particular, we look
at the use of a recently developed method
called orthonormal explicit topic analysis,
which combines explicit and latent models
of semantics. Although, it remains unclear
how topic model may be applied to the
case of grammar induction, we show that
it is not impossible and that this may allow
the capture of subtle semantic distinctions
that are not captured by other methods.

1 Introduction

Grammar induction is the task of inducing high-
level rules for application of grammars in spoken
dialogue systems. In practice, we can extract rel-
evant rules and the task of grammar induction re-
duces to finding similar rules between two strings.
As these strings are not necessarily similar in sur-
face form, what we really wish to calculate is
the semantic similarity between these strings. As
such, we could think of applying a semantic anal-
ysis method. As such we attempt to apply topic
modelling, that is methods such as Latent Dirich-
let Allocation (Blei et al., 2003), Latent Seman-
tic Analysis (Deerwester et al., 1990) or Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2007). In particular we build on the recent work
to unify latent and explicit methods by means of
orthonormal explicit topics.

In topic modelling the key choice is the docu-
ment space that will act as the corpus and hence
topic space. The standard choice is to regard all
articles from a background document collection
– Wikipedia articles are a typical choice – as the

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
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topic space. However, it is crucial to ensure that
these topics cover the semantic space evenly and
completely. Following McCrae et al. (McCrae et
al., 2013) we remap the semantic space defined by
the topics in such a manner that it is orthonormal.
In this way, each document is mapped to a topic
that is distinct from all other topics.

The structure of the paper is as follows: we de-
scribe our method in three parts, first the method
in section 2, followed by approximation method in
section 3, the normalization methods in section 4
and finally the application to grammar induction
in section 5, we finish with some conclusions in
section 6.

2 Orthonormal explicit topic analysis

ONETA (McCrae et al., 2013, Orthonormal ex-
plicit topic analysis) follows Explicit Semantic
Analysis in the sense that it assumes the avail-
ability of a background document collection B =
{b1, b2, ..., bN} consisting of textual representa-
tions. The mapping into the explicit topic space
is defined by a language-specific function Φ that
maps documents into RN such that the jth value in
the vector is given by some association measure
φj(d) for each background document bj . Typical
choices for this association measure φ are the sum
of the TF-IDF scores or an information retrieval
relevance scoring function such as BM-25 (Sorg
and Cimiano, 2010).

For the case of TF-IDF, the value of the j-th
element of the topic vector is given by:

φj(d) = −−−→tf-idf(bj)T
−−−→tf-idf(d)

Thus, the mapping function can be represented
as the product of a TF-IDF vector of document d
multiplied by a word-by-document (W ×N ) TF-
IDF matrix, which we denote as a X:1

1T denotes the matrix transpose as usual
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Φ(d) =


−−−→
tf-idf(b1)T

...−−−→
tf-idf(bN )T

−−−→tf-idf(d) = XT · −−−→tf-idf(d)

For simplicity, we shall assume from this point
on that all vectors are already converted to a TF-
IDF or similar numeric vector form.

In order to compute the similarity between two
documents di and dj , typically the cosine-function
(or the normalized dot product) between the vec-
tors Φ(di) and Φ(dj) is computed as follows:

sim(di, dj) = cos(Φ(di), Φ(dj)) =
Φ(di)

TΦ(dj)

||Φ(di)||||Φ(dj)||

sim(di, dj) = cos(XTdi,X
Tdj) =

dT
i XXTdj

||XTdi||||XTdj ||

The key challenge with topic modelling is
choosing a good background document collection
B = {b1, ..., bN}. A simple minimal criterion
for a good background document collection is that
each document in this collection should be maxi-
mally similar to itself and less similar to any other
document:

∀i 6= j 1 = sim(bj , bj) > sim(bi, bj) ≥ 0

As shown in McCrae et al. (2013), this property
is satisfied by the following projection:

ΦONETA(d) = (XTX)−1XTd

And hence the similarity between two docu-
ments can be calculated as:

sim(di, dj) = cos(ΦONETA(di),ΦONETA(dj))

3 Approximations

ONETA relies on the computation of a matrix in-
verse, which has a complexity that, using current
practical algorithms, is approximately cubic and
as such the time spent calculating the inverse can
grow very quickly.

We notice that X is typically very sparse and
moreover some rows of X have significantly fewer
non-zeroes than others (these rows are for terms
with low frequency). Thus, if we take the first N1

columns (documents) in X, it is possible to re-
arrange the rows of X with the result that there

is some W1 such that rows with index greater
than W1 have only zeroes in the columns up to
N1. In other words, we take a subset of N1 doc-
uments and enumerate the words in such a way
that the terms occurring in the first N1 documents
are enumerated 1, . . . ,W1. Let N2 = N − N1,
W2 = W −W1. The result of this row permuta-
tion does not affect the value of XTX and we can
write the matrix X as:

X =
(

A B
0 C

)
where A is a W1 × N1 matrix representing

term frequencies in the first N1 documents, B is a
W1×N2 matrix containing term frequencies in the
remaining documents for terms that are also found
in the first N1 documents, and C is a W2 × N2

containing the frequency of all terms not found in
the first N1 documents.

Application of the well-known divide-and-
conquer formula (Bernstein, 2005, p. 159) for ma-
trix inversion yields the following easily verifiable
matrix identity, given that we can find C′ such that
C′C = I.

(
(ATA)−1AT −(ATA)−1ATBC′

0 C′

)(
A B
0 C

)
= I

(1)

The inverse C′ is approximated by the Jacobi
Preconditioner, J, of CTC:

C′ ' JCT (2)

=

 ||c1||
−2 0

. . .
0 ||cN2 ||−2

CT

4 Normalization

A key factor in the effectiveness of topic-based
methods is the appropriate normalization of the el-
ements of the document matrix X. This is even
more relevant for orthonormal topics as the matrix
inversion procedure can be very sensitive to small
changes in the matrix. In this context, we con-
sider two forms of normalization, term and docu-
ment normalization, which can also be considered
as row/column normalizations of X.

A straightforward approach to normalization is
to normalize each column of X to obtain a matrix
as follows:
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X′ =
(

x1

||x1|| . . .
xN

||xN ||
)

If we calculate X′TX′ = Y then we get that the
(i, j)-th element of Y is:

yij =
xT

i xj

||xi||||xj ||

Thus, the diagonal of Y consists of ones only and
due to the Cauchy-Schwarz inequality we have
that |yij | ≤ 1, with the result that the matrix Y
is already close to I. Formally, we can use this
to state a bound on ||X′TX′ − I||F , but in prac-
tice it means that the orthonormalizing matrix has
more small or zero values. Previous experiments
have indicated that in general term normalization
such as TF-IDF is not as effective as using the di-
rect term frequency in ONETA, so we do not apply
term normalization.

5 Application to grammar induction

The application to grammar induction is simply
carried out by taking the rules and creating a sin-
gle ground instance. That is if we have a rule of
the form

LEAVING FROM <CITY>

We would replace the instance of <CITY> with
a known terminal for this rule, e.g.,

leaving from Berlin

This reduces the task to that of string simi-
larity which can be processed by means of any
string similarity function, for example such as the
ONETA function described above. As such the
procedure is as follows:

1. Ground the input grammar rule to an English
string d

2. Ground each candidate matching rule to an
English string di

3. Calculate for each di, the similarity
simONETA(d, di)

4. Add the rule to the grammar class with the
highest similarity

This approach has the obvious drawback that it
removes all information about the valence of the
rule, however the effect of this loss of information
remains unclear.

For application, we used 20,000 Wikipedia ar-
ticles, filtered to contain only those of over 100
words, giving us a corpus of 15.6 million tokens.
We applied ONETA using document normaliza-
tion but no term normalization and the valueN1 =
5000. These parameters were chosen based on the
best results in previous experiments.

6 Conclusions

The results show that such a naive approach is
not directly applicable to the case of grammar in-
duction, however we believe that it is possible
that the subtle semantic similarities captured by
topic modelling may yet prove useful for gram-
mar induction. However it is clear from the pre-
sented results that the use of a topic model alone
does not suffice to solve this task. We notice that
from the data many of the distinctions rely on
antonyms and stop words, especially distinctions
such as ‘to’/‘from’, which are not captured by a
topic model as topic models generally ignore stop
words, and generally consider antonyms to be in
the same topic, as they frequently occur together
in text. The question of when semantic similarity
such as provided by topic modelling is applicable
remains an open question.
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Abstract

We describe our approach for the
SemEval-2014 task 9: Sentiment Analy-
sis in Twitter. We make use of an en-
semble learning method for sentiment
classification of tweets that relies on
varied features such as feature hash-
ing, part-of-speech, and lexical fea-
tures. Our system was evaluated in
the Twitter message-level task.

1 Introduction

The sentiment analysis is a field of study that
investigates feelings present in texts. This
field of study has become important, espe-
cially due to the internet growth, the content
generated by its users, and the emergence of
the social networks. In the social networks
such as Twitter people post their opinions in a
colloquial and compact language, and it is be-
coming a large dataset, which can be used as
a source of information for various automatic
tools of sentiment inference. There is an enor-
mous interest in sentiment analysis of Twit-
ter messages, known as tweets, with applica-
tions in several segments, such as (i) directing
marketing campaigns, extracting consumer re-
views of services and products (Jansen et al.,
2009); (ii) identifying manifestations of bully-
ing (Xu et al., 2012); (iii) predicting to fore-
cast box-office revenues for movies (Asur and
Huberman, 2010); and (iv) predicting accep-
tance or rejection of presidential candidates
(Diakopoulos and Shamma, 2010; O’Connor
et al., 2010).

This work is licensed under a Creative
Commons Attribution 4.0 International Li-
cence. Page numbers and proceedings footer
are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

One of the problems encountered by re-
searchers in tweet sentiment analysis is the
scarcity of public datasets. Although Twit-
ter sentiment datasets have already been cre-
ated, they are either small — such as Obama-
McCain Debate corpus (Shamma et al., 2009)
and Health Care Reform corpus (Speriosu et
al., 2011) or big and proprietary such as in
(Lin and Kolcz, 2012). Others rely on noisy
labels obtained from emoticons and hashtags
(Go et al., 2009). The SemEval-2014 task 9: Sen-
timent Analysis in Twitter (Nakov et al., 2013)
provides a public dataset to be used to com-
pare the accuracy of different approaches.

In this paper, we propose to analyse tweet
sentiment with the use of Adaptive Boost-
ing (Freund and Schapire, 1997), making
use of the well-known Multinomial Classi-
fier. Boosting is an approach to machine
learning that is based on the idea of creat-
ing a highly accurate prediction rule by com-
bining many relatively weak and inaccurate
rules. The AdaBoost algorithm (Freund and
Schapire, 1997) was the first practical boost-
ing algorithm, and remains one of the most
widely used and studied, with applications in
numerous fields. Therefore, it has potential to
be very useful for tweet sentiment analysis, as
we address in this paper.

2 Related Work

Classifier ensembles for tweet sentiment anal-
ysis have been underexplored in the literature
— a few exceptions are (Lin and Kolcz, 2012;
Clark and Wicentwoski, 2013; Rodriguez et
al., 2013; Hassan et al., 2013).

Lin and Kolcz (2012) used logistic regres-
sion classifiers learned from hashed byte 4-
grams as features – The feature extractor con-
siders the tweet as a raw byte array. It moves
a four-byte sliding window along the array,
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and hashes the contents of the bytes, the value
of which was taken as the feature id. Here the
4-grams refers to four characters (and not to
four words). They made no attempt to per-
form any linguistic processing, not even word
tokenization. For each of the (proprietary)
datasets, they experimented with ensembles
of different sizes. The ensembles were formed
by different models, obtained from different
training sets, but with the same learning algo-
rithm (logistic regression). Their results show
that the ensembles lead to more accurate clas-
sifiers.

Rodrı́gues et al. (2013) and Clark et al.
(2013) proposed the use of classifier ensem-
bles at the expression-level, which is related
to Contextual Polarity Disambiguation. In this
perspective, the sentiment label (positive,
negative, or neutral) is applied to a specific
phrase or word within the tweet and does not
necessarily match the sentiment of the entire
tweet.

Finally, another type of ensemble frame-
work has been recently proposed by Hassan
et al. (2013), who deal with class imbalance,
sparsity, and representational issues. The au-
thors propose to enrich the corpus using mul-
tiple additional datasets related to the task of
sentiment classification. Differently from pre-
vious works, the authors use a combination of
unigrams and bigrams of simple words, part-
of-speech, and semantic features.

None of the previous works used AdaBoost
(Freund and Schapire, 1996). Also, lexicons
and/or part-of-speech in combination with
feature hashing, like in (Lin and Kolcz, 2012)
have not been addressed in the literature.

3 AdaBoost Ensemble

Boosting is a relatively young, yet extremely
powerful, machine learning technique. The
main idea behind boosting algorithms is to
combine multiple weak learners – classifi-
cation algorithms that perform only slightly
better than random guessing – into a power-
ful composite classifier. Our focus is on the
well known AdaBoost algorithm (Freund and
Schapire, 1997) based on Multinomial Naive
Bayes as base classifiers (Figure 1).

AdaBoost and its variants have been ap-
plied to diverse domains with great success,

owing to their solid theoretical foundation,
accurate prediction, and great simplicity (Fre-
und and Schapire, 1997). For example, Viola
and Jones (2001) used AdaBoost to face de-
tection, Hao and Luo (2006) dealt with im-
age segmentation, recognition of handwritten
digits, and outdoor scene classification prob-
lems. In (Bloehdorn and Hotho, 2004) text
classification is explored.

Figure 1: AdaBoost Approach

4 Feature Engineering

The most commonly used text representation
method adopted in the literature is known as
Bag of Words (BOW) technique, where a doc-
ument is considered as a BOW, and is repre-
sented by a feature vector containing all the
words appearing in the corpus. In spite of
BOW being simple and very effective in text
classification, a large amount of information
from the original document is not considered,
word order is ruptured, and syntactic struc-
tures are broken. Therefore, sophisticated fea-
ture extraction methods with a deeper under-
standing of the documents are required for
sentiment classification tasks. Instead of us-
ing only BOW, alternative ways to represent
text, including Part of Speech (PoS) based fea-
tures, feature hashing, and lexicons have been
addressed in the literature.

We implemented an ensemble of classifiers
that receive as input data a combination of
three features sets: i) lexicon features that cap-
tures the semantic aspect of a tweet; ii) fea-
ture hashing that captures the surface-form as
abbreviations, slang terms from this type of
social network, elongated words (for exam-
ple, loveeeee), sentences with words without
a space between them (for instance, Ilovveap-
ple!), and so on; iii) and a specific syntactic fea-
tures for tweets. Technical details of each fea-
ture set are provided in the sequel.

Lexicon Features

We use the sentimental lexicon provided by
(Thelwall et al., 2010) and (Hu and Liu, 2004).
The former is known as SentiStrength and
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provides: an emotion vocabulary, an emoti-
cons list (with positive, negative, and neutral
icons), a negation list, and a booster word list.
We use the negative list in cases where the
next term in a sentence is an opinion word
(either positive or negative). In such cases
we have polarity inversion. For example, in
the sentence “The house is not beautiful”, the
negative word “not” invert the polarity of the
opinion word beautiful. The booster word list
is composed by adverbs that suggest more or
less emphasis in the sentiment. For exam-
ple, in the sentence “He was incredibly rude.”
the term “incredibly” is an adverb that lay em-
phasis on the opinion word “rude”. Besides
using SentiStrength, we use the lexicon ap-
proach proposed by (Hu and Liu, 2004). In
their approach, a list of words and associa-
tions with positive and negative sentiments
has been provided that are very useful for
sentiment analysis.

These two lexicons were used to build the
first feature set according to Table 1, where it
is presented an example of tweet representa-
tion for the tweet1: “The soccer team didn’t
play extremely bad last Wednesday.” The
word “bad” exists in the lexicon list of (Hu
and Liu, 2004), and it is a negative word.
The word “bad” also exists in the negation
list provided by (Thelwall et al., 2010). The
term “didn’t” is a negative word according to
SentiStrength (Thelwall et al., 2010) and there
is a polarity inversion of the opinion words
ahead. Finally, the term “extremely” belongs
the booster word list and this word suggests
more emphasis to the opinion words existing
ahead.

positive negative neutral class
tweet1 3 0 0 positive

Table 1: Representing Twitter messages with
lexicons.

Feature hashing

Feature hashing has been introduced for text
classification in (Shi et al., 2009), (Wein-
berger et al., 2009), (Forman and Kirshen-
baum, 2008), (Langford et al., 2007), (Caragea
et al., 2011). In the context of tweet classi-
fication, feature hashing offers an approach
to reducing the number of features provided

as input to a learning algorithm. The origi-
nal high-dimensional space is “reduced” by
hashing the features into a lower-dimensional
space, i.e., mapping features to hash keys.
Thus, multiple features can be mapped to the
same hash key, thereby “aggregating” their
counts.

We used the MurmurHash3 function
(SMHasher, 2010), that is a non-cryptographic
hash function suitable for general hash-based
lookup tables. It has been used for many
purposes, and a recent approach that has
emerged is its use for feature hashing or
hashing trick. Instead of building and storing
an explicit traditional bag-of-words with
n-grams, the feature hashing uses a hash
function to reduce the dimensionality of the
output space and the length of this space
(features) is explicitly fixed in advance. For
this paper, we used this code (in Python):

Code Listing 1: Murmurhash:

from sklearn.utils.murmurhash
import murmurhash3_bytes_u32

for w in "i loveee apple".split():
print("{0} => {1}".format(

w,murmurhash3_bytes_u32(w,0)%2**10))

The dimensionality is 2 ∗ ∗10, i.e 210 fea-
tures. In this code the output is a hash code
for each word “w” in the phrase “i loveee
apple”, i.e. i => 43, loveee => 381 and
apple => 144. Table 2 shows an example of
feature hashing representation.

1 2 3 4 · · · 1024 class
tweet1 0 0 1 1 · · · 0 positive
tweet2 0 1 0 3 · · · 0 negative
tweet3 2 0 0 0 · · · 0 positive

...
...

...
...

... · · · ...
...

tweetn 0 0 2 1 · · · 0 neutral

Table 2: Representing Twitter messages with
feature hashing.

Specific syntactic (PoS) features

We used the Part of Speech (PoS) tagged for
tweets with the Twitter NLP tool (Gimpel et
al., 2011). It encompasses 25 tags including
Nominal, Nominal plus Verbal, Other open-
class words like adjectives, adverbs and in-
terjection, Twitter specific tags such as hash-
tags, mention, discourse marker, just to name
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a few. Table 3 shows an example of syntactic
features representation.

tag1 tag2 tag3 tag4 · · · tag25 class
tweet1 0 0 3 1 · · · 0 positive
tweet2 0 2 0 1 · · · 0 negative
tweet3 1 0 0 0 · · · 0 positive

...
...

...
...

... · · · ...
...

tweetn 0 0 1 1 · · · 0 neutral

Table 3: Representing Twitter messages with
syntactic features.

A combination of lexicons, feature hashing,
and part-of-speech is used to train the ensem-
ble classifiers, thereby resulting in 1024 fea-
tures from feature hashing, 3 features from
lexicons, and 25 features from PoS.

5 Experimental Setup and Results

We conducted experiments by using the
WEKA platform1. Table 4 shows the class dis-
tributions in training, development, and test-
ing sets. Table 5 presents the results for posi-
tive and negative classes with the classifiers
used in training set, and Table 6 shows the
computed results by SemEval organizers in
the test sets.

Training Set
Set Positive Negative Neutral Total
Train 3,640 (37%) 1,458 (15%) 4,586 (48%) 9,684

Development Set
Set Positive Negative Neutral Total
Dev 575 (35%) 340(20%) 739 (45%) 1,654

Testing Sets
Set Positive Negative Neutral Total
LiveJournal 427 (37%) 304 (27%) 411 (36%) 1,142
SMS2013 492 (23%) 394(19%) 1,207 (58%) 2,093
Twitter2013 1,572 (41%) 601 (16%) 1,640 (43%) 3,813
Twitter2014 982 (53%) 202 (11%) 669 (36%) 1,853
Twitter2014Sar 33 (38%) 40 (47%) 13 (15%) 86

Table 4: Class distributions in the training set
(Train), development set (Dev) and testing set
(Test).

6 Concluding Remarks

From our results, we conclude that the use of
AdaBoost provides good performance in the
sentiment analysis (message-level subtask).
In the cross-validation process, Multinomial
Naive Bayes (MNB) has shown better results
than Support Vector Machines (SVM) as a
component for AdaBoost. However, we feel

1http://www.cs.waikato.ac.nz/ml/weka/

Set Algorithm F-Measure
Positive

F-Measure
Negative

Average

Train MNB 63.40 49.40 56.40
Train SVM 64.00 44.50 54.20
Train AdaBoost w/ SVM 62.50 44.50 53.50
Train AdaBoost w/ MNB 65.10 49.60 57.35

Table 5: Results from 10-fold cross validation
in the training set with default parameters of
Weka. MNB and SVM stand for Multinomial
Naive Bayes and Support Vector Machine, re-
spectively.

Scoring LiveJournal2014
class precision recall F-measure

positive 69.79 64.92 67.27
negative 76.64 61.64 68.33
neutral 51.82 69.84 59.50

overall score : 67.80
Scoring SMS2013

positive 61.99 46.78 53.32
negative 72.34 42.86 53.82
neutral 53.85 83.76 65.56

overall score : 53.57
Scoring Twitter2013

positive 68.07 66.13 67.08
negative 48.09 50.00 49.02
neutral 67.20 68.15 67.67

overall score : 58.05
Scoring Twitter2014

positive 65.17 70.48 67.72
negative 53.47 48.21 50.70
neutral 59.94 55.62 57.70

overall score : 59.21
Scoring Twitter2014Sarcasm

positive 63.64 44.68 52.50
negative 22.50 75.00, 34.62
neutral 76.92 37.04 50.00

overall score : 43.56

Table 6: Results in the test sets — AdaBoost
plus Multinomial Naive Bayes, which was the
best algorithm in cross validation.

that further investigations are necessary be-
fore making strong claims about this result.

Overall, the SemEval Tasks have make evi-
dent the usual challenges when mining opin-
ions from Social Media channels: noisy text,
irregular grammar and orthography, highly
specific lingo, and others. Moreover, tempo-
ral dependencies can affect the performance if
the training and test data have been gathered
at different.
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Abstract

We describe our approach for the
SemEval-2014 task 9: Sentiment Analy-
sis in Twitter. We make use of an en-
semble learning method for sentiment
classification of tweets that relies on
varied features such as feature hash-
ing, part-of-speech, and lexical fea-
tures. Our system was evaluated in
the Twitter message-level task.

1 Introduction

The sentiment analysis is a field of study that
investigates feelings present in texts. This
field of study has become important, espe-
cially due to the internet growth, the content
generated by its users, and the emergence of
the social networks. In the social networks
such as Twitter people post their opinions in a
colloquial and compact language, and it is be-
coming a large dataset, which can be used as
a source of information for various automatic
tools of sentiment inference. There is an enor-
mous interest in sentiment analysis of Twit-
ter messages, known as tweets, with applica-
tions in several segments, such as (i) directing
marketing campaigns, extracting consumer re-
views of services and products (Jansen et al.,
2009); (ii) identifying manifestations of bully-
ing (Xu et al., 2012); (iii) predicting to fore-
cast box-office revenues for movies (Asur and
Huberman, 2010); and (iv) predicting accep-
tance or rejection of presidential candidates
(Diakopoulos and Shamma, 2010; O’Connor
et al., 2010).

This work is licensed under a Creative
Commons Attribution 4.0 International Li-
cence. Page numbers and proceedings footer
are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

One of the problems encountered by re-
searchers in tweet sentiment analysis is the
scarcity of public datasets. Although Twit-
ter sentiment datasets have already been cre-
ated, they are either small — such as Obama-
McCain Debate corpus (Shamma et al., 2009)
and Health Care Reform corpus (Speriosu et
al., 2011) or big and proprietary such as in
(Lin and Kolcz, 2012). Others rely on noisy
labels obtained from emoticons and hashtags
(Go et al., 2009). The SemEval-2014 task 9: Sen-
timent Analysis in Twitter (Nakov et al., 2013)
provides a public dataset to be used to com-
pare the accuracy of different approaches.

In this paper, we propose to analyse tweet
sentiment with the use of Adaptive Boost-
ing (Freund and Schapire, 1997), making
use of the well-known Multinomial Classi-
fier. Boosting is an approach to machine
learning that is based on the idea of creat-
ing a highly accurate prediction rule by com-
bining many relatively weak and inaccurate
rules. The AdaBoost algorithm (Freund and
Schapire, 1997) was the first practical boost-
ing algorithm, and remains one of the most
widely used and studied, with applications in
numerous fields. Therefore, it has potential to
be very useful for tweet sentiment analysis, as
we address in this paper.

2 Related Work

Classifier ensembles for tweet sentiment anal-
ysis have been underexplored in the literature
— a few exceptions are (Lin and Kolcz, 2012;
Clark and Wicentwoski, 2013; Rodriguez et
al., 2013; Hassan et al., 2013).

Lin and Kolcz (2012) used logistic regres-
sion classifiers learned from hashed byte 4-
grams as features – The feature extractor con-
siders the tweet as a raw byte array. It moves
a four-byte sliding window along the array,
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and hashes the contents of the bytes, the value
of which was taken as the feature id. Here the
4-grams refers to four characters (and not to
four words). They made no attempt to per-
form any linguistic processing, not even word
tokenization. For each of the (proprietary)
datasets, they experimented with ensembles
of different sizes. The ensembles were formed
by different models, obtained from different
training sets, but with the same learning algo-
rithm (logistic regression). Their results show
that the ensembles lead to more accurate clas-
sifiers.

Rodrı́gues et al. (2013) and Clark et al.
(2013) proposed the use of classifier ensem-
bles at the expression-level, which is related
to Contextual Polarity Disambiguation. In this
perspective, the sentiment label (positive,
negative, or neutral) is applied to a specific
phrase or word within the tweet and does not
necessarily match the sentiment of the entire
tweet.

Finally, another type of ensemble frame-
work has been recently proposed by Hassan
et al. (2013), who deal with class imbalance,
sparsity, and representational issues. The au-
thors propose to enrich the corpus using mul-
tiple additional datasets related to the task of
sentiment classification. Differently from pre-
vious works, the authors use a combination of
unigrams and bigrams of simple words, part-
of-speech, and semantic features.

None of the previous works used AdaBoost
(Freund and Schapire, 1996). Also, lexicons
and/or part-of-speech in combination with
feature hashing, like in (Lin and Kolcz, 2012)
have not been addressed in the literature.

3 AdaBoost Ensemble

Boosting is a relatively young, yet extremely
powerful, machine learning technique. The
main idea behind boosting algorithms is to
combine multiple weak learners – classifi-
cation algorithms that perform only slightly
better than random guessing – into a power-
ful composite classifier. Our focus is on the
well known AdaBoost algorithm (Freund and
Schapire, 1997) based on Multinomial Naive
Bayes as base classifiers (Figure 1).

AdaBoost and its variants have been ap-
plied to diverse domains with great success,

owing to their solid theoretical foundation,
accurate prediction, and great simplicity (Fre-
und and Schapire, 1997). For example, Viola
and Jones (2001) used AdaBoost to face de-
tection, Hao and Luo (2006) dealt with im-
age segmentation, recognition of handwritten
digits, and outdoor scene classification prob-
lems. In (Bloehdorn and Hotho, 2004) text
classification is explored.

Figure 1: AdaBoost Approach

4 Feature Engineering

The most commonly used text representation
method adopted in the literature is known as
Bag of Words (BOW) technique, where a doc-
ument is considered as a BOW, and is repre-
sented by a feature vector containing all the
words appearing in the corpus. In spite of
BOW being simple and very effective in text
classification, a large amount of information
from the original document is not considered,
word order is ruptured, and syntactic struc-
tures are broken. Therefore, sophisticated fea-
ture extraction methods with a deeper under-
standing of the documents are required for
sentiment classification tasks. Instead of us-
ing only BOW, alternative ways to represent
text, including Part of Speech (PoS) based fea-
tures, feature hashing, and lexicons have been
addressed in the literature.

We implemented an ensemble of classifiers
that receive as input data a combination of
three features sets: i) lexicon features that cap-
tures the semantic aspect of a tweet; ii) fea-
ture hashing that captures the surface-form as
abbreviations, slang terms from this type of
social network, elongated words (for exam-
ple, loveeeee), sentences with words without
a space between them (for instance, Ilovveap-
ple!), and so on; iii) and a specific syntactic fea-
tures for tweets. Technical details of each fea-
ture set are provided in the sequel.

Lexicon Features

We use the sentimental lexicon provided by
(Thelwall et al., 2010) and (Hu and Liu, 2004).
The former is known as SentiStrength and
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provides: an emotion vocabulary, an emoti-
cons list (with positive, negative, and neutral
icons), a negation list, and a booster word list.
We use the negative list in cases where the
next term in a sentence is an opinion word
(either positive or negative). In such cases
we have polarity inversion. For example, in
the sentence “The house is not beautiful”, the
negative word “not” invert the polarity of the
opinion word beautiful. The booster word list
is composed by adverbs that suggest more or
less emphasis in the sentiment. For exam-
ple, in the sentence “He was incredibly rude.”
the term “incredibly” is an adverb that lay em-
phasis on the opinion word “rude”. Besides
using SentiStrength, we use the lexicon ap-
proach proposed by (Hu and Liu, 2004). In
their approach, a list of words and associa-
tions with positive and negative sentiments
has been provided that are very useful for
sentiment analysis.

These two lexicons were used to build the
first feature set according to Table 1, where it
is presented an example of tweet representa-
tion for the tweet1: “The soccer team didn’t
play extremely bad last Wednesday.” The
word “bad” exists in the lexicon list of (Hu
and Liu, 2004), and it is a negative word.
The word “bad” also exists in the negation
list provided by (Thelwall et al., 2010). The
term “didn’t” is a negative word according to
SentiStrength (Thelwall et al., 2010) and there
is a polarity inversion of the opinion words
ahead. Finally, the term “extremely” belongs
the booster word list and this word suggests
more emphasis to the opinion words existing
ahead.

positive negative neutral class
tweet1 3 0 0 positive

Table 1: Representing Twitter messages with
lexicons.

Feature hashing

Feature hashing has been introduced for text
classification in (Shi et al., 2009), (Wein-
berger et al., 2009), (Forman and Kirshen-
baum, 2008), (Langford et al., 2007), (Caragea
et al., 2011). In the context of tweet classi-
fication, feature hashing offers an approach
to reducing the number of features provided

as input to a learning algorithm. The origi-
nal high-dimensional space is “reduced” by
hashing the features into a lower-dimensional
space, i.e., mapping features to hash keys.
Thus, multiple features can be mapped to the
same hash key, thereby “aggregating” their
counts.

We used the MurmurHash3 function
(SMHasher, 2010), that is a non-cryptographic
hash function suitable for general hash-based
lookup tables. It has been used for many
purposes, and a recent approach that has
emerged is its use for feature hashing or
hashing trick. Instead of building and storing
an explicit traditional bag-of-words with
n-grams, the feature hashing uses a hash
function to reduce the dimensionality of the
output space and the length of this space
(features) is explicitly fixed in advance. For
this paper, we used this code (in Python):

Code Listing 1: Murmurhash:

from sklearn.utils.murmurhash
import murmurhash3_bytes_u32

for w in "i loveee apple".split():
print("{0} => {1}".format(

w,murmurhash3_bytes_u32(w,0)%2**10))

The dimensionality is 2 ∗ ∗10, i.e 210 fea-
tures. In this code the output is a hash code
for each word “w” in the phrase “i loveee
apple”, i.e. i => 43, loveee => 381 and
apple => 144. Table 2 shows an example of
feature hashing representation.

1 2 3 4 · · · 1024 class
tweet1 0 0 1 1 · · · 0 positive
tweet2 0 1 0 3 · · · 0 negative
tweet3 2 0 0 0 · · · 0 positive

...
...

...
...

... · · · ...
...

tweetn 0 0 2 1 · · · 0 neutral

Table 2: Representing Twitter messages with
feature hashing.

Specific syntactic (PoS) features

We used the Part of Speech (PoS) tagged for
tweets with the Twitter NLP tool (Gimpel et
al., 2011). It encompasses 25 tags including
Nominal, Nominal plus Verbal, Other open-
class words like adjectives, adverbs and in-
terjection, Twitter specific tags such as hash-
tags, mention, discourse marker, just to name
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a few. Table 3 shows an example of syntactic
features representation.

tag1 tag2 tag3 tag4 · · · tag25 class
tweet1 0 0 3 1 · · · 0 positive
tweet2 0 2 0 1 · · · 0 negative
tweet3 1 0 0 0 · · · 0 positive

...
...

...
...

... · · · ...
...

tweetn 0 0 1 1 · · · 0 neutral

Table 3: Representing Twitter messages with
syntactic features.

A combination of lexicons, feature hashing,
and part-of-speech is used to train the ensem-
ble classifiers, thereby resulting in 1024 fea-
tures from feature hashing, 3 features from
lexicons, and 25 features from PoS.

5 Experimental Setup and Results

We conducted experiments by using the
WEKA platform1. Table 4 shows the class dis-
tributions in training, development, and test-
ing sets. Table 5 presents the results for posi-
tive and negative classes with the classifiers
used in training set, and Table 6 shows the
computed results by SemEval organizers in
the test sets.

Training Set
Set Positive Negative Neutral Total
Train 3,640 (37%) 1,458 (15%) 4,586 (48%) 9,684

Development Set
Set Positive Negative Neutral Total
Dev 575 (35%) 340(20%) 739 (45%) 1,654

Testing Sets
Set Positive Negative Neutral Total
LiveJournal 427 (37%) 304 (27%) 411 (36%) 1,142
SMS2013 492 (23%) 394(19%) 1,207 (58%) 2,093
Twitter2013 1,572 (41%) 601 (16%) 1,640 (43%) 3,813
Twitter2014 982 (53%) 202 (11%) 669 (36%) 1,853
Twitter2014Sar 33 (38%) 40 (47%) 13 (15%) 86

Table 4: Class distributions in the training set
(Train), development set (Dev) and testing set
(Test).

6 Concluding Remarks

From our results, we conclude that the use of
AdaBoost provides good performance in the
sentiment analysis (message-level subtask).
In the cross-validation process, Multinomial
Naive Bayes (MNB) has shown better results
than Support Vector Machines (SVM) as a
component for AdaBoost. However, we feel

1http://www.cs.waikato.ac.nz/ml/weka/

Set Algorithm F-Measure
Positive

F-Measure
Negative

Average

Train MNB 63.40 49.40 56.40
Train SVM 64.00 44.50 54.20
Train AdaBoost w/ SVM 62.50 44.50 53.50
Train AdaBoost w/ MNB 65.10 49.60 57.35

Table 5: Results from 10-fold cross validation
in the training set with default parameters of
Weka. MNB and SVM stand for Multinomial
Naive Bayes and Support Vector Machine, re-
spectively.

Scoring LiveJournal2014
class precision recall F-measure

positive 69.79 64.92 67.27
negative 76.64 61.64 68.33
neutral 51.82 69.84 59.50

overall score : 67.80
Scoring SMS2013

positive 61.99 46.78 53.32
negative 72.34 42.86 53.82
neutral 53.85 83.76 65.56

overall score : 53.57
Scoring Twitter2013

positive 68.07 66.13 67.08
negative 48.09 50.00 49.02
neutral 67.20 68.15 67.67

overall score : 58.05
Scoring Twitter2014

positive 65.17 70.48 67.72
negative 53.47 48.21 50.70
neutral 59.94 55.62 57.70

overall score : 59.21
Scoring Twitter2014Sarcasm

positive 63.64 44.68 52.50
negative 22.50 75.00, 34.62
neutral 76.92 37.04 50.00

overall score : 43.56

Table 6: Results in the test sets — AdaBoost
plus Multinomial Naive Bayes, which was the
best algorithm in cross validation.

that further investigations are necessary be-
fore making strong claims about this result.

Overall, the SemEval Tasks have make evi-
dent the usual challenges when mining opin-
ions from Social Media channels: noisy text,
irregular grammar and orthography, highly
specific lingo, and others. Moreover, tempo-
ral dependencies can affect the performance if
the training and test data have been gathered
at different.
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Abstract

Clinical texts, such as discharge sum-
maries or test reports, contain a valuable
amount of information that, if efficiently
and effectively mined, could be used to
infer new knowledge, possibly leading to
better diagnosis and therapeutics. With
this in mind, the SemEval-2014 Analysis
of Clinical Text task aimed at assessing
and improving current methods for identi-
fication and normalization of concepts oc-
curring in clinical narrative. This paper
describes our approach in this task, which
was based on a fully modular architec-
ture for text mining. We followed a pure
dictionary-based approach, after perform-
ing error analysis to refine our dictionaries.

We obtained an F-measure of 69.4% in
the entity recognition task, achieving the
second best precision over all submitted
runs (81.3%), with above average recall
(60.5%). In the normalization task, we
achieved a strict accuracy of 53.1% and a
relaxed accuracy of 87.0%.

1 Introduction

Named entity recognition (NER) is an information
extraction task where the aim is to identify men-
tions of specific types of entities in text. This task
has been one of the main focus in the biomedi-
cal text mining research field, specially when ap-
plied to the scientific literature. Such efforts have
led to the development of various tools for the
recognition of diverse entities, including species
names, genes and proteins, chemicals and drugs,
anatomical concepts and diseases. These tools use

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

methods based on dictionaries, rules, and machine
learning, or a combination of those depending on
the specificities and requirements of each concept
type (Campos et al., 2013b). After identifying en-
tities occurring in texts, it is also relevant to dis-
ambiguate those entities and associate each occur-
rence to a specific concept, using an univocal iden-
tifier from a reference database such as Uniprot1

for proteins, or OMIM2 for genetic disorders. This
is usually performed by matching the identified
entities against a knowledge-base, possibly eval-
uating the textual context in which the entity oc-
curred to identify the best matching concept.

The SemEval-2014 Analysis of Clinical Text
task aimed at the identification and normalization
of concepts in clinical narrative. Two subtasks
were defined, where Task A was focused on the
recognition of entities belonging to the ‘disorders’
semantic group of the Unified Medical Language
System (UMLS), and Task B was focused on nor-
malization of these entities to a specific UMLS
Concept Unique Identifier (CUI). Specifically, the
task definition required that concepts should only
be normalized to CUIs that could be mapped to the
SNOMED CT3 terminology.

In this paper, we present a dictionary-based ap-
proach for the recognition of these concepts, sup-
ported by a modular text analysis and annotation
pipeline.

2 Methods

2.1 Data

The task made use of the ShARe corpus (Pradhan
et al., 2013), which contains manually annotated
clinical notes from the MIMIC II database4 (Saeed
et al., 2011). The corpus contains 298 documents,

1http://www.uniprot.org/
2http://www.omim.org/
3http://www.ihtsdo.org/snomed-ct/
4http://mimic.physionet.org/database.html

135



Processing pipeline

Dictionaries

Reader

Sentence 
Tagger

NLP

Documents Annotated
Documents

Models

Dictionary 
Tagger

ML Tagger

Post-processing

Custom Module

Writer

Relation extractor

Indexer

Abbreviation resolution

Disambiguator

Figure 1: Neji’s processing pipeline used for annotating the documents. Boxes with dotted lines indicate
optional processing modules. Machine-learning models were not used.

with a total of 11156 annotations of disorder men-
tions. These annotations include a UMLS concept
identifier when such normalization was possible
according to the annotation guidelines.

Besides this manually annotated corpus, a larger
unannotated data set was also made available to
task participants, in order to allow the application
of unsupervised methods.

2.2 Processing Pipeline

We used Neji, an open source framework for
biomedical concept recognition based on an au-
tomated processing pipeline that supports the
combined application of machine learning and
dictionary-based approaches (Campos et al.,
2013a). Apart from offering a flexible frame-
work for developing different text mining sys-
tems, Neji includes various built-in methods, from
text loading and pre-processing, to natural lan-
guage parsing and entity tagging, all optimized
for processing biomedical text. Namely, it in-
cludes a sentence splitting module adapted from
the Lingpipe library5 and a customized version
of GDep (Sagae and Tsujii, 2007) for tokeniza-
tion, part-of-speech tagging, and other natural lan-
guage processing tasks. Figure 1 shows the com-
plete Neji text processing pipeline, illustrating its
module based architecture built on top of a com-
mon data structure. The dictionary module per-
forms exact, case-insensitive matching using De-
terministic Finite Automatons (DFAs), allowing

5http://alias-i.com/lingpipe/index.html

very efficient processing of documents and match-
ing against dozens of dictionaries containing mil-
lions of terms.

Neji has been validated against different
biomedical literature corpora, using specifically
created machine learning models and dictionar-
ies. Regarding the recognition of disorder con-
cepts, Neji achieved an F-measure of 68% on ex-
act mathing and 83% on approximate matching
against the NCBI disease corpus, using a pure
dictionary-based approach (Doğan and Lu, 2012).

2.3 Dictionaries
Following the task description and the corpus an-
notation guidelines, we compiled dictionaries for
the following UMLS semantic types, using the
2012AB version of the UMLS Metathesaurus:

• Congenital Abnormality
• Acquired Abnormality
• Injury or Poisoning
• Pathologic Function
• Disease or Syndrome
• Mental or Behavioral Dysfunction
• Cell or Molecular Dysfunction
• Anatomical Abnormality
• Neoplastic Process
• Signs and Symptoms

Additionally, although the semantic type ‘Find-
ings’ was not considered as part of the ‘Disorders’
group, we created a customized dictionary includ-
ing only those concepts of this semantic type that
occurred as an annotation in the training data. If

136



a synonym of a given concept was present in the
training data annotations, we added all the syn-
onyms of that concept to this dictionary. This
allowed including some concepts that occur very
frequently (e.g. ’fever’), while filtering out many
concepts of this semantic type that are not relevant
for this task. In total, these dictionaries contain
almost 1.5 million terms, of which 525 thousand
(36%) were distinct terms, for nearly 293 thousand
distinct concept identifiers.

Refining the dictionaries
In order to expand the dictionaries, we pre-
processed the UMLS terms to find certain patterns
indicating acronyms. For example, if a term such
as ‘Miocardial infarction (MI)’ or ‘Miocardial in-
farction - MI’ appeared as a synonym for a given
UMLS concept, we checked if the acronym (in this
example, ‘MI’) was also a synonym for that con-
cept, and added it to a separate dictionary if this
was not the case. This resulted in the addition of
10430 terms, for which only 1459 (14%) were dis-
tinct, for 2086 concepts. These numbers reflect the
expected ambiguity in the acronyms, which repre-
sents one of the main challenges in the annotation
of clinical texts.

Furthermore, in order to improve the baseline
results obtained with the initial dictionaries, we
performed error analysis to identify frequent er-
rors in the automatic annotations. Using the man-
ual annotations as reference, we counted the num-
ber of times a term was correctly annotated in the
documents (true positives) and compared it to the
number of times that same term caused an annota-
tion to be incorrectly added (a false positive). We
then defined an exclusion list containing 817 terms
for which the ratio of these two counts was 0.25 or
less.

Following the same approach, we created a sec-
ond exclusion list by comparing the number of
FNs to the number of FPs, and selecting those
terms for which this ratio was lower than 0.5. This
resulted in an exclusion list containing 623 terms.

We also processed the unannotated data set, in
order to identify frequently occurring terms that
could be removed from the dictionaries to avoid
large numbers of false positives. This dataset in-
cludes over 92 thousand documents, which were
processed in around 23 minutes (an average of
67 documents per second) and produced almost
4 million annotations. Examples of terms from
our dictionaries that occur very frequently in this

data set are: ‘sinus rhythm’, which occurred al-
most 35 thousand times across all documents, and
‘past medical history’, ‘allergies’ and ‘abnormal-
ities’, all occurring more than 15 thousand times.
In fact, most of the highly frequent terms belonged
to the ‘Findings’ semantic type. Although this
analysis gave some insights regarding the content
of the data, its results were not directly used to
refine the dictionaries, since the filtering steps de-
scribed above led to better overall results.

2.4 Concept Normalization

According to the task description, only those
UMLS concepts that could be mapped to a
SNOMED CT identifier should be considered in
the normalization step, while all other entities
should be added to the results without a concept
identifier. We followed a straightforward normal-
ization strategy, by assigning the corresponding
UMLS CUIs to each identified entity, during the
dictionary-matching phase. We then filtered out
any CUIs that did not have a SNOMED CT map-
ping in the UMLS data. In the cases when multi-
ple idenfiers were still left, we naively selected the
first one, according the dictionary ordering defined
above, followed in the end by the filtered ‘Find-
ings’ dictionary and the additional acronyms dic-
tionary.

3 Results and Discussion

3.1 Evaluation Metrics

The common evaluation metrics were used to
evaluate the entity recognition task, namely
Precision = TP/(TP + FP ) and Recall =
TP/(TP+FN), where TP, FP and FN are respec-
tively the number of true positive, false positive,
and false negative annotations, and Fmeasure =
2× Precision×Recall/(Precision + Recall),
the harmonic mean of precision and recall. Addi-
tionally, the performance was evaluated consider-
ing both strict and relaxed, or overlap, matching of
the gold standard annotations.

For the normalization task, the metric used to
evaluate performance was accuracy. Again, two
matching methods were considered: strict accu-
racy was defined as the ratio between the number
of correct identifiers assigned to the predicted en-
tities, and the total number of entities manually
annotated in the corpus; while relaxed accuracy
measured the ratio between the number of correct
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Task A Task B
Strict Relaxed Strict Relaxed

Run P R F P R F Acc Acc
Best 0,843 0,786 0,813 0,936 0,866 0,900 0,741 0,873
Average 0,648 0,574 0,599 0,842 0,731 0,770 0,461 0,753
0 0,813 0,605 0,694 0,929 0,693 0,794 0,527 0,870
1 0,600 0,621 0,610 0,698 0,723 0,710 0,531 0,855
2 0,753 0,538 0,628 0,865 0,621 0,723 0,463 0,861

Table 1: Official results on the test dataset. The best results for each task and matching strategy are
identified in bold. The best run from all participating teams as well as the overall average are shown for
comparison.

identifiers and the number of entities correctly pre-
dicted by the system.

3.2 Test Results

We submitted three runs of annotations for the
documents in the test set, as described below:

• Run 0: Resulting annotations were filtered
using the first exclusion list (817 terms,
TP/FP ratio 0.25 or lower). The ex-
tra acronyms dictionary was not used, and
matches up to 3 characters long were filtered
out, except if they were 3 characters long and
appeared as uppercase in the original text.

• Run 1: The extra acronyms dictionary was
included. The same exclusion list as in Run
0 was used, but short annotations were not
removed.

• Run 2: The extra acronyms dictionary was
included. The second exclusion list was used,
and short annotations were not removed.

Table 1 shows the official results obtained on
the test set for each submitted run.

Overall, the best results were obtained with the
more stringent dictionaries and filtering, leading
to a precision of 81.3% and and F-measure of
69.4%. This results was achieved without the use
of the additional acronyms list, and also by re-
moving short annotations. This filtering does not
discard annotations with three characters if they
appeared in uppercase in the original text, as this
more clearly indicates the use of an acronym. Pre-
liminary evaluation on the training data showed
that this choice had a small, but positive contri-
bution to the overall results.

We achieved the second-best precision results
with this first run, considering both strict and re-
laxed matching. Although this level of precision
was not associated to a total loss in recall, we
were only able to identify 70% of the disorder
entities, even when considering relaxed match-
ing. To overcome this limitation, we will evalu-
ate the combined use of dictionaries and machine-
learning models, taking advantage of the Neji
framework. Another possible limitation has to
do with the recognition and disambiguation of
acronyms, which we will also evaluate further.

Regarding the normalization results (Task B),
we achieved the 12th and 10th best overall results,
considering strict and relaxed accuracies respec-
tively, corresponding to the 7th and 6th best team.
For relaxed matching, our results are 5,8% lower
than the best team, which is a positive result given
the naı̈ve approach taken. These performances
may be improved as a result of enhancements in
the entity recognition step, and by applying a bet-
ter normalization strategy.

4 Conclusions

We present results for the recognition and normal-
ization of disorder mentions in clinical texts, us-
ing a dictionary-based approach . The dictionaries
were iteratively filtered following error-analysis,
in order to better tailor the dictionaries according
to the task annotation guidelines. In the end, a
precision of 81.3% was achieved, for a recall of
60.5% and a F-measure of 69.4%. The use of
a machine-learning based approach and a better
acronym resolution method are being studied with
the aim of improving the recall rate.

In the normalization task, using the refined dic-
tionaries directly, we achieved a strict accuracy of
53.1% and a relaxed accuracy of 87.0%. Strict
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normalization results, as given by the metric de-
fined for this task, are dependent on the entity
recognition recall rate, and are expected to follow
improvements that may be achieved in that step.
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Rezarta Islamaj Doğan and Zhiyong Lu. 2012. An
improved corpus of disease mentions in PubMed ci-
tations. In Proceedings of BioNLP’12, pages 91–99,
Stroudsburg, PA, USA, June.

Sameer Pradhan, Noemie Elhadad, Brett South, David
Martinez, Lee Christensen, Amy Vogel, Hanna
Suominen, Wendy Chapman, and Guergana Savova.
2013. Task 1: ShARe/CLEF eHealth Evaluation
Lab 2013. Online Working Notes of the CLEF 2013
Evaluation Labs and Workshop.

Mohammed Saeed, Mauricio Villarroel, Andrew Reis-
ner, Gari Clifford, Li-Wei Lehman, George Moody,
Thomas Heldt, Tin Kyaw, Benjamin Moody, and
Roger Mark. 2011. Multiparameter Intelligent
Monitoring in Intensive Care II (MIMIC-II): a
public-access intensive care unit database. Critical
Care Medicine, 39(5):952.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency
parsing and domain adaptation with LR models and
parser ensembles. In Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1044–1050, Prague, Czech Republic.

139



Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 140–144,
Dublin, Ireland, August 23-24, 2014.

Blinov: Distributed Representations of Words for  

Aspect-Based Sentiment Analysis at SemEval 2014 

 

 

Pavel Blinov, Eugeny Kotelnikov 

Vyatka State Humanities University 

{blinoff.pavel, kotelnikov.ev}@gmail.com 

 

  

 

Abstract 

The article describes our system 

submitted to the SemEval-2014 task 

on Aspect-Based Sentiment Analy-

sis. The methods based on distribut-

ed representations of words for the 

aspect term extraction and aspect 

term polarity detection tasks are pre-

sented. The methods for the aspect 

category detection and category po-

larity detection tasks are presented 

as well. Well-known skip-gram 

model for constructing the distribut-

ed representations is briefly de-

scribed. The results of our methods 

are shown in comparison with the 

baseline and the best result. 

1 Introduction 

The sentiment analysis became an important 

Natural Language Processing (NLP) task in the 

recent few years. As many NLP tasks it’s a chal-

lenging one. The sentiment analysis can be very 

helpful for some practical applications. For ex-

ample, it allows to study the users’ opinions 

about a product automatically. 

Many research has been devoted to the general 

sentiment analysis (Pang et al., 2002), 

(Amine et al., 2013), (Blinov et al., 2013) or 

analysis of individual sentences (Yu and Hatzi-

vassiloglou, 2003), (Kim and Hovy, 2004), 

(Wiebe and Riloff, 2005). Soon it became clear 

that the sentiment analysis on the level of a 

whole text or even sentences is too coarse. Gen-

eral sentiment analysis by its design is not capa-

ble to perform the detailed analysis of an ex-

pressed opinion. For example, it cannot correctly 

detect the opinion in the sentence “Great food 

but the service was dreadful!”. The sentence car-

ries opposite opinions on two facets of a restau-

rant. Therefore the more detailed version of the 

sentiment analysis is needed. Such a version is 

called the aspect-based sentiment analysis and it 

works on the level of the significant aspects of 

the target entity (Liu, 2012). 

The aspect-based sentiment analysis includes 

two main subtasks: the aspect term extraction 

and its polarity detection (Liu, 2012). In this arti-

cle we describe the methods which address both 

subtasks. The methods are based on the distribut-

ed representations of words. Such word represen-

tations (or word embeddings) are useful in many 

NLP task, e.g. (Turian et al., 2009), (Al-

Rfou’ et al., 2013), (Turney, 2013). 

The remainder of the article is as follows: sec-

tion two gives the overview of the data; the third 

section shortly describes the distributed represen-

tations of words. The methods of the aspect term 

extraction and polarity detection are presented in 

the fourth and the fifth sections respectively. The 

conclusions are given in the sixth section. 

2 The Data 

The organisers provided the train data for restau-

rant and laptop domains. But as it will be clear 

further our methods are heavily dependent on 

unlabelled text data. So we additionally collected 

the user reviews about restaurants from tripad-

viser.com and about laptops from amazon.com. 

General statistics of the data are shown in Ta-

ble 1. 
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Table 1: The amount of reviews. 

Domain The amount of reviews 

Restaurants 652 055 

Laptops 109 550 

 

For all the data we performed tokenization, 

stemming and morphological analysis using the 

FreeLing library (Padró and Stanilovsky, 2012). 

3 Distributed Representations of Words 

In this section we’ll try to give the high level 

idea of the distributed representations of words. 

The more technical details can be found in 

(Mikolov et al., 2013). 

It is closely related with a new promising di-

rection in machine learning called the deep learn-

ing. The core idea of the unsupervised deep 

learning algorithms is to find automatically the 

“good” set of features to represent the target ob-

ject (text, image, audio signal, etc.). The object 

represented by the vector of real numbers is 

called the distributed representation (Ru-

melhart et al., 1986). We used the skip-gram 

model (Mikolov et al., 2013) implemented in 

Gensim toolkit (Řehůřek and Sojka, 2010). 

In general the learning procedure is as follows. 

All the texts of the corpus are stuck together in a 

single sequence of sentences. On the basis of the 

corpus the lexicon is constructed. Next, the di-

mensionality of the vectors is chosen (we used 

300 in our experiments). The greater number of 

dimensions allows to capture more language reg-

ularities but leads to more computational com-

plexity of the learning. Each word from the lexi-

con is associated with the real numbers vector of 

the selected dimensionality. Originally all the 

vectors are randomly initialized. During the 

learning procedure the algorithm “slides” with 

the fixed size window (it’s algorithm parameter 

that was retained by default – 5 words) along the 

words of the sequence and calculates the proba-

bility (1) of context words appearance within the 

window based on its central word under review 

(or more precisely, its vector representation) 

(Mikolov et al., 2013). 
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O
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and predicted words, W  – the number of words 

in vocabulary. 

The ultimate goal of the described process is 

to get such “good” vectors for each word, which 

allow to predict its probable context. All such 

vectors together form the vector space where 

semantically similar words are grouped. 

4 Aspect Term Extraction Method 

We apply the same method for the aspect term 

extraction task (Pontiki et al., 2014) for both do-

mains. The method consists of two steps: the 

candidate selection and the term extraction. 

4.1 Candidate Selection 

First of all we collect some statistics about the 

terms in the train collection. We analysed two 

facets of the aspect terms: the number of words 

and their morphological structure. The infor-

mation about the number of words in a term is 

shown in Table 2. 

 

Table 2: The statistics for the number of words 

in a term. 

Aspect term 

Domain 

Restaurant, % Laptop, % 

One-word 72.13 55.66 

Two-word 19.05 32.87 

Greater 8.82 11.47 

 

On the basis of that we’ve decided to process 

only single and two-word aspect terms. From the 

single terms we treat only singular (NN, e.g. 

staff, rice, texture, processor, ram, insult) and 

plural nouns (NNS, e.g. perks, bagels, times, 

dvds, buttons, pictures) as possible candidates, 

because they largely predominate among the 

one-word terms. All conjunctions of the form 

NN_NN (e.g. sea_bass, lotus_leaf, chicken_dish, 

battery_life, virus_protection, custom-

er_disservice) and NN_NNS (e.g. sushi_places, 

menu_choices, seafood_lovers, usb_devices, re-

covery_discs, software_works) were candidates 

for the two-word terms also because they are 

most common in two-word aspect terms. 

4.2 Term Extraction 

The second step for the aspect term identification 

is the term extraction. As has already been told 

the space (see Section 3) specifies the word 

groups. Therefore the measure of similarity be-

tween the words (vectors) can be defined. For 

NLP tasks it is often the cosine similarity meas-

ure. The similarity between two vectors 

),...,(
1 n

aaa 


 and ),...,(
1 n

bbb 


 is given by 

(Manning et al., 2008): 
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where   – the angle between the vectors, n – the 

dimensionality of the space. 

In case of the restaurant domain the category 

and aspect terms are specified. For each category 

the seed of the aspect terms can be automatically 

selected: if only one category is assigned for a 

train sentence then all its terms belong to it. 

Within each set the average similarity between 

the terms (the threshold category) can be found. 

For the new candidate the average similarities 

with the category’s seeds are calculated. If it is 

greater than the threshold of any category than 

the candidate is marked as an aspect term. 

Also we’ve additionally applied some rules: 

 Join consecutive terms in a single term. 

 Join neutral adjective ahead the term (see 

Section 5.2 for clarification about the neu-

tral adjective). 

 Join fragments matching the pattern: <an 

aspect term> of <an aspect term>. 

In case of the laptop domain there are no spec-

ified categories so we treated all terms as the 

terms belonging to one general category. And the 

same procedure with candidates was performed. 

4.3 Category Detection 

For the restaurant domain there was also the as-

pect category detection task (Ponti-

ki et al., 2014). 

Since each word is represented by a vector, 

each sentence can be cast to a single point as the 

average of its vectors. Further average point for 

each category can be found by means of the sen-

tence points. Then for an unseen sentence the 

average point of its word vectors is calculated. 

The category is selected by calculating the dis-

tances between all category points and a new 

point and by choosing the minimum distance. 

4.4 Results 

The aspect term extraction and the aspect catego-

ry detection tasks were evaluated with Precision, 

Recall and F-measure (Pontiki et al., 2014). The 

F-measure was a primary metric for these tasks 

so we present only it. 

The result of our method ranked 19 out of 28 

submissions (constrained and unconstrained) for 

the aspect term extraction task for the laptop do-

main and 17 out of 29 for the restaurant domain. 

For the category detection task (restaurant do-

main) the method ranked 9 out of 21. 

Table 3 shows the results of our method 

(Bold) for aspect term extraction task in compar-

ison with the baseline (Pontiki et al., 2014) and 

the best result. Analogically the results for the 

aspect category detection task are presented in 

Table 4. 

 

Table 3: Aspect term extraction results  

(F-measure). 

 Laptop Restaurant 

Best 0.7455 0.8401 

Blinov 0.5207 0.7121 

Baseline 0.3564 0.4715 

 

Table 4: Aspect category detection results 

(F-measure). 

 Restaurant 

Best 0.8858 

Blinov 0.7527 

Baseline 0.6389 

5 Polarity Detection Method 

Our polarity detection method also exploits the 

vector space (from Section 3) because the emo-

tional similarity between words can be traced in 

it. As with the aspect term extraction method we 

follow two-stage approach: the candidate selec-

tion and the polarity detection. 

5.1 Candidate Selection 

All adjectives and verbs are considered as the 

polarity term candidates. The amplifiers and the 

negations have an important role in the process 

of result polarity forming. In our method we took 

into account only negations because it strongly 

affects the word polarity. We’ve joined into one 

unit all text fragments that match the following 

pattern: not + <JJ | VB>. 

5.2 Term Polarity Detection 

At first we manually collected the small etalon 

sets of positive and negative words for each do-

main. Every set contained 15 words that clearly 

identify the sentiment. For example, for the posi-

tive polarity there were words such as: great, 

fast, attentive, yummy, etc. and for the negative 

polarity there were words like: terrible, ugly, 

not_work, offensive, etc. 

By measuring the average similarity for a can-

didate to the positive and the negative seed 

words we decided whether it is positive (+1) or 

negative (–1). Also we set up a neutral threshold 

and a candidate’s polarity was treated as neutral 

(0) if it didn’t exceed the threshold. 
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For each term (within the window of 6 words) 

we were looking for its closest polarity term can-

didate and sum up their polarities. For the final 

decision about the term’s polarity there were 

some conditions: 

 If sum > 0 then positive. 

 If sum < 0 then negative. 

 If sum == 0 and all polarity terms are neu-

tral then neutral else conflict. 

5.3 Category Polarity Detection 

By analogy with the category detection method, 

using the train collection, we calculate the aver-

age polarity points for each category, i.e. there 

were 5×4 such points (5 categories and 4 values 

of polarity). Then a sentence was cast to a point 

as the average of all its word-vectors. And clos-

est polarity points for the specified categories 

defined the polarity. 

5.4 Results 

The results of our method (Bold) for the polarity 

detection tasks are around the baseline results for 

the Accuracy measure (Tables 5, 6). 

 

Table 5: Aspect term polarity detection results 

(Accuracy). 

 Laptop Restaurant 

Best 0.7049 0.8095 

Blinov 0.5229 0.6358 

Baseline 0.5107 0.6428 

 

Table 6: Category polarity detection results 

(Accuracy). 

 Restaurant 

Best 0.8293 

Blinov 0.6566 

Baseline 0.6566 

 

However the test data is skewed to the positive 

class and for that case the Accuracy is a poor 

indicator. Because of that we also show macro F-

measure results for our and baseline methods 

(Tables 7, 8). 

 

Table 7: Aspect term polarity detection results 

(F-measure). 

 Laptop Restaurant 

Blinov 0.3738 0.4334 

Baseline 0.2567 0.2989 

 

 

 

 

Table 8: Category polarity detection results 

(F-measure). 

 Restaurant 

Blinov 0.5051 

Baseline 0.3597 

 

From that we can conclude that our method of 

the polarity detection more delicately deals with 

the minor represented classes than the baseline 

method. 

6 Conclusion 

In the article we presented the methods for two 

main subtasks for aspect-based sentiment analy-

sis: the aspect term extraction and the polarity 

detection. The methods are based on the distrib-

uted representation of words and the notion of 

similarities between the words. 

For the aspect term extraction and category 

detection tasks we get satisfied results which are 

consistent with our cross-validation metrics. Un-

fortunately for the polarity detection tasks the 

result of our method by official metrics are low. 

But we showed that the proposed method is not 

so bad and is capable to deal with the skewed 

data better than the baseline method. 
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Benemérita Universidad Autónoma de Puebla

Faculty of Computer Science
14 Sur y Av. San Claudio, CU

Puebla, Puebla, México
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Abstract

The results obtained by the BUAP team at
Task 1 of SemEval 2014 are presented in this
paper. The run submitted is a supervised ver-
sion based on two classification models: 1)
We used logistic regression for determining
the semantic relatedness between a pair of
sentences, and 2) We employed support vec-
tor machines for identifying textual entailment
degree between the two sentences. The be-
haviour for the second subtask (textual entail-
ment) obtained much better performance than
the one evaluated at the first subtask (related-
ness), ranking our approach in the 7th position
of 18 teams that participated at the competi-
tion.

1 Introduction

The Compositional Distributional Semantic Models
(CDSM) applied to sentences aim to approximate
the meaning of those sentences with vectors summa-
rizing their patterns of co-occurrence in corpora. In
the Task 1 of SemEval 2014, the organizers aimed
to evaluate the performance of this kind of models
through the following two tasks: semantic related-
ness and textual entailment. Semantic relatedness
captures the degree of semantic similarity, in this
case, between a pair of sentences, whereas textual
entailment allows to determine the entailment rela-
tion holding between two sentences.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

This document is a description paper, therefore,
we focus the rest of it on the features and models we
used for carrying out the experiments. A complete
description of the task and the dataset used are given
in Marelli et al. (2014a) and in Marelli et al. (2014b),
respectively.

The remaining of this paper is structured as fol-
lows. In Section 2 we describe the general model
we used for comparing two sentences and the set of
the features used for constructing the vectorial rep-
resentation for each sentence. Section 3 shows how
we integrate the features calculated in a single vector
which fed a supervised classifier aiming to construct
a classication model that solves the two aforemen-
tioned problems: semantic relatedness and textual
entailment. In the same section we show the ob-
tained results. Finally, in Section 4 we present our
findings.

2 Description of the Distributional
Semantic Model Used

Given a sentenceS = w1w2 · · ·w|S|, with wi a sen-
tence word, we have calculated different correlated
terms (ti,j) or a numeric vector (Vi) for each word
wi as follows:

1. {ti,j|relation(ti,j, wi)} such as “relation” is
one the following dependency relations: “ob-
ject”, “subject” or “property”.

2. {ti,j|ti,j = ck · · · ck+n} with n = 2, · · · , 5, and
ck ∈ wi; these tokens are also known asn-
grams of lengthn.

3. {ti,j|ti,j = ck · · · ck+((n−1)∗r)} with n =
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2, · · · , 5, r = 2, · · · , 5, andck ∈ wi; these to-
kens are also known asskip-grams of length
n.

4. Vi is obtained by applying the Latent Semantic
Analysis (LSA) algorithm implemented in the
R software environment for statistical comput-
ing and graphics.Vi is basically a vector of val-
ues that represent relation of the wordwi with
it context, calculated by using a corpus con-
structed by us, by integrating information from
Europarl, Project-Gutenberg and Open Office
Thesaurus.

3 A Classification Model for Semantic
Relatedness and Textual Entailment
based on DSM

Once each sentence has been represented by means
of a vectorial representation of patterns, we con-
structed a single vector,−→u , for each pair of sen-
tences with the aim of capturing the semantic relat-
edness on the basis of a training corpus.

The entries of this representation vector are calcu-
lated by obtaining the semantic similarity between
each pair of sentences, using each of the DSM
shown in the previous section. In order to calcu-
late each entry, we have found the maximum similar-
ity between each word of the first sentence with re-
spect to the second sentence and, thereafter, we have
added all these values, thus,−→u = {f1, · · · , f9}.

Given a pair of sentences S1 =
w1,1w2,1 · · ·w|S1|,1 and S2 = w1,2w2,2 · · ·w|S2|,2,
such as eachwi,k is represented according to the
correlated terms or numeric vectors established
at Section 2, the entryfi of −→u is calculated
as: fl =

∑|S1|
i=1 max{sim(wi,1, wj,2)}, with

j = 1, · · · , |S2|.
The specific similarity measure (sim()) and the

correlated term or numeric vector used for eachfl is
described as follows:

1. f1 : wi,k is the “object” of wi (as defined
in 2), and sim() is the maximum similar-
ity obtained by using the following six Word-
Net similarity metrics offered by NLTK: Lea-
cock & Chodorow (Leacock and Chodorow,
1998), Lesk (Lesk, 1986), Wu & Palmer (Wu
and Palmer, 1994), Resnik (Resnik, 1995), Lin

(Lin, 1998), and Jiang & Conrath1 (Jiang and
Conrath, 1997).

2. f2 : wi,k is the “subject” ofwi, andsim() is
the maximum similarity obtained by using the
same six WordNet similarity metrics.

3. f3 : wi,k is the “property” ofwi, andsim() is
the maximum similarity obtained by using the
same six WordNet similarity metrics.

4. f4 : wi,k is ann-gram containingwi, andsim()
is the cosine similarity measure.

5. f5 : wi,k is an skip-gram containingwi, and
sim() is the cosine similarity measure.

6. f6 : wi,k is numeric vector obtained with LSA,
andsim() is the Rada Mihalcea semantic sim-
ilarity measure (Mihalcea et al., 2006).

7. f7 : wi,k is numeric vector obtained with LSA,
andsim() is the cosine similarity measure.

8. f8 : wi,k is numeric vector obtained with LSA,
andsim() is the euclidean distance.

9. f9 : wi,k is numeric vector obtained with LSA,
andsim() is the Chebyshev distance.

All these 9 features were introduced to a logistic
regression classifier in order to obtain a classifica-
tion model which allows us to determine the value of
relatedness between a new pair of sentences2. Here,
we use as supervised class, the value of relatedness
given to each pair of sentences on the training cor-
pus.

The obtained results for the relatedness subtask
are given in Table 1. In columns 2, 3 and 5, a large
value signals a more efficient system, but a large
MSE (column 4) means a less efficient system. As
can be seen, our run obtained the rank 12 of 17, with
values slightly below the overall average.

3.1 Textual Entailment

In order to calculate the textual entailment judgment,
we have enriched the vectorial representation previ-
ously mentioned with synonyms, antonyms and cue-

1Natural Language Toolkit of Python; http://www.nltk.org/
2We have employed the Weka tool with the default settings

for this purpose
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Table 1: Results obtained at the substask “Relatedness” of the Semeval 2014 Task 1
TEAM ID PEARSON SPEARMAN MSE Rank
ECNU run1 0.82795 0.76892 0.32504 1
StanfordNLPrun5 0.82723 0.75594 0.32300 2
The MeaningFactoryrun1 0.82680 0.77219 0.32237 3
UNAL-NLP run1 0.80432 0.74582 0.35933 4
Illinois-LH run1 0.79925 0.75378 0.36915 5
CECL ALL run1 0.78044 0.73166 0.39819 6
SemantiKLUErun1 0.78019 0.73598 0.40347 7
CNGL run1 0.76391 0.68769 0.42906 8
UTexasrun1 0.71455 0.67444 0.49900 9
UoW run1 0.71116 0.67870 0.51137 10
FBK-TR run3 0.70892 0.64430 0.59135 11
BUAP run1 0.69698 0.64524 0.52774 12
UANLPCourserun2 0.69327 0.60269 0.54225 13
UQeResearchrun1 0.64185 0.62565 0.82252 14
ASAP run1 0.62780 0.59709 0.66208 15
Yamraj run1 0.53471 0.53561 2.66520 16
asjai run5 0.47952 0.46128 1.10372 17
overall average 0.71876 0.67159 0.63852 8-9
Our difference against the overall average -2% -3% 11% -

words (“no”, “not”, “nobody” and “none”) for de-
tecting negation at the sentences3. Thus, if some of
these new features exist on the training pair of sen-
tences, we add a boolean value of 1, otherwise we
set the feature to zero.

This new set of vectors is introduced to a support
vector machine classifier4, using as class the textual
entailment judgment given on the training corpus.

The obtained results for the textual entailment
subtask are given in Table 2. Our run obtained the
rank 7 of 18, with values above the overall average.
We consider that this improvement over the related-
ness task was a result of using other features that
are quite important for semantic relatedness, such
as lexical relations (synonyms and antonyms), and
the consideration of the negation phenomenon in the
sentences.

4 Conclusions

This paper describes the use of compositional distri-
butional semantic models for solving the problems

3Synonyms were extracted from WordNet, whereas the
antonyms were collected from Wikipedia.

4Again, we have employed the weka tool with the default
settings for this purpose.

of semantic relatedness and textual entailment. We
proposed different features and measures for that
purpose. The obtained results show a competitive
approach that may be further improved by consider-
ing more lexical relations or other type of semantic
similarity measures.

In general, we obtained the 7th place in the official
ranking list from a total of 18 teams that participated
at the textual entailment subtask. The result at the
semantic relatedness subtask could be improved if
we were considered to add the new features taken
into consideration at the textual entailment subtask,
an idea that we will implement in the future.
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Abstract

In this paper we present the evaluation of
different features for multiligual and cross-
level semantic textual similarity. Three dif-
ferent types of features were used: lexical,
knowledge-based and corpus-based. The re-
sults obtained at the Semeval competition rank
our approaches above the average of the rest
of the teams highlighting the usefulness of the
features presented in this paper.

1 Introduction

Semantic textual similarity aims to capture whether
the meaning of two texts are similar. This concept
is somehow different from the textual similarity def-
inition itself, because in the latter we are only in-
terested in measuring the number of lexical com-
ponents that the two texts share. Therefore, tex-
tual similarity can range from exact semantic equiv-
alence to a complete unrelatedness pair of texts.

Finding the semantic similarity between a pair
of texts has become a big challenge for specialists
in Natural Language Processing (NLP), because it
has applications in some NLP task such as machine
translation, automatic construction of summaries,
authorship attribution, machine reading comprehen-
sion, information retrieval, among others, which
usually need a manner to calculate degrees of simi-
larity between two given texts.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

Semantic textual similarity can be calculated us-
ing texts of different sizes, for example between, a
paragraph and a sentence, or a sentence and a phrase,
or a phrase and a word, or even a word and a sense.
When we consider this difference, we say the task is
called “Cross-Level Semantic Similarity”, but when
this distinction is not considered, then we call the
task just as “Semantic Textual Similarity”.

In this paper, we evaluate different features for de-
termining those that obtain the best performances for
calculating both, cross-level semantic similarity and
multilingual semantic textual similarity.

The remaining of this paper is structured as fol-
lows. Section 2 presents the features used in both
experiments. Section 3 shows the manner we used
the features for determining the degree of seman-
tic textual similarity. Section 4, on the other hand,
shows the experiments we have carried out for de-
termining cross-level semantic similarity. Finally, in
Section 5 the conclusions and findings are given.

2 Description of Features

In this section we describe the different features used
for evaluation semantic textual similarity. Basically,
we have used three different types of features: lex-
ical, knowledge-based and corpus-based. The first
one, counts the frequency of ocurrence of lexical
features which includen-grams of characters,skip-
grams1, words and some lexical relationships such
as synonymy or hypernymy. Additionally, we have
used two other features: the Jaccard coefficient be-
tween the two text, expanding each term with a set of

1They are also known as dispersen-grams because they con-
sider to “skip” a certain number of characters.
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synonyms taken from WordReference Carrillo et al.
(2012), and the cosine between the two texts repre-
sented each by a bag of charactern-grams andskip-
grams. In this case, we did not applied any word
sense disambiguation system before expanding with
synonyms, a procedure that may be performed in a
further work.

The second set of features considers the following
six word similarity metrics offered by NLTK: Lea-
cock & Chodorow (Leacock and Chodorow, 1998),
Lesk (Lesk, 1986), Wu & Palmer (Wu and Palmer,
1994), Resnik (Resnik, 1995), Lin (Lin, 1998), and
Jiang & Conrath2 (Jiang and Conrath, 1997). In
this case, we determine the similarity between two
texts as the maximum possible pair of words similar-
ity. The third set of features considers two corpus-
based measures, both based on Rada Mihalcea’s tex-
tual semantic similarity (Mihalcea et al., 2006). The
first one uses Pointwise Mutual Information (PMI)
(Turney, 2001) for calculating the similarity between
pairs of words, whereas the second one uses Latent
Semantic Analysis (LSA) (Landauer et al., 1998)
(implemented in the R software environment for sta-
tistical computing) for that purpose. In particular,
the PMI and LSA values were obtained using a cor-
pus built on the basis of Europarl, Project-Gutenberg
and Open Office Thesaurus. A summary of these
features can be seen in Table 1.

3 Multilingual Semantic Textual Similarity

This task aims to find the semantic textual similar-
ity between two texts written in the same language.
Two different languages were considered: English
and Spanish. The degree of semantic similarity
ranges from 0 to 5; the bigger this value, the best se-
mantic match between the two texts. For the experi-
ments we have used the training datasets provided at
2012, 2013 and 2014 Semeval competitions. These
datasets are completely described at the task descrip-
tion papers of these Semeval editions Agirre et al.
(2013, 2014).

In order to calculate the semantic textual simi-
larity for the English language, we have used all
the features mentioned at Section 2. We have con-
structed a single vector for each pair of texts of the
training corpus, thus resulting 6,627 vectors in total.

2Natural Language Toolkit of Python; http://www.nltk.org/

The resulting set of vectors fed a supervised classi-
fier, in particular, a logistic regression model3. This
approach has been named asBUAP-EN-run1. The
most representative results obtained at the competi-
tion for the English language can be seen in Table 2.
As can be seen, we outperformed the average result
in all the cases, except on the case that theOnWN
corpus was used.

In order to calculate the semantic textual similar-
ity for the Spanish language, we have submitted two
runs, the first one is a supervised approach which
constructs a regression model, similar that the one
constructed for the English language, but consider-
ing only the following features: charactern-grams,
characterskip-grams, and the cosine similarity of
bag of charactern-grams andskip-grams. This ap-
proach was namedBUAP-run1. Given that the num-
ber of Spanish samples was so small, we decided
to investigate the behaviour of training with English
and testing with Spanish language. It is quite inter-
esting that this approach obtained a relevant ranking
(17 from 22 runs), even if the type of features used
were naı̈ve.

The second approach submitted for determining
the semantic textual similarity for the Spanish lan-
guage is an unsupervised one. It uses the same fea-
tures of the supervised approach for Spanish, but
these features were used to create a representation
vector for each text (independently), so that we may
be able to calculate the similarity by means of the
cosine measure between the two vectors. The ap-
proach was namedBUAP-run2.

The most representative results obtained at the
competition for the Spanish language can be seen
in Table 3. There we can see that our unsupervised
approach slightly outperformed the overall average,
but the supervised approach was below the overall
average, a fact that is expected since we have trained
using the English corpus and testing with the Span-
ish language. Despite this, it is quite interesting that
the result obtained with this supervised approach is
not so bad.

Due to space constraints, we did not reported the
complete set of results of the competition, however,
these results can be seen at the task 10 description

3We used the version of the logistic classifier implemented
in the the Weka toolkit
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Table 1: Features used for calculating semantic textual similarity
Feature Type
n-grams of characters (n = 2, · · · , 5) Lexical
skip-grams of characters (skip = 2, · · · , 5) Lexical
Number of words shared Lexical
Number of synonyms shared Lexical
Number of hypernyms shared Lexical
Jaccard coefficient with synonyms expansion Lexical
Cosine of bag of charactern-grams andskip-grams Lexical
Leacock & Chodorow’s word similarity Knowledge-based
Lesk’s word similarity Knowledge-based
Wu & Palmer’s word similarity Knowledge-based
Resnik’s word similarity Knowledge-based
Lin’s word similarity Knowledge-based
Jiang & Conrath’s word similarity Knowledge-based
Rada Mihalcea’s metric using PMI Corpus-based
Rada Mihalcea’s metric using LSA Corpus-based

Table 2: Results obtained at the Task 10 of the Semeval competition for the English language
Team Name deft-forum deft-news headlines images OnWN tweet-news Weighted mean Rank
DLS@CU-run2 0.4828 0.7657 0.7646 0.8214 0.8589 0.7639 0.7610 1
MeerkatMafia-pairingWords 0.4711 0.7628 0.7597 0.8013 0.8745 0.7793 0.7605 2
NTNU-run3 0.5305 0.7813 0.7837 0.8343 0.8502 0.6755 0.7549 3
BUAP-EN-run1 0.4557 0.6855 0.6888 0.6966 0.6539 0.7706 0.6715 19
Overall average 0.3607 0.6198 0.5885 0.6760 0.6786 0.6001 0.6015 27-28
Bielefeld SC-run2 0.2108 0.4307 0.3112 0.3558 0.3607 0.4087 0.3470 36
UNED-run22p np 0.1043 0.3148 0.0374 0.3243 0.5086 0.4898 0.3097 37
LIPN-run2 0.0843 - - - - - 0.0101 38
Our difference against the average 9% 7% 10% 2% -2% 17% 7% -

Table 3: Results obtained at the Task 10 of the Semeval competition for the Spanish language (NOTE: The * symbol
denotes a system that used Wikipedia to build its model for the Wikipedia test dataset)

Team Name System type Wikipedia News Weighted correlation Rank
UMCC DLSI-run2 supervised 0.7802 0.8254 0.8072 1
MeerkatMafia-run2 unsupervised 0.7431 0.8454 0.8042 2
UNAL-NLP-run1 weakly supervised 0.7804 0.8154 0.8013 3
BUAP-run2 unsupervised 0.6396 0.7637 0.7137 14
Overall average - 0.6193 0.7504 0.6976 14-15
BUAP-run1 supervised 0.5504 0.6785 0.6269 17
RTM-DCU-run2 supervised 0.3689 0.6253 0.5219 20
Bielefeld SC-run2 unsupervised* 0.2646 0.5546 0.4377 21
Bielefeld SC-run1 unsupervised* 0.2632 0.5545 0.4371 22
Difference between our run1 and the overall average - -7% -7% -7% -
Difference between our run2 and the overall average - 2% 1% 2% -

paper (Agirre et al., 2014) of Semeval 2014.

4 Cross-Level Semantic Similarity

This task aims to find semantic similarity between
a pair of texts of different length written in En-
glish language, actually each text belong to a dif-
ferent level of representation of language (para-

graph, sentence, phrase, word, and sense). Thus,
the pair of levels that were required to be compared
in order to determine their semantic similarity were:
paragraph-to-sentence, sentence-to-phrase, phrase-
to-word, and word-to-sense.

The task cross level similarity judgments are
based on five rating levels which goes from 0 to
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4. The first (0) implies that the two items do not
mean the same thing and are not on the same topic,
whereas the last one (4) implies that the two items
have very similar meanings and the most important
ideas, concepts, or actions in the larger text are rep-
resented in the smaller text. The remaining rating
levels imply something in the middle.

For word-to-sense comparison, a sense is paired
with a word and the perceived meaning of the word
is modulated by virtue of the comparison with the
paired sense’s definition. For the experiments pre-
sented at the competition, a corpus of 2,000 pairs
of texts were provided for training and other 2,000
pairs for testing. This dataset considered 500 pairs
for each type of level of semantic similarity. The
complete description of this task together with the
dataset employed is given in the task description pa-
per Jurgens et al. (2014).

We submitted two supervised approaches, to this
task employing all the features presented at Section
2. The first approach simply constructs a single vec-
tor for each pair of training texts using the afore-
mentioned features. These vectors are introduced in
Weka for constructing a classification model based
on logistic regression. This approach was named
BUAP-run1.

We have observed that when comparing texts of
different length, there may be a high discrepancy
between those texts because a very small length in
the texts may difficult the process of determining the
semantic similarity. Therefore, we have proposed
to expand small text with the aim of having more
term useful in the process of calculating the degree
of semantic similarity. In particular, we have ex-
panded words for the phrase-to-word and word-to-
sense cases. The expansion has been done as fol-
lows. When we calculated the similarity between
phrases and words, we expanded the word compo-
nent with those related terms obtained by means of
the Related-Tags Service of Flickr. When we cal-
culated the semantic similarity between words and
senses, we expanded the word component with their
WordNet Synsets (none word sense disambiguation
method was employed). This second approach was
namedBUAP-run2.

The most representative results for the cross-level
semantic similarity task (which include our results)
are shown in Table 4. There we can see that the fea-

tures obtained a good performance when we com-
puted the semantic similarity between paragraphs
and sentences, and when we calculated the simili-
raty between sentences to phrases. Actually, both
runs obtained exactly the same result, because the
main difference between these two runs is that the
second one expands the word/sense using the Re-
lated Tags of Flickr. However, the set of expansion
words did not work properly, in particular when cal-
culating the semantic similarity between phrases and
words. We consider that this behaviour is due to
the domain of the expansion set do not match with
the domain of the dataset to be evaluated. In the
case of expanding words for calculating the similar-
ity between words and senses, we obtained a slightly
better performance, but again, this values are not
sufficient to highly outperform the overall average.
As future work we consider to implement a self-
expansion technique for obtaining a set of related
terms by means of the same training corpus. This
technique has proved to be useful when the expan-
sion process is needed in restricted domains Pinto
et al. (2011).

5 Conclusions

This paper presents the results obtained by the
BUAP team at the Task 3 and 10 of SemEval 2014.
In both task we have used a set of similar features,
due to the aim of these two task are quite similar:
determining semantic similarity. Some special mod-
ifications has been done according to each task in
order to tackle some issues like the language or the
text length.

In general, the features evaluated performed well
over the two approaches, however, some issues arise
that let us know that we need to tune the approaches
presented here. For example, a better expansion set
is required in the case of the Task 3, and a great num-
ber of samples for the spanish samples of Task 10
will be required.
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Abstract

We report the results we obtained at the sub-
task B (Message Polarity Classification) of Se-
mEval 2014 Task 9. The features used for
representing the messages were basically tri-
grams of characters, trigrams of PoS and a
number of words selected by means of a graph
mining tool. Our approach performed slightly
below the overall average, except when a cor-
pus of tweets with sarcasm was evaluated,
in which we performed quite well obtaining
around 6% above the overall average.

1 Introduction

Analyzing polarity in texts is an important task that
may have various applications in real life. There ex-
ist plenty of tasks that may be benefited of computa-
tional procedures that automatically allow to detect
if the author intention has been to express himself as
a positive, negative, neutral or objective manner. Let
us consider, for instance, when a public figure (such
as a politician, celebrity, or business leader) would
like to investigate its reputation in public media. An-
other example would be to calculate the reputation
of a public or private institution. In any case, the
construction of methods for determining the polar-
ity of messages at Internet would help to investigate
their reputation.

In this paper, we present the results we obtained
when we carried out experiments for the subtask B

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

of Semeval 2014 Task 9, which was named “Mes-
sage Polarity Classification”, and was defined as fol-
low: “Given a message, decide whether the mes-
sage is of positive, negative, or neutral sentiment.
For messages conveying both a positive and nega-
tive sentiment, whichever is the stronger sentiment
should be chosen”.

The remaining of this paper is structured as fol-
lows. In Section 2 we present some related work
found at the literature with respect to the identifica-
tion of emotions in short texts such as twitter. Sec-
tion 3 presents the description of the features and
classification model used in our experiments. The
results obtained together with a discussion of these
results are given in Section 4. Finally, the conclu-
sions are given in Section 5.

2 Related Work

There exist a number of works in literature associ-
ated to the automatic identification of emotions in
Twitter, mainly due to the massification of this so-
cial network around the world and the easy manner
we can access to the Tweets from API’s provided by
Twitter itself. Some of these works have focused on
the contribution of some particular features, such as
Part of Speech (PoS) tags, emoticons, etc. on the
aforementioned task. In Agarwal et al. (2011), for
example, the a priori likelihood of each PoS is cal-
culated. They use up to 100 additional features that
include emoticons and a dictionary of positive and
negative words. They have reported a 60% of ac-
curacy in the task. On the other hand, in Mukher-
jee and Bhattacharyya (2012), a strategy based on
discursive relations, such as conectiveness and con-
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ditionals, with low number of lexical resources is
proposed. These relations are integrated in classi-
cal models of representation like bag of words with
the aim of improving the accuracy values obtained
in the process of classification. The influence of se-
mantic operators such as modals and negations are
analyzed, in particular, the degree in which they af-
fect the emotion present in a given paragraph or sen-
tence.

One of the major advances obtained in the task
of sentiment analysis has been done in the frame-
work of the SemEval competition. In 2013, several
teams have participated with different approaches
Becker et al. (2013); Han et al. (2013); Chawla et al.
(2013); Balahur and Turchi (2013); Balage Filho
and Pardo (2013); Moreira et al. (2013); Reckman
et al. (2013); Tiantian et al. (2013); Marchand et al.
(2013); Clark and Wicentwoski (2013); Hamdan
et al. (2013); Martı́nez-Cámara et al. (2013); Lev-
allois (2013). Most of these works have contributed
in the mentioned task by proposing methods, tech-
niques for representing and classifying documents
towards the automatic classification of sentiment in
Tweets.

3 Description of the Presented Approach

We have employed a supervised approach based on
machine learning in which we construct a classifica-
tion model using the following general features ob-
tained from the training corpus.

1. Character trigrams

2. PoS tags trigrams

3. Significant Tweet words obtained by using a
graph mining tool known as SubDue

The description of how we calculated each feature
in order to construct a representation vector for each
message is given as follows.

The probability of each character trigram given
the polarity class,P (trigram|class), was cal-
culated in the training corpus. Thereafter, we
assigned a normalized probability to each sen-
tence polarity by combining the probability of
each character trigram of the sentence, i.e.,∑|message|

i=1 log [P (trigrami|class)]. Since we
have four classes (“positive”,“negative”,“neutral”

and “objective”), we have obtained four features for
the final vectorial representation of the message.

We then calculated other four features by per-
forming a similar calculation than the previous one,
but in this case, using the PoS tags of the message.
For this purpose, we used the Twitter NLP and Part-
of-Speech Tagging tool provided by the Carnegie
Mellon University (Owoputi et al., 2013). Since the
PoS tag given by this tool is basically a character,
then the same procedure can be applied.

We performed preliminary experiments by using
these eight features on a trial corpus, and we ob-
served that the results may be improved by select-
ing significant words that may not be discovered
by the statistical techniques used until now. So,
we decided to make use of techniques based on
graph mining for attempting to find those signifi-
cant words. In order to find them, we constructed a
graph representation for each message class (“pos-
itive”,“negative”,“neutral” and “objective”), using
the training corpus. The manner we constructed
those graphs is shown as follows.

Formally, given a graphG = (V,E,L, f) with V
being the non-empty set of vertices,E ⊆ V ×V the
edges,L the tag set, andf : E → L, a function
that assigns a tag to a pair of associated vertices.
This graph-based representation attempt to capture
the sequence among the sentence words, so as the
sequence among their PoS tags with the aim of feed-
ing a graph mining tool which may extract relevant
features that may be further used for representing the
texts. Thus, the setV is constructed from the differ-
ent words and PoS of the target document.

In order to demonstrate the way we construct the
graph for each short text, consider the following
message: “ooh i love you for posting this :-)”. The
associated graph representation to this message is
shown in Figure 1.

Once each paragraph is represented by means of
a graph, we apply a data mining algorithm in or-
der to find subgraphs from which we will be able
to find the significant words which will be, in our
case, basically, the nodes of these subgraphs. Sub-
due is a data mining tool widely used in structured
domains. This tool has been used for discovering
structured patterns in texts represented by means of
graphs Olmos et al. (2005). Subdue uses an eval-
uation model named “Minimum encoding”, a tech-
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Figure 1: Graph based message representation with words andtheir corresponding PoS tags

nique derived from the minimum description length
principle Rissanen (1989), in which t he best graph
sub-structures are chosen. The best subgraphs are
those that minimize the number of bits that repre-
sent the graph. In this case, the number of bits is
calculated consi dering the size of the graph adjan-
cency matrix. Thus, the best substructure is the one
that minimizesI(S) + I(G|S), whereI(S) is the
number of bits required to describe the sub structure
S, andI(G|S) is the number of bits required to de-
scribe graphG after it has been compacted by the
substructureS.

By applying this procedure we obtained 597 sig-
nicant negative words, 445 positive words, 616 ob-
jective words and 925 positive words. For the final
representation vector we compiled the union of these
words, obtaining 1915 significant words. Therefore,
the total number of features for each message was
1,923.

We have used the training corpus provided at the
competition (Rosenthal et al., 2014), however, we
removed all those messsages tagged as the class
“objective-OR-neutral”, because all these messages
introduced noise to the classification process. In to-
tal, we constructed 5,217 vectors of message repre-
sentation which fed a support vector machine classi-

fier. We have used the SVM implementation of the
WEKA tool with default parameters for our exper-
iments (Hall et al., 2009). The obtained results are
shown in the next section.

4 Experimental Results

The test corpus was made up short texts (mes-
sages) categorized as: “LiveJournal2014”,
“SMS2013”, “Twitter2013”, “Twitter2014” and
“Twitter2014Sarcasm”. A complete description of
the training and test datasets can be found at the
task description paper (Rosenthal et al., 2014).

In Table 1 we can see the results obtained at the
competition. Our approach performed in almost all
the cases slightly below to the overall average, ex-
cept when we processed the corpus of Twitter with
Sarcasm characteristics. We consider that two main
problems were the cause of this result: 1) The corpus
was very unbalanced and our approaches for allevi-
ating this problem were not sufficient, and 2) From
our particular point of view, there were a high differ-
ence between the vocabulary of the training and the
test corpus, thus, leading the classification model to
fail.
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Table 1: Results obtained at the substask B of the Semeval 2014 Task 9
System LiveJournal2014 SMS2013 Twitter2013 Twitter2014 Twitter2014Sarcasm Average
NRC-Canada-B 74.84 70.28 70.75 69.85 58.16 68.78
CISUC KIS-B-late 74.46 65.90 67.56 67.95 55.49 66.27
coooolll-B 72.90 67.68 70.40 70.14 46.66 65.56
TeamX-B 69.44 57.36 72.12 70.96 56.50 65.28
RTRGO-B 72.20 67.51 69.10 69.95 47.09 65.17
AUEB-B 70.75 64.32 63.92 66.38 56.16 64.31
SWISS-CHOCOLATE-B 73.25 66.43 64.81 67.54 49.46 64.30
SentiKLUE-B 73.99 67.40 69.06 67.02 43.36 64.17
TUGAS-B 69.79 62.77 65.64 69.00 52.87 64.01
SAIL-B 69.34 56.98 66.80 67.77 57.26 63.63
senti.ue-B 71.39 59.34 67.34 63.81 55.31 63.44
Synalp-Empathic-B 71.75 62.54 63.65 67.43 51.06 63.29
Lt 3-B 68.56 64.78 65.56 65.47 47.76 62.43
UKPDIPF-B 71.92 60.56 60.65 63.77 54.59 62.30
AMI ERIC-B 65.32 60.29 70.09 66.55 48.19 62.09
ECNU-B 69.44 59.75 62.31 63.17 51.43 61.22
LyS-B 69.79 60.45 66.92 64.92 42.40 60.90
SU-FMI-B-late 68.24 61.67 60.96 63.62 48.34 60.57
NILC USP-B-twitter 69.02 61.35 65.39 63.94 42.06 60.35
CMU-Qatar-B-late 65.63 62.95 65.11 65.53 40.52 59.95
columbianlp-B 68.79 59.84 64.60 65.42 40.02 59.73
CMUQ-Hybrid-B-late 65.14 61.75 63.22 62.71 40.95 58.75
Citius-B 62.40 57.69 62.53 61.92 41.00 57.11
KUNLPLab-B 63.77 55.89 58.12 61.72 44.60 56.82
USP Biocom-B 67.80 53.57 58.05 59.21 43.56 56.44
UPV-ELiRF-B 64.11 55.36 63.97 59.33 37.46 56.05
Rapanakis-B 59.71 54.02 58.52 63.01 44.69 55.99
DejaVu-B 64.69 55.57 57.43 57.02 42.46 55.43
GPLSI-B 57.32 46.63 57.49 56.06 53.90 54.28
Indian Inst of Tech-Patna-B 60.39 51.96 52.58 57.25 41.33 52.70
BUAP-B 53.94 44.27 56.85 55.76 51.52 52.47
SAP-RI-B 57.86 49.00 50.18 55.47 48.64 52.23
UMCC DLSI Sem 53.12 50.01 51.96 55.40 42.76 50.65
Alberta-B 52.38 49.05 53.85 52.06 40.40 49.55
SINAI-B 58.33 57.34 50.59 49.50 31.15 49.38
IBM EG-B 59.24 46.62 54.51 52.26 34.14 49.35
SU-sentilab-B-tweet 55.11 49.60 50.17 49.52 31.49 47.18
lsis lif-B 61.09 38.56 46.38 52.02 34.64 46.54
IITPatna-B 54.68 40.56 50.32 48.22 36.73 46.10
UMCC DLSI Graph-B 47.81 36.66 43.24 45.49 53.15 45.27
University-of-Warwick-B 39.60 29.50 39.17 45.56 39.77 38.72
DAEDALUS-B 40.83 40.86 36.57 33.03 28.96 36.05
Overall average 63.81 55.82 59.72 60.30 45.43 57.02

5 Conclusions

We have presented an approach for detecting mes-
sage polarity using basically three kind of features:
character trigrams, PoS tags trigrams and significant
words obtained by means of a graph mining tool.
The obtained results show that these features were
not sufficient for detecting the correct polarity of a
given message with high precision. We consider that
the unbalanced characteristic and the fact the vocab-
ulary changed significantly from the training to the
test corpus influenced the results we obtained at the
competition. However, a deep analysis we plan to
do to the datasets evaluated will allow us in the fu-

ture to find more accurate features for the message
polarity detection task.
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Abstract

This paper describes the two procedures
for determining the semantic similarities
between sentences submitted for the Se-
mEval 2014 Task 1. MeanMaxSim, an
unsupervised procedure, is proposed as a
new baseline to assess the efficiency gain
provided by compositional models. It out-
performs a number of other baselines by
a wide margin. Compared to the word-
overlap baseline, it has the advantage of
taking into account the distributional simi-
larity between words that are also involved
in compositional models. The second
procedure aims at building a predictive
model using as predictors MeanMaxSim
and (transformed) lexical features describ-
ing the differences between each sentence
of a pair. It finished sixth out of 17 teams
in the textual similarity sub-task and sixth
out of 19 in the textual entailment sub-
task.

1 Introduction

The SemEval-2014 Task 1 (Marelli et al., 2014a)
was designed to allow a rigorous evaluation
of compositional distributional semantic models
(CDSMs). CDSMs aim to represent the meaning
of phrases and sentences by composing the dis-
tributional representations of the words they con-
tain (Baroni et al., 2013; Bestgen and Cabiaux,
2002; Erk and Pado, 2008; Grefenstette, 2013;
Kintsch, 2001; Mitchell and Lapata, 2010); they
are thus an extension of Distributional Semantic
Models (DSMs), which approximate the meaning
of words with vectors summarizing their patterns
of co-occurrence in a corpus (Baroni and Lenci,

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

2010; Bestgen et al., 2006; Kintsch, 1998; Lan-
dauer and Dumais, 1997). The dataset for this
task, called SICK (Sentences Involving Composi-
tional Knowledge), consists of almost 10,000 En-
glish sentence pairs annotated for relatedness in
meaning and entailment relation by ten annotators
(Marelli et al., 2014b).

The rationale behind this dataset is that ”un-
derstanding when two sentences have close mean-
ings or entail each other crucially requires a com-
positional semantics step” (Marelli et al., 2014b),
and thus that annotators judge the similarity be-
tween the two sentences of a pair by first build-
ing a mental representation of the meaning of each
sentence and then comparing these two represen-
tations. However, another option was available
to the annotators. They could have paid atten-
tion only to the differences between the sentences,
and assessed the significance of these differences.
Such an approach could have been favored by the
dataset built on the basis of a thousand sentences
modified by a limited number of (often) very
specific transformations, producing sentence pairs
that might seem quite repetitive. An analysis con-
ducted during the training phase of the challenge
brought some support for this hypothesis. The
analysis focused on pairs of sentences in which the
only difference between the two sentences was the
replacement of one content word by another, as in
A man is singing to a girl vs. A man is singing to
a woman, but also in A man is sitting in a field
vs. A man is running in a field. The material
was divided into two parts, 3500 sentence pairs
in the training set and the remaining 1500 in the
test set. First, the average similarity score for each
pair of interchanged words was calculated on the
training set (e.g., in this sample, there were 16 sen-
tence pairs in which woman and man were inter-
changed, and their mean similarity score was 3.6).
Then, these mean scores were used as the similar-
ity scores of the sentence pairs of the test sample
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in which the same words were interchanged. The
correlation between the actual scores and the pre-
dicted score was 0.83 (N=92), a value that can be
considered as very high, given the restrictions on
the range in which the predicted similarity scores
vary (min=3.5 and max=5.0; Howell, 2008, pp.
272-273). It is important to note that this observa-
tion does not prove that the participants have not
built a compositional representation, especially as
it only deals with a very specific type of trans-
formation. It nevertheless suggests that analyz-
ing only the differences between the sentences of
a pair could allow the similarity between them to
be effectively estimated.

Following these observations, I opted to try
to determine the degree of efficacy that can be
achieved by two non-compositional approaches.
The first approach, totally unsupervised, is pro-
posed as a new baseline to evaluate the efficacy
gains brought by compositional systems. The sec-
ond, a supervised approach, aims to capitalize on
the properties of the SICK benchmark. While
these approaches have been developed specifically
for the semantic relatedness sub-task, the second
has also been applied to the textual entailment sub-
task. This paper describes the two proposed ap-
proaches, their implementation in the context of
SemEval 2014 Task 1, and the results obtained.

2 Proposed Approaches

2.1 A New Baseline for CDSM

An evident baseline in the field of CDSM is based
on the proportion of common words in two sen-
tences after the removal (or retaining) of stop
words (Cheung and Penn, 2012). Its main weak-
ness is that it does not take into account the seman-
tic similarities between the words that are com-
bined in the CDSM models. It follows that a com-
positional approach may seem significantly better
than this baseline, even if it is not compositionality
that matters but only the distributional part. At first
glance, this problem can be circumvented by using
as baseline a simple compositional model like the
additive model. The analyses below show that this
model is much less effective for the SILK dataset
than the distributional baseline proposed here.

MeanMaxSim, the proposed baseline, is an ex-
tension of the classic measure based on the pro-
portion of common words, taking advantage of the
distributional similarity but not of compositional-
ity. It corresponds to the mean, calculated using all

the words of the two sentences, of the maximum
semantic similarity between each word in a sen-
tence and all the words of the other sentence. More
formaly, given two sentences a = (a1, .., an) and
b = (b1, ..bm),

MMS =
(
∑

i
maxj sim(ai,bj)+

∑
j
maxi sim(ai,bj))

n+m

In this study, the cosine between the word distri-
butional representations was used as the measure
of semantic similarity, but other measures may be
used. The common words of the two sentences
have an important impact on MeanMaxSim, since
their similarity with themselves is equal to the
maximum similarity possible. Their impact would
be much lower if the average similarity between
a word and all the words in the other sentence
were employed instead of the maximum similar-
ity. Several variants of this measure can be used,
for example not taking into account every instance
where a word is repeated in a sentence or not al-
lowing any single word to be the ”most similar” to
several other words.

2.2 A Non-Compositional Approach Based
on the Differences Between the Sentences

The main limitation of the first approach in the
context of this challenge is that it is completely
unsupervised and therefore does not take advan-
tage of the training set provided by the task orga-
nizers. The second approach addresses this limi-
tation. It aims to build a predictive model, using
as predictors MeanMaxSim but also lexical fea-
tures describing the differences between each sen-
tence of a pair. For the extraction of these fea-
tures, each pair of sentences of the whole dataset
(training and testing sets) is analyzed to iden-
tify all the lemmas that are not present with the
same frequency in both sentences. Each of these
differences is encoded as a feature whose value
corresponds to the unsigned frequency difference.
This step leads to a two-way contingency table
with sentence pairs as rows and lexical features
as columns. Correspondence Analysis (Blasius
and Greenacre, 1994; Lebart et al., 2000), a sta-
tistical procedure available in many off-the-shelf
software like R (Nenadic and Greenacre, 2006), is
then used to decompose this table into orthogonal
dimensions ordered according to the correspond-
ing part of associations between rows and columns
they explain. Each row receives a coordinate on
these dimensions and these coordinates are used as
predictors of the relatedness scores of the sentence
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pairs. In this way, not only are the frequencies of
lexical features transformed into continuous pre-
dictors, but these predictors also take into account
the redundancy between the lexical features. Fi-
nally, a predictive model is built on the basis of
the training set by means of multiple linear regres-
sion with stepwise selection of the best predictors.
For the textual entailment sub-task, the same pro-
cedure was used except that the linear regression
was replaced by a linear discriminant analysis.

3 Implementation Details

This section describes the steps and additional
resources used to implement the proposed ap-
proaches for the SICK challenge.

3.1 Preprocessing of the Dataset

All sentences were tokenized and lemmatized by
the Stanford Parser (de Marneffe et al., 2006;
Toutanova et al., 2003).

3.2 Distributional Semantics

Latent Semantic Analysis (LSA), a classical DSM
(Deerwester et al., 1991; Landauer et al., 1998),
was used to gather the semantic similarity between
words from corpora. The starting point of the anal-
ysis is a lexical table containing the frequencies of
every word in each of the text segments included
in the corpus. This table is submitted to a singu-
lar value decomposition, which extracts the most
significant orthogonal dimensions. In this seman-
tic space, the meaning of a word is represented by
a vector and the semantic similarity between two
words is estimated by the cosine between their cor-
responding vectors.

Three corpora were used to estimate these simi-
larities. The first one, the TASA corpus, is com-
posed of excerpts, with an approximate average
length of 250 words, obtained by a random sam-
pling of texts that American students read (Lan-
dauer et al., 1998). The version to which T.K.
Landauer (Institute of Cognitive Science, Univer-
sity of Colorado, Boulder) provided access con-
tains approximately 12 million words.

The second corpus, the BNC (British National
Corpus; Aston and Burnard, 1998) is composed
of approximately 100 million words and covers
many different genres. As the documents included
in this corpus can be of up to 45,000 words, they
were divided into segments of 250 words, the last
segment of a text being deleted if it contained

fewer than 250 words.
The third corpus (WIKI, approximately 600

million words after preprocessing) is derived from
the Wikipedia Foundation database, downloaded
in April 2011. It was built using WikiExtractor.py
by A. Fuschetto. As for the BNC, the texts were
cut into 250-word segments, and any segment of
fewer than 250 words was deleted.

All these corpora were lemmatized by means
of the TreeTagger (Schmid, 1994). In addition, a
series of functional words were removed as well
as all the words whose total frequency in the cor-
pus was lower than 10. The resulting (log-entropy
weighted) matrices of co-occurrences were sub-
mitted to a singular value decomposition (SVD-
PACKC, Berry et al., 1993) and the first 300 eigen-
vectors were retained.

3.3 Unsupervised Approach Details
Before estimating the semantic similarity between
a pair of sentences using MeanMaxSim, words (in
their lemmatized forms) considered as stop words
were filtered out. This stop word list (n=82), was
built specifically for the occasion on the basis of
the list of the most frequent words in the training
dataset.

3.4 Supervised Approach Details
To identify words not present with the same fre-
quency in both sentences, all the lemmas (includ-
ing those belonging to the stop word list) were
taken into account. The optimization of the param-
eters of the predictive model was performed using
a three-fold cross-validation procedure, with two
thirds of the 5000 sentence pairs for training and
the remaining third for testing. The values tested
by means of an exhaustive search were:

• Minimum threshold frequency of the lexical
features in the complete dataset: from 10 to
70 by step of 10.

• Number of dimensions retained from the CA:
from 10 to the total number of dimensions
available by step of 10.

• P-value threshold to enter or remove predic-
tors from the model: 0.01 and from 0.05 to
0.45 by step of 0.05.

This cross-validation procedure was repeated
five times, each time changing the random distri-
bution of sentence pairs in the samples. The fi-
nal values of the three parameters were selected
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on the basis of the average correlation calculated
over all replications. For the relatedness sub-task,
the selected values were a minimum threshold fre-
quency of 40, 140 dimensions and a p-value of
0.20. For the entailment sub-task, they were a
minimum threshold frequency of 60, 100 dimen-
sions and a p-value of 0.25.

4 Results

4.1 Semantic Relatedness Sub-Task
The main measure of performance selected by the
task organizers was the Pearson correlation, calcu-
lated on the test set (4927 sentence pairs), between
the mean values of similarity according to the an-
notators and the values predicted by the automatic
procedures.

Unsupervised Approach: MeanMaxSim. Ta-
ble 1 shows the results obtained by MeanMaxSim,
based on the three corpora, and by three other
baselines:

• WO: The word-overlap baseline proposed by
the organizers of the task, computed as the
number of distinct tokens in both sentences
divided by the number of distinct tokens in
the longer sentence, optimizing the number
of the most frequent words stripped off the
sentences on the test set.

• SWL: The word-overlap baseline computed
as in WO but using lemmas instead of words
and the stop words list.

• ADD: The simple additive compositional
model, in which each sentence is represented
by the sum of the vectors of the lemmas that
compose it (stripping off stop words and us-
ing the best performing corpus) and the simi-
larity is the cosine between these two vectors
(Bestgen et al., 2010; Guevara, 2011) .

MeanMaxSim r Baseline r
TASA 0.696 WO 0.627
BNC 0.698 SWL 0.613
WIKI 0.696 ADD 0.500

Table 1: Pearson’s correlation for MeanMaxSim
and several other baselines on the test set.

MeanMaxSim produces almost identical results
regardless of the corpus used. The lack of differ-
ence between the three corpora was unexpected.

It could be related to the type of vocabulary used
in the SICK materials, seemingly mostly frequent
and concrete words whose use could be relatively
similar in the three corpora. MeanMaxSim per-
formance is clearly superior to all other baselines;
among these, the additive model is the worst. This
result is important because it shows that this com-
positional model is not, for the SICK benchmark,
the most interesting baseline to assess composi-
tional approaches. In the context of the best per-
formance of the other teams, MeanMaxSim is
(hopefully) well below the most effective proce-
dures, which reached correlations above 0.80.

Supervised Approach. The supervised ap-
proach resulted in a correlation of 0.78044, a value
well above all baselines reported above. This cor-
relation ranked the procedure sixth out of 17, tied
with another team (0.78019). The three best teams
scored significantly higher, with correlations be-
tween 0.826 and 0.828.

4.2 Textual Entailment Sub-Task

Only the supervised approach was used for this
sub-task. The proposed procedure achieved an ac-
curacy of 79.998%, which ranks it sixth again, but
out of 19 teams, still at a respectable distance from
the best performance (84.575%).

5 Conclusion

The main contribution of this research seems to be
the proposal of MeanMaxSim as baseline for eval-
uating CDSM. It outperforms a number of other
baselines by a wide margin and is very easy to
calculate. Compared to the word-overlap base-
line, it has the advantage of taking into account
the distributional similarity between words that are
also involved in compositional models. The su-
pervised approach proposed achieved an accept-
able result (sixth out of 17) and it could easily be
improved, for example by replacing standard lin-
ear regression by a procedure less sensitive to the
risk of overfit due to the large number of predictors
such as Partial Least Squares regression (Guevara,
2011). However, since this approach is not com-
positional and its efficacy (compared to others) is
limited, it is not obvious that trying to improve it
would be very useful.
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Abstract

This paper presents the approach of the
CISUC-KIS team to the SemEval 2014
task on Sentiment Analysis in Twitter,
more precisely subtask B - Message Polar-
ity Classification. We followed a machine
learning approach where a SVM classifier
was trained from a large and diverse set
of features that included lexical, syntac-
tic, sentiment and semantic-based aspects.
This led to very interesting results which,
in different datasets, put us always in the
top-7 scores, including second position in
the LiveJournal2014 dataset.

1 Introduction

Everyday people transmit their opinion in social
networks and microblogging services. Identifying
the sentiment transmitted in all those shared mes-
sages is of great utility for recognizing trends and
supporting decision making, key in areas such as
social marketing. Sentiment Analysis deals with
the computational treatment of sentiments in nat-
ural language text, often normalized to positive or
negative polarities. It is a very challenging task,
not only for machines, but also for humans.

SemEval 2014 is a semantic evaluation of Nat-
ural Language Processing (NLP) that comprises
several tasks. This paper describes our approach
to the Sentiment Analysis in Twitter task, which
comprises two subtasks: (A) Contextual Polarity
Disambiguation; and (B) Message Polarity Clas-
sification. We ended up addressing only task B,
which is more sentence oriented, as it targets the
polarity of the full messages and not individual
words in those messages.
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We tackled this task with a machine learning-
based approach, in which we first collect several
features from the analysis of the given text at sev-
eral levels. The collected features are then used to
learn a sentiment classification model, which can
be done with different algorithms. Features were
collected from several different resources, includ-
ing: sentiment lexicons, dictionaries and avail-
able APIs for this task. Moreover, since micro-
blogging text has particular characteristics that in-
crease the difficulty of NLP, we gave special fo-
cus on text pre-processing. Regarding the tested
features, they went from low-level ones, such as
punctuation and emoticons, to more high-level,
including topics extracted using topic modelling
techniques, as well features from sentiment lexi-
cons, some structured on plain words and others
based on WordNet, and thus structured on word
senses. Using the latter, we even explored word
sense disambiguation. We tested several learn-
ing algorithms with all these features, but Support
Vector Machines (SVM) led to the best results, so
it was used for the final evaluation.

In all our runs, a model was learned from
tweets, and no SMS were used for training. The
model’s performance was assessed with the F-
Score of positive and negative classes, with 10-
fold cross validation. In the official evaluation, we
achieved very interesting scores, namely: 74.46%
for the LiveJournal2014 (2nd place), 65.9% for the
SMS2013 (7th), 67.56% for the Twitter2013 (7th),
67.95% for the Twitter2014 (4th) and 55.49%
for the Twitter2014Sarcasm (4th) datasets, which
ranked us always among the top-7 participations.

The next section describes the external re-
sources exploited. Section 3 presents our approach
with more detail, and is followed by section 4,
where the experimental results are described. Sec-
tion 5 concludes with a brief balance and the main
lessons learned from our participation.
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2 External resources

We have used several external resources, includ-
ing not only several sentiment lexicons, but also
dictionaries that helped normalizing the text of the
tweets, as well as available APIs that already clas-
sify the sentiment transmitted by a piece of text.

2.1 Sentiment Lexicons
We used several public handcrafted or semi-
automatically created sentiment lexicons, where
English words have assigned polarity values.
Those included lexicons structured in plain words,
namely Bing Liu’s Opinion Lexicon (Hu and Liu,
2004) (≈2,000 positive and 4,800 negative words),
the AFINN list (Nielsen, 2011) (≈2,500 words
with polarities between 5 and -5, 900 positive and
1,600 negative), the NRCEmoticon Lexicon (Mo-
hammad and Turney, 2010) (≈14,000 words,
their polarity, ≈2,300 positive, ≈3,300 negative,
and eight basic emotions), MPQA Subjectivity
Lexicon (Wilson et al., 2005) (≈2,700 positive
and ≈4,900 negative words), Sentiment140 Lexi-
con (Mohammad et al., 2013) (≈62,000 unigrams,
≈677,000 bigrams; ≈480,000 pairs), NRC Hash-
tag Lexicon (Mohammad et al., 2013) (≈54,000
unigrams; ≈316,000 bigrams; ≈308,000 pairs)
and labMT 1.0 (Dodds et al., 2011) (≈10,000
words).

We also used two resources with polar-
ities assigned automatically to a subset of
Princeton WordNet (Fellbaum, 1998) synsets,
namely SentiWordNet 3.0 (Baccianella et al.,
2010) (≈117,000 synsets with graded positive
and negatives strengths between 0 and 1), and
Q-WordNet (Agerri and Garcı́a-Serrano, 2010)
(≈7,400 positive and ≈8,100 negative senses).

2.2 Dictionaries
These included handcrafted dictionaries with the
most common abbreviations, acronyms, emoti-
cons and web slang used on the Internet and their
meaning. Also, a list of regular expressions with
elongated words like ’loool’ and ’loloolll’, which
can be normalized to ’lol’, and a set of idiomatic
expressions and their corresponding polarity.

2.3 APIs
Three public APIs were used, namely
Sentiment140 (Go et al., 2009),
SentimentAnalyzer1 and SentiStrength (Thel-

1http://sentimentanalyzer.appspot.com/

wall et al., 2012). All of a them classify
a given text snippet as positive or negative.
Sentiment140 returns a value which can be 0
(negative polarity), 2 (neutral), and 4 (positive).
SentimentAnalyzer returns -1 (negative) or 1 (pos-
itive), and SentiStrength a strength value between
1 and 5 (positive) or -1 and -5 (negative).

3 Approach

Our approach consisted of extracting lexical, syn-
tactic, semantic and sentiment information from
the tweets and using it in the form of features, for
learning a sentiment classifier that would detect
polarity in messages. This is a popular approach
for these types of tasks, followed by other sys-
tems, including the winner of SemEval 2013 (Mo-
hammad et al., 2013), where a variety of surface-
form, semantic, and sentiment features was used.
Our set of features is similar for the base classifier
are similar, except that we included additional fea-
tures that take advantage of word disambiguation
to get the polarity of target word senses.

3.1 Features
Among the collected features, some were related
to the content of the tweets and others were ob-
tained from the sentiment lexicons.

3.1.1 Content Features
The tweets were tokenized and part-of-
speech (POS) tagged with the CMU ARK
Twitter NLP Tool (Gimpel et al., 2011) and
Stanford CoreNLP (Toutanova and Manning,
2000). Each tweet was represented as a feature
vector containing the following group of features:
(i) emoticons (presence or absence, sum of all
positive and negative polarities associated with
each, polarity of the last emoticon of each tweet);
(ii) length (total length of the tweet, average
length per word, number of words per tweet);
(iii) elongated words (number of all the words
containing a repeated character more than two
times); (iv) hashtags (total number of hashtags);
(v) topic modelling (id of the corresponding
topic); (vi) capital letters (number of words in
which all letters are capitalized); (vii) nega-
tion (number of words that reverse polarity to
a negative context, such as ’no’ or ’never’);
(viii) punctuation (number of punctuation se-
quences with only exclamation points, question
marks or both, ASCII code of the most common
punctuation and of the last punctuation in every
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tweet); (ix) dashes and asterisks (number of words
surrounded by dashes or asterisks, such as ’*yay*’
or ’-me-’); (x) POS (number of nouns, adjectives,
adverbs, verbs and interjections).

3.1.2 Lexicon Features
A wide range of features were created using the
lexicons. For each tweet and for each lexicon the
following set of features were generated: (i) to-
tal number of positive and negative opinion words;
(ii) sum of all positive/negative polarity values in
the tweet; (iii) the highest positive/negative po-
larity value in the tweet; and (iv) the polarity
value of the last polarity word. Those features
were collected for: unigrams, bigrams and pairs
(only on the NRC Hashtag Lexicon and Senti-
ment140), nouns, adjectives, verbs, interjections,
hashtags, all caps tokens (e.g ’GO AWAY’), elon-
gated words, asterisks and dashes tokens.

Different approaches were followed to get the
polarity of each word from the wordnets. From
SentiWordNet, we computed combined scores of
all senses, with decreasing weights for lower
ranked senses, as well as the scores of the first
sense only, both considering: (i) positive and neg-
ative; (ii) just positive; (iii) just negative scores.
Moreover, we performed word sense disambigua-
tion using the full WordNet 3.0 to get the previ-
ous scores for the selected sense. For this pur-
pose, we applied the Lesk Algorithm adapted to
wordnets (Banerjee and Pedersen, 2002), using all
the tweet’s content words as the word context, and
the synset words, gloss words and words in related
synsets as the synset’s context. Given that Senti-
WordNet is aligned to WordNet 3.0, after select-
ing the most adequate sense of the word, we could
get its polarity scores. From Q-WordNet, similar
scores were computed but, since it doesn’t use a
graded strength and only classifies word senses as
positive or negative, there were just positive or just
negative scores.

3.2 Classifier

In our final approach we used a SVM (Fan et al.,
2008) which is an effective solution in high dimen-
sional spaces and proved to be the best learning
algorithm for this task. We tested various kernels
(e.g. PolyKernel, RBF) and their parameters with
cross validation on the training data. Given the re-
sults, we confirmed that the RBF kernel, computed
according to equation 1, is most effective with a
C = 4 and a γ = 0.0003.

K(xi, xj) = Φ(xi)T Φ(xj) = exp(−γ||xi−xj ||2)
(1)

Considering we are working on a multi-class
classification problem, we implemented the “one-
against-one” approach (Knerr et al., 1990) where
#classes ∗ (#classes− 1)/2 classifiers are con-
structed and each one trains data from classes.
Due to the non-scale invariant nature of SVM al-
gorithms, we’ve scaled our data on each attribute
to have µ = 0 and σ = 1 and took caution against
class unbalance.

4 Experiments

For training the SVM classifier, we used a set of
9,634 tweets with a known polarity and also 1,281
tweets as development test to grid search the best
parameters. No SMS messages were used as train-
ing or as development test. For the scorer function,
we used a macro-averaged F-Score of positive and
negative classes – the one made available and used
by the task organizers.

4.1 Some Results
The results obtained by the system were 70.41%
on the training set (using 10-Folds) and 71.03%
on the development set, after train on the train-
ing set. When tested against the training set,
after train in the same set, we get a score of
84.32%, which could indicate a case of under-
fitting. Though, our classifier generalized well,
given that we got a 74.46% official score on Live-
Journal2014, second in that category. On the other
hand, our experiments with decision trees showed
that they couldn’t generalize so well, although
they achieved scores of >99 on the training set. In
the SMS category, our system would benefit from
a specific data set in the training phase. Yet, it still
managed to reach 7th place in that category. In the
sarcasm category our submission ranked 4th, with
a score of 58.16%, 2.69% below the best rank. On
the Twitter2014 dataset, we scored 67.95% (4th),
which is slightly below our prediction based on
development tests. A possible explanation is that
we might have over-fitted the classifier parameters
when grid searching.

4.2 Features Relevance
In order to get some insights on the most relevant
group of features, we did a series of experiments
where each group of features were removed for
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the classification, then tested against the original
score. We concluded that the lexicon related fea-
tures contribute highly to the performance of our
system, including the set of features with n-grams
and POS. Clusters, sport score, asterisks and elon-
gated words provide little gains but, on the other
hand, emoticons and hashtags showed some im-
portance and provided enough new information
for the system to learn. The API information is
largely captured by some of our features and that
makes it much less discriminating than what they
would be on their own, but still worth using for
the small gain. We also observed that it is best to
create a diversified set of lexicon features with ex-
tra very specific targeted features, such as punc-
tuation, instead of focusing on using a specific
lexicon alone. Even though they usually over-
lap in information and may perform worse indi-
vidually than a hand-refined single dictionary ap-
proach, they complement each other and that re-
sults in larger gains.

4.3 Selected Parameters

For the parameter values, we did a grid search
using the development set as a test. We also
found that large values of C (25) and small γ val-
ues (0.0001) performed worse than smaller values
of C (4) with a slightly higher γ (0.0003) when
using the development set but not when using the
training set under K-Folds. For the official eval-
uation, we opted for the best-performing results
on the development set. Using intermediate val-
ues accomplished worse results in either case.

5 Concluding Remarks

We have described the work developed for the sub-
task B of SemEval 2014 Sentiment Analysis in
Twitter task. We followed a machine learning ap-
proach, with a diversified set of features, which
tend to complemented each other. Some of the
main takeaways are that the most important fea-
tures are the lexicon related ones, including the
n-grams and POS tags. Due to time constraints,
we could not take strong conclusions on the impact
of the word sense disambiguation related features
alone. As those are probably the most differentiat-
ing features of our classifier, this is something we
wish to target in the future.

To conclude, we have achieved very interesting
results in terms of overall classification. Consider-
ing that this was our first participation in such an

evaluation, we make a very positive balance. And
of course, we are looking forward for upcoming
editions of this task.
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Abstract

This article describes a strategy based on a
naive-bayes classifier for detecting the po-
larity of English tweets. The experiments
have shown that the best performance is
achieved by using a binary classifier be-
tween just two sharp polarity categories:
positive and negative. In addition, in or-
der to detect tweets with and without po-
larity, the system makes use of a very basic
rule that searchs for polarity words within
the analysed tweets/texts. When the clas-
sifier is provided with a polarity lexicon
and multiwords it achieves 63% F-score.

1 Introduction

Sentiment Analysis consists in finding the opin-
ion (e.g. positive, negative, or neutral) from text
documents such as movie reviews or product re-
views. Opinions about movies, products, etc. can
be found in web blogs, social networks, discus-
sion forums, and so on. Companies can improve
their products and services on the basis of the re-
views and comments of their costumers. Recently,
many works have stressed the microblogging ser-
vice Twitter. As Twitter can be seen as a large
source of short texts (tweets) containing user opin-
ions, most of these works make sentiment analysis
by identifying user attitudes and opinions toward
a particular topic or product (Go et al., 2009). The
task of making sentiment analysis from tweets is a
hard challenge. On the one hand, as in any senti-
ment analysis framework, we have to deal with hu-
man subjectivity. Even humans often disagree on
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PLN: Ref:EM13/041 (Program Emergentes, Xunta de Gali-
cia), Celtic: Ref:2012-CE138 and Plastic: Ref:2013-CE298
(Program Feder-Innterconecta)
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tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

the categorization of the positive or negative sen-
timent that is supposed to be expressed on a given
text (Villena-Román et al., 2013). On the other
hand, tweets are too short text to be linguistically
analyzed, and it makes the task of finding relevant
information (e.g. opinions) much harder.

The SemEval-2014 task “Sentiment Analysis
in Twitter” is an evaluation competition that in-
cludes a specific task directly related to sentiment
analyisis. In particular, subtask B, called “Mes-
sage Polarity Classification”, consists in classify-
ing whether a given message is of positive, neg-
ative, or neutral sentiment. For messages con-
veying both a positive and negative sentiment, the
stronger sentiment should be chosen. The results
of our system in this task are situated in the aver-
age out of 51 evaluated systems.

In this article, we describe the learning strate-
gies we developed so as to perform this task, all of
them based on bayesian classification.

2 Naive Bayes Classifier

Most of the algorithms for sentiment analysis
are based on a classifier trained using a collec-
tion of annotated text data. Before training, data
is preprocessed so as to extract the main fea-
tures. Some classification methods have been pro-
posed: Naive Bayes, Support Vector Machines, K-
Nearest Neighbors, etc. However, and according
to (Go et al., 2009), it is not clear which of these
classification strategies is the more appropriate to
perform sentiment analysis.

We decided to use a classification strategy based
on Naive Bayes (NB) because it is a simple and
intuitive method whose performance is similar to
other approaches. NB combines efficiency (opti-
mal time performance) with reasonable accuracy.
The main theoretical drawback of NB methods is
that it assumes conditional independence among
the linguistic features. If the main features are the
tokens extracted from texts, it is evident that they
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cannot be considered as independent, since words
co-occuring in a text are somehow linked by dif-
ferent types of syntactic and semantic dependen-
cies. However, even if NB produces an oversim-
plified model, its classification decisions are sur-
prinsingly accurate (Manning et al., 2008).

2.1 Strategy
Two different naive bayes classifiers have been
built, according to two different strategies:

Baseline This is a naive bayes classifier that
learns from the original training corpus how
to classify the three categories found in the
corpus: Positive, Negative, and Neutral. So,
no modification has been introduced in the
training corpus.

Binary The second classifier was trained on a
simplified training corpus and makes use of
a polarity lexicon. The corpus was simpli-
fied since only positive and negative tweets
were considered. Neutral tweets were not
taken into account. As a result, a basic bi-
nary (or boolean) classifier which only iden-
tifies both Positive and Negative tweets was
trained. In order to detect tweets without po-
larity (or Neutral), the following basic rule is
used: if the tweet contains at least one word
that is also found in the polarity lexicon, then
the tweet has some degree of polarity. Othe-
wise, the tweet has no polarity at all and is
classified as Neutral. The binary classifier
is actually suited to specify the basic polar-
ity between positive and negative, reaching a
precision of more than 80% in a corpus with
just these two categories.

3 Preprocessing

As we will describe in the next section, the main
features of the model are lemmas extracted using
lemmatization. Given that the language of mi-
croblogging requires a special treatment, we pro-
pose a pre-processing task to correct and normal-
ize the tweets before lemmatizing them.

The main preprocessing tasks we considered are
the following:

• removing urls, references to usernames, and
hashtags

• reduction of replicated characters (e.g.
looooveeee→ love)

• identifying emoticons and interjections and
replacing them with polarity or sentiment ex-
pressions (e.g. :-)→ good)

4 Features

The features considered by the classifier are lem-
mas, multiwords, polarity lexicons, and valence
shifters.

4.1 Lemmas (UL)
To characterise the main features underlying the
classifier, we make use of unigrams of lemmas in-
stead of tokens to minimize the problems derived
from the sparse distribution of words. Moreover,
only lemmas belonging to lexical categories are
selected as features, namely nouns, verbs, adjec-
tives, and adverbs. So, grammatical words, such
as determiners, conjunctions, and prepositions are
removed from the model.

To configure the feature representation, the fre-
quency of each selected lemma in a tweet is stored.

4.2 Multiwords (MW)
There is no agreement on which is the best option
for sentiment analysis (unigrams, bigrams, ...). In
(Pak and Paroubek, 2010), the best performance
is achieved with bigrams, while (Go et al., 2009)
show that the better results are reached with uni-
grams. An alternative option is to make use of a
selected set of n-grams (or multiwords) identified
by means of regular patterns of PoS tags. Multi-
word expressions identified by means of PoS tags
patterns can be conceived as linguistically moti-
vated terms, since most of them are pairs of words
linked by syntactic dependencies.

So, in addition to unigrams of lemmas, we also
consider multiwords extracted by an algorithm
based on patterns of PoS tags. In particular, we
used the following set of patterns:

• NOUN-ADJ

• NOUN-NOUN

• ADJ-NOUN

• NOUN-PRP-NOUN

• VERB-NOUN

• VERB-PRP-NOUN

The instances of bigrams and trigrams extracted
with these patterns ared added to the unigrams
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to build the language model. Multiword extrac-
tion was performed using our tool GaleXtra1, re-
leased under GPL license and described in (Mario
Barcala and Eva Domı́nguez and Pablo Gamallo
and Marisol López and Eduardo Moscoso and
Guillermo Rojo and Paula Santalla and Susana
Sotelo, 2007).

4.3 Polarity Lexicon (LEX)

We have built a polarity lexicon with both Positive
and Negative entries from different sources:

• AFINN-1112 contains 2, 477 word forms,
which were lemmatized and converted into
1, 520, positive and negative lemmas.

• Hedonometer3 contains about 10, 000 fre-
quent words extracted from tweets which
were classified as expressing some degree of
hapiness (Dodds et al., 2011). We selected
the 300 most positive lemmas from the initial
list.

• Hu&Liu list (Liu et al., 2005) contains over
6, 800 words out of which 5 positive and neg-
ative lemmas were selected 5, 695.

• Sentiwordnet-3.0 (Baccianella et al., 2010)
contains more than 100, 000 entries. We se-
lected a subset of 6, 600 positive and negative
lemmas with the highest polarity values.

• Finally, we have built a polarity lexicon with
10, 850 entries by merging the previous ones.

The final polarity lexicon is used in two differ-
ent ways: on the one hand, it is used to identify
neutral tweets, since a tweet is considered as being
neutral if it does not contain any lemma appearing
in the polarity lexicon. On the other hand, we have
built artificial tweets as follows: each entry of the
lexicon is converted into an artificial tweet with
just one lemma inheriting the polarity (positive or
negative) from the lexicon. The frequency of the
word in each new tweet is the average frequency
of lemmas in the training corpus. These artificial
tweets will be taken into account for training the
classifiers.

1http://gramatica.usc.es/\˜gamallo/
gale-extra/index.htm

2http://arxiv.org/abs/1103.2903
3http://www.hedonometer.org/

4.4 Valence Shifters (VS)
We take into account negative words that can shift
the polarity of specific lemmas in a tweet. In
the presented work, we will make use of only
those valence shifters that reverse the sentiment of
words, namely negations. The strategy to identify
the scope of negations relies on the PoS tags of the
negative word as well as of those words appearing
to its right in the sequence. The algorithm is as
follows:

Whenever a negative word is found, its PoS tag
is considered and, according to its syntactic prop-
erties, we search for a polarity word (noun, verb,
or adjective) within a window of 2 words after the
negation. If a polarity word is found and is syntac-
tically linked to the negative word, then its polarity
is reversed. For instance, if the negation word is
the adverb “not”, the system only reverses the po-
larity of verbs or adjectives appearing to its right.
Nouns are not syntactically linked to this adverb.
By contrast, if the negation is the determiner “no”
or “none”, only the polarity of nouns can be re-
versed. Our strategy to deal with negation scope
is not so basic as those described in (Yang, 2008)
and (Anta et al., 2013), which are just based on
a rigid window after the negation word: 1 and 3
words, respectively.

5 Experiments and Evaluation

5.1 Training corpus
In our preliminary experiments we have used the
training dataset of tweets provided by SemEval-
2014 organization (tweeti-b.dist.tsv). This set
contains 6, 408 tweets, which were tagged with
the following polarity values: Positive, Nega-
tive, Neutral, Objective, and Neutral-or-Objective.
In order to fill the requirements of the task, we
transformed Neutral, Objective, and Natural-or-
Objective into a single tag: Neutral. In addi-
tion, we also used a selection of annotated tweets
(namely 5, 050 positive and negative ones), which
were compiled from an external source (Narr et al.,
2012). Using the terminology provided by the or-
ganizers of SemEval-2014, we call “constrained”
the systems trained with only the dataset provided
by the organization and “unconstrained” the sys-
tems trained with both datasets.

5.2 Evaluated classifiers
We have implemented and evaluated several clas-
sifiers by making use of the two strategies de-
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scribed in section 2, combined with the features
defined in 4. We also distinguished those clas-
sifiers trained with only tweeti-b.dist.tsv (con-
strained systems) from those trained with both in-
ternal and external datasets (unconstrained). As a
result, we implemented the following classifiers:

CONSTRAINED-BASELINE: This system
was implemented on the basis of the “Base-
line” strategy and the following two features:
unigrams of lemmas (UL) and valence
shifters (VS).

CONSTRAINED-BASELINE-LEX: This sys-
tem was implemented on the basis of the
“Baseline” strategy and the following three
features: unigrams of lemmas (UL), polarity
lexicon (LEX), and valence shifters (VS).

CONSTRAINED-BINARY-LEX: This system
was implemented on the basis of the “Base-
line” strategy and the following three fea-
tures: unigrams of lemmas (UL), polarity
lexicon (LEX), and valence shifters (VS).

CONSTRAINED-BINARY-LEX-MW: This
system was implemented on the basis of the
“Binary” strategy and the following features:
unigrams of lemmas (UL), multiwords
(MW), polarity lexicon (LEX), and valence
shifters (VS).

UNCONSTRAINED-BINARY-LEX: This sys-
tem was implemented on the basis of the
“Binary” strategy and the following features:
unigrams of lemmas (UL), polarity lexicon
(LEX), and valence shifters (VS).

UNCONSTRAINED-BINARY-LEX-MW:
This system was implemented on the basis of
the “Binary” strategy and the following fea-
tures: unigrams of lemmas (UL), multiwords
(MW), polarity lexicon (LEX), and valence
shifters (VS).

All the classifers have been implemented with
Perl language. They rely on the naive-bayes algo-
rithm and incorporate the preprocessing tasks de-
fined in section 3.

5.3 Evaluation
To evaluate the classification performance of these
classifiers, we used as test corpus another dataset
provided by the organization: tweeti-b.devel.tsv.

The results are shown in table 1, where the names
of the evaluated systems are in the first column and
F-Score in the second one.

System F-score
CONSTR-BASE .49

CONSTR-BASE-LEX .56
CONSTR-BIN-LEX .57

CONSTR-BIN-LEX-MW .61
UNCONSTR-BIN-LEX .58

UNCONSTR-BIN-LEX-MW .63

Table 1: Results of our six systems
.

The results show that there is an improve-
ment in performance when the classifiers are im-
plemented with the Binary strategy, when they
use a polarity lexicon, and when multiwords are
considered as features. The two systems sub-
mmited to Semeval competition were those ob-
tained the best scores: CONSTR-BIN-LEX-MW
and UNCONSTR-BIN-LEX-MW. The scores ob-
tained by these two systems in the competition
are very similar to those obtained in the experi-
ments depicted in Table 1. More precisely, in the
Tweets2014 test corpus, the constrained system
reached 0.62 F-score while the unconstrained ver-
sion achieved 0.63. Our best system was ranked
as 26th from 53 systems. A Spanish version of
this system (Gamallo et al., 2013) also participated
in the TASS-2013 competition (Villena-Román et
al., 2013), where it was ranked as the 3th best sys-
tem out of 13 participants.

6 Conclusions

We have presented a family of naive-bayes classi-
fiers for detecting the polarity of English tweets.
The experiments have shown that the best per-
formance is achieved by using a binary classi-
fier trained to detect just two categories: posi-
tive and negative. In order to detect tweets with
and without polarity we used a very basic strat-
egy based on searching for polarity lemmas within
the text/tweet. If the tweet does not contain at
least one lemma also found in an external polarity
lexicon, then the tweet has not any polarity and,
thereby, is tagged with the Neutral value. The use
of both a polarity lexicon and multiwords also im-
proves the results in a significant way. Our sys-
tem is being used by Cilenis S.L, a company spe-
cialised in natural language technology, and being
applied to four languages: English, Spanish, Por-
tuguese, and Galician.
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Abstract

We present an arc-factored statistical model
for semantic dependency parsing, as de-
fined by the SemEval 2014 Shared Task 8
on Broad-Coverage Semantic Dependency
Parsing. Our entry in the open track placed
second in the competition.

1 Introduction

The task of broad coverage semantic dependency
parsing aims to provide a shallow semantic analysis
of text not limited to a specific domain. As distinct
from deeper semantic analysis (e.g., parsing to a
full lambda-calculus logical form), shallow seman-
tic parsing captures relationships between pairs
of words or concepts in a sentence, and has wide
application for information extraction, knowledge
base population, and question answering (among
others).

We present here two systems that produce seman-
tic dependency parses in the three formalisms of the
SemEval 2014 Shared Task 8 on Broad-Coverage
Semantic Dependency Parsing (Oepen et al., 2014).
These systems generate parses by extracting fea-
tures for each potential dependency arc and learn-
ing a statistical model to discriminate between good
arcs and bad; the first treats each labeled edge de-
cision as an independent multiclass logistic regres-
sion (§3.2.1), while the second predicts arcs as part
of a graph-based structured support vector machine
(§3.2.2). Common to both models is a rich set of
features on arcs, described in §3.2.3. We include a
discussion of features found to have no discernable
effect, or negative effect, during development (§4).

Our system placed second in the open track of
the Broad-Coverage Semantic Dependency Parsing

This work is licensed under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

Figure 1: Example annotations for DM (top), PAS (middle),
and PCEDT (bottom).

task (in which output from syntactic parsers and
other outside resources can be used). We present
our results in §5.

2 Formalisms

The Shared Task 8 dataset consists of annota-
tions of the WSJ Corpus in three different se-
mantic dependency formalisms. DM is derived
from LinGO English Resource Grammar (ERG)
annotations in DeepBank (Flickinger et al., 2012).
PAS is derived from the Enju HPSG treebank us-
ing the conversion rules of Miyao et al. (2004).
PCEDT is derived from the tectogrammatical layer
of the Prague Czech-English Dependency Treebank
(Hajič, 1998). See Figure 1 for an example.

The three formalisms come from very different
linguistic theories, but all are represented as labeled
directed graphs, with words as vertices, and all
have “top” annotations, corresponding roughly to
the semantic focus of the sentence. (A “top” need
not be a root of the graph.) This allows us to use
the same machinery (§3) for training and testing
statistical models for the three formalisms.

3 Models

We treat the problem as a three-stage pipeline. The
first stage prunes words by predicting whether they
have any incoming or outgoing edges at all (§3.1);
if a word does not, then it is not considered for
any attachments in later stages. The second stage
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predicts where edges are present, and their labels
(§3.2). The third stage predicts whether a predicate
word is a top or not (§3.3). Formalisms sometimes
annotate more than one “top” per sentence, but we
found that we achieve the best performance on all
formalisms by predicting only the one best-scoring
“top” under the model.

3.1 Singleton Classification

For each formalism, we train a classifier to rec-
ognize singletons, nodes that have no parents or
children. (For example, punctuation tokens are of-
ten singletons.) This makes the system faster with-
out affecting accuracy. For singleton prediction,
we use a token-level logistic regression classifier,
with features including the word, its lemma, and
its part-of-speech tag. If the classifier predicts a
probability of 99% or higher the token is pruned;
this removes around 10% of tokens. (The classi-
fier performs differently on different formalisms;
on PAS it has perfect accuracy, while on DM and
PCEDT accuracy is in the mid-90’s.)

3.2 Edge Prediction

In the second stage of the pipeline, we predict the
set of labeled directed edges in the graph. We use
the same set of edge-factored features (§3.2.3) in
two alternative models: an edge-independent mul-
ticlass logistic regression model (LOGISTICEDGE,
§3.2.1); and a structured SVM (Taskar et al., 2003;
Tsochantaridis et al., 2004) that enforces a deter-
minism constraint for certain labels, which allows
each word to have at most one outgoing edge with
that label (SVMEDGE, §3.2.2). For each formalism,
we trained both models with varying features en-
abled and hyperparameter settings and submitted
the configuration that produced the best labeled F1

on the development set. For DM and PCEDT, this
was LOGISTICEDGE; for PAS, this was SVMEDGE.
We report results only for the submitted configu-
rations, with different features enabled. Due to
time constraints, full hyperparameter sweeps and
comparable feature sweeps were not possible.

3.2.1 LOGISTICEDGE Parser

The LOGISTICEDGE model considers only token
index pairs (i, j) where |i − j| ≤ 10, i 6= j,
and both ti and tj have been predicted to be non-
singletons by the first stage. Although this prunes
some gold edges, among the formalisms, 95%–97%
of all gold edges are between tokens of distance

10 or less. Both directions i → j and j → i are
considered between every pair.

Let L be the set of K + 1 possible output labels:
the formalism’s original K edge labels, plus the
additional label NOEDGE, which indicates that no
edge exists from i to j. The model treats every pair
of token indices (i, j) as an independent multiclass
logistic regression over output space L. Let x be
an input sentence. For candidate parent index i,
child index j, and edge label `, we extract a feature
vector f(x, i, j, `), where ` is conjoined with every
feature described in §3.2.3. The multiclass logis-
tic regression model defines a distribution over L,
parametrized by weights φ:

P (` | φ, x, i, j) =
exp{φ · f(x, i, j, `)}∑

`′∈L exp{φ · f(x, i, j, `′)} .

φ is learned by minimizing total negative log-
likelihood of the above (with weighting; see be-
low), plus `2 regularization. AdaGrad (Duchi et al.,
2011) is used for optimization. This seemed to opti-
mize faster than L-BFGS (Liu and Nocedal, 1989),
at least for earlier iterations, though we did no sys-
tematic comparison. Stochastic gradient steps are
applied one at a time from individual examples,
and a gradient step for the regularizer is applied
once per epoch.

The output labels have a class imbalance; in all
three formalisms, there are many more NOEDGE

examples than true edge examples. We improved
F1 performance by downweighting NOEDGE

examples through a weighted log-likelihood
objective,

∑
i,j

∑
`w` logP (` |φ, x, i, j), with

wNOEDGE = 0.3 (selected on development set) and
w` = 1 otherwise.
Decoding: To predict a graph structure at test-time
for a new sentence, the most likely edge label is pre-
dicted for every candidate (i, j) pair of unpruned
tokens. If an edge is predicted for both directions
for a single (i, j) pair, only the edge with the higher
score is chosen. (There are no such bidirectional
edges in the training data.) This post-processing ac-
tually did not improve accuracy on DM or PCEDT;
it did improve PAS by ≈0.2% absolute F1, but we
did not submit LOGISTICEDGE for PAS.

3.2.2 SVMEDGE Parser
In the SVMEDGE model, we use a structured SVM
with a determinism constraint. This constraint en-
sures that each word token has at most one outgoing
edge for each label in a set of deterministic labels
Ld. For example, in DM a predicate never has more
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than one child with edge label “ARG1.” Ld was
chosen to be the set of edges that were > 99.9%
deterministic in the training data.1

Consider the fully dense graph of all edges be-
tween all words predicted as not singletons by the
singleton classifier §3.1 (in all directions with all
possible labels). Unlike LOGISTICEDGE, the la-
bel set L does not include an explicit NOEDGE

label. If ψ denotes the model weights, and f de-
notes the features, then an edge from i to j with
label ` in the dense graph has a weight c(i, j, `)
assigned to it using the linear scoring function
c(i, j, `) = ψ · f(x, i, j, `).
Decoding: For each node and each label `, if ` ∈
Ld, the decoder adds the highest scoring outgoing
edge, if its weight is positive. For ` 6∈ Ld, every
outgoing edge with positive weight is added. This
procedure is guaranteed to find the highest scoring
subgraph (largest sum of edge weights) of the dense
graph subject to the determinism constraints. Its
runtime is O(n2).

The model weights are trained using the struc-
tured SVM loss. If x is a sentence and y is a
graph over that sentence, let the features be de-
noted f(x, y) =

∑
(i,j,`)∈y f(x, i, j, `). The SVM

loss for each training example (xi, yi) is:

−ψ>f(xi, yi)+max
y
ψ>f(xi, y)+cost(y, yi)

where cost(y, yi) = α|y \ yi| + β|yi \ y|. α and
β trade off between precision and recall for the
edges (Gimpel and Smith, 2010). The loss is min-
imized with AdaGrad using early-stopping on a
development set.

3.2.3 Edge Features
Table 1 describes the features we used for predict-
ing edges. These features were computed over an
edge e with parent token s at index i and child
token t at index j. Unless otherwise stated, each
feature template listed has an indicator feature that
fires for each value it can take on. For the sub-
mitted results, LOGISTICEDGE uses all features
except Dependency Path v2, POS Path, and Dis-
tance Thresholds, and SVMEDGE uses all features
except Dependency Path v1. This was due to
SVMEDGE being faster to train than LOGISTIC-
EDGE when including POS Path features, and due

1 By this we mean that of the nodes that have at least
one outgoing ` edge, 99.9% of them have only one outgo-
ing ` edge. For DM, Ld = L\{“ and c,” “ or c,” “ then c,”
“loc,” “mwe,” “subord”}; for PAS, Ld = L; and for PCEDT,
Ld ={“DPHR,” “INTF,” “VOCAT”}.

Tokens: The tokens s and t themselves.
Lemmas: Lemmas of s and t.
POS tags: Part of speech tags of s and t.
Linear Order: Fires if i < j.
Linear Distance: i− j.
Dependency Path v1 (LOGISTICEDGE only): The
concatenation of all POS tags, arc labels and up/down
directions on the path in the syntactic dependency tree
from s to t. Conjoined with s, with t, and without either.
Dependency Path v2 (SVMEDGE only): Same as De-
pendency Path v1, but with the lemma of s or t instead
of the word, and substituting the token for any “IN” POS
tag.
Up/Down Dependency Path: The sequence of upward
and downward moves needed to get from s to t in the
syntactic dependency tree.
Up/Down/Left/Right Dependency Path: The unla-
beled path through the syntactic dependency tree from s
to t, annotated with whether each step through the tree
was up or down, and whether it was to the right or left in
the sentence.
Is Parent: Fires if s is the parent of t in the syntactic
dependency parse.
Dependency Path Length: Distance between s and t in
the syntactic dependency parse.
POS Context: Concatenated POS tags of tokens at i−1,
i, i + 1, j − 1, j, and j + 1. Concatenated POS tags of
tokens at i− 1, i, j − 1, and j. Concatenated POS tags
of tokens at i, i + 1, j, and j + 1.
Subcategorization Sequence: The sequence of depen-
dency arc labels out of s, ordered by the index of the
child. Distinguish left children from right children. If t
is a direct child of s, distinguish its arc label with a “+”.
Conjoin this sequence with the POS tag of s.
Subcategorization Sequence with POS: As above, but
add the POS tag of each child to its arc label.
POS Path (SVMEDGE only): Concatenated POS tags
between and including i and j. Conjoined with head
lemma, with dependent lemma, and without either.
Distance Thresholds (SVMEDGE only): Fires for ev-
ery integer between 1 and blog(|i− j|+ 1)/ log(1.39)c
inclusive.

Table 1: Features used in edge prediction

to time constraints for the submission we were un-
able to retrain LOGISTICEDGE with these features.

3.2.4 Feature Hashing
The biggest memory usage was in the map from
feature names to integer indices during feature
extraction. For experimental expedience, we im-
plemented multitask feature hashing (Weinberger
et al., 2009), which hashes feature names to indices,
under the theory that errors due to collisions tend
to cancel. No drop in accuracy was observed.

3.3 Top Prediction

We trained a separate token-level binary logistic
regression model to classify whether a token’s node
had the “top” attribute or not. At decoding time, all
predicted predicates (i.e., nodes where there is at
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least one outbound edge) are possible candidates
to be “top”; the classifier probabilities are evalu-
ated, and the highest-scoring node is chosen to be
“top.” This is suboptimal, since some graphs have
multiple tops (in PCEDT this is more common);
but selection rules based on probability thresholds
gave worse F1 performance on the dev set. For a
given token t at index i, the top classifier’s features
included t’s POS tag, i, those two conjoined, and
the depth of t in the syntactic dependency tree.

4 Negative Results

We followed a forward-selection process during
feature engineering. For each potential feature,
we tested the current feature set versus the current
feature set plus the new potential feature. If the
new feature did not improve performance, we did
not add it. We list in table 2 some of the features
which we tested but did not improve performance.

In order to save time, we ran these feature se-
lection experiments on a subsample of the training
data, for a reduced number of iterations. These re-
sults thus have a strong caveat that the experiments
were not exhaustive. It may be that some of these
features could help under more careful study.

5 Experimental Setup

We participated in the Open Track, and used the
syntactic dependency parses supplied by the orga-
nizers. Feature engineering was performed on a
development set (§20), training on §§00–19. We
evaluate labeled precision (LP), labeled recall (LR),
labeled F1 (LF), and labeled whole-sentence match
(LM) on the held-out test data using the evaluation
script provided by the organizers. LF was aver-
aged over the formalisms to determine the winning
system. Table 3 shows our scores.

6 Conclusion and Future Work

We found that feature-rich discriminative models
perform well at the task of mapping from sentences
to semantic dependency parses. While our final
approach is fairly standard for work in parsing,
we note here additional features and constraints
which did not appear to help (contrary to expecta-
tion). There are a number of clear extensions to
this work that could improve performance. While
an edge-factored model allows for efficient infer-
ence, there is much to be gained from higher-order
features (McDonald and Pereira, 2006; Martins
et al., 2013). The amount of information shared

Word vectors: Features derived from 64-dimensional
vectors from (Faruqui and Dyer, 2014), including the
concatenation, difference, inner product, and element-
wise multiplication of the two vectors associated with
a parent-child edge. We also trained a Random Forest
on the word vectors using Liaw and Wiener’s (2002) R
implementation. The predicted labels were then used as
features in LOGISTICEDGE.
Brown clusters Features derived from Brown clusters
(Brown et al., 1992) trained on a large corpus of web data.
Parent, child, and conjoined parent-child edge features
from cluster prefixes of length 2, 4, 6, 8, 10, and 12.
Conjunctions of those features with the POS tags of the
parent and child tokens.
Active/passive: Active/passive voice feature (as in Jo-
hansson and Nugues (2008)) conjoined with both the
Linear Distance features and the Subcategorization Se-
quence features. Voice information may already be cap-
tured by features from the Stanford dependency–style
parses, which include passivization information in arc
labels such as nsubjpass and auxpass (de Marneffe and
Manning, 2008).
Connectivity constraint: Enforcing that the graph is
connected (ignoring singletons), similar to Flanigan et al.
(2014). Almost all semantic dependency graphs in the
training data are connected (ignoring singletons), but
we found that enforcing this constraint significantly hurt
precision.
Tree constraint: Enforces that the graph is a tree. Un-
surprisingly, we found that enforcing a tree constraint
hurt performance.

Table 2: Features and constraints giving negative results.

LP LR LF LM
DM 0.8446 0.8348 0.8397 0.0875
PAS 0.9078 0.8851 0.8963 0.2604

PCEDT 0.7681 0.7072 0.7364 0.0712
Average 0.8402 0.8090 0.8241 0.1397

Table 3: Labeled precision (LP), recall (LR), F1 (LF), and
whole-sentence match (LM) on the held-out test data.

between the three formalisms suggests that a multi-
task learning (Evgeniou and Pontil, 2004) frame-
work could lead to gains. And finally, there is
additional structure in the formalisms which could
be exploited (such as the deterministic processes
by which an original PCEDT tree annotation was
converted into a graph); formulating more subtle
graph constraints to capture this a priori knowl-
edge could lead to improved performance. We
leave such explorations to future work.
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Abstract

This paper describes the system we sub-
mitted to the SemEval-2014 shared task
on sentiment analysis in Twitter. Our sys-
tem is a hybrid combination of two system
developed for a course project at CMU-
Qatar. We use an SVM classifier and cou-
ple a set of features from one system with
feature and parameter optimization frame-
work from the second system. Most of the
tuning and feature selection efforts were
originally aimed at task-A of the shared
task. We achieve an F-score of 84.4% for
task-A and 62.71% for task-B and the sys-
tems are ranked 3rd and 29th respectively.

1 Introduction

With the proliferation of Web2.0, people increas-
ingly express and share their opinion through so-
cial media. For instance, microblogging websites
such as Twitter1 are becoming a very popular com-
munication tool. An analysis of this platform re-
veals a large amount of community messages ex-
pressing their opinions and sentiments on differ-
ent topics and aspects of life. This makes Twit-
ter a valuable source of subjective and opinionated
text that could be used in several NLP research
works on sentiment analysis. Many approaches
for detecting subjectivity and determining polarity
of opinions in Twitter have been proposed (Pang
and Lee, 2008; Davidov et al., 2010; Pak and
Paroubek, 2010; Tang et al., 2014). For instance,
the Twitter sentiment analysis shared task (Nakov
et al., 2013) is an interesting testbed to develop
and evaluate sentiment analysis systems on social
media text. Participants are asked to implement

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1http://twitter.com

a system capable of determining whether a given
tweet expresses positive, negative or neutral sen-
timent. In this paper, we describe the CMUQ-
Hybrid system we developed to participate in the
two subtasks of SemEval 2014 Task 9 (Rosenthal
et al., 2014). Our system uses an SVM classifier
with a rich set of features and a parameter opti-
mization framework.

2 Data Preprocessing

Working with tweets presents several challenges
for NLP, different from those encountered when
dealing with more traditional texts, such as
newswire data. Tweet messages usually contain
different kinds of orthographic and typographical
errors such as the use of special and decorative
characters, letter duplication used generally for
emphasis, word duplication, creative spelling and
punctuation, URLs, #hashtags as well as the use
of slangs and special abbreviations. Hence, before
building our classifier, we start with a preprocess-
ing step on the data, in order to normalize it. All
letters are converted to lower case and all words
are reduced to their root form using the WordNet
Lemmatizer in NLTK2 (Bird et al., 2009). We kept
only some punctuation marks: periods, commas,
semi-colons, and question and exclamation marks.
The excluded characters were identified to be per-
formance boosters using the best-first branch and
bound technique described in Section 3.

3 Feature Extraction

Out of a wide variety of features, we selected the
most effective features using the best-first branch
and bound method (Neapolitan, 2014), a search
tree technique for solving optimization problems.
We used this technique to determine which punc-
tuation marks to keep in the preprocessing step and

2http://www.nltk.org/api/nltk.stem.
html
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in selecting features as well. In the feature selec-
tion step, the root node is represented by a bag of
words feature, referred as textual tokens.

At each level of the tree, we consider a set of
different features, and iteratively we carry out the
following steps: we process the current feature by
generating its successors, which are all the other
features. Then, we rank features according to the
f-score and we only process the best feature and
prune the rest. We pass all the current pruned fea-
tures as successors to the next level of the tree. The
process iterates until all partial solutions in the tree
are processed or terminated. The selected features
are the following:

Sentiment lexicons : we used the Bing Liu Lex-
icon (Hu and Liu, 2004), the MPQA Subjectivity
Lexicon (Wilson et al., 2005), and NRC Hashtag
Sentiment Lexicon (Mohammad et al., 2013). We
count the number of words in each class, result-
ing in three features: (a) positive words count, (b)
negative words count and (c) neutral words count.

Negative presence: presence of negative words
in a term/tweet using a list of negative words. The
list used is built from the Bing Liu Lexicon (Hu
and Liu, 2004).

Textual tokens: the target term/tweet is seg-
mented into tokens based on space. Token identity
features are created and assigned the value of 1.

Overall polarity score: we determine the polar-
ity scores of words in a target term/tweet using the
Sentiment140 Lexicon (Mohammad et al., 2013)
and the SentiWordNet lexicon (Baccianella et al.,
2010). The overall score is computed by adding
up all word scores.

Level of association: indicates whether the
overall polarity score of a term is greater than 0.2
or not. The threshold value was optimized on the
development set.

Sentiment frequency: indicates the most fre-
quent word sentiment in the tweet. We determine
the sentiment of words using an automatically
generated lexicon. The lexicon comprises 3,247
words and their sentiments. Words were obtained
from the provided training set for task-A and sen-
timents were generated using our expression-level
classifier.

We used slightly different features for Task-A
and Task-B. The features extracted for each task
are summarized in Table 1.

Feature Task A Task B
Positive words count X
Negative words count X
Neutral words count X
Negative presence X X
Textual tokens X X
Overall polarity score X X
Level of association X
Sentiment frequency X

Table 1: Feature summary for each task.

4 Modeling Kernel Functions

Initially we experimented with both logistic
regression and the Support Vector Machine
(SVM) (Fan et al., 2008), using the Stochastic
Gradient Descent (SGD) algorithm for parame-
ter optimization. In our development experiments,
SVM outperformed and became our single classi-
fier. We used the LIBSVM package (Chang and
Lin, 2011) to train and test our classifier.

An SVM kernel function and associated param-
eters were optimized for best F-score on the de-
velopment set. In order to avoid the model over-
fitting the data, we select the optimal parameter
value only if there are smooth gaps between the
near neighbors of the corresponded F-score. Oth-
erwise, the search will continue to the second op-
timal value.

In machine learning, the difference between the
number of training samples, m, and the number
of features, n, is crucial in the selection process
of SVM kernel functions. The Gaussian kernel is
suggested when m is slightly larger than n. Other-
wise, the linear kernel is recommended. In Task-
B, the n : m ratio was 1 : 3 indicating a large
difference between the two numbers. Whereas in
Task-A, a ratio of 5 : 2 indicated a small differ-
ence between the two numbers. We selected the
theoretical types, after conducting an experimen-
tal verification to identify the best kernel function
according to the f-score.

We used a radical basis function kernel for the
expression-level task and the value of its gamma
parameter was adjusted to 0.319. Whereas, we
used a linear function kernel for the message-level
task and the value of its cost parameter was ad-
justed to 0.053.
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5 Experiments and Results

In this section, we describe the data and the sev-
eral experiments we conducted for both tasks. We
train and evaluate our classifier with the training,
development and testing datasets provided for the
SemEval 2014 shared task. A short summary of
the data distribution is shown in Table 2.

Dataset Postive Negative Neutral
Task-A:

Train (9,451) 62% 33% 5%
Dev (1,135) 57% 38% 5%
Test (10,681) 60% 35% 5%

Task-B:
Train (9,684) 38% 15% 47%
Dev (1,654) 35% 21% 44%
Test (5,754) 45% 15% 40%

Table 2: Datasets distribution percentage per class.

Our test dataset is composed of five different
sets: The test dataset is composed of five dif-
ferent sets: Twitter2013 a set of tweets collected
for the SemEval2013 test set, Twitter2014, tweets
collected for this years version, LiveJournal2014
consisting of formal tweets, SMS2013, a collection
of sms messages, TwitterSarcasm, a collection of
sarcastic tweets.

5.1 Task-A

For this task, we train our classifier on 10,586
terms (9,451 terms in the training set and 1,135
in the development set), tune it on 4,435 terms,
and evaluate it using 10,681 terms. The average
F-score of the positive and negative classes for
each dataset is given in the first part of Table 3.
The best F-score value of 88.94 is achieved on the
Twitter2013.

We conducted an ablation study illustrated in
the second part of Table 3 shows that all the se-
lected features contribute well in our system per-
formance. Other than the textual tokens feature,
which refers to a bag of preprocessed tokens, the
study highlights the role of the term polarity score
feature: −4.20 in the F-score, when this feature is
not considered on the TwitterSarcasm dataset.

Another study conducted is a feature correlation
analysis, in which we grouped features with sim-
ilar intuitions. Namely the two features negative
presence and negative words count are grouped
as “negative features”, and the features positive

words count and negative words count are grouped
as “words count”. We show in Table 4 the effect
on f-score after removing each group from the fea-
tures set. Also we show the f-score after remov-
ing each individual feature within the group. This
helps us see whether features within a group are
redundant or not. For the Twitter2014 dataset, we
notice that excluding one of the features in any of
the two groups leads to a significant drop, in com-
parison to the total drop by its group. The uncor-
related contributions of features within the same
group indicate that features are not redundant to
each other and that they are indeed capturing dif-
ferent information. However, in the case of the
TwitterSarcasm dataset, we observe that the neg-
ative presence feature is not only not contributing
to the system performance but also adding noise
to the feature space, specifically, to the negative
words count feature.

5.2 Task-B

For this task, we trained our classifier on 11,338
tweets (9,684 terms in the training set and 1,654
in the development set), tuned it on 3,813 tweets,
and evaluated it using 8,987 tweets. Results for
different feature configurations are reported in Ta-
ble 5.

It is important to note that if we exclude the tex-
tual tokens feature, all datasets benefit the most
from the polarity score feature. It is interesting to
note that the bag of words, referred to as textual
tokens, is not helping in one of the datasets, the
TwitterSarcasm set. For all datasets, performance
could be improved by removing different features.

In Table 5, we observe that the Negative pres-
ence feature decreases the F-score on the Twitter-
Sarcasm dataset. This could be explained by the
fact that negative words do not usually appear in
a negative implication in sarcastic messages. For
example, this tweet: Such a fun Saturday catch-
ing up on hw. which has a negative sentiment, is
classified positive because of the absence of neg-
ative words. Table 5 shows that the textual tokens
feature increases the classifier’s performance up to
+21.07 for some datasets. However, using a large
number of features in comparison to the number
of training samples could increase data sparseness
and lower the classifier’s performance.

We conducted a post-competition experiment to
examine the relationship between the number of
features and the number of training samples. We
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Twitter2014 TwitterSarcasm LiveJournal2014 Twitter2013 SMS2013
F-score 84.40 76.99 84.21 88.94 87.98
Negative presence -0.45 0.00 -0.45 -0.23 +0.30
Positive words count -0.52 -1.37 -0.11 -0.02 +0.38
Negative words count -0.50 -2.20 -0.61 -0.47 -1.66
Polarity score -1.83 -4.20 -0.23 -2.14 -3.00
Level of association -0.18 0.00 -0.18 -0.07 +0.57
Textual tokens -8.74 -2.40 -3.02 -4.37 -6.06

Table 3: Task-A feature ablation study. F-scores calculated on each set along with the effect when
removing one feature at a time.

Twitter2014 TwitterSarcasm LiveJournal2014 Twitter2013 SMS2013
F-score 84.40 76.99 84.21 88.94 87.98
Negative features -1.53 -0.84 -3.05 -1.88 -0.67

Negative presence -0.45 0.00 -0.45 -0.23 +0.3
Negative words count -0.50 -2.20 -0.61 -0.47 -1.66

Words count -1.07 -2.2 -0.79 -0.62 -2.01
Positive words count -0.52 -1.37 -0.11 -0.02 +0.38
Negative words count -0.50 -2.20 -0.61 -0.47 -1.66

Table 4: Task-A features correlation analysis. We grouped features with similar intuitions and we calcu-
lated F-scores on each set along with the effect when removing one feature at a time.

fixed the size of our training dataset. Then, we
compared the performance of our classifier using
only the bag of tokens feature, in two different
sizes. In the first experiment, we included all to-
kens collected from all tweets. In the second, we
only considered the top 20 ranked tokens from
each tweet. Tokens were ranked according to the
difference between their highest level of associa-
tion into one of the sentiments and the sum of the
rest. The level of associations for tokens were de-
termined using the Sentiment140 and SentiWord-
Net lexicons. The threshold number of tokens was
identified empirically for best performance. We
found that the classifier’s performance has been
improved by 2 f-score points when the size of to-
kens bag is smaller. The experiment indicates that
the contribution of the bag of words feature can be
increased by reducing the size of vocabulary list.

6 Error Analysis

Our efforts are mostly tuned towards task-A,
hence our inspection and analysis is focused on
task-A. The error rate calculated per sentiment
class: positive, negative and neutral are 6.8%,
14.9% and 93.8%, respectively. The highest error
rate in the neutral class, 93.8%, is mainly due to
the few neutral examples in the training data (only

5% of the data). Hence the system could not learn
from such a small set of neutral class examples.

In the case of negative class error rate, 14.9%,
most of which were classified as positive. An ex-
ample of such classification: I knew it was too
good to be true OTL. Since our system highly re-
lies on lexicon, hence looking at lexicon assigned
polarity to the phrase too good to be true which is
positive, happens because the positive words good
and true has dominating positive polarity.

Lastly for the positive error rate, which is rel-
atively lower, 6%, most of which were classified
negative instead of positive. An example of such
classification: Looks like we’re getting the heavi-
est snowfall in five years tomorrow. Awesome. I’ll
never get tired of winter. Although the phrase car-
ries a positive sentiment, the individual negative
words of the phrase never and tired again domi-
nates over the phrase.

7 Conclusion

We described our systems for Twitter Sentiment
Analysis shared task. We participated in both
tasks, but were mostly focused on task-A. Our hy-
brid system was assembled by integrating a rich
set of lexical features into a framework of fea-
ture selection and parameter tuning, The polarity
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Twitter2014 TwitterSarcasm LiveJournal2014 Twitter2013 SMS2013
F-score 62.71 40.95 65.14 63.22 61.75
Negative presence -1.65 +1.26 -3.37 -3.66 -0.95
Neutral words count +0.05 0.00 -0.72 -0.57 -0.54
Polarity score -4.03 -6.92 -3.82 -3.83 -4.84
Sentiment frequency +0.10 0.00 +0.18 -0.12 -0.05
textual tokens -17.91 +6.5 -21.07 -19.97 -15.8

Table 5: Task B feature ablation study. F-scores calculated on each set along with the effect when
removing one feature at a time.

score feature was the most important feature for
our model in both tasks. The F-score results were
consistent across all datasets, except the Twitter-
Sarcasm dataset. It indicates that feature selection
and parameter tuning steps were effective in gen-
eralizing the model to unseen data.
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Abstract

In this paper, we describe our system for
the Sentiment Analysis of Twitter shared
task in SemEval 2014. Our system uses
an SVM classifier along with rich set of
lexical features to detect the sentiment of
a phrase within a tweet (Task-A) and also
the sentiment of the whole tweet (Task-
B). We start from the lexical features that
were used in the 2013 shared tasks, we en-
hance the underlying lexicon and also in-
troduce new features. We focus our fea-
ture engineering effort mainly on Task-
A. Moreover, we adapt our initial frame-
work and introduce new features for Task-
B. Our system reaches weighted score of
87.11% in Task-A and 64.52% in Task-B.
This places us in the 4th rank in the Task-
A and 15th in the Task-B.

1 Introduction

With more than 500 million tweets sent per day,
containing opinions and messages, Twitter1 has
become a gold-mine for organizations to monitor
their brand reputation. As more and more users
post about products and services they use, Twit-
ter becomes a valuable source of people’s opin-
ions and sentiments: what people can think about
a product or a service, how positive they can be
about it or what would people prefer the product to
be like. Such data can be efficiently used for mar-
keting. However, with the increasing amount of
tweets posted on a daily basis, it is challenging and
expensive to manually analyze them and locate the
meaningful ones. There has been a body of re-
cent work to automatically learn the public sen-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1http://twitter.com

timents from tweets using natural language pro-
cessing techniques (Pang and Lee, 2008; Jansen
et al., 2009; Pak and Paroubek, 2010; Tang et al.,
2014). However, the task of sentiment analysis of
tweets in their free format is harder than that of any
well-structured document. Tweet messages usu-
ally contain different kinds of orthographic errors
such as the use of special and decorative charac-
ters, letter or word duplication, extra punctuation,
as well as the use of special abbreviations.

In this paper, we present our machine learn-
ing based system for sentiment analysis of Twitter
shared task in SemEval 2014. Our system takes
as input an arbitrary tweet and assigns it to one
of the following classes that best reflects its sen-
timent: positive, negative or neutral. While pos-
itive and negative tweets are subjective, neutral
class encompasses not only objective tweets but
also subjective tweets that does not contain any
”polar” emotion. Our classifier was developed as
an undergrad course project but later pursued as
a research topic. Our training, development and
testing experiments were performed on data sets
published in SemEval 2013 (Nakov et al., 2013).
Motivated with its performance, we participated
in SemEval 2014 Task 9 (Rosenthal et al., 2014).
Our approach includes an extensive usage of off-
the-shelf resources that have been developed for
conducting NLP on social media text. Our orig-
inal aim was enhancement of the task-A. More-
over, we adapted our framework and introduced
new features for task-B and participated in both
shared tasks. We reached an F-score of 83.3% in
Task-A and an F-score of 65.57% in Task-B. That
placed us in the 4th rank in the task-A and 15th
rank in the task-B.

Our approach includes an extensive usage of
off-the-shelf resources that have been developed
for conducting NLP on social media text. That
includes the Twitter Tokenizer and also the Twit-
ter POS tagger, several sentiment analysis lexica
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and finally our own enhanced resources for spe-
cial handling of Twitter-specific text. Our origi-
nal aim in introducing and evaluating many of the
features was enhancement of the task-A. More-
over, we adapted our framework and introduced
new features for task-B and participated in both
shared tasks. We reached an F-score of 83.3% in
Task-A and an F-score of 65.57% in Task-B. That
placed us in the 4th rank in the task-A and 15th
rank in the task-B.

2 System Overview

We participate in tasks A and B. We use three-
way classification framework in which we design
and use a rich feature representation of the Twitter
text. In order to process the tweets, we start with
a pre-processing step, followed by feature extrac-
tion and classifier training.

2.1 Data Pre-processing
Before the tweet is fed to the system, it goes
through pre-processing phase that breaks tweet
string into words (tokenization), attaches more in-
formation to each word (POS tagging), and other
treatments.

Tokenization: We use CMU ARK Tok-
enizer (Owoputi et al., 2013) to tokenize each
tweet. This tokenizer is developed to tokenize
not only space-separated text but also tokens that
need to be analyzed separately.

POS tagging: We use CMU ARK POS Tag-
ger (Owoputi et al., 2013) to assign POS tags to
the different tokens. In addition to the grammat-
ical tags, this tagger assigns also twitter-specific
tags like @ mentions, hash tags, etc. This infor-
mation is used later for feature extraction.

Other processing: In order to normalize the dif-
ferent tokens and convert them into a correct En-
glish, we find acronyms in the text and add their
expanded forms at the end of the list. We decide
to keep both the acronym and the new word to en-
sure that if the token without its expansion was
the word the user meant, then we are not losing
any information by getting its acronym. We ex-
tend the NetLingo2 top 50 Internet acronym list to
add some missing acronyms. In order to reduce in-
flectional forms of a word to a common base form
we use WordNetlemmatizer in NLTK (Bird et al.,

2http://www.netlingo.com/top50/
popular-text-terms.php

Tweet ”This is so awesome
@henry:D! #excited”

Bag of Words ”This”:1, ”is”:1, ”so”:1,
”awesome”:1, ”@henry”:1,
”:D”:1, ”!,”:1, #excited”:1

POS features numHashTags:1, numAd-
verb:1, numAdjective:1

Polarity features positiveWords:1, negWords:0,
avgScore: -0.113

Task-B specific
features

numCapsWords:0, numEmo-
ticons:1, numUrls:0

Table 1: Set of Features demonstrated on a sample
tweet for Task-B.

2009)3. This could be useful for the feature extrac-
tion, to get as much matches as possible between
the train and test data (e.g., for bag-of-words fea-
ture).

2.2 Feature Extraction

Assigning a sentiment to a single word, phrase or
a full tweet message requires a rich set of fea-
tures. For this, we adopt a forward selection ap-
proach (Ladha and Deepa, 2011) to select the fea-
tures that characterize to the best the different sen-
timents and help distinguishing them. In this ap-
proach, we incrementally add the features one by
one and test whether this boosts the development
results. We heavily rely on a binary feature rep-
resentation (Heinly et al., 2012) to ensure the ef-
ficiency and robustness of our classifier. The dif-
ferent features used are illustrated in the example
given in Table 1.

Bag-of-words feature: indicates whether a
given token is present in the phrase.

Morpho-syntactic feature: we use the POS and
twitter-specific tags extracted for each token. We
count the number of adjectives, adverbs and hash-
tags present in the focused part of the tweet mes-
sage (entire tweet or phrase). We tried adding
other POS based features (e.g., number of posses-
sive pronouns, etc.), but only the aforementioned
tags increased the result figures for both tasks.

Polarity-based features: we use freely avail-
able sentiment resources to explicitly define the
polarity at a token-level. We define three feature
categories, based on the lexicon used:

3http://www.nltk.org/api/nltk.stem.
html

187



Task-A Task-B
Dev Train Test Dev Train Test

Positive 57.09 % 62.06% 59.49% 34.76% 37.59% 39.01%
Negative 37.89% 33.01% 35.31% 20.56% 15.06% 17.15%
Neutral 5.02% 4.93% 5.21% 44.68% 47.36% 43.84%

All 1,135 9,451 10,681 1,654 9,684 8,987

Table 2: Class size distribution for all the three sets for both Task-A and Task-B.

• Subjectivity: number of words mapped to
”positive” from the MPQA Subjectivity lexi-
con (Wilson et al., 2005).

• Hybrid Lexicon: We combine the Senti-
ment140 lexicon (Mohammad et al., 2013)
with the Bing Liu’s bag of positive and neg-
ative words (Hu and Liu, 2004) to create a
dictionary in which each token is assigned a
sentiment.

• Token weight: we use the SentiWordNet
lexicon (Baccianella et al., 2010) to define
this feature. SentiWordNet contains positive,
negative and objective scores between 0 and
1 for all senses in WordNet. Based on this
sense level annotation, we first map each to-
ken to its weight in this lexicon and then the
sum of all these weights was used as the tweet
weight.

Furthermore, in order to take into account the
presence of negative words, which modify the po-
larity of the context within which they are invoked,
we reverse the polarity score of adjectives or ad-
verbs that come within 1-2 token distance after a
negative word.

Task specific features: In addition to the fea-
tures described above, we also define some task-
specific ones. For example, we indicate the num-
ber of capital letters in the phrase as a feature in
Task-A. This could help in this task, since we are
focusing on short text. For Task-B we indicate
instead the number of capital words. This relies
on the intuition that polarized tweets would carry
more (sometimes all) capital words than the neu-
tral or objective ones. We also added the number
of emoticons and number of URL links as fea-
tures for Task-B. Here, the goal is to segregate
fact-containing objective tweets from emotion-
containing subjective tweets.

2.3 Classifier

We use a Support Vector Machine (SVM) classi-
fier (Chang and Lin, 2011) to which we provide
the rich set of features described in the previous
section. We use a linear kernel and tune its param-
eter C separately for the two tasks. Task-A sys-
tem was bound tight to the development set with
C=0.18 whereas in Task-B the system was given
freedom by setting C=0.55. These values were
optimized during the development using a brute-
force mechanism.

Task-A Task-B
LiveJournal 2014 83.89 65.63
SMS 2013 88.08 62.95
Twitter 2013 89.85 65.11
Twitter 2014 83.45 65.53
Sarcasm 78.07 40.52
Weighted average 87.11 64.52

Table 3: F1 measures and final results of the sys-
tem for Task-A and Task-B for all the data sets
including the weighted average of the sets.

3 Experiments and Results

In this section, we explain details of the data and
the general settings for the different experiments
we conducted. We train and evaluate our classifier
for both tasks with the training, development and
testing datasets provided for the SemEval 2014
shared task. The size of the three datasets we
use as well as their class distributions are illus-
trated in Table 2 . It is important to note that
the total dataset size for training and development
set (10,586) is about the same as test set mak-
ing the learning considerably challenging for cor-
rect predictions. Positive instances covered more
than half of each dataset for Task-A while Neutral
were the most popular class for Task-B. The class
distribution of training set is the same as the test
set.
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Task-A Task-B
all features 87.11 64.52
all-preprocessing 80.79(-6.32) 59.20(-5.32)
all-ARK tokenization 83.69(-3.42) 60.61(-3.91)
all-other treatments 85.06(-2.05) 62.19(-2.33)
only BOW 81.69(-5.42) 57.85(-6.67)
all-bow 82.05(-5.06) 52.04(-12.48)
all-pos 86.92(-0.19) 64.31(-0.21)
all-polarity based features 81.80(-5.31) 57.95(-6.57)
all-SVM tuning 80.82(-6.29) 21.41(-43.11)
all-SVM c=0.01 84.20(-2.91) 59.87(-4.65)
all-SVM c=selected 87.11(0.00) 64.52(0.00)
all-SVM c=1 86.39(-0.72) 62.51(-2.01)

Table 4: F-scores obtained on the test sets with the specific feature removed.

The test dataset is composed of five differ-
ent sets: Twitter2013 a set of tweets collected
for the SemEval2013 test set, Twitter2014, tweets
collected for this years version, LiveJournal2014
consisting of formal tweets, SMS2013, a collec-
tion of sms messages,TwitterSarcasm, a collection
of sarcastic tweets. The results of our system are
shown in Table 3. The top five rows shows the
results by the SemEval scorer for all the data sets
used by them. This scorer took the average of F1-
score of only positive and negative classes. The
last row shows the weighted average score of all
the scores for Task A and B from the different data
sets.

Our scores for Task-A and Task-B were 83.45
and 65.53 respectively for Twitter 2014.

Our system performed better on Twitter and
SMS test sets from 2013. This was reasonable
since we tuned our system on these datasets. On
the other hand, the system performed worst on sar-
casm test set. This drop is extremely evident in
Task-B where the results were dropped by 25%.
To analyze the effects of each step of our sys-
tem, we experimented with our system using dif-
ferent configurations. The results are shown in Ta-
ble 4 and our analysis is described in the following
subsections. The results were scored by SemEval
2014 scorer and we took the weighted average of
all data sets to accurately reflect the performance
of our system.

We show the polarities values assigned to each
token of a tweet by our classifier, in Table 5.

Tokens POS Tags Sentiments Polarity
This O Neutral -0.194
Is V Neutral -0.115
So R Neutral -0.253
Awesome A Positive 2.351
@Henry @ - -
#excited # Positive 1.84

Table 5: Polarity assigned using our classifier to
each word of a Tweet message.

3.1 Preprocessing Effects

We compared the effects of basic tokenization
(based on white space) against the richer ARK
Twitter tokenizer. The scores dropped by 3.42%
and 3.91% for Task-A and Task-B, respectively.
Other preprocessing enhancements like lemmati-
zation and acronym additions also gave our sys-
tem performance a boost. Again, the effects were
more visible for Task-B than for Task-A. Over-
all, the system performance was boosted by 6.32%
for Task-A and 5.32% for Task-B. Considering
the overall score for Task-B, this is a significant
change.

3.2 Feature Engineering Effects

To analyze the effect of feature extraction pro-
cess, we ran our system with different kind of
features disabled - one at a time. For Task-A,
unigram model and polarity based features were
equally important. For Task-B, bag of words fea-
ture easily outperformed the effects of any other
feature. However, polarity based features were
second important class of features for our system.
These suggest that if more accurate, exhaustive
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and social media representative lexicons are made,
it would help both tasks significantly. POS based
features were not directly influential in our system.
However, these tags helped us find better matches
in lexicons where words are further identified with
their POS tag.

3.3 Classifier Tuning

We also analyzed the significance of SVM tuning
to our system. Without setting any parameter to
SVMutil library (Chang and Lin, 2011), we no-
ticed a drop of 6.29% to scores of Task-A and a
significant drop of 43.11% to scores of Task-B.
Since the library use poly kernel by default, the
results were drastically worse for Task-B due to
large feature set. We also compared the perfor-
mance with SVM kernel set to C=1. In this re-
stricted setting, the results were slightly lower than
the result obtained for our final system.

4 Discussion

During this work, we found that two improve-
ments to our system would have yielded better
scores. The first would be lexicons: Since the
lexicons like Sentiment140 Lexicon are automati-
cally generated, we found that they contain some
noise. As we noticed a drop of that our results
were critically dependent on these lexicons, this
noise would have resulted in incorrect predictions.
Hence, more accurate and larger lexicons are re-
quired for better classification, especially for the
tweet-level task. Unlike SentiWordNet these lexi-
cons should contain more informal words that are
common in social media. Additionally, as we can
see our system was not able to confidently predict
sarcasm tweets on both expression and message
level, special attention is required to analyze the
nature of sarcasm on Twitter and build a feature
set that can capture the true sentiment of the tweet.

5 Conclusion

We demonstrated our classification system that
could predict sentiment of an input tweet. Our
system performed more accurately in expression-
level prediction than on entire tweet-level predic-
tion. Our system relied heavily on bag-of-words
feature and polarity based features which in turn
relied on correct part-of-speech tagging and third-
party lexicons. With this system, we ranked 4th
in SemEval 2014 expression-level prediction task
and 15th in tweet-level prediction task.
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Abstract

We describe the system entered by the
National Research Council Canada in
the SemEval-2014 L2 writing assistant
task. Our system relies on a standard
Phrase-Based Statistical Machine Transla-
tion trained on generic, publicly available
data. Translations are produced by taking
the already translated part of the sentence
as fixed context. We show that translation
systems can address the L2 writing assis-
tant task, reaching out-of-five word-based
accuracy above 80 percent for 3 out of 4
language pairs. We also present a brief
analysis of remaining errors.

1 Introduction

The Semeval L2 writing assistant task simulates
the situation of an L2 language learner trying to
translate a L1 fragment in a L2 context. This is
clearly motivated by a L2 language learning sce-
nario.

However, a very similar scenario can be en-
countered in Computer-Aided Translation. Trans-
lation memories retrieve from a large corpus of al-
ready translated documents the source segments
that best match a new sentence to be translated.
If an exact source match is found, the correspond-
ing target translation can be expected to be suit-
able with little or no post-editing. However, when
only approximate matches are found, post-editing
will typically be required to adapt the target side
of the partially matching source segment to the
source sentence under consideration. It is possible
to automate this process: standard string matching
algorithms and word alignment techniques can be
used to locate the parts of the source segment that
do not match the sentence to translate, and from

c©2014, The Crown in Right of Canada.

there the parts of the target segment that need to
be modified (Biçici and Dymetman, 2008; Simard
and Isabelle, 2009; Koehn and Senellart, 2010).
The task of translating a L1 fragment in L2 con-
text therefore has much broader application than
language learning. This motivation also provides
a clear link of this task to the Machine Translation
setting. There are also connections to the code-
switching and mixed language translation prob-
lems (Fung et al., 1999).

In our work, we therefore investigate the use
of a standard Phrase-Based Statistical Machine
Translation (SMT) system to translate L1 frag-
ments in L2 context. In the next section, we de-
scribe the SMT system that we used in our submis-
sion. We then describe the corpora used to train
the SMT engine (Section 3), and our results on the
trial and test data, as well as a short error analysis
(Section 4).

section

2 System Description

The core Machine Translation engine used for all
our submissions is Portage (Larkin et al., 2010),
the NRC’s phrase-based SMT system. Given a
suitably trained SMT system, the Task 5 input is
processed as follows. For each sentence with an
L1 fragment to translate, the already translated
parts are set as left and right context. The L1 frag-
ment in L2 context is sent to the decoder. The
output is a full sentence translation that ensures 1)
that the context is left untouched, and 2) that the
L1 fragment is translated in a way that fits with the
L2 context.

We now describe the key components of the MT
system (language, translation and reordering mod-
els), as well as the decoding and parameter tuning.

Translation Models We use a single static
phrase table including phrase pairs extracted from
the symmetrized HMM word-alignment learned
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on the entire training data. The phrase table con-
tains four features per phrase pair: lexical esti-
mates of the forward and backward probabilities
obtained either by relative frequencies or using the
method of Zens and Ney (2004). These estimates
are derived by summing counts over all possible
alignments. This yields four corresponding pa-
rameters in the log-linear model.

Reordering Models We use standard reorder-
ing models: a distance-based distortion feature, as
well as a lexicalized distortion model (Tillmann,
2004; Koehn et al., 2005). For each phrase pair,
the orientation counts required for the lexicalized
distortion model are computed using HMM word-
alignment on the full training corpora. We esti-
mate lexicalized probabilities for monotone, swap,
and discontinuous ordering with respect to the pre-
vious and following target phrase. This results in
a total of 6 feature values per phrase pair, in addi-
tion to the distance-based distortion feature, hence
seven parameters to tune in the log-linear model.

Language Models When translating L1 frag-
ments in L2 context, the L2 language model (LM)
is particularly important as it is the only compo-
nent of the SMT system that scores how well the
translation of the L1 fragment fits in the existing
L2 context. We test two different LM configura-
tions. The first of these (run1) uses a single static
LM: a standard 4-gram, estimated using Kneser-
Ney smoothing (Kneser and Ney, 1995) on the tar-
get side of the bilingual corpora used for training
the translation models. In the second configuration
(run2), in order to further adapt the translations to
the test domain, a smaller LM trained on the L2
contexts of the test data is combined to the train-
ing corpus LM in a linear mixture model (Foster
and Kuhn, 2007). The linear mixture weights are
estimated on the L2 context of each test set in a
cross-validation fashion.

Decoding Algorithm and Parameter Tuning
Decoding uses the cube-pruning algorithm (Huang
and Chiang, 2007) with a 7-word distortion limit.
Log-linear parameter tuning is performed using a
lattice-based batch version of MIRA (Cherry and
Foster, 2012).

3 Data

SMT systems require large amounts of data to
estimate model parameters. In addition, transla-
tion performance largely depends on having in-

Europarl News Total

en-de train 1904k 177k 2081k
dev - 2000 2000

en-es train 1959k 174k 2133k
dev - 2000 2000

fr-en train 2002k 157k 2158k
dev - 2000 2000

nl-en train 1974k - 1974k
dev 1984 - 1984

Table 1: Number of training segments for each
language pair.

domain data to train on. As we had no informa-
tion on the domain of the test data for Task 5, we
chose to rely on general purpose publicly avail-
able data. Our main corpus is Europarl (Koehn,
2005), which is available for all 4 language pairs
of the evaluation. As Europarl covers parliamen-
tary proceedings, we added some news and com-
mentary (henceforth ”News”) data provided for
the 2013 workshop on Machine Translation shared
task (Bojar et al., 2013) for language pairs other
than nl-en. In all cases, we extracted from the cor-
pus a tuning (“dev”) set of around 2000 sentence
pairs. Statistics for the training data are given in
Table 1.

The trial and test data each consist of 500 sen-
tences with L1 fragments in L2 context provided
by the organizers. As the trial data came from Eu-
roparl, we filtered our training corpora in order to
remove close matches and avoid training on the
trial data (Table 1 takes this into account).

All translation systems were trained on lower-
cased data, and predictions were recased using a
standard (LM-based) truecasing approach.

4 Experimental Results

4.1 Results on Trial and Simulated Data
Our first evaluation was performed on the trial data
provided by the Task 5 organizers. Each example
was translated in context by two systems:

run1: Baseline, non-adapted system (marked 1
below);

run2: Linear LM mixture adaptation, using a
context LM (marked 2 below).

Table 2 shows that our run1 system already
yields high performance on the trial data, while
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W@1 F@1 W@5 F@5 +BLEU

en-de1 78.1 77.0 95.6 94.8 12.4
en-de2 79.8 79.0 95.8 95.0 12.6

en-es1 81.8 80.2 97.7 97.2 12.1
en-es2 84.3 83.2 97.7 97.2 12.5

fr-en1 84.4 83.6 97.1 96.4 11.8
fr-en2 85.9 85.0 97.4 96.6 12.0

nl-en1 83.3 82.0 97.0 96.4 11.8
nl-en2 86.7 86.2 97.5 97.0 12.1

Table 2: Trial data performance, from official eval-
uation script: (W)ord and (F)ragment accuracy at
(1) and (5)-best and BLEU score gain.

adapting the language model on the L2 contexts
in run2 provides a clear gain in the top-1 results.
That improvement all but disappears when taking
into account the best out of five translations (ex-
cept maybe for nl-en). The BLEU scores1 are
very high (97-98) and the word error rates (not
reported) are around 1%, suggesting that the sys-
tem output almost matches the references. This
is no doubt due to the proximity between the trial
data and the MT training corpus. Both are fully or
mainly drawn from Europarl material.

In order to get a less optimistic estimate of per-
formance, we automatically constructed a num-
ber of test examples from the WMT News Com-
mentary development test sets. The L1 source
segments and their L2 reference translations were
word aligned in both directions using the GIZA++
implementation of IBM4 (Och and Ney, 2003)
and the grow-diag-final-and combination heuris-
tic (Koehn et al., 2005). Test instances were cre-
ated by substituting some L2 fragments with their
word-aligned L1 source within L2 reference seg-
ments. Since the goal was to select examples that
were more ambiguous and harder to translate than
the trial data, a subset of interesting L1 phrases
was randomly selected among phrases that oc-
cured at least 4 times in the training corpus and
have a high entropy in the baseline phrase-table.
We selected roughly 1000 L1 phrases per language
pair. For each occurrence p1 of these L1 phrases in
the news development sets, we identify the short-
est L2 phrase p2 that is consistently aligned with

1+BLEU in Tables 2-4 is the difference between our sys-
tem’s output and the sentence with untranslated L1 fragment.

W@1 F@1 W@5 F@5 +BLEU

en-de1 48.0 46.4 70.8 68.7 4.26
en-de2 52.3 50.6 71.0 68.9 4.63

en-es1 47.6 45.2 68.0 65.8 4.12
en-es2 50.0 47.9 67.8 65.5 4.34

fr-en1 50.1 49.2 73.6 71.8 5.18
fr-en2 51.1 49.5 73.1 71.2 5.19

Table 3: News data performance (cf Tab. 2).

p1.2 A new mixed language test example is con-
structed by replacing p2 with p1 in L2 context.

Results on that simulated data are given in Ta-
ble 3. Performance is markedly lower than on the
trial data. This is due in part to the fact that the
News data is not as close to the training material
as the official trial set, and in part to the fact that
this automatically extracted data contains imper-
fect alignments with an unknown (but sizeable)
amount of “noise”. However, it still appears run2
consistently provides several points of increase in
performance for the top-1 results, over the base-
line run1. Performance on the 5-best is either un-
affected or lower, and the gain in BLEU is much
lower than in Table 2 although the resulting BLEU
is around 96%.

4.2 Test Results
Official test results provided by the organizers
are presented in Table 4. While these results
are clearly above what we obtained on the syn-
thetic news data, they fall well below the perfor-
mance observed on the trial data. This is not un-
expected as the trial data is unrealistically close
to the training material, while the automatically
extracted news data is noisy. What we did not
expect, however, is the mediocre performance of
LM adaptation (run2): while consistently better
than run1 on both trial and news, it is consistently
worse on the official test data. This may be due to
the fact that test sentences were drawn from differ-
ent sources3 such that it does not constitute a ho-
mogeneous domain on which we can easily adapt
a language model.

For German and Spanish, and to a lesser extent
2As usual in phrase-based MT, two phrases are said to be

consistently aligned, if there is at least one link between their
words and no external links.

3According to the task description, the test set is based
on ”language learning exercises with gaps and cloze-tests, as
well as learner corpora with annotated errors”.
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W@1 F@1 W@5 F@5 +BLEU

en-de1 71.7 65.7 86.8 83.4 16.6
en-de2 70.2 64.5 86.5 82.8 16.4

en-es1 74.5 66.7 88.7 84.3 17.0
en-es2 73.5 65.1 88.4 83.7 17.5

fr-en1 69.4 55.6 83.9 73.9 10.2
fr-en2 68.6 53.3 83.4 73.1 9.9

nl-en1 61.0 45.0 72.3 60.6 5.03
nl-en2 60.9 44.4 72.1 60.2 5.02

Table 4: Test data performance, from official eval-
uation results (cf. Table 2).

OOV’s failed align

en-de 0.002 0.058
en-es 0.010 0.068
fr-en 0.026 0.139
nl-en 0.123 0.261

Table 5: Test data error analysis: OOV’s is the
proportion of all test fragments containing out-of-
vocabulary tokens; failed align is the proportion of
fragments which our system cannot align to any of
the reference translations by forced decoding.

for French and Dutch, the BLEU and Word Error
Rate (WER) gains are much higher on the test than
on the trial data, although the resulting BLEU are
around 86-92%. This results from the fact that the
amount of L1 material to translate relative to the
L2 context was significantly higher on the test data
than it was on the trial data (e.g. 17% of words on
en-es test versus 7% on trial).

4.3 Error Analysis

On the French and, especially, on the Dutch data,
our systems suffer from a high rate of out-of-
vocabulary (OOV) source words in the L1 frag-
ments, i.e. words that simply did not appear in our
training data (see Table 5). In the case of Dutch,
OOV’s impose a hard ceiling of 88% on fragment-
level accuracy. These problems could possibly be
alleviated by using more training data, and incor-
porating language-specific mechanisms to handle
morphology and compounding into the systems.

We also evaluate the proportion of reference tar-
get fragments that can not be reached by forced
decoding (Table 5). Note that to produce trial
and test translations, we use standard decoding to

Freq Type

77 Incorrect L2 sense chosen
75 Incorrect or mangled syntax
26 Incomplete reference
20 Non-idiomatic translation
13 Out-of-vocab. word in fragment
6 Problematic source fragment
3 Casing error

220 Total

Table 6: Analysis of the types of error on 220
French-English test sentences.

predict a translation that maximizes model score
given the input. Once we have the reference
translation, we use forced decoding to try to pro-
duce the exact reference given the source frag-
ment and our translation model. In some situa-
tions, the correct translations are simply not reach-
able by our systems, either because some target
word has not been observed in training, some part
of the correspondence between source and target
fragments has not been observed, or the system’s
word alignment mechanism is unable to account
for this correspondence, in whole or in part. Ta-
ble 5 shows that this happens between 6% ans
26% of cases, which gives a better upper bound on
the fragment-level accuracy that our system may
achieve. Again, many of these problems could be
solved by using more training data.

To better understand the behavior of our sys-
tems, we manually reviewed 220 sentences where
our baseline French-English system did not ex-
actly match any of the references. We annotated
several types of errors (Table 6). The most fre-
quent source of errors is incorrect sense (35%), i.e.
the system produced a translation of the fragment
that may be correct in some setting, but is not the
correct sense in that context. Those are presum-
ably the errors of interest in a sense disambigua-
tion setting. A close second (34%) were errors
involving incorrect syntax in the fragment transla-
tion, which points to limitations of the Statistical
MT approach, or to a limited language model.

The last third combines several sources of er-
rors. Most notable in this category are non-
idiomatic translations, where the system’s output
was both syntactically correct and understandable,
but clearly not fluent (e.g. “take a siesta” for “have
a nap”); We also identified a number of cases
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where we felt that either the source segment was
incorrect (eg “je vais évanouir” instead of “je vais
m’évanouir”), or the references were incomplete.
Table 7 gives a few examples.

5 Conclusion

We described the systems used for the submissions
of the National Research Council Canada to the
L2 writing assistant task. We framed the problem
as a machine translation task, and used standard
statistical machine translation systems trained on
publicly available corpora for translating L1 frag-
ments in their L2 context. This approach lever-
ages the strengths of phrase-based statistical ma-
chine translation, and therefore performs particu-
larly well when the test examples are close to the
training domain. Conversely, it suffers from the
inherent weaknesses of phrase-based models, in-
cluding their inability to generalize beyond seen
vocabulary, as well as sense and syntax errors.
Overall, we showed that machine translation sys-
tems can be used to address the L2 writing assis-
tant task with a high level of accuracy, reaching
out-of-five word-based accuracy above 80 percent
for 3 out of 4 language pairs.
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Incorrect L2 sense:

In: My dog usually barks au facteur - but look at that , for once , he is being friendly . . .
Out: My dog usually barks to the factor - but look at that , for once , he is being friendly . . .
Ref: My dog usually barks at the postman - but look at that , for once , he is being friendly . . .

In: Grapes ne poussent pas in northern climates , unless one keeps them in a hot-house .
Out: Grapes do not push in northern climates , unless one keeps them in a hot-house .
Ref: Grapes do not grow in northern climates , unless one keeps them in a hot-house .

Missing reference?

In: Twenty-two other people ont été blessées in the explosion .
Out: Twenty-two other people were injured in the explosion .
Ref: Twenty-two other people have been wounded in the explosion .

Non-idiomatic translation:

In: After patiently stalking its prey , the lion makes a rapide comme l’ éclair charge for the kill .
Out: After patiently stalking its prey , the lion makes a rapid as flash charge for the kill .
Ref: After patiently stalking its prey , the lion makes a lightning-fast charge for the kill .

Problem with input:

In: every time I do n’t eat for a while and my blood sugar gets low I feel like je vais évanouir .
Out: every time I do n’t eat for a while and my blood sugar gets low I feel like I will evaporate .
Ref: every time I do n’t eat for a while and my blood sugar gets low I feel like I ’m going to faint .

Table 7: Examples errors on French-English.
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Abstract

We present two supervised sentiment de-
tection systems which were used to com-
pete in SemEval-2014 Task 9: Senti-
ment Analysis in Twitter. The first sys-
tem (Rosenthal and McKeown, 2013) clas-
sifies the polarity of subjective phrases as
positive, negative, or neutral. It is tai-
lored towards online genres, specifically
Twitter, through the inclusion of dictionar-
ies developed to capture vocabulary used
in online conversations (e.g., slang and
emoticons) as well as stylistic features
common to social media. The second sys-
tem (Agarwal et al., 2011) classifies entire
tweets as positive, negative, or neutral. It
too includes dictionaries and stylistic fea-
tures developed for social media, several
of which are distinctive from those in the
first system. We use both systems to par-
ticipate in Subtasks A and B of SemEval-
2014 Task 9: Sentiment Analysis in Twit-
ter. We participated for the first time in
Subtask B: Message-Level Sentiment De-
tection by combining the two systems to
achieve improved results compared to ei-
ther system alone.

1 Introduction

In this paper we describe two prior sentiment de-
tection algorithms for social media. Both systems
(Rosenthal and McKeown, 2013; Agarwal et al.,
2011) classify the polarity of sentence phrases and

This work is licensed under a Creative Commons At-
tribution 4.0 International License. Page numbers and pro-
ceedings footer are added by the organizers. License details:
http://creativecommons.org/licenses/by/4.0/

tweets as positive, negative, or neutral. These al-
gorithms were used to participate in the the expres-
sion level task (Subtask A) and message level task
(Subtask B) of the SemEval-2014 Task 9: Senti-
ment Analysis in Twitter (Rosenthal et al., 2014)
which one of the authors helped organize.

We first show improved results compared to our
participation in the prior year in the expression-
level task (Subtask A) by incorporating a new dic-
tionary and new features into the system. Our fo-
cus this year was on Subtask B which we partici-
pated in for the first time. We integrated two sys-
tems to achieve improved results compared to ei-
ther system alone. Our analysis shows that the first
system performs better on recall while the second
system performs better on precision. We used con-
fidence metrics outputted by the systems to deter-
mine which answer should be used. This resulted
in a slight improvement in the Twitter dataset com-
pared to either system alone. In this rest of this
paper, we discuss related work, the methods for
each system, and experiments and results for each
subtask using the data provided by Semeval-2014
Task 9: Sentiment Analysis in Twitter (Rosenthal
et al., 2014).

2 Related Work

Several recent papers have explored sentiment
analysis in Twitter. Go et al (2009) and Pak
and Paroubek (2010) classify the sentiment of
tweets containing emoticons using n-grams and
POS. Barbosa and Feng (2010) detect sentiment
using a polarity dictionary that includes web vo-
cabulary and tweet-specific social media features.
Bermingham and Smeaton (2010) compare polar-
ity detection in twitter to blogs and movie reviews
using lexical features.

Finally, there is a large amount of related work
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through the participants of Semeval 2013 Task
2, and Semeval 2014 Task9: Sentiment Analysis
in Twitter (Nakov et al., 2013; Rosenthal et al.,
2014). A full list of teams and results can be found
in the task description papers.

3 Phrased-Based Sentiment Detection

We developed a phrase based sentiment detection
system geared towards Social Media by augment-
ing the state of the art system developed by Agar-
wal et al. (2009) to include additional dictionar-
ies such as Wiktionary and new features such as
word lengthening (e.g. helllllloooo) and emoti-
cons (e.g. :)) (Rosenthal and McKeown, 2013).
We initially evaluated our system through our par-
ticipation in the first Sentiment Analysis in Twitter
task (Nakov et al., 2013). We have improved our
system this year by adding a new dictionary and
additional features.

3.1 Lexicons

We assign a prior polarity score to each word by
using the scores provided by the Dictionary of
Affect in Language (DAL) (Whissel, 1989) aug-
mented with WordNet (Fellbaum, 1998) to im-
prove coverage. We additionally augment it with
Wiktionary, emoticon, and acronym dictionaries
to improve coverage in social media (Rosenthal
and McKeown, 2013). The DAL covers 50.1% of
the vocabulary, 16.5% are proper nouns which we
exclude due to their lack of polarity. WordNet cov-
ers 8.7% of the vocabulary and Wiktionary covers
12.5% of the vocabulary. Finally, 3.6% of the vo-
cabulary are emoticons, acronyms, word length-
ening, and forms of punctuation. 8.6% of the vo-
cabulary is not covered which means we find a
prior polarity for 96.4% of the vocabulary. In ad-
dition to these dictionaries we also use SentiWord-
Net (Baccianella et al., 2010) as a new distinct fea-
ture that is used in addition to the prior polarity
computed from the DAL scores.

3.2 Method

We include POS tags and the top n-gram fea-
tures as described in prior work (Agarwal et al.,
2009; Rosenthal and McKeown, 2013). The DAL
and other dictionaries are used along with a nega-
tion state machine (Agarwal et al., 2009) to deter-
mine the polarity for each word in the sentence.
We include all the features described in the orig-
inal system (Agarwal et al., 2009) such as the

Data Set Majority 2013 2014
Twitter Dev 38.14 77.6 81.5
Twitter Test 42.22 N/A 76.54
Twitter Sarcasm 39.81 N/A 61.76
SMS 31.45 73.3 74.55
LiveJournal 33.42 N/A 78.19

Table 1: A comparison between the 2013 and 2014
results for Subtask A using the SemEval Twitter
training corpus. All results exceed the majority
baseline of the positive class significantly.

DAL scores, polar chunk n-grams, and count of
syntactic chunks with their prior polarity based
on the chunks position. Finally, we include sev-
eral lexical-stylistic features that can occur in all
datasets. We divide these features into two groups,
general: ones that are common across online and
traditional genres (e.g. exclamation points), and
social media: one that are far more common in
online genres (e.g. emoticons). The features are
described in further detail in the precursor to this
work (Rosenthal and McKeown, 2013). Feature
selection was performed using chi-square in Weka
(Hall et al., 2009).

In addition we introduce some new features
that were not used in the prior year. SentiWord-
Net (Baccianella et al., 2010) is a sentiment dic-
tionary built upon WordNet that contains scores
for each word where scores > 0 indicate the word
is positive and scores < 0 indicate the word is neg-
ative. We sum the scores for each word in the
phrase and use this as a single polarity feature.
We found that this feature alone gave us a 2% im-
provement over our best results from last year. We
also include some other minor features: tweet and
phrase length and the position of the phrase within
the tweet.

3.3 Experiments and Results

We ran all of our experiments in Weka (Hall et al.,
2009) using Logistic Regression. We also exper-
imented with other learning methods (e.g. SVM
and Naive Bayes) but found that Logistic Regres-
sion worked the same or better than other methods.
All results are shown using the average F-measure
of the positive and negative class. The results are
compared against the majority baseline of the pos-
itive class. We do not use neutral/objective as the
majority class because it is not included in the av-
erage F-score in the Semeval task.

The full results in the participation of SemEval
2014: Sentiment Analysis in Twitter, Subtask A,
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are shown in Table 1. Our system outperforms the
majority baseline significantly in all classes. Our
submitted system was trained using 3-way clas-
sification (positive/negative/polarity). It included
all the dictionaries from prior years and the top
100 n-grams with feature selection. In addition,
it included SentiWordNet and the other new fea-
tures added in 2014 which provided a 4% increase
compared to our best results during the prior year
(77.6% to 81.5%) and a rank of 10/20 amongst the
constrained systems which used no external data.
Our results on the new test set is 76.54% for a rank
of 14/20. We do not do well in detecting the po-
larity of phrases in sarcastic tweets. This is consis-
tent with the other teams as sarcastic tweets tend to
have their polarity flipped. The improvements to
our system provided a 1% boost in the SMS data
with a rank of 15/20. Finally, in the LiveJournal
dataset we had an F-Score of 78.19% for a rank of
12/20.

4 Message-Level Sentiment Detection

Our message-level system combines two prior sys-
tems to achieve improved results. The first system
inputs an entire tweet as a “phrase” to the phrase-
level sentiment detection system described in Sec-
tion 3. The second system is described below.

4.1 Lexicons

The second system (Agarwal et al., 2011) makes
use of two dictionaries distinctive from the other
system: 1) an emoticon dictionary and 2) an
acronym dictionary. The emoticon dictionary was
prepared by hand-labeling 170 emoticons listed on
Wikipedia.1 For example, :) is labeled as positive
whereas :=( is labeled as negative. Each emoticon
is assigned a label from the following set of labels:
Extremely-positive, Extremely-negative, Positive,
Negative, and Neutral. We compile an acronym
dictionary from an on-line resource.2 The dictio-
nary has translations for 5,184 acronyms. For ex-
ample, lol is translated to laughing out loud.

4.2 Prior Polarity Scoring

A number of our features are based on prior po-
larity of words. As in the phrase-based system we
too build off of prior work (Agarwal et al., 2009)
by using the DAL and augmenting it with Word-
net. However, we do not follow the earlier method

1http://en.wikipedia.org/wiki/List of emoticons
2http://www.noslang.com/

but use it as motivation. We consider words with
with a polarity score (using the pleasantness met-
ric from the DAL) of less than 0.5 as negative,
higher than 0.8 as positive and the rest as neutral.
If a word is not directly found in the dictionary, we
retrieve all synonyms from Wordnet. We then look
for each of the synonyms in the DAL. If any syn-
onym is found in the DAL, we assign the original
word the same pleasantness score as its synonym.
If none of the synonyms is present in the DAL, the
word is not associated with any prior polarity. For
the given data we directly found the prior polar-
ity of 50.1% of the words. We find the polarity of
another 8.7% of the words by using WordNet. So
we find prior polarity of about 58.7% of English
language words.

4.3 Features
We propose a set of 50 features. We calculate these
features for the whole tweet and for the last one-
third of the tweet. In total, we get 100 additional
features. Our features may be divided into three
broad categories: ones that are primarily counts
of various features and therefore the value of the
feature is a natural number ∈ N. Second, we in-
clude features whose value is a real number ∈ R.
These are primarily features that capture the score
retrieved from DAL. The third category is features
whose values are boolean ∈ B. These are bag of
words, presence of exclamation marks and capital-
ized text. Each of these broad categories is divided
into two subcategories: Polar features and Non-
polar features. We refer to a feature as polar if we
calculate its prior polarity either by looking it up in
DAL (extended through WordNet) or in the emoti-
con dictionary. All other features which are not
associated with any prior polarity fall in the Non-
polar category. Each of the Polar and Non-polar
features is further subdivided into two categories:
POS and Other. POS refers to features that cap-
ture statistics about parts-of-speech of words and
Other refers to all other types of features.

A more detailed explanation of the system can
be found in Agarwal et al (2011).

4.4 Combined System
Our analysis showed that the first system performs
better on recall while the second system performs
better on precision. We also found that there were
785 tweets in the development set where one sys-
tem got it correct and the other one got it incorrect.
This leaves room for a significant improvement
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Experiment Twitter SMS LiveJournal
Dev Test Sarcasm

Majority 29.19 34.64 27.73 19.03 27.21
Phrase-Based System 62.09 64.74 40.75 56.86 62.22
Tweet-Level System 62.4 63.73 42.41 60.54 69.44
Combined System 64.6 65.42 40.02 59.84 68.79

Table 2: A comparison between the different systems using the Twitter training corpus provided by the
SemEval task for Subtask B. All results exceed the majority baseline of the positive class significantly.

compared to using each system independently. We
combined the two systems for the evaluation by
using the confidence provided by the phrase-based
system. If the phrase-based system was < 70%
confident we use the message-level system.

4.5 Experiments and Results

This task was evaluated on the Twitter dataset pro-
vided by Semeval-2013 Task 2, Subtask B. All re-
sults are shown using the average F-measure of the
positive and negative class. The full results in the
participation of SemEval 2014: Sentiment Anal-
ysis in Twitter, Subtask B, are shown in Table 2.
All the results outperform the majority baseline of
the more prominent positive polarity class signifi-
cantly. The combined system outperforms the in-
dividual systems for the Twitter development and
test set. It does not outperform the sarcasm test set,
but this may be due to the small size; it contains
only 100 tweets. The Tweet-Level system outper-
forms the phrase-based and combined system for
the LiveJournal and SMS test sets. A closer look at
the results indicated that the phrase-based system
has particular difficulty with the short sentences
which are more common in SMS and LiveJour-
nal. For example, the average number of charac-
ters in a tweet is 120 whereas it is 95.6 in SMS
messages (Nakov et al., 2013). Short sentences
are harder because there are fewer polarity words
which causes the phrase-based system to incor-
rectly pick neutral. In addition, short sentences are
harder because the BOW feature space, which is
huge and already sparse, becomes sparser and in-
dividual features start to over-fit. Part of this prob-
lem is handled by using Senti-features so the space
will be less sparse.

Our ranking in the Twitter 2013 and SMS 2013
development data is 18/50 and 20/50 respectively.
Our rank in the Twitter 2014 test set is 15/50 and
our rank in the LiveJournal test set is 19/50. Based
on our rankings it is clear that our systems are
geared more towards Twitter than other social me-
dia. Finally our ranking in the Sarcasm test set is

41/50. Although this ranking is quite low, it is in
fact encouraging. It indicates that the sarcasm has
switched the polarity of the tweet. In the future we
would like to include a system (e.g. (González-
Ibáñez et al., 2011)) that can detect whether the
tweet is sarcastic.

5 Discussion and Future Work

We participated in Semeval-2014 Task 9: Senti-
ment Analysis in Twitter Subtasks A and B. In
Subtask A, we show that adding additional fea-
tures related to location and using SentiWord-
Net gives us improvement compared to our prior
system. In Subtask B, we show that combining
two systems achieves slight improvements over
using either system alone. Combining the two
system achieves greater coverage as the systems
use different emoticon and acronym dictionar-
ies and the phrase-based system uses Wiktionary.
The message-level system is geared toward entire
tweets whereas the phrase-based is geared toward
phrases (even though, in this case we consider the
entire tweet to be a “phrase”). This is reflective in
several features, such as the position of the target
phrase and the syntactic chunk scores in the phrase
based system and the features related to the last
third of the tweet in the message-level system. In
the future, we’d like to perform an error analysis to
determine the source of our errors and specific ex-
amples of the kind of differences found in the two
systems. Finally, we have found that at times the
scores of the DAL do not line up with polarity in
social media. Therefore, we would like to explore
including more sentiment dictionaries instead of,
or in addition to, the DAL.
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Abstract

In this paper, the crucial ingredients for
our submission to SemEval-2014 Task 4
“Aspect Level Sentiment Analysis” are
discussed. We present a simple aspect de-
tection algorithm, a co-occurrence based
method for category detection and a dic-
tionary based sentiment classification al-
gorithm. The dictionary for the latter is
based on co-occurrences as well. The fail-
ure analysis and related work section focus
mainly on the category detection method
as it is most distinctive for our work.

1 Introduction

In recent years, sentiment analysis has taken flight
and is now actively used, on the Web and be-
yond (Liu, 2012). To provide users of sentiment
tools with more detailed and useful information, a
number of innovations have been introduced, and
among others a switch from document-level sen-
timent analysis towards fine-grained, aspect-level
sentiment analysis can be seen (Feldman, 2013).
In line with the many challenges associated with
this, SemEval-2014 Task 4 “Aspect Level Senti-
ment Analysis” (Pontiki et al., 2014) is split into
four sub-tasks: Aspect Detection, Aspect Senti-
ment Classification, Category Detection, and Cat-
egory Sentiment Classification.

The main focus of this paper is on the category
detection algorithm we developed, but a method
for aspect detection and a sentiment classifica-
tion algorithm (both for aspects and categories) are
also included. The aspect detection algorithm will
be presented first, followed by the category de-
tection algorithm and the sentiment classification

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

method. Next, the benchmark results for all algo-
rithms are presented, plus a discussion and failure
analysis of the category detection method. Finally,
conclusions are drawn and some suggestions for
future work are presented.

2 Related Work

Because the focus of this paper lies on the cat-
egory detection method, only for that method a
short snippet of related work is given. That algo-
rithm, being an adapted version of Schouten and
Frasincar (2014), is inspired by the work of Zhang
and Zhu (2013) and Hai et al (2011). In these
works, a co-occurrence matrix is created between
words in the sentence and aspects in order to find
implicit aspects (i.e., aspects that are not literally
mentioned, as opposed to the explicit aspects used
in this task).

While implicit aspects are similar to aspect cat-
egories to some extent, these methods do not work
when a fixed, limited set of possible aspect cat-
egories is used that is, most importantly, not a
subset of the set of aspects. The above meth-
ods could never, for instance, identify the ‘anec-
dotes/miscellaneous’ category, as this word never
appears as an aspect in the data set. This is the
main reason why we have chosen to count the co-
occurrences between words and the annotated as-
pect categories.

3 Aspect Detection Method

In the work reported here, the aspect detection
method plays the role of a baseline method rather
than a full-fledged algorithm. In its most basic
form, it annotates all noun phrases as aspects.
However, by using the training set to count how
often each word appears within an aspect, a sim-
ple probability can be computed representing the
chance that this word is an aspect word or not.
This probability is used to filter the set of noun
phrases, such that only noun phrases remain that
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have at least one word for which the aspect proba-
bility ≥ 0.05 and for those noun phrases, all lead-
ing words in the noun phrase with a probability
below 0.05 are removed. This will remove words
like determiners from the initial noun phrase, as
those are not included in the aspect term. Because
this filtering is strict, the result is a typical high
precision, low recall algorithm for aspect detec-
tion.

4 Category Detection Method

To find the aspect categories, the co-occurrence
based algorithm from Schouten and Frasin-
car (2014) is used and improved upon. The cen-
tral construct in this algorithm is a co-occurrence
matrix that captures the frequency of the co-
occurrences between words (i.e., the lemmas of
the words) in the sentence and the annotated as-
pect category. This gives a mapping from words to
aspect categories. When processing an unlabelled
sentence, a score is computed for each aspect cat-
egory as shown in Eq. 1.

scoreai =
1
v

v∑
j=1

ci,j

oj
, (1)

where v is the number of words in the sentence,
ai is the ith aspect category in the list of possible
aspect categories for which the score is computed,
j represents the jth word in the sentence, ci,j is the
co-occurrence frequency of aspect category i and
lemma j in the data set, and oj is the frequency of
lemma j in the data set.

Whereas in Schouten and Frasincar (2014), the
highest scoring category was chosen on the con-
dition that its score exceeded a threshold, our
method is now able to choose more than one as-
pect category per sentence. This is done by train-
ing a separate threshold for each of the five aspect
categories using all training data. When the score
for some aspect category is higher than its associ-
ated threshold (i.e., scoreai > thresholdai), the
sentence is annotated as having that aspect cate-
gory.

Since we assume the five threshold values to be
independent of each other, a simple linear search
is performed separately for all five of them to find
the optimal threshold value by optimizing F1 (cf.
Sec. 6). As a default option, the fifth category
(‘anecdotes/miscellaneous’) is associated to any
sentence for which none of the five categories ex-

ceeded their threshold. The trained threshold val-
ues for the five categories are:

ambience price food service misc
0.042 0.024 0.211 0.071 0.143

The pseudocode for the creation of the co-
occurrence matrix can be found in Algorithm 1,
and Algorithm 2 describes the process of annotat-
ing a sentence with aspect categories.

Algorithm 1 Aspect category detection training.
Initialize set of word lemmas with frequencies
O
Initialize set of aspect categories A
Initialize co-occurrence matrix C
for sentence s ∈ training data do

for word w ∈ s do
O(w) = O(w) + 1

end for
for aspect category a ∈ s do

add a to A
for word w ∈ s do

C(w, a) = C(w, a) + 1
end for

end for
end for
for aspect category a in A do

thresholda=0
bestF1 = 0
for t = 0 to 1 step 0.001 do

Execute Algorithm 2 on training data
Compute F1

if F1 > bestF1 then thresholda = t
end if

end for
end for

5 Sentiment Classification Method

For sentiment classification, a method is devel-
oped that first creates a sentiment lexicon based
on the aspect sentiment annotation. That lexicon
is then consequently used to determine the senti-
ment of both aspects and categories that have no
sentiment annotation. The intuition behind this
method is that a lexicon should cover domain-
specific words and expressions in order to be ef-
fective. To avoid creating such a sentiment lexi-
con manually, the aspect sentiment annotations are
leveraged to create one automatically. The idea is
that words that often appear close to positive or
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Algorithm 2 Aspect category detection execution.
for sentence s ∈ test data do

for aspect category a ∈ A do
score = 0
for word w ∈ s do

if O(w) > 0 then
score = score+C(w, a)/O(w)

end if
end for
score = score/ length(s)
if score > thresholda then

Assign aspect category a to s
end if

end for
if s has no assigned aspect categories then

Assign ‘anecdotes/miscellaneous’ to s
end if

end for

negative aspects are likely to have the same polar-
ity. Since sentiment is also carried by expressions,
rather than single words only, the constructed sen-
timent lexicon has entries for encountered uni-
grams, bigrams, and trigrams. In each sentence,
the distance between each n-gram and each aspect
is computed and the sentiment of the aspect, dis-
counted by the computed distance, is added to the
sentiment value of the n-gram, as shown in Eq. 2.

sentimentg =
1

freqg
·
∑
s∈Sg

p · torder(g) ·
∑
a∈As

polaritya

(distanceg,a)m
,

(2)

where g is the n-gram (i.e., word unigram, bigram,
or trigram), freqg is the frequency of n-gram g
in the data set, s is a sentence in Sg, which is
the set of sentences that contain n-gram g, p is a
parameter to correct for the overall positivity of
the data set, t is a parameter that corrects for the
relative influence of the type of n-gram (i.e., dif-
ferent values are used for t1, t2, and t3), a is an
aspect in As, which is the set of aspects in sen-
tence s, polaritya is 1 when aspect a is positive
and −1 when a is negative, and m is a parame-
ter that determines how strong the discounting by
the distance should be. The distance computed
is the shortest word distance between the aspect
and the n-gram (i.e., both an n-gram and an as-
pect can consist of multiple words, in which case

the closest two are used to compute the distance).
Note that essentially, dictionary creation is based
on how often an n-gram co-occurs with positive
or negative aspects. In our submitted run on the
restaurant data, we set torder(g) to 1, 5, and 4 for
unigrams, bigrams, and trigrams, respectively, and
p = 2 and for the laptop data we set torder(g) to 1,
0, and 3 for the n-grams and p = 1. In both cases,
m was kept at 1. These values were determined by
manual experimentation.

To compute the sentiment of an aspect, the sen-
timent value of each n-gram is divided by the dis-
tance between that n-gram and the aspect, com-
puted in a similar fashion as in the above formula)
and summed up, as shown in Eq. 3.

sentimenta,sa =
∑
g∈sa

sentimentg
(min distanceg,a)m

, (3)

where, in addition to the definitions in the previ-
ous equation, g is an n-gram in sa, which is the
sentence in which aspect a occurs. Note that for
each occurrence of a term, its sentiment value is
added to the total score. If the result is above zero,
the class will be ‘positive’, and if the result is be-
low zero, the class will be ‘negative’. In the rare
event of the sentiment score being exactly zero,
the ‘neutral’ class is assigned.

For category sentiment classification, the for-
mula of Eq. 3 remains the same, except that the
distance term min distancem

g,a is set to 1, since
aspect categories pertain to the whole sentence in-
stead of having specific offsets.

6 Evaluation

All three algorithms presented above were evalu-
ated through a submission in the SemEval-2014
Task 4 “Aspect Level Sentiment Analysis”. Two
data sets have been used, one consisting of sen-
tences from restaurant reviews, the other consist-
ing of sentences from laptop reviews. Both sets
have been annotated with aspects and aspect senti-
ment, but only the restaurant set is also annotated
with aspect categories and their associated senti-
ment class. Both data sets are split into a training
set of roughly 3000 sentences and a test set of 800
sentences.

All sentences in the data set have been pre-
processed by a tokenizer, a Part-of-Speech tagger,
and a lemmatizer. These tasks were performed by
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Table 1: Official results for both algorithms.
aspect detection (subtask 1)

precision recall F1

laptop 0.836 0.148 0.252
restaurant 0.909 0.388 0.544

category detection (subtask 3)
precision recall F1

restaurant 0.633 0.558 0.593
aspect sentiment classification (subtask 2)

laptop accuracy 0.570
restaurant accuracy 0.660
category sentiment classification (subtask 4)
restaurant accuracy 0.677

the Stanford CoreNLP framework1. Furthermore,
the OpenNLP2 chunker was used to provide basic
phrase chunking in order to retrieve noun phrases
for instance.

The official scores, as computed by the task or-
ganizers are shown in Table 1. Note that the senti-
ment classification algorithm is used for subtasks 2
and 4, so two scores are reported, and that subtasks
3 and 4 can only be performed with the restaurant
data set.

As the performance of the category detection
method was lower than anticipated, a failure anal-
ysis has been performed. This led to the observa-
tion that overfitting is one of major factors in ex-
plaining the lower performance . This is shown in
Figure 1, in which one can easily notice the great
difference in in-sample performance, and the per-
formance on unseen data. Notice that by using 10-
fold cross-validation, better results are achieved
than on the official test set. This indicates that
there are factors other than overfitting that influ-
ence the performance.

Interestingly, especially recall is influenced by
the overfitting problem: precision is almost the
same for the 10-fold cross-validation and even
with the in-sample performance it increases only
a little bit. To gain more insight into the difference
in recall, a graph showing the relative contribution
to false negatives of the five categories is shown in
Figure 2. For completeness, the same graph but for
false positives is also shown, together with the fre-
quency distribution of the categories in both train-
ing and test set.

Immediately visible is the effect of defaulting to
1http://nlp.stanford.edu/software/corenlp.shtml
2https://opennlp.apache.org/
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Figure 1: Performance measure of category detec-
tion on different parts of data.

the ‘anecdotes/miscellaneous’ when no category is
assigned to that sentence: many false positives are
generated by this rule, but there are almost no false
negatives for this category. Note that without this
default, F1-measure would drop by roughly 3 per-
centage points.

Also notable is the difference between the in-
sample bar and the official results bar: two cat-
egories, namely ‘anecdotes/miscellaneous’ and
‘food’ show large differences in contribution to
false positives and false negatives. The algo-
rithm finds fewer ‘food’ categories in the test
set, than in the training set, while for ‘anec-
dotes/miscellaneous’, the reverse is the case. This
can at least be partly explained by the change in
data statistics: in the training set, 33% of the an-
notated categories are ‘food’ and 30% are ‘anec-
dotes/miscellaneous’, whereas in the test set, these
numbers are 40% and 22%, respectively. With
much more sentences having the ‘food’ category,
false positives will be lower but false negatives
will be higher. For ‘anecdotes/miscellaneous’, the
reverse is true: with less sentences in the test set
having this category, false positives will by higher,
but false negatives will be lower, a change rein-
forced by ‘anecdotes/miscellaneous’ being the de-
fault.

Two factors remain that might have negatively
impacted the performance of the algorithm. The
first is that in the restaurant set, many words ap-
pear only once (e.g., dishes, ingredients), and
when words do not appear in the training set, no
co-occurrence with any category can be recorded.
This primarily affects recall. The second is that
the category thresholds, while working well on the
training set, do not seem to generalize well to the

206



0%

20%

40%

60%

80%

100%

training test

C
a

te
g

o
ry

 D
is

tr
ib

u
ti

o
n

food price service ambience anecdotes/misc

0%

20%

40%

60%

80%

100%

official 10-fold in-sample

C
o

n
tr

ib
u

ti
o

n
 t

o
 F

a
ls

e
 

N
e

g
a

ti
v

e
s

0%

20%

40%

60%

80%

100%

official 10-fold in-sample

C
o

n
tr

ib
u

ti
o

n
 t

o
 F

a
ls

e
 P

o
si

ti
v

e
s

training test

food price service ambience anecdotes/misc

official 10-fold in-sample official 10-fold in-sample

Figure 2: The frequency distribution of each category and its relative contribution to the total number of
false negatives (left graph) and false positives (right graph). The middle graph shows the change in the
distribution of categories in the training and test set.

test set. Testing the algorithm with one threshold
for all five categories, while showing a sharply de-
creased in-sample performance, yields an out-of-
sample F1-measure that is only slightly lower than
F1-measure with different thresholds.

7 Conclusion

In this paper the main ingredients for our submis-
sion to SemEval-2014 Task 4 “Aspect Level Sen-
timent Analysis” are discussed: a simple aspect
detection method, a co-occurrence based method
for category detection, and a dictionary based sen-
timent classification algorithm. Since the category
detection algorithm did not perform as expected, a
failure analysis has been performed, while for the
others this was less necessary as they performed
roughly as expected.

The failure analysis provides several starting
points for future research. First, it would be in-
teresting to determine the exact nature of the de-
pendency between category performance and cat-
egory frequency, as discussed above, and to re-
move this dependency, since it is not guaranteed in
real-life scenarios that the frequency distribution
of the training set is the same as the set of instances
an algorithm will encounter when in use. Fur-
thermore, training five separate category thresh-
old, while good for performance in general, also
aggravates the problem of overfitting. Hence, im-
proving the generalization of the algorithm, and
the thresholds in particular, is important. Last,
a method to deal with very low frequency words
could prove useful as well.
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Abstract

In this paper, we develop a deep learn-
ing system for message-level Twitter sen-
timent classification. Among the 45 sub-
mitted systems including the SemEval
2013 participants, our system (Coooolll)
is ranked 2nd on the Twitter2014 test set
of SemEval 2014 Task 9. Coooolll is
built in a supervised learning framework
by concatenating the sentiment-specific
word embedding (SSWE) features with
the state-of-the-art hand-crafted features.
We develop a neural network with hybrid
loss function 1 to learn SSWE, which en-
codes the sentiment information of tweets
in the continuous representation of words.
To obtain large-scale training corpora, we
train SSWE from 10M tweets collected by
positive and negative emoticons, without
any manual annotation. Our system can
be easily re-implemented with the publicly
available sentiment-specific word embed-
ding.

1 Introduction

Twitter sentiment classification aims to classify
the sentiment polarity of a tweet as positive, nega-
tive or neutral (Jiang et al., 2011; Hu et al., 2013;
Dong et al., 2014). The majority of existing ap-
proaches follow Pang et al. (2002) and employ ma-
chine learning algorithms to build classifiers from
tweets with manually annotated sentiment polar-
ity. Under this direction, most studies focus on

∗ This work was partly done when the first author was
visiting Microsoft Research.

1This is one of the three sentiment-specific word embed-
ding learning algorithms proposed in Tang et al. (2014).

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

designing effective features to obtain better clas-
sification performance (Pang and Lee, 2008; Liu,
2012; Feldman, 2013). For example, Mohammad
et al. (2013) implement diverse sentiment lexicons
and a variety of hand-crafted features. To leverage
massive tweets containing positive and negative e-
moticons for automatically feature learning, Tang
et al. (2014) propose to learn sentiment-specific
word embedding and Kalchbrenner et al. (2014)
model sentence representation with Dynamic Con-
volutional Neural Network.

In this paper, we develop a deep learning sys-
tem for Twitter sentiment classification. First-
ly, we learn sentiment-specific word embedding
(SSWE) (Tang et al., 2014), which encodes the
sentiment information of text into the continuous
representation of words (Mikolov et al., 2013; Sun
et al., 2014). Afterwards, we concatenate the SS-
WE features with the state-of-the-art hand-crafted
features (Mohammad et al., 2013), and build the
sentiment classifier with the benchmark dataset
from SemEval 2013 (Nakov et al., 2013). To
learn SSWE, we develop a tailored neural net-
work, which incorporates the supervision from
sentiment polarity of tweets in the hybrid loss
function. We learn SSWE from tweets, lever-
aging massive tweets with emoticons as distant-
supervised corpora without any manual annota-
tions.

We evaluate the deep learning system on the
test set of Twitter Sentiment Analysis Track in Se-
mEval 2014 2. Our system (Coooolll) is ranked
2nd on the Twitter2014 test set, along with the
SemEval 2013 participants owning larger train-
ing data than us. The performance of only us-
ing SSWE as features is comparable to the state-
of-the-art hand-crafted features (detailed in Ta-
ble 3), which verifies the effectiveness of the
sentiment-specific word embedding. We release
the sentiment-specific word embedding learned

2http://alt.qcri.org/semeval2014/task9/
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Figure 1: Our deep learning system (Coooolll) for
Twitter sentiment classification.

from 10 million tweets, which can be easily used
to re-implement our system and adopted off-the-
shell in other sentiment analysis tasks.

2 A Deep Learning System

In this section, we present the details of our deep
learning system for Twitter sentiment classifica-
tion. As illustrated in Figure 1, Coooolll is a su-
pervised learning method that builds the sentimen-
t classifier from tweets with manually annotated
sentiment polarity. In our system, the feature rep-
resentation of tweet is composed of two parts, the
sentiment-specific word embedding features (SS-
WE features) and the state-of-the-art hand-crafted
features (STATE features). In the following parts,
we introduce the SSWE features and STATE fea-
tures, respectively.

2.1 SSWE Features

In this part, we first describe the neural network
for learning sentiment-specific word embedding.
Then, we generate the SSWE features of a tweet
from the embedding of words it contains.

Our neural network is an extension of the tra-
ditional C&W model (Collobert et al., 2011), as
illustrated in Figure 2. Unlike C&W model that
learns word embedding by only modeling syntac-
tic contexts of words, we develop SSWEu, which
captures the sentiment information of sentences as
well as the syntactic contexts of words. Given an
original (or corrupted) ngram and the sentiment
polarity of a sentence as the input, SSWEu predict-
s a two-dimensional vector for each input ngram.
The two scalars (fu

0 , fu
1 ) stand for language model

score and sentiment score of the input ngram, re-

so cooool :D 

syntactic 
sentiment 

Figure 2: Our neural network (SSWEu) for learn-
ing sentiment-specific word embedding.

spectively. The training objectives of SSWEu are
that (1) the original ngram should obtain a high-
er language model score fu

0 (t) than the corrupted
ngram fu

0 (tr), and (2) the sentiment score of orig-
inal ngram fu

1 (t) should be more consistent with
the gold polarity annotation of sentence than cor-
rupted ngram fu

1 (tr). The loss function of SSWEu

is the linear combination of two hinge losses,

lossu(t, tr) = α · losscw(t, tr)+
(1− α) · lossus(t, tr)

(1)

where where t is the original ngram, tr is the cor-
rupted ngram which is generated from t with mid-
dle word replaced by a randomly selected one,
losscw(t, tr) is the syntactic loss as given in E-
quation 2, lossus(t, tr) is the sentiment loss as
described in Equation 3. The hyper-parameter α
weighs the two parts.

losscw(t, tr) = max(0, 1− f cw(t) + f cw(tr))
(2)

lossus(t, tr) = max(0, 1− δs(t)fu
1 (t)

+ δs(t)fu
1 (tr) )

(3)

where δs(t) is an indicator function reflecting the
sentiment polarity of a sentence, whose value is 1
if the sentiment polarity of tweet t is positive and
-1 if t’s polarity is negative. We train sentiment-
specific word embedding from 10M tweets col-
lected with positive and negative emoticons (Hu
et al., 2013). The details of training phase are de-
scribed in Tang et al. (2014).

After finish learning SSWE, we explore min,
average and max convolutional layers (Collobert
et al., 2011; Socher et al., 2011; Mitchell and Lap-
ata, 2010), to obtain the tweet representation. The
result is the concatenation of vectors derived from
different convolutional layers.
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2.2 STATE Features

We re-implement the state-of-the-art hand-crafted
features (Mohammad et al., 2013) for Twitter sen-
timent classification. The STATE features are de-
scribed below.

• All-Caps. The number of words with all char-
acters in upper case.

• Emoticons. We use the presence of positive
(or negative) emoticons and whether the last
unit of a segmentation is emoticon 3.

• Elongated Units. The number of elongated
words (with one character repeated more than
two times), such as gooood.

• Sentiment Lexicon. We utilize several senti-
ment lexicons 4 to generate features. We ex-
plore the number of sentiment words, the s-
core of last sentiment words, the total senti-
ment score and the maximal sentiment score
for each lexicon.

• Negation. The number of individual nega-
tions 5 within a tweet.

• Punctuation. The number of contiguous se-
quences of dot, question mark and exclama-
tion mark.

• Cluster. The presence of words from each
of the 1,000 clusters from the Twitter NLP
tool (Gimpel et al., 2011).

• Ngrams. The presence of word ngrams (1-4)
and character ngrams (3-5).

3 Experiments

We evaluate our deep learning system by applying
it for Twitter sentiment classification within a su-
pervised learning framework. We conduct exper-
iments on both positive/negative/neutral and posi-
tive/negative classification of tweets.

3We use the positive and negative emoticons from Sen-
tiStrength, available at http://sentistrength.wlv.ac.uk/.

4HL (Hu and Liu, 2004), MPQA (Wilson et al., 2005), N-
RC Emotion (Mohammad and Turney, 2013), NRC Hashtag
and Sentiment140Lexicon (Mohammad et al., 2013).

5http://sentiment.christopherpotts.net/lingstruc.html

3.1 Dataset and Setting
We train the Twitter sentiment classifier on the
benchmark dataset in SemEval 2013 (Nakov et
al., 2013). The training and development sets were
completely in full to task participants of SemEval
2013. However, we were unable to download al-
l the training and development sets because some
tweets were deleted or not available due to modi-
fied authorization status. The distribution of our
dataset is given in Table 1. We train sentimen-
t classifiers with LibLinear (Fan et al., 2008) on
the training set and dev set, and tune parameter
−c,−wi of SVM on the test set of SemEval 2013.
In both experiment settings, the evaluation met-
ric is the macro-F1 of positive and negative class-
es (Nakov et al., 2013).

Positive Negative Neutral Total
Train 2,642 994 3,436 7,072
Dev 408 219 493 1,120
Test 1,570 601 1,639 3,810

Table 1: Statistics of our SemEval 2013 Twitter
sentiment classification dataset.

The test sets of SemEval 2014 is directly pro-
vided to the participants, which is composed of
five parts. The statistic of test sets in SemEval
2014 is given in Table 2.

Positive Negative Neutral Total
T1 427 304 411 1,142
T2 492 394 1,207 2,093
T3 1,572 601 1,640 3,813
T4 982 202 669 1,939
T5 33 40 13 86

Table 2: Statistics of SemEval 2014 Twitter senti-
ment classification test set. T1 is LiveJournal2014,
T2 is SMS2013, T3 is Twitter2013, T4 is Twit-
ter2014, T5 is Twitter2014Sarcasm.

3.2 Results and Analysis
The experiment results of different methods
on positive/negative/neutral and positive/negative
Twitter sentiment classification are listed in Ta-
ble 3. The meanings of T1∼T5 in each column are
described in Table 2. SSWE means the approach
that only utilizes the sentiment-specific word em-
bedding as features for Twitter sentiment classi-
fication. In STATE, we only utilize the existing
features (Mohammad et al., 2013) for building the
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Method
Positive/Negative/Neutral Positive/Negative

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
SSWE 70.49 64.29 68.69 66.86 50.00 84.51 85.19 85.06 86.14 62.02

Coooolll 72.90 67.68 70.40 70.14 46.66 86.46 85.32 86.01 87.61 56.55
STATE 71.48 65.43 66.18 67.07 44.89 83.96 82.82 84.39 86.16 58.27
W2V 55.19 52.98 52.33 50.58 49.63 68.87 71.89 74.50 71.52 61.60
Top 74.84 70.28 72.12 70.96 58.16 - - - - - - - - - -

Average 63.52 55.63 59.78 60.41 45.44 - - - - - - - - - -

Table 3: Macro-F1 of positive and negative classes in positive/negative/neutral and positive/negative
Twitter sentiment classification on the test sets (T1-T5, detailed in Table 2) of SemEval 2014. The
performances of Coooolll on the Twitter-relevant test sets are bold.

sentiment classifier. In Coooolll, we use the con-
catenation of SSWE features and STATE features.
In W2V, we only use the word embedding learned
from word2vec6 as features. Top and Average are
the top and average performance of the 45 team-
s of SemEval 2014, including the SemEval 2013
participants who owns larger training data.

On positive/negative/neutral classification of
tweets as listed in Table 3 (left table), we find
that the learned sentiment-specific word embed-
ding features (SSWE) performs comparable with
the state-of-the-art hand-crafted features (STATE),
especially on the Twitter-relevant test sets (T3
and T4) 7. After feature combination, Coooolll
yields 4.22% and 3.07% improvement by macro-
F1 on T3 and T4,which verifies the effective-
ness of SSWE by learning discriminate features
from massive data for Twitter sentiment classifi-
cation. From the 45 teams, Coooolll gets the Rank
5/2/3/2 on T1-T4 respectively, along with the Se-
mEval 2013 participants owning larger training
data. We also comparing SSWE with the context-
based word embedding (W2V), which don’t cap-
ture the sentiment supervision of tweets. We find
that W2V is not effective enough for Twitter sen-
timent classification as there is a big gap between
W2V and SSWE on T1-T4. The reason is that W2V
does not capture the sentiment information of text,
which is crucial for sentiment analysis tasks and
effectively leveraged for learning the sentiment-
specific word embedding.

We also conduct experiments on the posi-

6We utilize the Skip-gram model. The embedding is
trained from the 10M tweets collected by positive and neg-
ative emoticons, as same as the training data of SSWE.

7The result of STATE on T3 is different from the results
reported in Mohammad et al. (2013) and Tang et al. (2014)
because we have different training data with the former and
different -wi of SVM with the latter.

tive/negative classification of tweets. The reason
is that the sentiment-specific word embedding is
learned from the positive/negative supervision of
tweets through emoticons, which is tailored for
positive/negative classification of tweets. From
Table 3 (right table), we find that the performance
of positive/negative Twitter classification is con-
sistent with the performance of 3-class classifica-
tion. SSWE performs comparable to STATE on T3
and T4, and yields better performance (1.62% and
1.45% improvements on T3 and T4, respectively)
through feature combination. SSWE outperform-
s W2V by large margins (more than 10%) on T3
and T4, which further verifies the effectiveness of
sentiment-specific word embedding.

4 Conclusion

We develop a deep learning system (Coooolll) for
message-level Twitter sentiment classification in
this paper. The feature representation of Cooool-
ll is composed of two parts, a state-of-the-art
hand-crafted features and the sentiment-specific
word embedding (SSWE) features. The SSWE
is learned from 10M tweets collected by posi-
tive and negative emoticons, without any manu-
al annotation. The effectiveness of Coooolll has
been verified in both positive/negative/neutral and
positive/negative classification of tweets. Among
45 systems of SemEval 2014 Task 9 subtask(b),
Coooolll yields Rank 2 on the Twitter2014 test set,
along with the SemEval 2013 participants owning
larger training data.
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Abstract

In this shared task paper for SemEval-
2014 Task 8, we show that most se-
mantic structures can be approximated by
trees through a series of almost bijective
graph transformations. We transform in-
put graphs, apply off-the-shelf methods
from syntactic parsing on the resulting
trees, and retrieve output graphs. Us-
ing tree approximations, we obtain good
results across three semantic formalisms,
with a 15.9% error reduction over a state-
of-the-art semantic role labeling system on
development data. Our system came in 3/6
in the shared task closed track.

1 Introduction
Semantic analyses often go beyond tree-

structured representations, assigning multiple se-
mantic heads to nodes, some semantic formalisms
even tolerating directed cycles.1 At the same
time, syntactic parsing is a mature field with effi-
cient, highly optimised decoding and learning al-
gorithms for tree-structured representations. We
present tree approximation algorithms that in com-
bination with a state-of-the-art syntactic parser
achieve competitive performance in semantic di-
graph parsing.

We investigate two kinds of tree approximation
algorithms that we will refer to as pruning algo-
rithms and packing algorithms. Our pruning al-
gorithms simply remove and reverse edges until
the graph is a tree; edge reversals are then undone
as a postprocessing step. Our packing algorithms,
on the other hand, carry out two bijective graph

This work is licenced under a Creative Commons Attribu-
tion 4.0 International License. Page numbers and proceed-
ings footer are added by the organizers. License details:
http://creativecommons.org/licenses/by/4.0/

1For example, HPSG predicate-argument structures (Pol-
lard and Sag, 1994).

transformations to pack structural information into
new edge labels, making it possible to reconstruct
most of the structural complexity as a postprocess-
ing step. Specifically, we present a packing al-
gorithm that consists of two fully bijective graph
transformations, in addition to a further transfor-
mation that incurs only a small information loss.

We carry out experiments across three seman-
tic annotations of the Wall Street Journal section
of the Penn Treebank (Marcus et al., 1993), cor-
responding to simplified versions of the semantic
formalisms minimal recursion semantics (MRS)
(Copestake et al., 2005), Enju-style predicate-
argument structures (Miyao and Tsujii, 2003), and
Prague-style tectogrammar semantics (Böhmová
et al., 2003). We show that pruning and pack-
ing algorithms lead to state-of-the-art performance
across these semantic formalisms using an off-the-
shelf syntactic dependency parser.

2 Related work
Sagae and Tsujii (2008) present a pruning algo-
rithm in their paper on transition-based parsing of
directed acyclic graphs (DAGs), which discards
the edges of longest span entering nodes. They
apply the dependency parser described in Sagae
and Tsujii (2007) to the tree representations. We
note that this algorithm is not sufficient to produce
trees in our case, where the input graphs are not
necessarily acyclic. It does correspond roughly to
our LONGEST-EDGE baseline, which removes the
longest edge in cycles, in addition to flow reversal.

Sagae and Tsujii (2008) also present a shift-
reduce automaton approach to parsing DAGs. In
their paper, they report a labeled F1-score of
88.7% on the PAS dataset (see Section 3), while
we obtain 89.1%, however the results are thus not
directly comparable due to different data splits.2

2We obtained code to run this as a baseline, but were un-
able to, due to memory leaks, caused by subsets of our data,
and on the subsets of data that actually parsed, recall was very
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The shared task organizers of the Broad-
coverage Semantic Dependency Parsing task at
SemEval-20143 also presented a pruning-based
baseline system. They eliminate re-entrancies in
the graph by removing dependencies to nodes with
multiple incoming edges. Of these edges, they
again keep the shortest. They incorporate all sin-
gleton nodes by attaching nodes to the immedi-
ately following node or to a virtual root - in case
the singleton is sentence-final. Finally, they inte-
grate fragments by subordinating remaining nodes
with in-degree 0 to the root node. They apply the
parser described in Bohnet (2010), also used be-
low, to the resulting trees. This system obtained
a labeled F1-score of 54.7% on the PAS dataset.
The performance of their pruning algorithm was
also considerably lower than our algorithms on the
other datasets considered below.

3 Tree approximations
This section describes two approaches to approxi-
mating graphs by trees, namely pruning and pack-
ing. Pruning optimizes the number of “good”
edges in trees (Section 3.1), while packing trans-
forms graphs into trees by means of a pipeline of
operations which are 99.6% reversible (see Fig-
ure 1); that is, almost no information from the
original graphs is lost in the trees (Section 3.2).

Under both approaches, we first introduce arti-
ficial root nodes to the graphs and append them
to the word list. Graphs may initially be discon-
nected. We connect all weakly connected com-
ponents as follows. We first identify a most im-
portant node in each weakly connected compo-
nent, which we will refer to as the root. This root
is taken to be the first node with the “top” fea-
ture from the data, if one exists. If none exists,
then the node with highest degree is chosen as the
“root”. (Note that the “root” of each non-singleton
connected component is marked as a “top” node
in the inverse transformation.) The root of each
non-singleton weakly connected component is at-
tached as a dependent of the artificial root node
with a special new label for the corresponding
edge. Also, each disconnected node is attached
as a dependent of the node to the right of it, with
a distinct special new label. It is these connected
graphs that we take to be the input in the following

low, suggesting that maybe the decoding algorithm was tuned
to a specific planarization of the complex graphs.

3http://alt.qcri.org/semeval2014/task8/

two subsections describing our graph pruning and
packing algorithms.

3.1 Graph pruning
Our PRUNING algorithm removes a small number
of edges in the semantic graphs to be able to repre-
sent them as trees. The average edge counts from
the training data (see Section 4.1) indicate that the
potential edge loss in pruning is relatively small
(5.7% in the worst case). In this approach, two
transformations on the connected semantic graphs
are carried out: pruning and flow reversal.

Pruning. The input digraph may contain under-
lying undirected cycles. We break these cycles
by iteratively removing the longest edge from the
node with the fewest predecessors (lowest depth)
in the digraph. The resulting underlying undi-
rected graph is a tree.

Depth-first flow reversal. We then carry out
depth-first traversal of the resulting underlying
undirected tree, reversing the direction of edges
from the leaves upwards, as needed, until reach-
ing the root. Any reversed edge’s label is given a
special prefix, so that this reversal can be undone
in a post-processing step.
Following the above two transformations, we train
our parsers on the transformed semantic annota-
tions and output graphs such as the one in Fig-
ure 1a.

3.2 Graph packing
Our PACKING algorithm consists of a pipeline of
four graph transformations. The two major trans-
formations are for coordination and generalised
long-distance dependencies, being both parallel
path inducing constructions. The transformations
are both linguistically and topologically inspired
by the f-structure annotated c-structures in Lex-
ical Functional Grammar and f-structure parsing
via off-the-shelf dependency parsers (Schluter and
Van Genabith, 2009). We further ensure the defin-
ing tree property that every node is connected by a
unique path from the root, by carrying out flow re-
versal when necessary. Finally remaining parallel
paths are broken according to an heuristic on path
locality.

Coordination. In some semantic representa-
tions of coordination, individual conjunct nodes
may all dominate a same argument, or be domi-
nated by a same head. In both these cases, paral-
lel paths are generated. The same structures may
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a)

b)

c)
Figure 1: Example of pruned (top), packed (middle), and original (bottom) semantic graph. (Sentence
22002004 from the PAS dataset.)

be represented if the head or arguments are “fac-
tored out”. To do this, we remove all edges from
conjuncts towards a same argument (resp. from
a shared head to each conjunct), and introduce a
new edge from the root of the coordination sub-
tree towards this argument (resp. from a shared
head to the root of the coordination subtree). The
new edges receive a special prefix to facilitate ap-
plying the inverse transformation.

Breadth-first flow reversal. Unlike our pruning
algorithm, there is not yet any clear distinct path
from the root to the all nodes (as there are not
leaves yet). After carrying out the coordination
transformation, we carry out a breadth-first search
on the graph to direct flow away from the root, and
again, reversed edges’ labels are given a special
prefix. As we do this, we test resulting nodes to
see if there are any parallel paths leading to them.
If so, these paths may be transformed immediately
according to the following transformation.

Generalized long-distance dependencies.
Long-distance dependencies are represented
in f-structure annotated c-structures by path
equations. This gives a tree representation of
parallel paths, at least one of which is exactly
one edge long. Given two parallel paths p1 and
p2 in the graph, where p1 = (v1, l, vn) and p2 =
(v1, l1, v2), (v2, l2, v3), . . . , (vn−1, ln−1, vn), we
remove the last edge of p2 and augment p1’s label
with the representation l1 : l2 : · · · : ln−1 of p2. p1

becomes (v1, l and l1 : l2 : · · · : ln−1, vn), indi-
cating that vn is also the child (with dependency
label ln−1) of the node found by travelling (from
v1) down an l1 labelled edge, followed by an l2

labelled edge, and so on until the child of the ln−2

labelled edge is found.

Maximum average locality heuristic. Follow-
ing these transformations, there may still be paral-
lel paths in the graph: those not parallel to a single
edge. We remove “worst” re-entrant edges using
the simple heuristic that the path with the lowest
average edge span should be conserved entirely.
These removed edges clearly cannot be recovered
after transformation.
Our parsers are trained on the output graphs of
these four transformations such as the one in Fig-
ure 1b. We observe the main difference between
PRUNING and PACKING: coordination and long-
distance dependencies. For example, PACKING

keeps the edge between the conjunction and the
first conjunct, which is pruned away in PRUNING.
Such a difference provides a partial explanation
for the lower recall of PRUNING vis-à-vis PACK-
ING (see Section 4.5).

4 Experiments
4.1 Data
The three datasets are semantic annotations of the
WSJ section of the Penn Treebank of English. The
average sentence length, which is also the aver-
age number of dependency edges in the tree ap-
proximations that we use to induce our semantic
parsers, is 22.93. The three semantic formalisms
are slightly richer, and the average number of
edges in the PAS-annotated treebank is 24.32. For
DM, the average number of edges is 23.77, and
for DM it is 23.33. While the pruning-based ap-
proaches thus suffers from a modest information
loss, throwing out 5.7% of the edges in the worst
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case, this is not the case for packing. The re-
versibility of the packed representations is given
by the score upper bound in the last row in Ta-
ble 1. We use the dataset splits of the SemEval
2014 shared task.

4.2 Model
For both our pruning and packing models, we use
the Mate parser (Bohnet, 2010)4 with default pa-
rameters to learn our parsing models. The Mate
parser is trained on the output of the transforma-
tion pipeline on Sections 00-19 of the three se-
mantically annotated WSJ datasets. Some models
use Brown clusters generated from Sections 00-
19 only. This does not solve OOV problems, but
allows of slightly better generalisation across dis-
tributionally similar words in the training data.

4.3 Baselines
We use the SemEval 2014 shared task baseline
(SIMPLE-PRUNE; see Section 2), as well as the
LONGEST-EDGE baseline, also mentioned above.
The latter is our strongest baseline system. It is
very similar to PRUNING, in doing both edge prun-
ing and flow reversal, but the pruning step only
removes the longest edge rather than considering
node depth. Our third baseline is the Mate seman-
tic role labeling learner (SRL-DEP) (Björkelund
et al., 2009), which uses predicted syntactic parses
as input; for this, we use the syntactic parses made
available in the SemEval 2014 shared task for
replicability.

Approach Cl DM PAS PCEDT Av
Systems

PRUNING
NO 86.6 88.8 72.7 82.7
YES 86.9 89.1 72.5 82.8

PACKING
NO 85.8 88.7 71.8 82.1
YES 86.1 88.7 72.9 82.6

Baselines
SIMPLE-PRUNE 54.7 50.9 67.8 57.8
LONGEST-EDGE 83.8 88.9 66.1 79.6
SRL-DEP 79.5 82.4 70.1 77.4
Upper bound
PACKING 99.9 99.5 99.5 99.6

Table 1: Labelled F1-score results on development
data, with and without use of Brown clusters (Cl).

4.4 Results
The results are presented in Tables 1 through 3,
where the system evaluations for the SemEval task
are marked with asterisks in Table 2. We note that
all our approaches do considerably better than our

4https://code.google.com/p/mate-tools/

Approach metric DM PAS PCEDT Av
Systems
PACKING PREC 84.8 87.7 71.2 81.2
(W/ TOP) REC 84.0 88.4 68.6 80.3

F1 84.4 88.0 69.9 80.8∗
PREC 85.4 87.9 70.8 81.4

(W/O TOP) REC 84.6 88.6 68.8 80.7
F1 85.0 88.3 69.9 81.1

PRUNING PREC 87.2 91.3 72.8 83.8
(W/ TOP) REC 80.2 81.3 62.8 74.8

F1 83.6 86.0 67.4 79.0∗
PREC 87.2 91.3 72.8 83.8

(W/O TOP) REC 85.1 85.1 68.0 79.4
F1 86.2 88.1 70.3 81.5

Table 2: Labelled results on test data, with and
without evaluation of top nodes. The scores with
asterisks correspond to the output evaluated in the
SemEval task.

Approach metric DM PAS PCEDT Av
Systems
PACKING PREC 86.8 89.1 84.8 86.9
(W/ TOP) REC 86.0 89.8 81.8 85.9

F1 86.4 89.4 83.2 86.3
PREC 87.5 89.4 85.4 87.4

(W/O TOP) REC 86.7 90.1 83.0 86.6
F1 87.1 89.7 84.2 87.0

PRUNING PREC 89.2 92.6 88.2 90.0
(W/ TOP) REC 82.0 82.5 76.1 80.2

F1 85.4 87.3 81.7 84.8
PREC 89.2 92.6 88.2 90.0

(W/O TOP) REC 87.1 86.3 82.4 85.3
F1 88.1 89.3 85.2 87.5

Table 3: Unlabelled results on test data, with and
without evaluation of top nodes.

three baselines. The error reduction of our best
system over the SRL system across all three for-
malisms is 24.2%, and the error reduction over
the more competitive pruning baseline LONGEST-
EDGE is 15.9%. As mentioned in Section 2, these
results seem to promise better performance than
current DAG parsing models. Note from the re-
sults in Table 2 that, as expected, PRUNING leads
to higher precision than PACKING at the expense
of recall.

4.5 Error Analysis
We observe that pruning leads to high precision,
while our packing algorithm gives us much bet-
ter recall. This is not surprising, since our packed
representations introduce new labels, making it
harder to generalize at training time. On the other
hand, pruning approaches suffer in recall, simply
because edges are thrown away in preprocessing
the data.
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5 Conclusions
In this paper, we experimented with using tree ap-
proximation algorithms to reduce semantic struc-
tures to trees and use off-the-shelf structured pre-
diction techniques to train semantic parsers. Our
approximation algorithms include both pruning
and packing algorithms, i.e., algorithms that try
to reduce graphs to trees optimally, as well as al-
gorithms that pack information about graphs into
trees from which we later recover the richer struc-
tures. Using these tree approximation algorithms,
we obtain 15.9% error reductions over a state-of-
the-art SRL system.
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Abstract 

This paper describes our participation at SemEval-

2014 sentiment analysis task, in both contextual and 

message polarity classification. Our idea was to com-

pare two different techniques for sentiment analysis. 

First, a machine learning classifier specifically built 

for the task using the provided training corpus. On the 

other hand, a lexicon-based approach using natural 

language processing techniques, developed for a ge-

neric sentiment analysis task with no adaptation to the 

provided training corpus. Results, though far from the 

best runs, prove that the generic model is more robust 

as it achieves a more balanced evaluation for message 

polarity along the different test sets.  

1 Introduction 

SemEval
1
 is an international competitive evalua-

tion workshop on semantic related tasks. Among 

the ten different tasks that have been proposed in 

2014, Task 9 at SemEval-2014
2
 focuses on sen-

timent analysis in Twitter.  

Sentiment analysis could be described as the 

application of natural language processing and 

text analytics to identify and extract subjective 

information from texts. Given a message in Eng-

lish, the objective is to determine if the text ex-

presses a positive, negative or neutral sentiment 

in that context.  

It is a major technological challenge and the 

task is so hard that even humans often disagree 

on the sentiment of a given text, as issues that 

one individual may find acceptable or relevant 

may not be the same to others, along with multi-

lingual aspects and different cultural factors.  

                                                 
This work is licensed under a Creative Commons Attribu-

tion 4.0 International Licence. Page numbers and proceed-

ings footer are added by the organisers. Licence details: 
http://creativecommons.org/licenses/by/4.0/ 
1
 http://alt.qcri.org/semeval2014/ 

2
 http://alt.qcri.org/semeval2014/task9/ 

The task defines two subtasks, where the dif-

ference is that whereas the output in subtask B 

must be the message polarity classification, i.e., 

the global polarity of the whole message, subtask 

A is focused on contextual polarity disambigua-

tion, i.e., the message contains a marked instance 

of a word or phrase and the expected output must 

be the polarity of that specific instance within the 

whole message.  

Daedalus (2014) is a leading provider of lan-

guage-based solutions in Spain, and long-time 

participants in different research conferences and 

evaluation workshops such as CLEF (2014) and 

NTCIR (2014), in many different tasks including 

sentiment analysis (Villena-Román et al., 2008; 

Villena-Román et al., 2012).  

This paper describes our participation in both 

contextual (subtask A) and message (subtask B) 

polarity classification. The main idea behind our 

participation is to compare two different tech-

niques for sentiment analysis: a machine learning 

approach using the provided corpus to train a 

model specifically adapted to that scenario 

against a lexicon-based approach using advanced 

natural language processing techniques for cap-

turing the meaning of the text, developed prior to 

the task and obviously without using the provid-

ed corpus.  

Our point of view is that although machine 

learning classifiers generally achieve better re-

sults in competitive evaluations that provide a 

training corpus, when these same models are ap-

plied to a different scenario, the precision and 

recall metrics are drastically reduced, thus affect-

ing to the perception and confidence of stake-

holders in sentiment analysis technologies.   

Our different approaches, experiments and re-

sults achieved are presented and discussed in the 

following sections. 

218



2 Constrained Runs: Machine Learning 

Classifier 

The first approach is a simple quite naive ma-

chine learning classifier trained exclusively with 

the provided training corpus. This is the ap-

proach adopted for constrained runs in both sub-

task A and B. 

First, based on the Vector Space Model (Sal-

ton et al., 1975), the text of each tweet is con-

verted into a term vector where terms are as-

sumed to represent the semantic content of the 

message. Textalytics parsing API (Textalytics, 

2014a)  offered through a REST-based web ser-

vice is used to get the lemma of each word and 

filter part-of-speech categories: currently nouns, 

verbs, adjectives and adverbs are selected as 

terms. A weighted term vector based on the clas-

sical TF-IDF is used. Both the training and the 

test set are preprocessed in this same way. 

After this preprocessing, a classifier trained on 

the training corpus is used to classify the test 

corpus. Many different supervised learning algo-

rithms where evaluated with 10-fold cross vali-

dation, using Weka (Hall et al., 2009). We finally 

selected Multinomial Naive Bayes algorithm, 

training three different binary classifiers: posi-

tive/not_positive, negative/not_negative and neu-

tral/not_neutral. To select the final global mes-

sage polarity, a simple rule-based decision is 

made: 

 
if positive and not_negative and 

not_neutral then positive 

else if negative and not_positive and 

not_neutral then negative 

else neutral 

 

This is directly the output for subtask B. For 

subtask A, this same global polarity is assigned 

to each text fragment, i.e., subtask A and B are 

treated in the same way. 

3 Unconstrained Runs: Lexicon-Based 

Model 

Our second approach, used in the unconstrained 

runs in both subtasks, is based on 1) the infor-

mation provided by a semantic model that in-

cludes rules and resources (polarity units, modi-

fiers, stopwords) annotated for sentiment analy-

sis, 2) a detailed morphosyntactic analysis of the 

tweet to lemmatize and split the text into seg-

ments, useful to control the scope of semantic 

units and perform a fine-grained detection of ne-

gation in clauses, and 3) the use of an aggrega-

tion algorithm to calculate the global polarity 

value of the text based on the local polarity val-

ues of the different segments, including an outli-

er detection.  

We consider this approach to be unconstrained 

because the lexicon in the semantic model 

(which would be valid itself for a constrained 

run) has been generated, tested and validated us-

ing additional training data. 

All this functionality is encapsulated and pro-

vided by our Textalytics API for multilingual 

sentiment analysis (Textalytics, 2014b) in several 

languages, including English. Apart from the text 

itself, a required input parameter is the semantic 

model to use in the sentiment evaluation. This 

semantic model defines the domain of the text 

(the analysis scenario) and is mainly based on an 

extensive set of dictionaries and rules that incor-

porate both the well-known “domain-

independent” polarity values (for instance, in 

general, in all contexts, good is positive and aw-

ful is negative) and also the specificities of each 

analysis scenario (for instance, an increase in the 

interest rate is probably positive for financial 

companies but negative for the rest).  

First the local polarity of the different clauses 

in the text (segments) is identified based on the 

sentence syntactic tree and then the relation 

among them is evaluated in order to obtain a 

global polarity value for the whole given text. 

The detailed process may be shortly described as 

follows: 

1. Segment detection. The text is parsed 

and split into segments, based on the 

presence of punctuation marks and capi-

talization of words. 

2. Linguistic processing: each segment is 

tokenized (considering multiword units) 

and then each token is analyzed to ex-

tract its lemma(s). In addition, a morpho-

syntactic analysis divides the segment 

into proposition or clauses and builds the 

sentence syntactic tree. This division is 

useful, as described later, for detecting 

the negation and analyzing the effect of 

modifiers on the polarity values.  

3. Detection of negation. The next step is 

to iterate over every token of each seg-

ment to tag whether the token is affected 

by negation or not. If a given token is af-

fected by negation, the eventual polarity 

level is reversed (turns from positive to 

negative and the other round). For this 

purpose, the semantic model includes a 
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list of negation units, such as the obvious 

negation particles (adverbs) such as not 

(and contracted forms), neither and also 

expressions such as against, far from, no 

room for, etc. 

4. Detection of modifiers. Some special 

units do not assign a specific polarity 

value but operate as modifiers of this 

value, incrementing or decrementing it. 

These units included in the semantic 

model can be assigned a + (positive), ++ 

(strong positive), - (negative) or -- 

(strong negative) value. For instance, if 

good is positive (P), very good is be 

strong positive (P+), thus very would be 

a positive modifier (+). Other examples 

are additional, a lot, completely (posi-

tive) or descend, almost (negative).  

5. Polarity tagging. The next step is to de-

tect polarity units in the segments. The 

semantic model assigns one of the fol-

lowing values, ranging from the most 

positive to the most negative: P++, P+, 

P, P-, P--, N--, N-, N, N+ and N++. 

Moreover, these units can include a con-

text filter, i.e., one or several words or 

expressions that must appear or not in 

the segment so that the unit is considered 

in the sentiment analysis. The final value 

for each token is calculated from the po-

larity value of the unit in the semantic 

model, adding or subtracting the polarity 

value of the modifier (if thresholds are 

fulfilled) and considering the negation 

(again, if thresholds are fulfilled). 

6. Segment scoring. To calculate the over-

all polarity of each segment, an aggrega-

tion algorithm is applied to the set of po-

larity values detected in the segment. 

The average of polarity values is calcu-

lated and assigned as the score of the 

segment, ranging from -1 (strong nega-

tive) to +1 (strong positive).  In addition 

to this numeric score, discrete nominal 

values are also assigned (N+, N, NEU, P, 

P+). When there are no polarity units, 

the segment is assigned with a polarity 

value of NONE. The aggregation algo-

rithm performs an outlier filtering to try 

to reduce the effect of wrong detections, 

based on a threshold over the standard 

deviation from the average. 

7. Global text scoring. The same aggrega-

tion algorithm is applied to the local po-

larity values of each segment to calculate 

the global polarity value of the text, rep-

resented by an average value (both nu-

meric and nominal values). 

Although unconstrained runs were allowed to 

use the training corpus for improving the model, 

we were interested on not doing so, as we point-

ed out in the introduction, to compare the robust-

ness of both models. 

For the purpose of both subtasks, the provid-

ed output was adapted so that P+ and P were 

grouped into positive and similarly N+ and N 

into negative. In subtask B, the global polarity 

was directly used as the output, whereas in sub-

task A, the polarity assigned to each text frag-

ment was the polarity value of the segment in 

which this text fragment is located. As compared 

to the constrained task, this allows a more fine-

grained assignment of polarity and, expectedly, 

achieve a better evaluation. 

Although we had different models available, 

some developed for specific domains such as the 

financial, telecommunications and tourism do-

mains, for this task, a general-purpose model for 

English was used. This model was initially based 

on the linguistic resources provided by General 

Inquirer
3
 in English. Some information about the 

model is shown in Table 1. 

 
Unit Type Count 

Negation (NEG) 31 

Modifiers (MOD) 117 

 -- 3 

 - 16 

 + 75 

 ++ 23 

Polarity (POL) 4 606 

 N++ 81 

 N+ 297 

 N 2 222 

 N- 221 

 N-- 13 

 P-- 6 

 P- 82 

 P 1 340 

 P+ 316 

 P++ 28 

Stopwords (SW) 59 

Macros 19 

TOTAL UNITS 4 832 

Table 1. English semantic model. 

                                                 
3
 http://www.wjh.harvard.edu/~inquirer 
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4 Results  

We submitted two runs, constrained  and uncon-

strained, for each subtask, so four runs in all. As 

defined by the organization, the evaluation met-

ric was the average F-measure (averaged F-

positive and F-negative, ignoring F-neutral). 

Separate rankings for several test dataset were 

also produced for comparing different scenarios. 

Results achieved for runs in subtask A 

are shown in Table 2. 

Run A B C D E Avg 

DAEDALUS-A-

constrained 

61.0 63.9 67.4 61.0 45.3 59.7 

DAEDALUS-A-

unconstrained 

58.7 56.0 62.0 58.1 49.2 56.7 

Average 77.1 77.4 80.0 76.8 68.3 75.9 

NRC-Canada-A-

constrained  

(best run) 

85.5 88.0 90.1 86.6 77.1 85.5 

A=LiveJournal 2014, B=SMS 2013, C=Twitter 2013 

D=Twitter 2014, E=Twitter 2014 Sarcasm 

Table 2. Results for subtask A. 

We did not specifically the contextual polarity 

classification in subtask A, so results are not 

good. The machine learning classifier achieved a 

slightly better result on average for all test corpus 

than the lexicon-based model, as expected, about 

a 5% improvement. As compared to other partic-

ipants, we rank the second-to-last group (19 out 

of 20) and our best experiment is 27% below the 

average, and 43% below the best run.   

The best test set for our experiments is the 

Twitter 2013 corpus, as it is the most similar to 

the training corpus. If Twitter 2014 Sarcasm cor-

pus is removed from the evaluation, which 

clearly is the most difficult set for all runs, the 

constrained run is only 22% below the average 

and 38% below the best run, so a relative im-

provement against the others. 

 
Run A B C D E Avg 

DAEDALUS-B-

constrained 

40.8 40.9 36.6 33.0 29.0 36.1 

DAEDALUS-B-

unconstrained 
61.0 55.0 59.0 57.6 35.2 53.6 

Average 63.5 55.6 59.8 60.4 45.4 57.0 

TeamX-B-

constrained 

(best run) 

69.4 57.4 72.1 71.0 56.5 65.3 

A=LiveJournal 2014, B=SMS 2013, C=Twitter 2013 

D=Twitter 2014, E=Twitter 2014 Sarcasm 

Table 3. Results for subtask B. 

On the other hand, results achieved for runs in 

subtask B are shown in Table 3. The subtask was 

a bit more difficult than the first one, and results 

are in general worse than in the first subtask, as 

more difficult aspects arise in the global polarity 

assignment, such as the appearance of coordi-

nated or subordinated clauses or a higher impact 

of negation. 

We think that the specific consideration of 

these issues is the main reason why in this case 

our best run is the lexicon-based model, with an 

improvement of 48 % over the constrained run.  

Also results are more robust as they are more 

consistent for the different test sets. The best re-

sults are achieved for the LiveJournal 2014 cor-

pus, which presumably contains longer texts with 

more formal writing corpus, so benefiting with 

the use of the advanced linguistic preprocessing.  

Comparing to other participants, we rank 29 

out of 42 groups, and our best experiment is just 

6% below the average, and 22% below the best 

run. If, again, the worst set, the Twitter 2014 

Sarcasm corpus, is removed from the evaluation, 

our unconstrained run is around the average (2% 

below), and, a bit surprisingly, the best group 

changes to the one that submitted the best run in 

subtask A, and our experiment is just 23% below 

(comparing to 38% below in subtask A). 

5 Conclusions and Future Work 

Our main conclusion after our first participation 

in SemEval is that, although results are not good 

compared to the best ranked participants, our 

lexicon-based model, externally developed for a 

generic sentiment analysis task, without any ad-

aptation to the provided training corpus, and cur-

rently in production, is robust and achieves a 

balanced evaluation result for message polarity 

along the different test corpus analyzed. Despite 

of the difficulty of the task, results are valuable 

and validate the fact that this technology is ready 

to be included into an automated workflow pro-

cess for social media mining. 

Due to lack of time, no error analysis has been 

carried out yet by studying the confusion matrix 

for the different categories, which is left as short-

term future work. We expect to get a better un-

derstanding of the miss classifications of our sys-

tem and find a way to solve the issues that may 

arise. Probably there is still much to do in both 

the enlargement of the semantic resources and 

also the improvement of the linguistic processing 

(specially building the sentence syntactic tree) in 

a general domain for a non-formal writing style.  
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Abstract
We describe the work carried out by DCU
on the Aspect Based Sentiment Analysis
task at SemEval 2014. Our team submit-
ted one constrained run for the restaurant
domain and one for the laptop domain for
sub-task B (aspect term polarity predic-
tion), ranking highest out of 36 systems on
the restaurant test set and joint highest out
of 32 systems on the laptop test set.

1 Introduction

This paper describes DCU’s participation in the
Aspect Term Polarity sub-task of the Aspect Based
Sentiment Analysis task at SemEval 2014, which
focuses on predicting the sentiment polarity of as-
pect terms for a restaurant and a laptop dataset.
Given, for example, the sentence I have had so
many problems with the computer and the aspect
term the computer, the task is to predict whether
the sentiment expressed towards the aspect term is
positive, negative, neutral or conflict.

Our polarity classification system uses super-
vised machine learning with support vector ma-
chines (SVM) (Boser et al., 1992) to classify an
aspect term into one of the four classes. The fea-
tures we employ are word n-grams (with n rang-
ing from 1 to 5) in a window around the aspect
term, as well as features derived from scores as-
signed by a sentiment lexicon. Furthermore, to
reduce data sparsity, we experiment with replacing
sentiment-bearing words in our n-gram feature set
with their polarity scores according to the lexicon
and/or their part-of-speech tag.
This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

The paper is organised as follows: in Section 2,
we describe the sentiment lexicons used in this
work and detail the process by which they are
combined, filtered and extended; in Section 3, we
describe our baseline method, a heuristic approach
which makes use of the sentiment lexicon, fol-
lowed by our machine learning method which in-
corporates the rule-based method as features in ad-
dition to word n-gram features; in Section 4, we
present the results of both methods on the training
and test data, and perform an error analysis on the
test set; in Section 5, we compare our approach to
previous research in sentiment classification; Sec-
tion 6 discusses efficiency of our system and on-
going work to improve its speed; finally, in Sec-
tion 7, we conclude and provide suggestions as to
how this research could be fruitfully extended.

2 Sentiment Lexicons

The following four lexicons are employed:

1. MPQA1 (Wilson et al., 2005) classifies a
word or a stem and its part of speech tag
into positive, negative, both or neutral with
a strong or weak subjectivity.

2. SentiWordNet2 (Baccianella et al., 2010)
specifies the positive, negative and objective
scores of a synset and its part of speech tag.

3. General Inquirer3 indicates whether a word
expresses positive or negative sentiment.

4. Bing Liu’s Opinion Lexicon4 (Hu and Liu,
1http://mpqa.cs.pitt.edu/lexicons/

subj_lexicon/
2http://sentiwordnet.isti.cnr.it/
3http://www.wjh.harvard.edu/˜inquirer/

inqtabs.txt
4http://www.cs.uic.edu/˜liub/FBS/

sentiment-analysis.html#lexicon
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2004) indicates whether a word expresses
positive or negative sentiment.

2.1 Lexicon Combination

Since the four lexicons differ in their level of detail
and in how they present information, it is neces-
sary, when combining them, to consolidate the in-
formation and present it in a uniform manner. Our
combination strategy assigns a sentiment score to
a word as follows:

• MPQA: 1 for strong positive subjectivity, -1
for strong negative subjectivity, 0.5 for weak
positive subjectivity, -0.5 for weak negative
subjectivity, and 0 otherwise

• SentiWordNet: The positive score if the pos-
itive score is greater than the negative and ob-
jective scores, the negative score if the nega-
tive score is greater than the positive and the
objective scores, and 0 otherwise

• General Inquirer and Bing Liu’s Opinion
Lexicon: 1 for positive and -1 for negative

The above four scores are summed to arrive at a
final score between -4 and 4 for a word.5

2.2 Lexicon Filtering

Initial experiments with our sentiment lexicon and
the training data led us to believe that there were
many irrelevant entries that, although capable of
conveying sentiment in some other context, were
not contributing to the sentiment of aspect terms
in the two domains of the task. Therefore, these
words are manually filtered from the lexicon. Ex-
amples of deleted words are just, clearly, indi-
rectly, really and back.

2.3 Adding Domain-Specific Words

A manual inspection of the training data revealed
words missing from the merged sentiment lexicon
but which do express sentiment in these domains.
Examples are mouthwatering, watery and better-
configured. We add these to the lexicon with a
score of either 1 or -1 (depending on their polarity
in the training data). We also add words (e.g. zesty,
acrid) from an online list of culinary terms.6

5We also tried to vote over the four lexicon scores but this
did not improve over summing.

6http://world-food-and-wine.com/
describing-food

2.4 Handling Variation

In order to ensure that all inflected forms of a
word are covered, we lemmatise the words in the
training data using the IMS TreeTagger (Schmid,
1994) and we construct new possibilities using a
suffix list. To correct misspelled words, we con-
sider the corrected form of a misspelled word to be
the form with the highest frequency in a reference
corpus7 among all the forms within an edit dis-
tance of 1 and 2 from the misspelled word (Norvig,
2012). Multi-word expressions of the form x-y
are added with the polarity of xy or x, as in laid-
back/laidback and well-shaped/well. Expressions
x y, are added with the polarity of x-y, as in so
so/so-so.

3 Methodology

We first build a rule-based system which classi-
fies the polarity of an aspect term based solely on
the scores assigned by the sentiment lexicon. We
then explore different ways of converting the rule-
based system into features which can then be com-
bined with bag-of-n-gram features in a supervised
machine learning set-up.

3.1 Rule-Based Approach

In order to predict the polarity of an aspect term,
we sum the polarity scores of all the words in the
surrounding sentence according to our sentiment
lexicon. Since not all the sentiment words occur-
ring in a sentence influence the polarity of the as-
pect term to the same extent, it is important to
weight the score of each sentiment word by its dis-
tance to the aspect term. Therefore, for each word
in the sentence which is found in our lexicon we
take the score from the lexicon and divide it by its
distance to the aspect term. The distance is calcu-
lated using the sum of the following three distance
functions:

• Token Distance: This function calculates the
difference in the position of the sentiment
word and the aspect term by counting the to-
kens between them.

7The reference corpus consists of about a million
words retrieved from several public domain books from
Project Gutenberg (http://www.gutenberg.org/),
lists of most frequent words from Wiktionary (http:
//en.wiktionary.org/wiki/Wiktionary:
Frequency_lists) and the British National Corpus
(http://www.kilgarriff.co.uk/bnc-readme.
html) and two thousand laptop reviews crawled from CNET
(http://www.cnet.com/).
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• Discourse Chunk Distance: This function
counts the discourse chunks that must be
crossed in order to get from the sentiment
word to the aspect term. If the sentiment
word and the aspect term are in the same
discourse chunk, then the distance is zero.
We use the discourse segmenter described in
(Tofiloski et al., 2009).

• Dependency Path Distance: This function
calculates the shortest path between the sen-
timent word and the aspect term in a syntac-
tic dependency graph for the sentence, pro-
duced by parsing the sentence with a PCFG-
LA parser (Attia et al., 2010) trained on con-
sumer review data (Le Roux et al., 2012)8,
and converting the resulting phrase-structure
tree into a dependency graph using the Stan-
ford converter (de Marneffe and Manning,
2008) (version 3.3.1).

Since our lexicon also contains multi-word ex-
pressions such as finger licking, we also look up
bigrams and trigrams from the input sentence in
our lexicon. Negation is handled by reversing the
polarity of sentiment words that appear within a
window of three words of the following negators:
not, n’t, no and never.

For each aspect term, we use the distance-
weighted sum of the polarity scores to predict one
of the three classes positive, negative and neutral.9

After experimenting with various thresholds we
settled on the following simple strategy: if the po-
larity score for an aspect term is greater than zero
then it is classified as positive, if the score is less
than zero, then it is classified as negative, other-
wise it is classified as neutral.

3.2 Machine Learning Approach

We train a four-way SVM classifier for each do-
main (laptop and restaurant), using Weka’s SMO
implementation (Platt, 1998; Hall et al., 2009).10

8To facilitate parsing, the data was normalised using the
process described in (Le Roux et al., 2012) with minor mod-
ifications, e. g. treatment of non-breakable space characters,
abbreviations and emoticons. The normalised version of the
data was used for all experiments.

9We also experimented with classifying aspect terms as
conflict when the individual scores for positive and negative
sentiment were both relatively high. However, this proved
unsuccessful.

10We also experimented with logistic regression, random
forests, k-nearest neighbour, naive Bayes and multi-layer per-
ceptron in Weka, but did not match performance of an SVM
trained with default parameters.

Transf. n c n-gram Freq.

-L— 2 2 cord with 1
AL— 2 2 <aspect> with 56
ALS– 1 4 <negu080> 595
ALSR- 1 4 <negu080> 502
AL— 2 4 and skip 1
ALSR- 2 4 and <negu080> 25
ALSRP 1 4 <negu080>/vb 308

Table 1: 7 of the 2,640 bag-of-n-gram features
extracted for the aspect term cord from the lap-
top training sentence I charge it at night and skip
taking the cord with me because of the good bat-
tery life. The last column shows the frequency of
the feature in the training data. Transformations:
A=aspect, L=lowercase, S=score, R=restricted to
certain POS, P=POS annotation

Our system submission uses bag-of-n-gram fea-
tures and features derived from the rule-based ap-
proach. Decisions about parameters are made in 5-
fold cross-validation on the training data provided
for the task.

3.2.1 Bag-of-N-gram Features
We extract features encoding the presence of spe-
cific lower-cased n-grams (L) (n = 1, ..., 5) in
the context of the aspect term to be classified (c
words to the left and c words to the right with
c = 1, ..., 5, inf) for 10 combinations of trans-
formations: replacement of the aspect term with
<ASPECT> (A), replacement of sentiment words
with a discretised score (S), restriction (R) of the
sentiment word replacement to certain parts-of-
speech, and annotation of the discretised score
with the POS (P) of the sentiment word. An ex-
ample is shown in Table 1.

3.2.2 Adding Rule-Based Score Features
We explore two approaches for incorporating in-
formation from the rule-based approach (Sec-
tion 3.1) into our SVM classifier. The first ap-
proach is to encode polarity scores directly as the
following four features:

1. distance-weighted sum of scores of positive
words in the sentence

2. distance-weighted sum of scores of negative
words in the sentence

3. number of positive words in the sentence
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4. number of negative words in the sentence

The second approach is less direct: for each do-
main, we train J48 decision trees with minimum
leaf size 60 using the four rule-based features de-
scribed above. We then use the decision rules
and the conjunctions leading from the root node
to each leaf node to binarise the above four basic
score features, producing 122 features. Further-
more, we add normalised absolute values, rank of
values and interval indicators, producing 48 fea-
tures.

3.2.3 Submitted Runs

We eliminate features that have redundant value
columns for the training data, and we apply fre-
quency thresholds (13, 18, 25 and 35) to further
reduce the number of features. We perform a grid-
search to optimise the parameters C and γ of the
SVM RBF kernel. We choose the system to sub-
mit based on average cross-validation accuracy.
We experiment with combinations of the three fea-
ture sets described above. We choose the bina-
rised features over the raw rule-based scores be-
cause cross-validation results are inferior for the
rule-based scores in initial experiments with fea-
ture frequency threshold 35: 70.26 vs. 71.36 for
laptop and 72.06 vs. 72.15 for restaurant. There-
fore, we decide to focus on systems with binarised
score features for lower feature frequency thresh-
olds, which are more CPU-intensive to train. For
both domains, the system we end up submitting
is a combination of the n-gram features and the
binarised features with parameters C = 3.981,
γ = 0.003311 for the laptop data, C = 1.445,
γ = 0.003311 for the restaurant data, and a fre-
quency threshold of 13.

4 Results and Analysis

Table 2 shows the training and test accuracy of
the task baseline system (Pontiki et al., 2014), a
majority baseline classifying everything as posi-
tive, our rule-based system and our submitted sys-
tem. The restaurant domain has a higher accuracy
than the laptop domain for all systems, the SVM
system outperforms the rule-based system on both
domains, and the test accuracy is higher than the
training accuracy for all systems in the restaurant
domain.

We observe that the majority of our systems’ er-
rors fall into the following categories:

Dataset System Training Test

Laptop Baseline — 51.1%
Laptop All positive 41.9% 52.1%
Laptop Rule-based 65.4% 67.7%
Laptop SVM 72.3% 70.5%

Restaurant Baseline — 64.3%
Restaurant All positive 58.6% 64.2%
Restaurant Rule-based 69.5% 77.8%
Restaurant SVM 72.7% 81.0%

Table 2: Accuracy of the task baseline system, a
system classifying everything as positive, our rule-
based system and our submitted SVM-based sys-
tem on train (5-fold cross-validation) and test sets

• Sentiment not expressed explicitly: The
sentiment cannot be inferred from local lexi-
cal and syntactic information, e. g. The sushi
is cut in blocks bigger than my cell phone.

• Non-obvious expression of negation: For
example, The Management was less than ac-
comodating [sic]. The rule-based approach
does not capture such cases and there are
not enough similar training examples for the
SVM to learn to correctly classify them.

• Conflict cases: The training data contains
too few examples of conflict sentences for the
system to learn to detect them.11

For the restaurant domain, there are more than
fifty cases where the rule-based approach fails to
detect sentiment, but the machine learning ap-
proach classifies it correctly. Most of these cases
contain no sentiment lexicon words, thus the rule-
based system marks them as being neutral. How-
ever, the machine learning system was able to fig-
ure out the correct polarity. Examples of such
cases include Try the rose roll (not on menu) and
The gnocchi literally melts in your mouth!. Fur-
thermore, in the laptop domain, a number of the
errors made by the rule-based system arise from
the ambiguous nature of some lexicon words. For
example, the sentence Only 2 usb ports ... seems
kind of ... limited is misclassified because the
word kind is considered to be positive.

There are a few cases where the rule-based sys-
tem outperforms the machine learning one. It hap-
pens when a sentence contains a rare word with
strong polarity, e. g. the word heavenly in The

11We only classify one test instance as conflict.
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chocolate raspberry cake is heavenly - not too
sweet, but full of flavor.

5 Related Work

The use of supervised machine learning with bag-
of-word or bag-of-n-gram feature sets has been
a standard approach to the problem of sentiment
polarity classification since the seminal work by
Pang et al. (2002) on movie review polarity pre-
diction. Heuristic methods which rely on a lexi-
con of sentiment words have also been widespread
and much of the research in this area has been
devoted to the unsupervised induction of good
quality sentiment indicators (see, for example,
Hatzivassiloglou and McKeown (1997) and Tur-
ney (2002), and Liu (2010) for an overview). The
integration of sentiment lexicon scores as fea-
tures in supervised machine learning to supple-
ment standard bag-of-n-gram features has also
been employed before (see, for example, Bak-
liwal et al. (2013)). The replacement of train-
ing/test words with scores/labels from sentiment
lexicons has also been used by Baccianella et
al. (2009), who supplement n-grams such as hor-
rible location with generalised expressions such
as NEGATIVE location. Linguistic features which
capture generalisations at the level of syntax (Mat-
sumoto et al., 2005), semantics (Johansson and
Moschitti, 2010) and discourse (Lazaridou et al.,
2013) have also been widely applied. In using bi-
narised features derived from the nodes of a deci-
sion tree, we are following our recent work which
uses the same technique in a different task: quality
estimation for machine translation (Rubino et al.,
2012; Rubino et al., 2013).

The main novelty in our system lies not in the
individual techniques but rather in they way they
are combined and integrated. For example, our
combination of token/chunk/dependency path dis-
tance used to weight the relationship between a
sentiment word and the aspect term has – to the
best of our knowledge – not been applied before.

6 Efficiency

Building a system for a shared task, we focus
solely on the accuracy of the system in all our deci-
sions. For example, we parse all training and test
data multiple times using different grammars to
increase sentence coverage from 99.87% to 100%.

To offer a more practical system, we work on
implementing a simplified, fully automated sys-

tem that is more efficient. So far, we replaced
time-consuming parsing with POS tagging. The
system accepts as input and generates as output
valid SemEval ABSA XML documents.12 After
extracting the text and the aspect terms from the
input, the text is normalised using the process de-
scribed in Footnote 8. The feature extraction is
performed as described in Section 3 with the fol-
lowing modifications:

• The POS information used by the n-gram
feature extractor is obtained using the IMS
TreeTagger (Schmid, 1994) instead of using
the PCFG-LA parser (Attia et al., 2010).

• The distance used by the rule-based approach
is the token distance only, instead of a com-
bination of three distance functions.

The sentiment lexicon and the classification mod-
els used are described in Sections 2 and 3 respec-
tively.

The test sets containing 800 sentences are POS
tagged in less than half a second each. Surpris-
ingly, accuracy of aspect term polarity prediction
increases to 71.4% (from 70.5% for the submitted
system) on the laptop test set, using the same SVM
parameters as for the submitted system. However,
we see a degradation to 78.8% (from 81.0% for the
submitted system) for the restaurant test set. This
is an encouraging result as the SVM parameters
are not yet fully optimised for the slightly different
information and as the remaining modifications to
be implemented should not change accuracy any
further.

The next bottleneck that needs to be addressed
before the system can be used in applications re-
quiring quick responses is the current implementa-
tion of the n-gram feature extractor: It enumerates
all n-grams (for all context window sizes and n-
gram transformations) only to then intersect these
features with the list of selected features. For the
shared task, this made sense as we initially need
all features to make our selection of features, and
as we only need to run the feature extractor a few
times. For a practical system that has to process
new test sets frequently, however, it will be more
efficient to check for each selected feature whether
the respective event occurs in the input.

12We validate documents using the XML schema defini-
tion provided on the shared task website.
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7 Conclusion

We have described our aspect term polarity predic-
tion system, which employs supervised machine
learning using a combination of n-grams and sen-
timent lexicon features. Although our submitted
system performs very well, it is interesting to note
that our rule-based system is not that far behind.
This suggests that a state-of-the-art system can be
build without machine learning and that careful
design of the other system components is impor-
tant. However, the very good performance of our
machine-learning-based system also suggests that
word n-gram features do provide useful informa-
tion that is missed by a sentiment lexicon alone,
and that it is always worthwhile to perform careful
parameter tuning to eke out as much as possible
from such an approach.

Future work should investigate how much each
system component contributes to the overall per-
formance, e. g. lexicon combination, lemmatisa-
tion, spelling correction, other normalisations,
negation handling, distance function and n-gram
feature transformations. There is also room for
improvements in most of these components, e. g.
our handling of complex negations. Detection of
conflicts also needs more attention. Features in-
dicating the presence of trigger words for negation
and conflicts that are currently used only internally
in the rule-based component could be added to the
SVM feature set. It would also be interesting to
see how the compositional approach described by
Socher et al. (2013) handles these difficult cases.
The score features could be easily augmented by
breaking down scores by the four employed lexi-
cons. This way, the SVM can choose to combine
the information from these scores differently than
just summing them, allowing it to learn more com-
plex relations. Lexicon filtering and addition of
domain-specific entries could be automated to re-
duce the time needed to adjust to a new domain.
Finally, machine learning methods that can effi-
ciently handle large feature sets such as logistic
regression should be tried with the full feature set
(not applying frequency thresholds).
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Abstract

This paper describes an approach to im-
plementing a tool for evaluating seman-
tic similarity. We investigated the poten-
tial benefits of (1) using text summarisa-
tion to narrow down the comparison to the
most important concepts in both texts, and
(2) leveraging WordNet information to in-
crease usefulness of cosine comparisons
of short texts. In our experiments, text
summarisation using a graph-based algo-
rithm did not prove to be helpful. Se-
mantic and lexical expansion based upon
word relationships defined in WordNet in-
creased the agreement of cosine similarity
values with human similarity judgements.

1 Introduction

This paper describes a system that addresses the
problem of assessing semantic similarity between
two different-sized texts. The system has been ap-
plied to SemEval-2014 Task 3, Cross-Level Se-
mantic Similarity (Jurgens et al, 2014). The appli-
cation is limited to a single comparison type, that
is, paragraph to sentence.

The general approach taken can be charac-
terised as text summarisation followed by a pro-
cess of semantic expansion and finally similarity
computation using cosine similarity.

The rationale for applying summarisation is to
focus the comparison on the most important ele-
ments of the text by selecting key words to be used
in the similarity comparison. This summarisation
approach is based on the assumption that if sum-
mary of a paragraph is similar to the summary sen-
tence paired with the paragraph in the task dataset,
then the original paragraph and sentence pair must

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
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have been similar and so should receive a high
similarity rating.

The subsequent semantic expansion is intended
to counteract the problem arising from the small
size of both compared text units. The similarity
metric used by the system is essentially a func-
tion of word overlap. However, because both the
paragraphs and sentences being compared are rel-
atively short, the probability of a word overlap -
even between semantically similar texts - is quite
small. Therefore prior to estimating the similarity
between the texts we extend the word vectors cre-
ated by the summarisation process with the syn-
onyms and other words semantically and lexically
related to the words occurring in the text.

By using cosine similarity measure, we nor-
malize the lengths of word vectors representing
different-sized documents (paragraphs and sen-
tences).

The rest of the paper is organized as follows:
section 2 describes the components of the sys-
tem in more detail; section 3 describes parame-
ters used in the experiments we conducted and
presents our results; and section 4 provides con-
cluding remarks.

2 System Description

2.1 Overview

There are four main stages in the system process-
ing pipeline: (1) text pre-processing; (2) summari-
sation; (3) semantic expansion; (4) computing the
similarity scores. In the following sections we de-
scribe each of these stages in turn.

2.2 Pre-processing

Paragraphs and sentences are tokenized and anno-
tated using Stanford CoreNLP1. The annotations
include part-of-speech (POS), lemmatisation, de-
pendency parse and coreference resolution. Then

1http://nlp.stanford.edu/software/corenlp.shtml
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the following processes are applied: (a) Token se-
lection, the system ignores tokens with POS other
than nouns, adjectives and verbs (in our exper-
iments we tested various combinations of these
three categories); (b) Token merging, the criteria
for merging can be more restrictive (same word
form) or less restrictive – based on same lemma,
or even same lemma ignoring POS; (c) Stopword
removal, we apply a customized stopword list to
exclude verbs that have very general meaning.

In this way, each text unit is processed to pro-
duce a filtered set of tokens which at the next step
can be directly transformed into nodes in the graph
representation of the text. Dependency and coref-
erence annotations will be used for defining edges
in the graph.

2.3 Summarisation system

Summarisation has been implemented using Tex-
tRank (Mihalcea and Tarau, 2004), an itera-
tive graph-based ranking algorithm derived from
PageRank (Brin and Page, 1998).

The ranking is based on the following principle:
when node i links to node j, a vote is cast that in-
creases the rank of node j. The strength of the vote
depends on the importance (rank) of the casting
node, thus the algorithm is run iteratively until the
ranks stop changing beyond a given threshold, or
until a specified limit of iterations is reached.

To apply this algorithm to paragraphs and sen-
tences, our system builds a graph representation
for each of these text units, with nodes represent-
ing the tokens selected and merged at the pre-
ceding stage. The nodes are connected by co-
occurrence (Mihalcea and Tarau, 2004), depen-
dency and/or coreference relations. Next, a un-
weighted or weighted version of the ranking algo-
rithm is iterated until convergence.

For each test unit, the output of the summariser
is a list of words sorted by rank. Depending on
the experimental setup, the summariser forwards
on all processed words, or only a subset of top-
ranked words.

2.4 Lexico-semantic expansion

For each word returned from the summariser, we
retrieve all (or a predetermined number of) synsets
that have this word as a member. For each re-
trieved synset, we also identify synsets related
through semantic and lexical relations. Finally, us-
ing all these synsets we create the synonym group

for a word that includes all the members of these
synsets.

If a word has many different senses, then the
synonym group grows large, and the chances that
the sense of a given member of this large group
will match the sense of the original word are
shrinking. To account for this fact, each member
of the synonym group is assigned a weight using
Equation 1. This weight is simply 1 divided by
the count of the number of words in the synonym
group.

synweight =
1

#SynonymGroup
(1)

At the end of this process for each document
we have the set of words that occurred in the doc-
ument, and each of these words has a synonym
group associated with it. All of the members of
the synonym groups have a weight value.

2.5 Similarity comparison
Cosine similarity is used to compute the similar-
ity for each paragraph-sentence pair. For this cal-
culation each text (paragraph or sentence) is rep-
resented by a bag-of-words vector containing all
the words derived from the text together with their
synonym groups.

The bag-of-words can be binary or frequency
based, with the counts optionally modified by the
word ranks. The counts for words retrieved from
WordNet are weighted with synweights, which
means that they are usually represented by very
small numbers. However, if a match is found be-
tween a WordNet word and a word observed in
the document, the weight of both is adjusted ac-
cording to semantic match rules. These rules have
been established empirically, and are presented in
section 3.3.1.

The cosine values for each paragraph-sentence
pair are not subject to any further processing.

3 Experiments

3.1 Dataset
All experiments were carried out on training
dataset provided by SemEval-2014 Task 3 for
paragraph to sentence comparisons.

3.2 Parameters
For each stage in the pipeline, there is a set of pa-
rameters whose values influence the final results.
Each set of parameters will be discussed next.
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3.2.1 Pre-processing parameters
The parameters used for pre-processing determine
the type and number of nodes included in the
graph:

• POS: Parts-of-speech that are allowed into
the graph, e.g. only nouns and verbs, or
nouns, verbs and adjectives.

• Merging criteria: The principle by which
we decide whether two tokens should be rep-
resented by the same node in the graph.

• Excluded verbs: The contents of the stop-
word list.

3.2.2 Summarisation parameters
These parameters control the structure of the graph
and the results yielded by TextRank algorithm.
The types of nodes in the graph are already de-
cided at the pre-processing stage.

• Relation type: In order to link the nodes
(words) in the graph representation of a docu-
ment, we use co-occurrence relations (Mihal-
cea and Tarau, 2004), dependency relations
and coreference relations. The two latter are
defined based on the Stanford CoreNLP an-
notations, whereas a co-occurrence edge is
created when two words appear in the text
within a word span of a specified length. The
co-occurrence relation comes with two addi-
tional parameters:

– Window size: Maximum number of
words constituting the span.

– Window application: The window can
be applied before or after filtering away
tokens of unwanted POS, i.e. we can re-
quire either the co-occurrence within the
original text or in the filtered text.

• Graph type: A document can be represented
as an unweighted or weighted graph. In
the second case we use a weighted version
of TextRank algorithm (Mihalcea and Tarau,
2004) in which the strength of a vote depends
both on the rank of the casting node and on
the weight of the link producing the vote.

– Edge weights: In general, the weight
of an edge between any two nodes de-
pends on the number of identified rela-
tions, but we also experimented with as-
signing different weights depending on
the relation type.

• Normalisation: This parameter refers to nor-
malising word ranks computed for the longer
and the shorter text unit.

• Word limit: The maximum number of top-
ranked words included in vector representa-
tion of the longer text. May be equal to the
number of words in the shorter of the two
compared texts, or fixed at some arbitrary
value.

3.2.3 Semantic extension parameters
The following factors regulate the impact of addi-
tional words retrieved from WordNet:

• Synset limit: The maximum number of
synsets (word senses) retrieved from Word-
Net per each word. Can be controlled by
word ranks returned from the summariser.

• Synonym limit: The maximum number of
synonyms (per synset) added to vector repre-
sentation of the document. Can be controlled
by word ranks.

• WordNet relations: The types of semantic
and lexical relations used to acquire addi-
tional synsets.

3.2.4 Similarity comparison parameters
• Bag-of-words model: The type of bag-of-

word used for cosine comparisons.

• Semantic match weights: The rules for ad-
justing weights of WordNet words that match
observed words from the other vector.

3.3 Results
The above parameters in various combinations
were applied in an extensive series of experiments.
Contrary to our expectations, the results indicate
that the summariser has either no impact or has a
negative effect. Table 1 presents the set of param-
eters that seem to have impact, and the values that
resulted in best scores, as calculated by SemEval
Task 3 evaluation tool against the training dataset.

3.3.1 Discussion
In the course of experiments we consistently ob-
served higher performance when all words from
both compared documents were included, as op-
posed to selecting top-ranked words from the
longer document. Furthermore, less restrictive cri-
teria for merging tended to give better results.
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Parameter Value
Word limit no limit
POS JJ, NN, V
Merging criteria lemma, ignore POS
Custom stopword list yes
Synset limit 15
Synonym limit no limit
WordNet relations similar to, pertainym,

hypernym
Bag-of-words model binary

Table 1: Parameter values yielding the best scores.

We noticed clear improvement after extend-
ing word vectors with synonyms and related
words. WordNet relations that contributed most
are similar to, hypernym (ISA relation), pertainym
(relational adjective) and derivationally related
form. The results obtained before and after apply-
ing summarisation and lexico-semantic expansion
(while keeping other parameters fixed at values re-
ported in Table 1) are shown in Table 2.

`````````````̀Word ranks
Expansion

No Yes

Ignored 0.728 0.755
Used to select top-rank words 0.690 0.716
Used to control synset limit N/A 0.752
Used to weight vector counts 0.694 N/A

Table 2: The effects of applying text summarisa-
tion and lexico-semantic expansion.

Table 3 summarises the most efficient rules for
adjusting weights in word vectors when a match
has been found between an observed word from
one vector and a WordNet word in the other vec-
tor. The rules are as follows: (1) If the match is be-
tween an observed word from the paragraph vector
and a WordNet word from the sentence vector, the
weight of both is set to 0.25; (2) If the match is be-
tween an observed word from the sentence vector
and the WordNet word from the paragraph vector,
the weight of both is set to 0.75; (3) If the match is
between two WordNet words, one from the para-
graph and one from the sentence, the weight of
both is set to whichever synweight is higher; (4)
If the match is between two observed words, the
weight of both is set to 1.

We received slightly better results after setting a
limit on the number of included word senses, and

PPPPPPPPPParagr.
Sent.

Obs. word WordNet word

Observed word 1.0 0.25
WordNet word 0.75 max(synweight)

Table 3: Optimal weights for semantic match.

after ignoring a few verbs with particularly broad
meaning.

3.3.2 Break-down into categories
Pearson correlation between gold standard and the
submitted results was 0.785. Table 4 shows the
correlations within each category, both for the test
set and the train set. The results are very con-
sistent across datasets, except for Reviews which
scored much lower with the test data. The over-
all result was lower with the training data because
of higher number of examples in Metaphoric cat-
egory, where the performance of our system was
extremely poor.

Category Test data Train data
newswire 0.907 0.926
cqa 0.778 0.779
metaphoric 0.099 -0.16
scientific 0.856 -
travel 0.880 0.887
review 0.752 0.884
overall 0.785 0.755

Table 4: Break-down of the results.

4 Conclusions

We described our approach, parameters used in the
system, and the results of experiments. Text sum-
marisation didn’t prove to be helpful. One possi-
ble explanation of the neutral or negative effect of
summarisation is the small size of the texts units:
with the limited number of words available for
comparison, any procedure reducing this already
scarce set may be disadvantageous.

The results benefited from adding synonyms
and semantically and lexically related words.
Lemmatisation and merging same-lemma words
regardless the POS, as well as ignoring very gen-
eral verbs seem to be helpful.

The best performance has been observed in
Newswire category. Finally, given that the simi-
larity metric used by the system is essentially a
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function of word overlap between the two texts,
it is not surprising that the system struggled with
metaphorically related texts.
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Abstract

This paper describes our system used in
the Aspect Based Sentiment Analysis Task
4 at the SemEval-2014. Our system con-
sists of two components to address two of
the subtasks respectively: a Conditional
Random Field (CRF) based classifier for
Aspect Term Extraction (ATE) and a linear
classifier for Aspect Term Polarity Classi-
fication (ATP). For the ATE subtask, we
implement a variety of lexicon, syntac-
tic and semantic features, as well as clus-
ter features induced from unlabeled data.
Our system achieves state-of-the-art per-
formances in ATE, ranking 1st (among 28
submissions) and 2rd (among 27 submis-
sions) for the restaurant and laptop domain
respectively.

1 Introduction

Sentiment analysis on document and sentence
level no longer fulfills user’s needs of getting more
accurate and precise information. By perform-
ing sentiment analysis at the aspect level, we can
help users gain more insights on the sentiments of
the various aspects of the target entity. Task 4 of
SemEval-2014 provides a good platform for (1)
aspect term extraction and (2) aspect term polar-
ity classification.

For the first subtask, we follow the approach of
Jakob and Gurevych (2010) by modeling term ex-
traction as a sequential labeling task. Specifically,
we leverage on semantic and syntactic resources
to extract a variety of features and use CRF as the
learning algorithm. For the second subtask, we
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simply treat it as a multi-class classification prob-
lem where a linear classifier is learned to predict
the polarity class. Our system achieves good per-
formances for the first subtask in both domains,
ranking 1st for the restaurant domain, and 2nd for
the laptop domain.

The remainder of this paper is structured as fol-
lows: In Section 2, we describe our ATE system
in detail, including experiments and result analy-
sis. Section 3 describes the general approach of
our ATP system. Finally, Section 4 summarizes
our work.

2 Aspect Term Extraction

This subtask is to identify the aspects of given tar-
get entities in the restaurant and laptop domains.
Many aspect terms in the laptop domain con-
tains digits or special characters such as “17 inch
screen” and “screen/video resolution”; while in
the restaurant domain, aspects in the sentences are
specific for a type of restaurants such as “pizza”
for Italian restaurants and “sushi” for Japanese
restaurants.

We model ATE as a sequential labeling task
and extract features to be used for CRF training.
Besides the common features used in traditional
Named Entity Recognition (NER) systems, we
also utilize extensive external resources to build
various name lists and word clusters.

2.1 Preprocessing
Following the traditional BIO scheme used in se-
quential labeling, we assign a label for each word
in the sentence, where “B-TERM” indicates the
start of an aspect term, “I-TERM” indicates the
continuation of an aspect term, and “O” indicates
not an aspect term.

All sentences are tokenized and parsed using the
Stanford Parser1. The parsing information is used

1http://nlp.stanford.edu/software/
lex-parser.shtml
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to extract various syntactic features (e.g. POS,
head word, dependency relation) described in the
next section.

2.2 General (or Closed) Features

In this section, we describe the features commonly
used in traditional NER systems. Such features
can easily be extracted from the training set or
with the help of publicly available NLP tools (e.g.
Stanford Parser, NLTK, etc).

2.2.1 Word
The string of the current token and its lowercase
format are used as features. To capture more con-
text information, we also extract the previous and
next word strings (in original format) as additional
word features.

2.2.2 POS
The part-of-speech (POS) tag of the current token
is used as a feature. Since aspect terms are often
nouns, the POS tag provides useful information
about the lexical category of the word, especially
for unseen words in the test sentences.

2.2.3 Head Word
This feature represents the head word of the cur-
rent token. If the current token does not have a
head word, the value “null” is used.

2.2.4 Head Word POS
This feature represents the POS of the head word
of the current token. If the current token does not
have a head word, the value “null” is used.

2.2.5 Dependency Relation
From the dependency parse, we identify the de-
pendency relations of the current token. We ex-
tract two different sets of strings: one set contains
the relation strings (e.g. “amod”, “nsubj”) where
the current token is the governor (i.e. head) of the
relation, the other set contains the relation strings
where the current token is the dependent of the re-
lation. For each set, we only keep certain rela-
tions: “amod”, “nsubj” and “dep” for the first set
and “nsubj”, “dobj” and “dep” for the second set.
Each set of strings is used as a feature value for the
current token, resulting in two separate features.

2.2.6 Name List
Name lists (or gazetteers) have proven to be useful
in the task of NER (Ratinov and Roth, 2009). We

create a name list feature that uses the name lists
for membership testing.

For each domain, we extract two high precision
name lists from the training set. For the first list,
we collect and keep those aspect terms whose fre-
quency counts are greater than c1. Since an aspect
term can be multi-word, we also extract a second
list to consider the counts of individual words. All
words whose frequency counts greater than c2 are
collected. For each word, the probability of it be-
ing annotated as an aspect word in the training set
is calculated. Only those words whose probabil-
ity value is greater than t is kept in the second list.
The specified values of c1, c2 and t for each do-
main are determined using 5-fold cross validation.

2.3 Open/External Sources Generated
Features

This section describes additional features we use
that require external resources and/or complex
processings.

2.3.1 WordNet Taxonomy
This feature represents the set of syntactic cate-
gories (e.g “noun.food”) of the current token as
organized in WordNet lexicographer files (Miller,
1995). We only consider noun synsets of the token
when determining the syntactic categories.

2.3.2 Word Cluster
Turian et al. (2010) used unsupervised word rep-
resentations as extra word features to improve the
accuracy of both NER and chunking. We followed
their approach by inducing Brown clusters and K-
means clusters from in-domain unlabeled data.

We used the review text from two sources
of unlabeled dataset: the Multi-Domain Senti-
ment Dataset that contains Amazon product re-
views (Blitzer et al., 2007)2, and the Yelp Phoenix
Academic Dataset that contains user reviews3.

We induce 1000 Brown clusters for each
dataset4. For each word in the training/testing set,
its corresponding binary (prefix) string is used as
the feature value.

We experiment with different prefix lengths and
use the best settings using 5-fold cross validation.

2We used the unprocessed.tar.gz archive found
at http://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

3http://www.yelp.com/dataset_
challenge/

4Brown clustering are induced using the implementa-
tion by Percy Liang found at https://github.com/
percyliang/brown-cluster/.
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For the laptop domain, we create a Brown cluster
feature from Amazon Brown clusters, using prefix
length of 5. For the restaurant domain, we cre-
ated three Brown cluster features: two from Yelp
Brown clusters, using prefix lengths of 4 and 8,
and the last one from Amazon Brown clusters, us-
ing prefix length of 10.

K-means clusters are induced using the
word2vec tool (Mikolov et al., 2013)5. Similar
to Brown cluster feature, the cluster id of each
word is used as the feature value.

When running the word2vec tool, we spe-
cially tune the values for word vector size (size),
cluster size (classes) and sub-sampling threshold
(sample) for optimum 5-fold cross validation per-
formances. We create one K-means cluster fea-
ture for the laptop domain from Amazon K-means
clusters (size = 100, classes = 400, sample =
0.0001), and two K-means cluster features for the
restaurant domain, one from Yelp K-means clus-
ters (size = 200, classes = 300, sample = 0.001),
and the other from Amazon K-means clusters
(size = 1000, classes = 300, sample = 0.0001).

2.3.3 Name List Generated using Double
Propagation

We implement the Double Propagation (DP) algo-
rithm described in Qiu et al. (2011) to identify pos-
sible aspect terms in a semi-supervised way. The
terms identified are stored in a list which is used
as another name list feature.

Our implementation follow the Logic Program-
ming approach described in Liu et al. (2013)6. We
write our rules in Prolog and use SWI-Prolog7 as
the solver.

We use the seed opinion lexicon provided by Hu
and Liu (2004) for both domain8. In addition, for
the restaurant domain, we augment the opinion
lexicon with addition seed opinion words by us-
ing the 75 restaurant seed words listed in Sauper
and Barzilay (2013). To increase the coverage, we
expand this list of 75 words by including related
words (e.g. antonym, similar to) in WordNet. The
final expanded list contains 551 words.

Besides the seed opinion words, we also use the
last word of each aspect term in the training set as
a seed aspect word.

The propagation rules we use are modifications

5https://code.google.com/p/word2vec/
6We did not implement incorrect aspect pruning.
7http://www.swi-prolog.org/
8We ignore the polarity of the opinion word.

of the rules presented in Liu et al. (2013). A total
of 11 rules and 13 rules are used for the laptop
and restaurant domain respectively. An example
of a Prolog rule concerning the extraction of aspect
words is stated below:
aspect(A) :-
relation(nsubj, O, A),
relation(cop, O, _),
pos(A, P),
is_noun(P),
opinion(O).

For example, given the sentence “The rice is
amazing.”, and “amazing” is a known opinion
word, we can extract “rice” as a possible aspect
word using the rule.

All our rules can only identify individual words
as possible aspect terms. To consider a phrase as
a possible aspect term, we extend the left bound-
ary of the identified span to include any consective
noun words right before the identified word.

2.4 Algorithms and Evaluation

We use the CRFsuite tool (Okazaki, 2007) to
train our CRF model. We use the default set-
tings, except for the negative state features (-p
feature.possible states=1).

Feature F1
Word 0.6641
+ Name List 0.7106
+ POS 0.7237
+ Head Word 0.7280
+ DP Name List 0.7298
+ Word Cluster 0.7430
+ Head Word POS 0.7437
+ Dependency Relation 0.7521

Table 1: 5-fold cross-validation performances on
the laptop domain. Each row uses all features
added in the previous rows.

2.5 Preliminary Results on Training Set

Table 1 and Table 2 show the 5-fold cross-
validation performances after adding each feature
group for the laptop and restaurant domain respec-
tively. Most features are included in the optimum
feature set for both domains, except for Word-
Net Taxonomy feature (only used in the restaurant
domain) and Dependency Relation feature (only
used in the laptop domain).
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laptop restaurant
System Precision Recall F1 Precision Recall F1
DLIREC constrained 0.7931 0.6330 0.7041 (C) 0.8404 0.7337 0.7834 (C)
DLIREC unconstrained 0.8190 0.6713 0.7378 (U) 0.8535 0.8272 0.8401 (U)
Baseline 0.4432 0.2982 0.3565 (C) 0.5255 0.4277 0.4716 (C)
Ranked 1st 0.8480 0.6651 0.7455 (C) 0.8535 0.8272 0.8401 (U)
Ranked 2nd 0.8190 0.6713 0.7378 (U) 0.8625 0.8183 0.8398 (C)
Ranked 3rd 0.7931 0.6330 0.7041 (C) 0.8441 0.7637 0.8019 (C)

Table 3: Results of the Aspect Term Extraction subtask. We also indicate whether the system is con-
strained (C) or unconstrained (U).

Feature F1
Word 0.7541
+ Name List 0.7808
+ POS 0.7951
+ Head Word 0.7962
+ DP Name List 0.8036
+ Word Cluster 0.8224
+ WordNet Taxonomy 0.8252
+ Head Word POS 0.8274

Table 2: 5-fold cross-validation performances on
the restaurant domain. Each row uses all features
added in the previous rows.

For each domain, we make submissions in both
constrained and unconstrained settings. The con-
strained submission only uses the Word and Name
List features, while all features listed in Table 1
and Table 2 are used in the unconstrained submis-
sion for the respective domain.

2.6 Results on Test Set

Using the optimum feature set described in Sec-
tion 2.5, we train separate models for each domain
and evaluate them against the SemEval-2014 Task
4 test set9. Table 3 presents the official results of
our submissions. We also include the official base-
line results and the results of the top three par-
ticipating systems for comparison (Pontiki et al.,
2014).

As shown from the table, our system performed
well for both domains. For the laptop domain, our
system is ranked 2nd and 3rd (among 27 submis-
sions) for the unconstrained and constrained set-
ting respectively. For the restaurant domain, our
system is ranked 1st and 9th (among 28 submis-
sions) for the unconstrained and constrained set-

9We train each model using only single-domain data.

ting respectively.
Our unconstrained submissions for both do-

mains outperformed our constrained submissions,
due to a significantly better recall. This indicates
the use of additional external resources (e.g. un-
labeled data) can improve the extraction perfor-
mance.

2.7 Further Analysis of Feature Engineering

Table 4 shows the F1 loss on the test set resulting
from training with each group of feature removed.
We also include the F1 loss when all features are
used.

Feature laptop restaurant
Word 0.0260 0.0241
Name List 0.0090 0.0054
POS -0.0059 -0.0052
Head Word 0.0072 0.0038
DP Name List 0.0049 0.0064
Word Cluster 0.0061 0.0185
WordNet Taxonomy - -0.0018
Head Word POS -0.0040 -0.0011
Dependency Relation -0.0105 -
All features -0.0132 0.0014

Table 4: Feature ablation study on the test set. The
quantity is the F1 loss resulted from the removal of
a single feature group. The last row indicates the
F1 loss when all features are used.

Our ablation study showed that a few of our fea-
tures are helpful in varying degrees on both do-
mains: Word, Name List, Head Word, DP Name
List and Word Cluster. However, the use of the
rest of the features individually has a negative im-
pact. In particular, we are surprised that the POS
and Dependency Relation features are detrimen-
tal to the performances, even though our 5-fold
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cross validation experiments suggested otherwise.
Another observation we make is that the Word-
Net Taxonomy feature is actually useful for the
laptop test set: including this feature would have
improved our laptop unconstrained performance
from 0.7378 F1 to 0.7510 F1 (+0.0132), which is
better than the top system performance. We also
note that our restaurant performance on the test
set can potentially be improved from 0.8401 F1
to 0.8454 F1 (+0.0052) if we originally omit the
POS feature.

Overall, we see that all the features we pro-
posed are potentially beneficial to the task. How-
ever, more thorough feature selection experiments
should be conducted to prevent overfitting and to
identify the settings (e.g. domain) in which each
feature may be useful.

3 Aspect Term Polarity

In this section, we describe a baseline classifier for
ATP, where we treat the problem as a multi-class
classification problem.

To correctly identify the polarity of an aspect
term, it is crucial to know which words within the
sentence indicate its sentiment. A general lexicon
or WordNet is not sufficient. Thus, we attempt to
build the aspect lexicon based on other informa-
tion such as POS (Sauper and Barzilay, 2013). For
example, sentiment words are more likely to be
adjectives.

3.1 Features

3.1.1 Aspect Word
This is to model the idea that certain aspects tend
to have a particular polarity most of the time. We
compute the most frequent polarity of each aspect
in the training set. For each aspect instance, the
feature corresponding to its most frequent polarity
is set to 1.

3.1.2 General Sentiment Word Lexicon
One sentence may express opinions on multi-
ple aspect terms. According to our observations,
words surrounding the aspect term tend to be asso-
ciated with it. Based on the best settings obtained
from 5-fold cross validation, we set a window size
of 12 words and consider words with the following
POS: JJ*, RB*, VB*, DT and NN*10.

Some sentiment words are consistent across as-
pects. For example, “great” for positive and “ter-

10NN* is only used in the restaurant domain.

rible” for negative. On the other hand, some senti-
ment words are quite distinct between aspects. In
certain cases, they may have opposite sentiment
meanings for different aspects (Kim et al., 2013).
For example, “fast” is positive when describing
boot up speed but negative when describing bat-
tery life. Therefore, a general sentiment word lex-
icon is created from the training set.

If a general sentiment word occurs in the sur-
rounding context of the aspect instance, the fea-
ture value for the matched sentiment word is 1.
Since the training set does not contain every pos-
sible sentiment expression, we use synonyms and
antonyms in RiTa WordNet11 to expand the gen-
eral sentiment word lexicon. The expanded lex-
icon contains 2419 words for the laptop domain
and 4262 words for the restaurant domain.

3.1.3 Aspect-Sentiment Word Pair
Besides general sentiment word lexicon, we also
build aspect-sentiment word pair lexicon from the
training set. This lexicon contains 9073 word pairs
for the laptop domain and 22171 word pairs for the
restaurant domain. If an aspect-sentiment word
occurs in the surrounding context of the aspect in-
stance, the feature value for the matched aspect-
sentiment word pair is 1.

3.2 Experiments and Results

We use LIBLINEAR12 to train our logistic regres-
sion classifier using default settings.

laptop restaurant
5-fold cross validation 0.6322 0.6704
DLIREC unconstrained 0.3654 0.4233

Table 5: Accuracy of the Aspect Term Polarity
subtask.

Table 5 shows the classification accuracy of our
baseline system on the training and test set for
each domain. The performance drops a lot in the
test set as we use very simple approaches to gener-
ate the lexicons. This may cause overfitting on the
training set. We also observe that in the test set of
both domains, more than half of the instances are
positive. In the future, we can explore on using
more sophisticated ways to build more effective
features and to better model data skewness.

11http://www.rednoise.org/rita/wordnet/
12http://www.csie.ntu.edu.tw/˜cjlin/

liblinear/
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4 Conclusion

For ATE subtask, we leverage on the vast amount
of external resources to create additional effective
features, which contribute significantly to the im-
provement of our system. For the unconstrained
setting, our system is ranked 1st (among 28 sub-
missions) and 2rd (among 27 submissions) for the
restaurant and laptop domain respectively. For
ATP subtask, we implement a simple baseline sys-
tem.

Our current work focus on implementing a sep-
arate term extraction system for each domain. In
future, we hope to investigate on domain adapta-
tion methods across different domains. In addi-
tion, we will also address the feature sparseness
problem in our ATP baseline system.
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Abstract

We present an algorithm for computing
the semantic similarity between two sen-
tences. It adopts the hypothesis that se-
mantic similarity is a monotonically in-
creasing function of the degree to which
(1) the two sentences contain similar se-
mantic units, and (2) such units occur in
similar semantic contexts. With a simplis-
tic operationalization of the notion of se-
mantic units with individual words, we ex-
perimentally show that this hypothesis can
lead to state-of-the-art results for sentence-
level semantic similarity. At the Sem-
Eval 2014 STS task (task 10), our system
demonstrated the best performance (mea-
sured by correlation with human annota-
tions) among 38 system runs.

1 Introduction

Semantic textual similarity (STS), in the context
of short text fragments, has drawn considerable
attention in recent times. Its application spans a
multitude of areas, including natural language pro-
cessing, information retrieval and digital learning.
Examples of tasks that benefit from STS include
text summarization, machine translation, question
answering, short answer scoring, and so on.

The annual series of SemEval STS tasks (Agirre
et al., 2012; Agirre et al., 2013; Agirre et al., 2014)
is an important platform where STS systems are
evaluated on common data and evaluation criteria.
In this article, we describe an STS system which
participated and outperformed all other systems at
SemEval 2014.

The algorithm is a straightforward application
of the monolingual word aligner presented in (Sul-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

tan et al., 2014). This aligner aligns related words
in two sentences based on the following properties
of the words:

1. They are semantically similar.

2. They occur in similar semantic contexts in
the respective sentences.

The output of the word aligner for a sentence
pair can be used to predict the pair’s semantic sim-
ilarity by taking the proportion of their aligned
content words. Intuitively, the more semantic
components in the sentences we can meaningfully
align, the higher their semantic similarity should
be. In experiments on STS 2013 data reported
by Sultan et al. (2014), this approach was found
highly effective. We also adopt this hypothesis of
semantic compositionality for STS 2014.

We implement an STS algorithm that is only
slightly different from the algorithm in (Sultan et
al., 2014). The approach remains equally success-
ful on STS 2014 data.

2 Background

We focus on two relevant topics in this section:
the state of the art of STS research, and the word
aligner presented in (Sultan et al., 2014).

2.1 Semantic Textual Similarity

Since the inception of textual similarity research
for short text, perhaps with the studies reported
by Mihalcea et al. (2006) and Li et al. (2006),
the topic has spawned significant research inter-
est. The majority of systems have been reported
as part of the SemEval 2012 and *SEM 2013 STS
tasks (Agirre et al., 2012; Agirre et al., 2013).
Here we confine our discussion to systems that
participated in these tasks.

With designated training data for several test
sets, supervised systems were the most successful
in STS 2012 (Bär et al., 2012; Šarić et al., 2012;
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Jimenez et al., 2012). Such systems typically ap-
ply a regression algorithm on a large number of
STS features (e.g., string similarity, syntactic sim-
ilarity and word or phrase-level semantic similar-
ity) to generate a final similarity score. This ap-
proach continued to do well in 2013 (Han et al.,
2013; Wu et al., 2013; Shareghi and Bergler, 2013)
even without domain-specific training data, but the
best results were demonstrated by an unsupervised
system (Han et al., 2013). This has important im-
plications for STS since extraction of each feature
adds to the latency of a supervised system. STS
systems are typically important in the context of
a larger system rather than on their own, so high
latency is an obvious drawback for such systems.

We present an STS system that has simplicity,
high accuracy and speed as its design goals, can
be deployed without any supervision, operates in
a linguistically principled manner with purely se-
mantic sentence properties, and was the top sys-
tem at SemEval STS 2014.

2.2 The Sultan et al. (2014) Aligner

The word aligner presented in (Sultan et al., 2014)
has been used unchanged in this work and plays a
central role in our STS algorithm. We give only an
overview here; for the full details, see the original
article.

We will denote the sentences being aligned (and
are subsequently input to the STS algorithm) as
S(1) and S(2). We describe only content word
alignment here; stop words are not used in our STS
computation.

The aligner first identifies word pairs w
(1)
i ∈

S(1) and w
(2)
j ∈ S(2) such that:

1. w
(1)
i and w

(2)
j have non-zero semantic simi-

larity, simWij . The calculation of simWij is
described in Section 2.2.1.

2. The semantic contexts of w
(1)
i and w

(2)
j have

some similarity, simCij . We define the se-
mantic context of a word w in a sentence
S as a set of words in S, and the seman-
tic context of the word pair (w(1)

i , w
(2)
j ), de-

noted by contextij , as the Cartesian product
of the context of w

(1)
i in S(1) and the con-

text of w
(2)
j in S(2). We define several types

of context (i.e., several selections of words)
and describe the corresponding calculations
of simCij in Section 2.2.2.

3. There are no competing pairs scoring higher

Align
identical

word
sequences

Align
named
entities

Align
content
words
using

depen-
dencies

Align
content
words

using sur-
rounding

words

Figure 1: The alignment pipeline.

than (w(1)
i , w

(2)
j ) under f(simW , simC) =

0.9 × simW + 0.1 × simC . That is,
there are no pairs (w(1)

k , w
(2)
j ) such that

f(simWkj , simCkj) > f(simWij , simCij),
and there are no pairs (w(1)

i , w
(2)
l ) such that

f(simWil, simCil) > f(simWij , simCij).
The weights 0.9 and 0.1 were derived empiri-
cally via a grid search in the range [0, 1] (with
a step size of 0.1) to maximize alignment per-
formance on the training set of the (Brockett,
2007) alignment corpus. This set contains
800 human-aligned sentence pairs collected
from a textual entailment corpus (Bar-Haim
et al., 2006).

The aligner then performs one-to-one word align-
ments in decreasing order of the f value.

This alignment process is applied in four steps
as shown in Figure 1; each step applies the above
process to a particular type of context: identi-
cal words, dependencies and surrounding content
words. Additionally, named entities are aligned in
a separate step (details in Section 2.2.2).

Words that are aligned by an earlier module of
the pipeline are not allowed to be re-aligned by
downstream modules.

2.2.1 Word Similarity
Word similarity (simW ) is computed as follows:

1. If the two words or their lemmas are identi-
cal, then simW = 1.

2. If the two words are present as a pair
in the lexical XXXL corpus of the Para-
phrase Database1 (PPDB) (Ganitkevitch et
al., 2013), then simW = 0.9.2 For this
step, PPDB was augmented with lemmatized
forms of the already existing word pairs.3

1PPDB is a large database of lexical, phrasal and syntactic
paraphrases.

2Again, the value 0.9 was derived empirically via a grid
search in [0, 1] (step size = 0.1) to maximize alignment per-
formance on the (Brockett, 2007) training data.

3The Python NLTK WordNetLemmatizer was used to
lemmatize the original PPDB words.
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3. For any other word pair, simW = 0.

2.2.2 Contextual Similarity
Contextual similarity (simC) for a word pair
(w(1)

i , w
(2)
j ) is computed as the sum of the word

similarities for each pair of words in the context of
(w(1)

i , w
(2)
j ). That is:

simCij =
∑

(w
(1)
k ,w

(2)
l ) ∈ contextij

simWkl

Each of the stages in Figure 1 employs a specific
type of context.

Identical Word Sequences. Contextual sim-
ilarity for identical word sequences (a word se-
quence W which is present in both S(1) and S(2)

and contains at least one content word) defines the
context by pairing up each word in the instance of
W in S(1) with its occurrence in the instance of
W in S(2). All such sequences with length ≥ 2
are aligned; longer sequences are aligned before
shorter ones. This simple step was found to be of
very high precision in (Sultan et al., 2014) and re-
duces the overall computational cost of alignment.

Named Entities. Named entities are a special
case in the alignment pipeline. Even though the
context for a named entity is defined in the same
way as it is defined for any other content word
(as described below), named entities are aligned
in a separate step before other content words be-
cause they have special properties such as corefer-
ring mentions of different lengths (e.g. Smith and
John Smith, BBC and British Broadcasting Cor-
poration). The head word of the named entity is
used in dependency calculations.

Dependencies. Dependency-based contex-
tual similarity defines the context for the pair
(w(1)

i , w
(2)
j ) using the syntactic dependencies of

w
(1)
i and w

(2)
j . The context is the set of all word

pairs (w(1)
k , w

(2)
l ) such that:

• w
(1)
k is a dependency of w

(1)
i ,

• w
(2)
l is a dependency of w

(2)
j ,

• w
(1)
i and w

(2)
j have the same lexical category,

• w
(1)
k and w

(2)
l have the same lexical category,

and,

• The two dependencies are either identical or
semantically “equivalent” according to the
equivalence table provided by Sultan et al.

S(1): He wrote a book .

nsubj

dobj

det

S(2): I read the book he wrote .

nsubj

dobj

det

rcmod

nsubj

Figure 2: Example of dependency equivalence.

(2014). We explain semantic equivalence of
dependencies using an example below.

Equivalence of Dependency Structures. Con-
sider S(1) and S(2) in Figure 2. Note that w

(1)
2 =

w
(2)
6 = ‘wrote’ and w

(1)
4 = w

(2)
4 = ‘book’ in

this pair. Now, each of the two following typed
dependencies: dobj(w(1)

2 , w
(1)
4 ) in S(1) and rc-

mod(w(2)
4 , w

(2)
6 ) in S(2), represents the relation

“thing that was written” between the verb ‘wrote’
and its argument ‘book’. Thus, to summarize,
an instance of contextual evidence for a possible
alignment between the pair (w(1)

2 , w
(2)
6 ) (‘wrote’)

lies in the pair (w(1)
4 , w

(2)
4 ) (‘book’) and the equiv-

alence of the two dependency types dobj and rc-
mod.

The equivalence table of Sultan et al. (2014) is
a list of all such possible equivalences among dif-
ferent dependency types (given that w

(1)
i has the

same lexical category as w
(2)
j and w

(1)
k has the

same lexical category as w
(2)
l ).

If there are no word pairs with identical or
equivalent dependencies as defined above, i.e. if
simCij = 0, then w

(1)
i and w

(2)
j will not be

aligned by this module.
Surrounding Content Words. Surrounding-

word-based contextual similarity defines the con-
text of a word in a sentence as a fixed window of
3 words to its left and 3 words to its right. Only
content words in the window are considered. (As
explained in the beginning of this section, the con-
text of the pair (w(1)

i , w
(2)
j ) is then the Cartesian

product of the context of w
(1)
i in S(1) and w

(2)
j in

S(2).) Note that w
(1)
i and w

(2)
j can be of different

lexical categories here.
A content word can often be surrounded by

stop words which provide almost no information
about its semantic context. The chosen window
size is assumed, on average, to effectively make
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Data Set Source of Text # of Pairs
deft-forum discussion forums 450
deft-news news articles 300
headlines news headlines 750

images image descriptions 750
OnWN word sense definitions 750

tweet-news news articles and tweets 750

Table 1: Test sets for SemEval STS 2014.

sufficient contextual information available while
avoiding the inclusion of contextually unrelated
words. But further experiments are necessary to
determine the best span in the context of align-
ment.

Unlike dependency-based alignment, even if
there are no similar words in the context, i.e. if
simCij = 0, w

(1)
i may still be aligned to w

(2)
j if

simWij > 0 and no alignments for w
(1)
i or w

(2)
j

have been found by earlier stages of the pipeline.

2.2.3 The Alignment Sequence
The rationale behind the specific sequence of
alignment steps (Figure 1) was explained in (Sul-
tan et al., 2014): (1) Identical word sequence
alignment was found to be the step with the
highest precision in experiments on the (Brock-
ett, 2007) training data, (2) It is convenient to
align named entities before other content words
to enable alignment of entity mentions of differ-
ent lengths, (3) Dependency-based evidence was
observed to be more reliable (i.e. of higher preci-
sion) than textual evidence on the (Brockett, 2007)
training data.

3 Method

Our STS score is a function of the proportions of
aligned content words in the two input sentences.

The proportion of content words in S(1) that are
aligned to some word in S(2) is:

prop
(1)
Al =

|{i : [∃j : (i, j) ∈ Al] and w
(1)
i ∈ C}|

|{i : w
(1)
i ∈ C}|

where C is the set of all content words in En-
glish and Al are the predicted word alignments. A
word alignment is a pair of indices (i, j) indicating
that word w

(1)
i is aligned to w

(2)
j . The proportion

of aligned content words in S(2), prop
(2)
Al , can be

computed in a similar way.
We posit that a simple yet sensible way to obtain

an STS estimate for S(1) and S(2) is to take a mean

Data Set Run 1 Run 2
deft-forum 0.4828 0.4828
deft-news 0.7657 0.7657
headlines 0.7646 0.7646

images 0.8214 0.8214
OnWN 0.7227 0.8589

tweet-news 0.7639 0.7639
Weighted Mean 0.7337 0.7610

Table 2: Results of evaluation on SemEval STS
2014 data. Each value on columns 2 and 3 is the
correlation between system output and human an-
notations for the corresponding data set. The last
row shows the value of the final evaluation metric.

of prop
(1)
Al and prop

(2)
Al . Our two submitted runs

use the harmonic mean:

sim(S(1), S(2)) =
2× prop

(1)
Al × prop

(2)
Al

prop
(1)
Al + prop

(2)
Al

It is a more conservative estimate than the arith-
metic mean, and penalizes sentence pairs with a
large disparity between the values of prop

(1)
Al and

prop
(2)
Al . Experiments on STS 2012 and 2013 data

revealed the harmonic mean of the two propor-
tions to be a better STS estimate than the arith-
metic mean.

4 Data

STS systems at SemEval 2014 were evaluated on
six data sets. Each test set consists of a number
of sentence pairs; each pair has a human-assigned
similarity score in the range [0, 5] which increases
with similarity. Every score is the mean of five
scores crowdsourced using the Amazon Mechan-
ical Turk. The sentences were collected from a
variety of sources. In Table 1, we provide a brief
description of each test set.

5 Evaluation

We submitted the results of two system runs at
SemEval 2014 based on the idea presented in Sec-
tion 3. The two runs were identical, except for the
fact that for the OnWN test set, we specified the
following words as additional stop words during
run 2 (but not during run 1): something, someone,
somebody, act, activity, some, state.4 For both

4OnWN has many sentence pairs where each sentence
is of the form “the act/activity/state of verb+ing some-
thing/somebody”. The selected words act merely as fillers
in such pairs and consequently do not typically contribute to
the similarity scores.
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Data Set Run 1 Run 2
FNWN 0.4686 0.4686

headlines 0.7797 0.7797
OnWN 0.6083 0.8197
SMT 0.3837 0.3837

Weighted Mean 0.5788 0.6315

Table 3: Results of evaluation on *SEM STS 2013
data.

runs, the tweet-news sentences were preprocessed
by separating the hashtag from the word for each
hashtagged word.

Table 2 shows the performance of each run.
Rows 1 through 6 show the Pearson correlation
coefficients between the system scores and human
annotations for all test sets. The last row shows
the value of the final evaluation metric, which is a
weighted sum of all correlations in rows 1–6. The
weight assigned to a data set is proportional to its
number of pairs. Our run 1 ranked 7th and run 2
ranked 1st among 38 submitted system runs.

An important implication of these results is the
fact that knowledge of domain-specific stop words
can be beneficial for an STS system. Even though
we imparted this knowledge to our system during
run 2 via a manually constructed set of additional
stop words, simple measures like TF-IDF can be
used to automate the process.

5.1 Performance on STS 2012 and 2013 Data
We applied our algorithm on the 2012 and 2013
STS test sets to examine its general utility. Note
that the STS 2013 setup was similar to STS 2014
with no domain-dependent training data, whereas
several of the 2012 test sets had designated train-
ing data.

Over all the 2013 test sets, our two runs demon-
strated weighted correlations of 0.5788 (rank: 4)
and 0.6315 (rank: 1), respectively. Table 3 shows
performances on individual test sets. (Descrip-
tions of the test sets can be found in (Agirre et
al., 2013).) Again, run 2 outperformed run 1 on
OnWN by a large margin.

On the 2012 test sets, however, the performance
was worse (relative to other systems), with respec-
tive weighted correlations of 0.6476 (rank: 8) and
0.6423 (rank: 9). Table 4 shows performances on
individual test sets. (Descriptions of the test sets
can be found in (Agirre et al., 2012).)

This performance drop seems to be an obvious
consequence of the fact that our algorithm was
not trained on domain-specific data: on STS 2013

Data Set Run 1 Run 2
MSRpar 0.6413 0.6413
MSRvid 0.8200 0.8200
OnWN 0.7227 0.7004

SMTeuroparl 0.4267 0.4267
SMTnews 0.4486 0.4486

Weighted Mean 0.6476 0.6423

Table 4: Results of evaluation on SemEval STS
2012 data.

data, the top two STS 2012 systems, with respec-
tive weighted correlations of 0.5652 and 0.5221
(Agirre et al., 2013), were outperformed by our
system by a large margin.

In contrast to the other two years, our run 1
outperformed run 2 on the 2012 OnWN test set
by a very small margin. A closer inspection
revealed that the previously mentioned sentence
structure “the act/activity/state of verb+ing some-
thing/somebody” is much less common in this set,
and as a result, our additional stop words tend to
play more salient semantic roles in this set than in
the other two OnWN sets (i.e. they act relatively
more as content words than stop words). The drop
in correlation with human annotations is a con-
sequence of this role reversal. This result again
shows the importance of a proper selection of stop
words for STS and also points to the challenges
associated with making such a selection.

6 Conclusions and Future Work

We show that alignment of related words in two
sentences, if carried out in a principled and accu-
rate manner, can yield state-of-the-art results for
sentence-level semantic similarity. Our system has
the desired quality of being both accurate and fast.
Evaluation on test data from different STS years
demonstrates its general applicability as well.

The idea of STS from alignment is worth inves-
tigating with larger semantic units (i.e. phrases)
in the two sentences. Another possible research
direction is to investigate whether the alignment
proportions observed for the two sentences can be
used as features to improve performance in a su-
pervised setup (even though this scenario is ar-
guably less common in practice because of un-
availability of domain or situation-specific train-
ing data).
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Abstract

This paper describes the Duluth systems
that participated in the Cross–Level Se-
mantic Similarity task of SemEval–2014.
These three systems were all unsupervised
and relied on a dictionary melded together
from various sources, and used first–order
(Lesk) and second–order (Vector) over-
laps to measure similarity. The first–order
overlaps fared well according to Spear-
man’s correlation (top 5) but less so rela-
tive to Pearson’s. Most systems performed
at comparable levels for both Spearman’s
and Pearson’s measure, which suggests
the Duluth approach is potentially unique
among the participating systems.

1 Introduction

Cross–Level Semantic Similarity (CLSS) is a
novel variation on the problem of semantic simi-
larity. As traditionally formulated, pairs of words,
pairs of phrases, or pairs of sentences are scored
for similarity. However, the CLSS shared task
(Jurgens et al., 2014) included 4 subtasks where
pairs of different granularity were measured for
semantic similarity. These included : word-2-
sense (w2s), phrase-2-word (p2w), sentence-2-
phrase (s2p), and paragraph-2-sentence (g2s). In
addition to different levels of granularity, these
pairs included slang, jargon and other examples of
non–standard English.

We were drawn to this task because of our long–
standing interest in semantic similarity. We have
pursued approaches ranging from those that rely
on structured knowledge sources like WordNet
(e.g., WordNet::Similarity) (Pedersen et al., 2004)
to those that use distributional information found

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

in raw text (e.g., SenseClusters) (Purandare and
Pedersen, 2004). Our approach in this shared task
is a bit of both, but relies on using definitions for
each item in a pair so that similarity can be mea-
sured using first or second–order overlaps.

A first–order approach finds direct matches be-
tween the words in a pair of definitions. In a
second–order approach each word in a definition
is replaced by a vector of the words it co–occurs
with, and then the vectors for all the words in a
definition are averaged together to represent the
definition. Then, similarity can be measured by
finding the cosine between pairs of these vectors.
We decided on a definition based approach since
it had the potential to normalize the differences in
granularity of the pairs.

The main difficulty in comparing definitions is
that they can be very brief or may not even ex-
ist at all. This is why we combined various dif-
ferent kinds of resources to arrive at our dictio-
nary. While we achieved near total coverage of
words and senses, phrases were sparsely covered,
and sentences and paragraphs had no coverage. In
those cases we used the text of the phrase, sentence
or paragraph to serve as its own definition.

The Duluth systems were implemented using
the UMLS::Similarity package (McInnes et al.,
2009) (version 1.35)1, which includes support for
user–defined dictionaries, first–order Lesk meth-
ods, and second–order Vector methods. As a result
the Duluth systems required minimal implementa-
tion, so once a dictionary was ready experiments
could begin immediately.

This paper is organized as follows. First, the
first–order Lesk and second–order Vector mea-
sures are described. Then we discuss the details
of the three Duluth systems that participated in
this task. Finally, we review the task results and
consider future directions for this problem and our
system.

1http://umls-similarity.sourceforge.net
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2 Measures

The Duluth systems use first–order Lesk meth-
ods (Duluth1 and Duluth3) and second–order Vec-
tor methods (Duluth2). These require that defini-
tions be available for both items in a pair, with the
caveat that we use the termdefinition somewhat
loosely to mean both traditional dictionary defini-
tions as well as various proxies when those are not
available.

2.1 First–order Overlaps : Lesk

The Lesk measure (Lesk, 1986) was originally a
method of word sense disambiguation that mea-
sured the overlap among the definitions of the
possible senses of an ambiguous word with those
of surrounding words (Lesk, 1986). The senses
which have the largest number of overlaps are pre-
sumed to be the correct or intended senses for the
given context. A modified approach compares the
glosses of an ambiguous word with the surround-
ing context (Kilgarriff and Rosenzweig, 2000).
These are both first–order methods where defini-
tions are directly compared with each other, or
with the surrounding context.

In the Duluth systems, we measure overlaps by
summing the number of words shared between
definitions. Sequences of words that match are
weighted more heavily and contribute the square
of their length, while individual matching words
just count as one. For example, given the defini-
tions a small noisy collieanda small noisy bor-
der collie the stop worda would not be matched,
and thensmall noisywould match (and be given
a score of 4) and thencollie would also match
(receiving a score of 1). So, the total Lesk score
would be 5. The scores of the Duluth systems were
normalized by dividing by the maximum Lesk
score for any pair in a subtask. This moves the
scores to a 0–1 scale, where 1.00 means the def-
initions are exactly the same, and where 0 means
they share no words.

One of the main drawbacks of the original Lesk
method is that glosses tend to be very short. Vari-
ous methods have been proposed to overcome this.
For example, (Banerjee and Pedersen, 2003) intro-
duced the Extended Gloss Overlap measure which
creates super–glosses by augmenting the glosses
of the senses to be measured with the glosses of
semantically related senses (which are connected
via relation links in WordNet). This adaptation
of the Lesk measure was first implemented in

WordNet::Similarity (Pedersen et al., 2004) and
then later in UMLS::Similarity (McInnes et al.,
2009). It has been applied to both word sense
disambiguation and semantic similarity, and gen-
erally found to improve on original Lesk (Baner-
jee, 2002; Banerjee and Pedersen, 2002; Patward-
han et al., 2003; McInnes and Pedersen, 2013).
However, the Duluth systems do not build super–
glosses in this way since many of the items in the
pairs are not found in WordNet. However, def-
initions are expanded in a simpler way, by merg-
ing together various different resources to increase
both coverage and the length of definitions.

2.2 Second–order Overlaps : Vector

The main limitation of first–order Lesk ap-
proaches is that if terminology differs from one
definition to another, then meaningful matches
may not be found. For example, consider the def-
initions a small noisy collieanda dog that barks
a lot. A first–order overlap approach would find
no similarity (other than the stop worda) between
these definitions.

In cases like this some form of term expansion
could improve the chances of matching. Synonym
expansion is a well–known possibility, although in
the Duluth systems we opted to expand words with
their co–occurrence vectors. This follows from an
approach to word sense discrimination developed
by (Scḧutze, 1998). Once words are expanded
then all the vectors in a definition are averaged to-
gether and this averaged vector becomes the rep-
resentation of the definition. This idea was first
implemented in WordNet::Similarity (Pedersen et
al., 2004) and then later in UMLS::Similarity
(McInnes et al., 2009), and has been applied to
word sense disambiguation and semantic similar-
ity (Patwardhan, 2003; Patwardhan and Pedersen,
2006; Liu et al., 2012).

The co–occurrences for the words in the defi-
nitions can come from any corpus of text. Once
a co–occurrence matrix is constructed, then each
word in each definition is replaced by its vector
from that matrix. If no such vector is found the
word is removed from the definition. Then, all the
vectors representing a definition are averaged to-
gether, and this vector is used to measure against
other vectors created in the same way. The scores
returned by the Vector measure are between 0 and
1 (inclusive) where 1.00 means exactly the same
and 0 means no similarity.
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3 Duluth Systems

There were three Duluth systems. Duluth1 and
Duluth3 use first–order Lesk, and Duluth2 uses
second–order Vector. Duluth3 was an ensemble
made up of Duluth1 and a close variant of it (Du-
luth1a, where the only difference was the stop list
employed).

Duluth1 and Duluth2 use the NSP stoplist2

which includes approximately 390 words and
comes from the SMART stoplist. Duluth1a treated
any word with 4 or fewer characters as a stop
word. Stemming was performed by all Duluth sys-
tems using the Porter algorithm as implemented in
the Lingua::Stem::en Perl module.

Before processing, all of the similarity pairs and
the dictionary entries were converted to lower case
and any non alpha-numeric characters were re-
placed with spaces. Also, any stop listed words
were removed.

3.1 Dictionary Creation

The key step for all the Duluth systems is the
creation of the dictionary. We elected to treat
senses as word forms, and so our dictionary did
not make sense distinctions (and would include all
the senses of a word or phrase in its entry).

Since the words and phrases used in some pairs
are slang or non–standard English, traditional lex-
ical resources like WordNet do not provide ad-
equate coverage. However, WordNet provides
a good foundation for coverage of standard En-
glish, so we began by extracting the glosses from
WordNet v3.0 using the WordNet::QueryData Perl
module.

Wiktionary is a crowd sourced lexical resource
that includes more slang and jargon, so we also ex-
tracted entries from it using the Wiktionary::Parser
Perl module. In hopes of increasing our coverage
of phrases in particular, we looked up words and
phrases in Wikipedia using the WWW::Wikipedia
Perl module and used the first paragraph of an en-
try (up to the first heading) as a definition. Finally,
we also used thedict program in Linux which
we configured to use the following resources :
the Collaborative International Dictionary of En-
glish v.0.48 (gcide), Moby Thesaurus II by Grady
Ward, 1.0 (moby-thes), V.E.R.A. – Virtual Entity
of Relevant Acronyms (June 2006) (vera), the Jar-
gon File (version 4.4.7, 29 Dec 2003) (argon), the

2http://cpansearch.perl.org/src/TPEDERSE/Text-NSP-
1.27/bin/utils/stoplist-nsp.regex

Free On-line Dictionary of Computing (26 July
2010) (foldoc), and the CIA World Factbook 2002
(world02).

The most obvious question that arises about
these resources is how much coverage they pro-
vide for the pairs in the task. Based on experi-
ments on the trial data, we found that none of the
resources individually provided satisfactory cov-
erage, but if they were all combined then coverage
was reasonably good (although still not complete).
In the test data, it turned out there were only 20
items in the w2s subtask for which we did not have
a dictionary entry (out of 1000). However, for p2w
(phrase-2-word) there were 407 items not included
in the dictionary (most of which were phrases).
In the s2p (sentence-2-phrase) subtask there were
only 15 phrases which had definitions, so for this
subtask and also for g2s (paragraph-2-sentence)
the items themselves were the definitions for es-
sentially all the pairs.

Also of interest might be the total size of the
dictionaries created. The number of tokens in
g2s (paragraph-2-sentence) was 46,252, and in s2p
(sentence-2-phrase) it was 12,361. This is simply
the token count for the pairs included in each sub-
task. However, the dictionaries were much larger
for p2w (phrase-2-word), where the token count
was 262,876, and for w2s (word-2-sense) where it
was 499,767.

3.2 Co–occurrence Matrix for Vector

In the Duluth systems, the co–occurrence matrix
comes from treating the WordNet glosses as a cor-
pus. Any pair of words that occur together in a
WordNet gloss are considered a co–occurrence.

There are 117,659 glosses, made up of
1,460,921 words. This resulted in a matrix of
90,516 rows and 99,493 columns, representing
708,152 unique bigrams. The matrix is not sym-
metric since the co–occurrences are bigrams, so
dog houseis treated differently thanhouse dog.

The WordNet glosses were extracted from ver-
sion 3.0 using the glossExtract Perl program3.

4 Results

Results for the CLSS task were ranked both
by Pearson’s and Spearman’s Correlation coeffi-
cients. Duluth system results are shown in Tables
1 and 2. These tables also include the results of

3http://www.d.umn.edu/˜tpederse/Code/glossExtract-
v0.03.tar.gz
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Table 1: Spearman’s Results
rank

g2s s2p p2w w2s (of 38)
Top .801 .728 .424 .343 1
Duluth3 .725 .660 .399 .327 3
Duluth1 .726 .658 .385 .316 5
Duluth2 .553 .473 .235 .231 21
Baseline .613 .626 .162 .128

Table 2: Pearson’s Results
rank

g2s s2p p2w w2s (of 38)
Top .811 .742 .415 .355 1
Duluth2 .501 .450 .241 .224 23
Duluth1 .458 .440 .075 .076 30
Duluth3 .455 .426 .075 .080 31
Baseline .527 .562 .165 .110

the top ranked system (which was the same sys-
tem according to both measures) and results from
a baseline system that measures the Least Com-
mon Substring between the terms in a pair, except
in the w2s subtask, where it measured the LCS be-
tween the associated WordNet glosses.

Table 1 shows that the Duluth3 system offers a
slight improvement upon Duluth1. Recall that Du-
luth3 is an ensemble that includes Duluth1 and its
minor variant Duluth1a. Both of these are first–
order methods, and significantly outperform the
second–order method Duluth2.

However, Table 2 tells a completely different
story. There the second–order system Duluth2
performs better, although overall rankings suffer
according to Pearson’s measure. It is also very ap-
parent that the ranks between Pearson’s and Spear-
man’s for Duluth1 and Duluth3 differ significantly
(from 3 to 30 and 5 to 31). This is very atypical,
and most systems maintained approximately the
same rankings between the two correlation mea-
sures. Note that Duluth2 behaves in this way,
where the relative ranking is 21 and 23.

Table 3 shows the number of pairs in each sub-
task which returned a score of 0. This could be due
to missing definitions, or no matches occurring be-
tween the definitions. Interestingly Duluth2 has a
much smaller number of 0 valued scores, which
shows the second–order method provides greater
coverage due to its more flexible notion of match-
ing. However, despite much higher numbers of

Table 3: Number of Pairs with Score of 0
g2s s2p p2w w2s

Duluth1 107 197 211 23
Duluth2 9 101 40 15
Duluth3 101 196 205 23

0s, Duluth1 and Duluth3 perform much better with
Spearman’s rank correlation coefficient. This sug-
gests that there is a kind of precision–recall trade-
off between these systems, where Duluth2 has
higher recall and Duluth1 and Duluth3 have higher
precision.

5 Future Directions

The relatively good performance of the first–order
Duluth systems (at least with respect to rank cor-
relation) shows again the important role of lexical
resources. Our first–order method was not appre-
ciably more complex than the baseline method, yet
it performed significantly better (especially for the
p2w and w2s tasks). This is no doubt due to the
more extensive dictionary that we employed.

That said, our approach to building the dictio-
nary was relatively crude, and could be substan-
tially improved. For example, we could be more
selective in the content we add to the entries for
words or phrases. We could also do more than
simply use the sentences and paragraphs as their
own definitions. For example, we could replace
words or phrases in sentences and paragraphs with
their definitions, and then carry out first or second–
order matching.

Second–order matching did not perform as well
as we had hoped. We believe this is due to the
somewhat noisy nature of the dictionaries we con-
structed, and expanding those definitions by re-
placing words with vectors created even more
noise. We believe that a more refined approach
to creating dictionaries would certainly improve
these results, as would a more selective method of
combining the co–occurrence vectors (rather than
simply averaging them).
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Abstract

This paper reports our submissions to the
four subtasks of Aspect Based Sentimen-
t Analysis (ABSA) task (i.e., task 4) in
SemEval 2014 including aspect term ex-
traction and aspect sentiment polarity clas-
sification (Aspect-level tasks), aspect cat-
egory detection and aspect category sen-
timent polarity classification (Category-
level tasks). For aspect term extraction, we
present three methods, i.e., noun phrase
(NP) extraction, Named Entity Recogni-
tion (NER) and a combination of NP and
NER method. For aspect sentiment classi-
fication, we extracted several features, i.e.,
topic features, sentiment lexicon features,
and adopted a Maximum Entropy classifi-
er. Our submissions rank above average.

1 Introduction

Recently, sentiment analysis has attracted a lot of
attention from researchers. Most previous work
attempted to detect overall sentiment polarity on a
text span, such as document, paragraph and sen-
tence. Since sentiments expressed in text always
adhere to objects, it is much meaningful to iden-
tify the sentiment target and its orientation, which
helps user gain precise sentiment insights on spe-
cific sentiment target.

The aspect based sentiment analysis (ABSA)
task (Task 4) (Pontiki et al., 2014) in SemEval
2014 is to extract aspect terms, determine its se-
mantic category, and then to detect the sentimen-
t orientation of the extracted aspect terms and its
category. Specifically, it consists of 4 subtasks.
The aspect term extraction (ATE) aims to extrac-
t the aspect terms from the sentences in two giv-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

en domains (laptop and restaurant). The aspec-
t category detection (ACD) is to identify the se-
mantic category of aspects in a predefined set of
aspect categories (e.g., food, price). The aspect
term polarity (ATP) classification is to determine
whether the sentiment polarity of each aspect is
positive, negative, neutral or conflict (i.e., both
positive and negative). The aspect category po-
larity (ACP) classification is to determine the sen-
timent polarity of each aspect category. We partic-
ipated in these four subtasks.

Generally, there are three methods to extract as-
pect terms: unsupervised learning method based
on word frequency ((Ku et al., 2006), (Long et
al., 2010)), supervised machine learning method
(Kovelamudi et al., 2011) and semi-supervised
learning method (Mukherjee and Liu, 2012) where
only several user interested category seeds are
given and used to extract more categorize aspect
terms. Since sentiments always adhere to entities,
several researchers worked on polarity classifica-
tion of entity. For example, (Godbole et al., 2007)
proposed a system that assigned scores represent-
ing positive or negative opinion to each distinc-
t entity in the corpus. (Kim et al., 2013) presented
a hierarchical aspect sentiment model to classify
the polarity of aspect terms from unlabeled online
reviews. Moreover, some sentiment lexicons, such
as SentiWordNet (Baccianella et al., 2010) and M-
PQA Subjectivity Lexicon (Wilson et al., 2009),
have been used to generate sentiment score fea-
tures (Zhu et al., 2013).

The rest of this paper is organized as follows.
From Section 2 to Section 5, we describe our ap-
proaches to the Aspect Term Extraction task, the
Aspect Category detection task, the Aspect Term
Polarity task and the Aspect Category Polarity task
respectively. Section 6 provides the conclusion.
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2 Aspect Term Extraction System

For aspect terms extraction task, we first adopted
two methods: a noun phrase (NP) based method
and a Named Entity Recognition (NER) based
method. In our preliminary experiments, we found
that the NP-based method generates many noisy
terms resulting in high recall and low precision,
and the NER-based method performs inverse re-
sults. In order to overcome their drawbacks and
make use of their advantages, we proposed a third
method which combines the two methods by using
the results of NP-based method as an additional
name list feature to the NER system.

2.1 Preprocessing

We used Stanford Parser Tools1 for POS tagging
and for parsing while the Natural Language Toolk-
it2 was used for removing stop words and lemma-
tization.

2.2 NP-based Method

(Liu, 2012) showed that the majority of aspec-
t terms are noun phrases. Moreover, through the
observation of the training set, we found that more
than half of the aspects are pure noun phrases or
nested noun phrases. So we considered these two
types of noun phrases as aspect terms and adopt-
ed a rule-based noun phrases extraction system to
perform aspect term extraction. This extraction
is performed on parsed sentences. For example,
from parsed sentence:

“(CC but)
(S

(NP (NN iwork))
(VP (VBZ is)

(ADJP (JJ cheap))
(PP (VBN compared)

(PP (TO to)
(NP (NN office))))))”

iwork and office with NN tag are extracted as as-
pect terms. However, to make a more precise ex-
traction, we first removed white lines from parsed
sentences. Then we performed extraction only us-
ing three continuous lines. Since the NPs we ex-
tracted contain much noise which only appear in
NPs rather than in gold aspect terms list, we built
a stopwords list containing these noisy terms espe-
cially the numeric expressions. Table 1 shows the
set of manually built rules used for NP extraction.

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://www.nltk.org/

Based on the experimental results on training
data, we found the NP-based method achieves
high recall and low precision as shown in Table
2. This indicates that we extracted plenty of NPs
which consist of a large proportion of aspect terms
and much noise such as irrelevant NPs and over-
lapping phrases. Thus the NP-based method alone
has not produced good results.

2.3 NER-based Method

We also cast aspect term extraction task as a tradi-
tional NER task (Liu, 2012). We adopted the com-
monly used BIO tag format to represent the aspect
terms in the given annotated training data (Toh et
al., 2012), where B indicates the beginning of an
aspect term, I indicates the inside of an aspect ter-
m and O indicates the outside of an aspect term.
For example, given ”the battery life is excellent”,
where battery life is annotated as aspect term, we
tagged the three words the, is and excellent as O,
battery as B and life as I.

We adopted several widely used features for the
NER-based aspect term extraction system.

Word features: current word (word 0), previ-
ous word (word -1) and next word (word 1) are
used as word features.

POS feature: the POS tag of current word
(POS 0), the POS tags of two words around cur-
rent word (POS -2, POS -1, POS 1, POS 2), and
the combinations of contextual POS tags (POS -
1/POS 0, POS 0/POS 1, POS -1/POS 0/POS 1)
are included as POS features.

Word shape: a tag sequence of characters in
current word is recorded, i.e., the lowercase letter
tagged as a, and the uppercase letter tagged as A.

Chunk: We extracted this feature from the POS
tag sequence, which is defined as follows: the
shortest phrase based on POS taggers, i.e., “(VP
(VBD took) (NP (NN way)) (ADVP (RB too) (RB
long))”, took labeled as O, way labeled as B-NP,
too labeled as B-ADVP, long labeled as I-ADVP.

We implemented a CRF++ 3 based NER system
with the above feature types.

2.4 Combination of NP and NER Method

Based on our preliminary experiments, we con-
sidered to combine the above two methods. To
do so, we adopted the results of the NP system
as additional name lists feature for the NER sys-
tem. Through the observation on the results of the

3http://crfpp.googlecode.com/svn/trunk/doc/index.html
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if (NP in line 1) then select line 1 as candidate
if (NP in line 1 and PP in line 2 and NP in line 3) then select line 1 + line 2 + line 3 as candidate
else if (VB in line 1 and NN in line 2) then select line 1 + line 2 as candidate
else if (NP in line 1 and NP in line 2) then select line 1 + line 2 as candidate
else if (NP in line 1 and CC in line 2 and NN in line 3) then select line 3 as candidate
else if (JJ in line 1 and NN in line 2) then select line 2 as candidate

if (current term in candidate existing in stopwords) then remove current term
if (CD start candidate) then remove CD
if (DT or PRP start candidate) then remove DT or PRP
if (JJR in candidate) then remove JJR
if (Punctuation in candidate) then remove Punctuation

Table 1: The rules in NP-based method.

method Laptop Restaurant
Precision(%) Recall(%) F-score(%) Precision(%) Recall(%) F-score(%)

NP-based 44.35 74.43 55.59 45.99 70.50 56.17
NER-based 70.46 48.27 57.29 80.87 68.24 74.02

Combination 72.79 55.11 62.73 82.31 70.62 76.02

Table 2: The F-scores of three methods on training data.

NP-based method and the NER-based method, we
built two types of name lists for our combination
method as follows:

Gold Namelist: containing the gold aspec-
t terms and the intersection between the results of
the NP-based method and the NER-based method.

Stop Namelist: the words in original sentences
but not in gold aspect terms set or not in NPs set
we extracted before.

Table 3 shows the results of feature selection
for the combination method on training data. The
best performance was obtained by using all fea-
tures. Thus, our final submission system adopted
the combination method with all features.

Feature Dataset
Laptop Restaurant

word:
+word 0 40.35 58.58
+word 1 54.78 72.23

POS:
+POS 0 55.81 71.11
+POS 1 57.07 74.02
+POS 2 57.18 73.24
+POS 0/POS 1 51.85 70.58

chunk:
+chunk 0 56.74 73.45

word shape:
+word shape 0 57.29 74.02

name list:
+Gold Namelist 62.66 75.39
+Stop Namelist 62.73 76.02

Table 3: The F-scores of combination method
of subtask 1 on training data based on 2 cross-
validation

Table 2 shows the results of the above three
systems on training data. Comparing with oth-
er two methods, we easily find that the combina-
tion method outperforms the other two systems in
terms of precision, recall and F values on both do-
mains.

2.5 Result and Discussion
In constrained run, we submitted the results us-
ing the method in combination of NP and NER.
Specifically, we adopted all features and the name
lists listed in Table 3 and the CRF++ tool for the
NER system. Table 4 lists the results of our fi-
nal system and the top two systems officially re-
leased by organizers. On both domains, our sys-
tem ranks above the average under constrained
model, which proves the effectiveness of the com-
bination method by using NP extraction and NER.

From Table 2 and Table 4 we find that the re-
sults on restaurant data are much better than those
on laptop data. Based on our further observation
on training data, the possible reason is that the
number of numeric descriptions in laptop dataset
is much larger than those in restaurant dataset and
the aspect terms containing numeric description
are quite difficult to be extracted.

Dataset DLIREC NRC-Canada Our result
laptop 70.41 68.57 65.88

restaurant 78.34 80.19 78.24

Table 4: The F-scores (%) of our system and the
top two systems of subtask 1 on test dataset.
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3 Aspect Category Classification System

Aspect category classification task tries to assign
each aspect one or more semantic category labels.
Thus, we regarded this task as a multi-class clas-
sification problem. Following (Rennie, 2001), we
built a binary model for each category, where bag-
of-words is used as features.

3.1 Features

We adopted the bag-of-words schema to represent
features as follows. Since not all training instances
have annotated aspect terms, we extracted only an-
notated aspect terms from sentence if the sentence
contains annotated aspect terms, or extracted all
words from sentence which does not contain any
annotated aspect terms as features, which results
in 5200 word features in total.

3.2 Classification Algorithm

We adopted the maximum entropy algorithm im-
plemented in Mallet toolkit (McCallum, 2002) to
build a binary classifier for each category. All pa-
rameters are set as defaults. This subtask only pro-
vides restaurant data and there are five predefined
categories (i.e., food, price, service, ambience and
anecdotes/miscellaneous), thus we build five bina-
ry classifiers in total.

3.3 Results and Discussions

Table 5 lists the precision, recall and F-score of
our final system along with the top two systems
released by the organizers.

Precision(%) Recall(%) F-score(%)
our system 65.26 69.46 67.30

rank 1 system 91.04 86.24 88.58
rank 2 system 83.23 81.37 82.29

Table 5: The results of our system and the top two
systems of subtask 3 on the test data.

From Table 5, we find that there are quite a large
room to improve our system. One main reason
is that our system only uses simple features (i.e.,
bag-of-words) and these simple features may have
poor discriminating power. Another possible rea-
son may be that in training data there are at least
half sentences without annotated aspect terms. In
this case, when we used all words in the sentences
as features, it may bring much noise. In future
work, we consider to generate more effective fea-
tures from external resources to indicate the re-

lationships between aspects and categories to im-
prove our system.

4 Aspect Term Sentiment Polarity
Classification System

Once we extract aspect terms, this task aims at
classifying the sentiment orientation of the anno-
tated aspect terms. To address this task, we firstly
extracted three types of features: sentiment lexi-
con based features, topic model based features and
other features. Then two machine learning algo-
rithms, i.e., SVM and MaxEnt, were used to con-
duct classification models.

4.1 Features

4.1.1 Sentiment Lexicon (SL) Features
We observed that the sentiment orientation of an
aspect term is usually revealed by the surrounding
terms. So in this feature we took four words before
and four words after the current aspect term and
then calculated their respective positive,negative
and neutral scores. During the calculation we re-
versed the sentiment orientation of the term if a
negation occurs before it. We manually built a
negative list: {no, nor, not, neither, none, no-
body, nothing, hardly, seldom}. Eight sentimen-
t lexicons are used: Bing Liu opinion lexicon4,
General Inquirer lexicon5, IMDB6, MPQA7, Sen-
tiWordNet8, NRC emotion lexicon9, NRC Hash-
tag Sentiment Lexicon10 and NRC Sentiment140
Lexicon11. With regard to the synonym selection
of SentiWordNet, we selected the first term in the
synset as our lexicon. If the eight words surround-
ing the aspect term do not exist in the eight cor-
responding sentiment lexicons, we set their three
sentiment scores as 0. Then we got 24 sentimen-
t values for each word (3 polarities * 8 lexicons)
and summed up the values of eight words for each
sentiment polarity (i.e., positive, negative and neu-
ral). Finally we got 24 sentiment lexicon features
for each aspect.

4http://www.cs.uic.edu/l̃iub/FBS/sentiment-
analysis.html#lexicon

5http://www.wjh.harvard.edu/ĩnquirer/homecat.htm
6http://anthology.aclweb.org//S/S13/S13-

2.pdf#page=444
7http://mpqa.cs.pitt.edu/
8http://sentiwordnet.isti.cnr.it/
9http://mailman.uib.no/public/corpora/2012-

June/015643.html
10http://www.umiacs.umd.edu/s̃aif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
11http://sentiwordnet.isti.cnr.it/
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feature F-pos(%) F-neg(%) F-neu(%) Acc(%)
MaxEnt SVM MaxEnt SVM MaxEnt SVM MaxEnt SVM

SL 72.50± 1.91 70.99± 5.91 65.10± 1.99 65.66± 3.48 25.54± 5.68 24.02± 9.28 62.28± 2.59 61.61± 4.68
+Other 72.92± 2.12 72.70± 1.44 65.93± 3.89 65.09± 3.67 31.14± 5.77 34.00± 7.31 62.88± 3.22 62.54± 3.17
+Topic 73.14± 1.02 72.21± 1.44 65.55± 5.43 65.58± 3.45 34.34± 10.55 12.16± 4.96 63.00± 4.34 61.74± 3.10

Table 6: The results of our system in subtask 2 on laptop training data based on 5-fold cross validation.

features F-pos(%) F-neg(%) F-neu(%) Acc(%)
MaxEnt SVM MaxEnt SVM MaxEnt SVM MaxEnt SVM

SL 79.78± 1.37 79.85± 1.35 49.37± 3.54 47.96± 4.52 26.02± 3.62 31.67± 2.84 65.61± 2.59 65.45± 1.98
+Other 80.48± 2.18 79.09± 1.42 53.17± 2.70 50.51± 3.34 29.25± 3.60 33.13± 6.89 66.80± 2.33 65.21± 2.35
+Topic 80.71± 1.71 77.94± 1.34 52.61± 2.52 46.65± 3.17 34.51± 3.35 3.40± 2.79 67.18± 2.52 64.72± 1.48

Table 7: The results of our system in subtask 2 on restaurant training data based on 5-fold cross valida-
tion.

4.1.2 Topic Features
In this section we considered to use the bag-of-
topics feature to replace the traditional bag-of-
words feature since the bag-of-words feature are
very sparse in the data set. To construct the cluster-
s of topics, we used the LDA12 based topic model
to estimate the K topics (in our experiment, we
set K to 50) from training data. Then we inferred
the topic distribution from training and test data
respectively as topic features.

4.1.3 Other Features
Besides, we also proposed the following other fea-
tures in order to capture more useful information
from the short texts.

Aspect distance This feature records the num-
ber of words from the current aspect to the next
aspect in the same sentence. If the current aspect
term is the last term in the sentence, this value is
calculated as the negative number of words from
the current aspect to the former aspect. If only one
aspect term exists in a sentence, then the value is
set to zero.

Number of aspects This feature describes the
number of aspect terms in the current sentence.

Negation flag feature We set this feature as 1
if a negation word occurs in the current sentence,
otherwise -1.

Number of negations This feature is the num-
ber of negation words in the current sentence.

4.2 Classification Algorithms

The maximum entropy and SVM which are imple-
mented in Mallet toolkit (McCallum, 2002) and
LibSVM (Chang and Lin, 2011) respectively are

12http://www.cs.princeton.edu/ blei/lda-c/

used to construct the classification model from
training data. Due to the limit of time, all parame-
ters are set as defaults.

4.3 Results and Discussions

4.3.1 Results on Training Data

To compare the performance of different features
and different algorithms, we performed a 5-fold
cross validation on training data of two domain-
s. Table 6 and Table 7 show the results of two
domains in terms of F-scores and accuracy with
mean and standard deviation. The best results are
shown in bold.

From above two tables, we found that (1) Max-
Ent performed better than SVM on both dataset-
s and all feature types, and (2) using all features
achieved the best results. Moreover, the F-pos re-
sult was the highest in both datasets and the pos-
sible reason is that the majority of training in-
stances are positive sentiment. We also found that
in restaurant dataset, F-neg (52.61%) was much
smaller than F-pos (80.17%). However, in lap-
top dataset, they performed comparable results.
The possible reason is that the number of neg-
ative instances (805) is much smaller than the
number of positive instances (2164) in restauran-
t dataset, while the distribution is nearly even in
laptop dataset. So for restaurant data, we also con-
ducted another controlled experiment which dou-
bled the amount of negative instances of restaurant
dataset. Table 8 shows the preliminary experimen-
tal results on the doubled negative training data. It
illustrates that the F-neg increases a little but the
overall accuracy without any improvement even
slightly decreases after doubling the negative in-
stances. This result is beyond our expectation but
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no further deep analysis has been done so far.

Strategy F-pos(%) F-neg(%) F-neu(%) Acc(%)
Double 80.28 55.11 19.22 65.48

No double 80.71 52.61 34.51 67.18

Table 8: The results of controlled experiment on
restaurant dataset (MaxEnt).

4.3.2 Results on Test Data
Based on above results on training data, our final
system used all provided training data for both do-
mains. The MaxEnt algorithm is used for our final
system. Table 9 shows our results alone with the
top two systems results released by organizers.

Our final results ranked the 12th on the lap-
top dataset and the 14th on the restaurant dataset.
On one hand, the accuracy in restaurant dataset is
higher than laptop dataset for the possible reason
that the data size of restaurant dataset is much big-
ger than that of laptop dataset. On the other hand,
our results ranked middle in both datasets. Since
we utilized eight contextual words around aspect
to extract features and it may bring some noise.

Dataset laptop restaurant
our system 61.16 70.72

rank 1 system 70.49 80.95
rank 2 system 66.97 80.16

Table 9: The Accuracy (%) of our system and the
top two systems on test dataset in subtask 2.

5 Aspect Category Sentiment Polarity
System

The aspect category sentiment polarity classifi-
cation task is also only applicable to restauran-
t domain. For this task, we adopted the bag-
of-sentiment words representation, extracted sen-
timent features and used the supervised machine
learning algorithms to determine the sentimen-
t orientation of each category.

5.1 Features
To extract features, we firstly used eight sentiment
lexicons mentioned in Section 4.1.1 to build a big
sentiment words dictionary. Then we extracted al-
l aspect words and all sentiment words in train-
ing set as features. In the training and test data,
we used the sentiment polarity score of sentiment
word and the presence or absence of each aspect
term as their feature values.

5.2 Classification Algorithms

The MaxEnt algorithm implemented in Mallet (M-
cCallum, 2002) with default parameters is used to
build a polarity classifier.

5.3 Experiment and Results

We used all features and the maximum entropy al-
gorithm to conduct our final system. Table 10 list-
s the final results of our submitted system along
with top two systems.

As shown in Table 10, the accuracy of our sys-
tem is 0.63 while the best result is 0.83. The main
reason is that the features we used are quite sim-
ple. For the future work, more sufficient features
are examined to help classification.

6 Conclusion

In this work we proposed a combination of NP
and NER method and multiple features for aspec-
t extraction. And we also used multiple features
including eight sentiment lexicons for aspect and
category sentiment classification. Our final sys-
tems rank above average in the four subtasks. In
future work, we would expect to improve the re-
call of aspect terms extraction by extending name
lists using external data and seek other effective
features such as discourse relation, syntactic struc-
ture to improve the classification accuracy.

Systems our system rank 1 system rank 2 system
Acc(%) 63.41 82.93 78.15

Table 10: The accuracy of our system and the top
two systems of subtask 4 on test dataset
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Abstract

Microblogging websites (such as Twitter,
Facebook) are rich sources of data for
opinion mining and sentiment analysis. In
this paper, we describe our approaches
used for sentiment analysis in twitter (task
9) organized in SemEval 2014. This task
tries to determine whether the sentiment
orientations conveyed by the whole tweets
or pieces of tweets are positive, negative
or neutral. To solve this problem, we ex-
tracted several simple and basic features
considering the following aspects: surface
text, syntax, sentiment score and twitter
characteristic. Then we exploited these
features to build a classifier using SVM
algorithm. Despite the simplicity of fea-
tures, our systems rank above the average.

1 Introduction

Microblogging services such as Twitter1, Face-
book2 today play an important role in expressing
opinions on a variety of topics, discussing current
issues or sharing one’s feelings about different ob-
jects in our daily life (Agarwal and Sabharwal,
2012). Therefore, Twitter (and other platforms)
has become a valuable source of users’ sentiments
and opinions and with the continuous and rapid
growth of the number of tweets, analyzing the sen-
timents expressed in twitter has attracted more and
more researchers and communities, for example,
the sentiment analysis task in twitter was held in

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1http://twitter.com
2http://facebook.com/

SemEval 2013 (Nakov et al., 2013). It will bene-
fit lots of real applications such as simultaneously
businesses, media outlets, and help investors to
discover product trends, identify customer pref-
erences and categorize users by analyzing these
tweets (Becker et al., 2013).

The task of sentiment analysis in twitter in Se-
mEval 2014 (Sara et al., 2014) aims to classify
whether a tweet’s sentiment is positive, negative or
neutral at expression level or message level. The
expression-level subtask (i.e., subtask A) is to de-
termine the sentiment of a marked instance of a
word or phrase in the context of a given message,
while the message-level subtask (i.e., subtask B)
aims to determine the sentiment of a whole mes-
sage. Previous work (Nakov et al., 2013) showed
that message-level sentiment classification is more
difficult than that of expression-level (i.e., 0.690 vs
0.889 in terms of F-measure) since a message may
be composed of inconsistent sentiments.

To date, lots of approaches have been proposed
for conventional blogging sentiment analysis and
a very broad overview is presented in (Pang and
Lee, 2008). Inspired by that, many features used
in microblogging mining are adopted from tradi-
tional blogging sentiment analysis task. For ex-
ample, n-grams at the character or word level,
part-of-speech tags, negations, sentiment lexicons
were used in most of current work (Agarwal et
al., 2011; Barbosa and Feng, 2010; Zhu et al.,
2013; Mohammad et al., 2013; Kökciyan et al.,
2013). They found that n-grams are still effective
in spite of the short length nature of microblog-
ging and the distributions of different POS tags
in tweets with different polarities are highly dif-
ferent (Pak and Paroubek, 2010). Compared with
formal blog texts, tweets often contain many in-
formal writings including slangs, emoticons, cre-
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ative spellings, abbreviations and special marks
(i.e., mentions @ and hashtags #), and thus many
twitter-specific features are proposed to character-
ize this phenomena. For example, features record
the number of emoticons, elongated words and
hashtags were used in (Mohammad et al., 2013;
Zhu et al., 2013; Kökciyan et al., 2013). In this
work, we adopted many features from previous
work and then these features were fed to SVM to
perform classification.

The remainder of this paper is organized as fol-
lows. Section 2 describes our systems including
preprocessing, feature representations, data sets,
etc. Results of two subtasks and discussions are
reported in Section 3. Finally, we conclude this
paper in Section 4.

2 Our Systems

We extracted eight types of features and the first
six types were used in subtask A and all features
were used in subtask B. Then, several classifica-
tion algorithms were examined on the develop-
ment data set and the algorithm with the best per-
formance was chosen in our final submitted sys-
tems.

2.1 Preprocessing
In order to remedy as many informal texts as
possible, we recovered the elongated words to
their normal forms, e.g., “goooooood” to “good”
and collected about five thousand slangs or ab-
breviations from Internet to convert each slang
to its complete form, e.g., “1dering” to “won-
dering”, “2g2b4g” to “to good to be forgotten”.
Then these preprocessed texts were used to extract
non twitter-specific features (i.e., POS, lexicon, n-
grams, word cluster and indicator feature).

2.2 Feature Representations
2.2.1 POS Features
(Pak and Paroubek, 2010) found that POS tags
help to identify the sentiments of tweets and they
pointed out that objective tweets often contain
more nouns than subjective tweets and subjec-
tive tweets may carry more adjectives and adverbs
than objective tweets. Therefore, we used Stan-
ford POS Tagger3 and recorded the number of
four different tags for each tweet: noun (the cor-
responding POS tags are “NN”, “NNP”, “NNS”
and “NNPS”), verb (the corresponding POS tags

3http://nlp.stanford.edu/software/tagger.shtml

are “VB”, “VBD”, “VBG”, “VBN”, “VBP” and
“VBZ”), adjective (the corresponding POS tags
are “JJ”, “JJR” and “JJS”) and adverb (the corre-
sponding POS tags are “RB”, “RBR” and “RBS”).
Then we normalized them by the length of given
instance or message.

2.2.2 Sentiment Lexicon-based Features
Sentiment lexicons are widely used to calculate
the sentiment scores of phrases or messages in pre-
vious work (Nakov et al., 2013; Mohammad et al.,
2013) and they are proved to be very helpful to
detect the sentiment orientation. Given a phrase
or message, we calculated the following six fea-
ture values: (1) the ratio of positive words to all
words, i.e., the number of positive words divided
by the number of total words; (2) the ratio of neg-
ative words to all words; (3) the ratio of objective
words to all words; (4) the ratio of positive senti-
ment score to the total score (i.e., the sum of the
positive and negative score); (5) the ratio of nega-
tive sentiment score to the total score; (6) the ratio
of positive score to negative score, if the negative
score is zero, which means this phrase or message
has a very strong positive sentiment orientation,
we set ten times of positive score as its value.

During the calculation, we also considered the
effects of negation words since they may reverse
the sentiment orientation in most cases. To do so,
we defined the negation context as a snippet of a
tweet that starts with a negation word and ends
with punctuation marks. If a non-negation word
is in a negation context and also in the sentiment
lexicon, we reverse its polarity. For example, the
word “bad” in phrase “not bad” originally has a
negative score of 0.625, after reversal, this phrase
has a positive score of 0.625. A manually made
list containing 29 negation words (e.g., no, hardly,
never, etc) was used in our experiment.

Four sentiment lexicons were used to decide
whether a word is subjective or objective and ob-
tain its sentiment score.

MPQA (Wilson et al., 2009). This subjectiv-
ity lexicon contains about 8000 subjective words
and each word has two types of sentiment strength:
strong subjective and weak subjective, and four
kinds of sentiment polarities: positive, negative,
both (positive and negative) and neutral. We used
this lexicon to determine whether a word is posi-
tive, negative or objective and assign a value of 0.5
or 1 if it is weak or strong subjective (i.e., positive
or negative) respectively.
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SentiWordNet(SWN) (Baccianella et al.,
2010). This sentiment lexicon contains about
117 thousand items and each item corresponds
to a synset of WordNet. Three sentiment scores:
positivity, negativity, objectivity are provided and
the sum of these three scores is always 1, for
example, living#a#3, positivity: 0.5, negativity:
0.125, objectivity: 0.375. In experiment we used
the most common sense of a word.

NRC (Mohammad et al., 2013). Mohammad et
al. collected two sets of tweets and each tweet con-
tains the seed hashtags or emoticons and then they
labeled the sentiment orientation for each tweet
according to its hashtags or emoticons. They used
pointwise mutual information (PMI) to calculate
the sentiment score for each word and obtained
two sentiment lexicons (i.e., hashtag lexicon and
emoticon lexicon).

IMDB. We generated an unigram lexicon by
ourselves from a large movie review data set from
IMDB website (Maas et al., 2011) which con-
tains 25,000 positive and 25,000 negative movie
reviews by calculating their PMI scores.

2.2.3 Word n-Gram
Words in themselves in tweets usually carry out
the original sentiment orientation, so we con-
sider word n-grams as one feature. We removed
URLs, mentions, hashtags, stopwords from tweet
and then all words were stemmed using the nltk4

toolkit. For subtask A, only unigram was used and
we used word frequency as feature values. For
subtask B, both unigram and bigram were used.
Besides, weighted unigram was also used where
we replaced word frequency with their sentiment
scores using the hashtag lexicon and emoticon lex-
icon in NRC.

2.2.4 Twitter-specific Features
Punctuation Generally, punctuation may express
users’ sentiment in a certain extent. Therefore we
recorded the frequency of the following four types
of punctuation: exclamation (!), question (?), dou-
ble (”) and single marks (’). In addition, we also
recorded the number of contiguous sequences of
exclamation marks, question marks, and both of
them which appeared at the end of a phrase or mes-
sage.
Emoticon Emoticons are widely used to directly
express the sentiment of users and thus we counted

4http://nltk.org/

the number of positive emoticons, negative emoti-
cons and the sum of positive and negative emoti-
cons. To identify the polarities of emoticons, we
collected 36 positive emoticons and 33 negative
emoticons from the Internet.
Hashtag A hashtag is a short phrase that con-
catenates more than one words together without
white spaces and users usually use hashtags to
label the subject topic of a tweet, e.g., #toobad,
#ihateschool, #NewGlee. Since a hashtag may
contain a strong sentiment orientation, we first
used the Viterbi algorithm (Berardi et al., 2011)
to split hashtags and then calculated the sentiment
scores of hashtags using the hashtag and emoticon
lexicon in NRC.

2.2.5 Word Cluster
Apart from n-gram, we presented another word
representations based on word clusters to explore
shallow semantic meanings and reduced the spar-
sity of the word space. 1000 word clusters pro-
vided by CMU pos-tagging tool5 were used to rep-
resent tweet contents. For each tweet we recorded
the number of words from each cluster, resulting
in 1000 features.

2.2.6 Indicator Features
We observed that the polarity of a message some-
times is revealed by some special individual posi-
tive or negative words in a certain degree. How-
ever the sentiment lexicon based features where
a synthetical sentiment score of a message is cal-
culated may hide this information. Therefore, we
directly used several individual sentiment scores
as features. Specifically, we created the following
sixteen features for each message where the hash-
tag and emoticon lexicons were used to obtain sen-
timent scores: the sentiment scores of the first and
last sentiment-bearing words, the three highest and
lowest sentiment scores.

2.3 Data sets and Evaluation Metric
The organizers provide tweet ids and a script for
all participants to collect data. Table 1 shows the
statistics of the data set used in our experiments.
To examine the generalization of models trained
on tweets, the test data provided by the organiz-
ers consists of instances from different domains
for both subtasks. Specifically, five corpora are in-
cluded: LiveJournal(2014) is a collection of com-
ments from LiveJournal blogs, SMS2013 is a SMS

5http://www.ark.cs.cmu.edu/TweetNLP/
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data set directly from last year, Twitter2013 is a
twitter data set directly from last year, Twitter2014
is a new twitter data set and Twitter2014Sarcasm
is a collection of tweets that contain sarcasm. No-
tice that the data set SMS2013 and Twitter2013
were also used as our development set. Form Ta-
ble 1, we find that (1) the class distributions of test
data sets almost agree with training data sets for
both subtasks, (2) the percentages of class neutral
in two subtasks are significantly different (4.7%
vs 45.5%), which reflects that a sentence which is
composed of different sentiment expressions may
act neutrality, (3) Twitter2014Sarcasm data set is
very small. According to the guideline, we did not
use any development data for training in the eval-
uation period.

data set Positive Negative Neutral Total
subtask A:
train 3,609(61%) 2,023(34%) 265(5%) 5,897
dev 2,734(62%) 1,541(35%) 160(3%) 4,435
test
LiveJournal 660(50%) 511(39%) 144(11%) 1,315
SMS2013 1,071(46%) 1,104(47%) 159( 7%) 2,334
Twitter2013 2,734(62%) 1,541(35%) 160(3%) 4,435
Twitter2014 1,807(73%) 578(23%) 88( 4%) 2,473
Twitter2014S 82(66%) 37(30%) 5(4%) 124
all 6,354(59%) 3,771(35%) 556(6%) 10,681
subtask B:
train 3,069(36%) 1,313(15%) 4,089(49%) 8,471
dev 1,572(41%) 601(16%) 1,640(43%) 3,813
test
LiveJournal 427(37%) 304(27%) 411(36%) 1,142
SMS2013 492(24%) 394(19%) 1,207(57%) 2,093
Twitter2013 1,572(41%) 601(16%) 1,640(43%) 3,813
Twitter2014 982(53%) 202(11%) 669(36%) 1,853
Twitter2014S 33(38%) 40(47%) 13(15%) 86
all 3,506(39%) 1,541(17%) 3,940(44%) 8,987

Table 1: Statistics of data sets in training (train),
development (dev), test (test) set. Twitter2014S
stands for Twitter2014Sarcasm.

We used macro-averaged F-measure of positive
and negative classes (without neutral since it is
margin in training data) to evaluate the perfor-
mance of our systems and the averaged F-measure
of five corpora was used to rank the final results.

2.4 Submitted System Configurations

For each subtask, each team can submit two runs:
(1) constrained: only the provided data set can be
used for training and no additional annotated data
is allowed for training, however other resources
such as lexicons are allowed; (2) unconstrained:
any additional data can be used for training. We
explored several classification algorithms on the
development set and configured our final systems
as follows. For constrained system, we used SVM
and logistic regression algorithm implemented in
scikit-learn toolkit (Pedregosa et al., 2011) to ad-

dress two subtasks respectively and used self-
training strategy to conduct unconstrained system.
Self-training is a semi-supervised learning method
where a classifier is first trained with a small
amount of labeled data and then we repeat the fol-
lowing procedure: the most confident predictions
by the current classifier are added to training pool
and then the classifier is retrained(Zhu, 2005). The
parameters in constrained models and the growth
size k and iteration number T in self-training are
listed in Table 2 according to the results of prelim-
inary experiments.

task constrained unconstrained
subtask A SVM, kernel=rbf, c=500 k=100, T=40
subtask B LogisticRegression, c=1 k=90, T=40

Table 2: System configurations for the constrained
and unconstrained runs in two subtasks.

3 Results and Discussion

3.1 Results
We submitted four systems as described above and
their final results are shown in Table 3, as well as
the top-ranked systems released by the organizers.
From the table, we observe the following findings.

Firstly, we find that the results of message-level
polarity classification are much worse than the re-
sults of expression-level polarity disambiguation
(82.93 vs 61.22) on both constrained and uncon-
strained systems, which is consistent with the pre-
vious work (Nakov et al., 2013). The low per-
formance of message-level task may result from
two possible reasons: (1) a message may con-
tain mixed sentiments and (2) the strength of
sentiments is different. In contrast, the texts in
expression-level task are usually short and contain
a single sentiment orientation, which leads to bet-
ter performance.

Secondly, whether on constrained or uncon-
strained systems, the performance on Twit-
ter2014Sarcasm data set is much worse than the
performance on the other four data sets. This is
because that sarcasm often expresses the opposite
meaning of what it seems to say, that means the
actual sentiment orientation of a word is opposite
to its original orientation. Moreover, even for our
human it is a challenge to identify whether it is a
sarcasm or not.

Thirdly, the results on LiveJournal and SMS
are comparable to the results on Twitter2013 and
Twitter2014 in both subtasks, which indicates that
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online comments and SMS share some common
characteristics with tweets (e.g., emoticons and
punctuation). Therefore, in case of lack of labeled
online comments or SMS data, we can use the ex-
isting tweets as training data instead.

Fourthly, our unconstrained systems exploit the
test data of year 2014 in training stage and perform
a worse result in subtask B. We speculate that the
failure of using self-training on message-level data
set is because that the performance of initial clas-
sifier was low and thus in the following iterations
more and more noisy instances were selected to
add the training pool, which eventually resulted in
a final weak classifier.

In summary, we adopted some simple and ba-
sic features to classify the polarities of expressions
and messages and they were promising. For sub-
task A, our systems rank 5th out of 19 submissions
under the constrained setting and rank 2nd out of 6
submissions under the unconstrained setting. For
subtask B, our systems rank 16th out of 42 submis-
sions under the constrained setting and rank 5th
out of 8 submissions under the unconstrained set-
ting.

3.2 Feature Combination Experiments

To explore the effectiveness of different feature
types, we conducted a series of feature combina-
tion experiments using the constrained setting as
shown in Table 2 for both subtasks. For each time
we repeated to add one feature type to current fea-
ture set and then selected the best one until all the
feature types were processed. Table 4 shows the
results of different feature combinations and the
best results are shown in bold font.

From Table 4, we find that (1) MPQA, n-gram
and Word cluster are the most effective feature
types to identify the polarities; (2) The POS tags
make margin contribution to improve the perfor-
mance since Stanford parser is designed for for-
mal texts and in the future we may use specific
parser instead; (3) The lexicon IMDB extracted
from movie reviews has negative effects to clas-
sify twitter data, which indicates that there exist
differences in the way of expressing sentiments
between these two domains; (4) Twitter-specific
features, i.e., hashtag and emoticon, are not as ef-
fective as expected. This is because they are sparse
in the data sets. In subtask A with 16578 instances,
only 292 instances (1.76%) have hashtags and 419
instances (2.52%) have emoticons. In subtask B

with 17458 messages, more instances have hash-
tags (16.72%) and emoticons (26.70%). (5) For
subtask A MPQA, n-gram, NRC and punctuation
features achieve the best performance and for sub-
task B the best performance is achieved by using
almost all features.

In summary, we find that n-gram and some lex-
icons such as MPQA are the most effective while
twitter-specific features (i.e., hashtag and emoti-
con) are not as discriminating as expected and the
main reason for this is that they are sparse in the
data sets.

Feature Subtask A Feature Subtask B
MPQA 77.49 Word cluster 53.50
.+n-gram 80.08(2.59) .+MPQA 58.35(4.85)
.+NRC 82.42(2.34) .+W1Gram 60.22(1.87)
.+Pun. 83.83(1.41) .+Pun. 60.99(0.77)
.+POS 83.83(0) .+Indicator 61.38(0.39)
.+Emoticon 83.49(-0.34) .+SWN 61.51(0.13)
.+Hashtag 83.54(0.05) .+Hashtag 61.54(0.03)
.+IMDB 83.51(-0.03) .+n-gram 61.56(0.02)
.+SWN 82.92(-0.59) .+Emoticon 61.69(0.13)
- - .+POS 61.71(0.02)
- - .+IMDB 61.11(-0.6)
- - .+NRC 61.23(0.12)

Table 4: The results of feature combination exper-
iments. The numbers in the brackets are the per-
formance increments compared with the previous
results. “.+” means to add current feature to the
previous feature set.

4 Conclusion

In this paper we used several basic feature types to
identify the sentiment polarity at expression level
or message level and these feature types include
n-gram, sentiment lexicon and twitter-specific fea-
tures, etc. Although they are simple, our systems
are still promising and rank above average (e.g.,
rank 5th out of 19 and 16th out of 42 in subtask A
and B respectively under the constrained setting).
For the future work, we would like to analyze the
distributions of different sentiments in sentences.
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Abstract

This paper reports our submissions to the
Cross Level Semantic Similarity (CLSS)
task in SemEval 2014. We submitted
one Random Forest regression system on
each cross level text pair, i.e., Paragraph
to Sentence (P-S), Sentence to Phrase (S-
Ph), Phrase to Word (Ph-W) and Word
to Sense (W-Se). For text pairs on P-S
level and S-Ph level, we consider them as
sentences and extract heterogeneous types
of similarity features, i.e., string features,
knowledge based features, corpus based
features, syntactic features, machine trans-
lation based features, multi-level text fea-
tures, etc. For text pairs on Ph-W level
and W-Se level, due to lack of informa-
tion, most of these features are not ap-
plicable or available. To overcome this
problem, we propose several information
enrichment methods using WordNet syn-
onym and definition. Our systems rank the
2nd out of 18 teams both on Pearson cor-
relation (official rank) and Spearman rank
correlation. Specifically, our systems take
the second place on P-S level, S-Ph level
and Ph-W level and the 4th place on W-Se
level in terms of Pearson correlation.

1 Introduction

Semantic similarity is an essential component of
many applications in Natural Language Process-
ing (NLP). Previous works often focus on text se-
mantic similarity on the same level, i.e., paragraph
to paragraph or sentence to sentence, and many ef-
fective text semantic measurements have been pro-
posed (Islam and Inkpen, 2008), (Bär et al., 2012),

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

(Heilman and Madnani, 2012). However, in many
real world cases, the two texts may not always
be on the same level. The Cross Level Semantic
Similarity (CLSS) task in SemEval 2014 provides
a universal platform to measure the degree of se-
mantic equivalence between two texts across dif-
ferent levels. For each text pair on four cross lev-
els, i.e., Paragraph to Sentence (P-S), Sentence to
Phrase (S-Ph), Phrase to Word (Ph-W) and Word
to Sense (W-Se), participants are required to re-
turn a similarity score which ranges from 0 (no
relation) to 4 (semantic equivalence). We partici-
pate in all the four cross levels and take the second
place out of all 18 teams both on Pearson correla-
tion (official) and Spearman correlation ranks.

In this work, we present a supervised regres-
sion system for each cross level separately. For
P-S level and S-Ph level, we regard the paragraph
of P-S as a long sentence, and the phrase of S-
Ph as a short sentence. Then we use various types
of text similarity features including string features,
knowledge based features, corpus based features,
syntactic features, machine translation based fea-
tures, multi-level text features and so on, to cap-
ture the semantic similarity between two texts.
Some of these features are borrowed from our pre-
vious system in the Semantic Textual Similarity
(STS) task in ∗SEM Shared Task 2013 (Zhu and
Lan, 2013). Others followed the previous work
in (Šaric et al., 2012) and (Pilehvar et al., 2013).
For Ph-W level and W-Se level, since the text pairs
lack contextual information, for example, word or
sense alone no longer shares the property of sen-
tence, most features used in P-S level and S-Ph
level are not applicable or available. To overcome
the problem of insufficient information in word
and sense level, we propose several information
enrichment methods to extend information with
the aid of WordNet (Miller, 1995), which signif-
icantly improved the system performance.

The rest of this paper is organized as follows.
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Section 2 describes the similarity features used on
four cross levels in detail. Section 3 presents ex-
periments and the results of four cross levels on
training data and test data. Conclusions and future
work are given in Section 4.

2 Text Similarity Measurements

To estimate the semantic similarity on P-S level
and S-Ph level, we treat the text pairs on both lev-
els as traditional semantic similarity computation
on sentence level and adopt 7 types of features,
i.e., string features, knowledge based features, cor-
pus based features, syntactic features, machine
translation based features, multi-level text features
and other features. All of them are borrowed
from previous work due to their superior perfor-
mance reported. For Ph-W level and W-Se level,
since word and sense alone cannot be treated as
sentence, we propose an information enrichment
method to extend original text with the help of
WordNet. Once the word or sense is enriched with
its synonym and its definition description, we can
thus adopt the previous features as well.

2.1 Preprocessing

For P-S level and S-Ph level, we perform text pre-
processing before we extract semantic similarity
features. Firstly, the Stanford parser1 is used for
sentence tokenization and parsing. Specifically,
the tokens n’t and ’m are replaced with not and
am. Secondly, the Stanford POS Tagger2 is used
for POS tagging. Thirdly, we use Natural Lan-
guage Toolkit3 for WordNet based Lemmatiza-
tion, which lemmatizes the word to its nearest base
form that appears in WordNet, for example, was
is lemmatized as is rather than be.

2.2 Features on P-S Level and S-Ph Level

We treat all text pairs of P-S level and S-Ph level
as sentences and then extract 7 types of similar-
ity features as below. Totally we get 52 similarity
features. Generally, these similarity features are
represented as numerical values.
String features. Intuitively, if two texts share
more strings, they are considered to be more se-
mantic similar. We extract 13 string based features
in consideration of the common sequence shared

1http://nlp.stanford.edu/software/lex-parser.shtml
2http://nlp.stanford.edu/software/tagger.shtml
3http://nltk.org/

by two texts. We chose the Longest Common Se-
quence (LCS) feature (Zhu and Lan, 2013), the N-
gram Overlap feature (n=1,2,3) and the Weighted
Word Overlap feature (Šaric et al., 2012). All
these features are computed from original text
and from the processed text after lemmatization
as well. Besides, we also computed the N-gram
Overlap on character level, named Character N-
gram (n=2,3,4).

Knowledge based features. Knowledge based
similarity estimation relies on the semantic net-
work of words. In this work we used the knowl-
edge based features in our previous work (Zhu and
Lan, 2013), which include four word similarity
metrics based on WordNet: Path similarity (Banea
et al., 2012), WUP similarity (Wu and Palmer,
1994), LCH similarity (Leacock and Chodorow,
1998) and Lin similarity (Lin, 1998). Then two
strategies, i.e., the best alignment strategy and the
aggregation strategy, are employed to propagate
the word similarity to the text similarity. Totally
we get 8 knowledge based features.

Corpus based features. Latent Semantic Analy-
sis (LSA) (Landauer et al., 1997) is a widely used
corpus based measure when evaluating text simi-
larity. In this work we use the Vector Space Sen-
tence Similarity proposed by (Šaric et al., 2012),
which represents each sentence as a single distri-
butional vector by summing up the LSA vector of
each word in the sentence. Two corpora are used
to compute the LSA vector of words: New York
Times Annotated Corpus (NYT) and Wikipedia.
Besides, in consideration of different weights for
different words, they also calculated the weighted
LSA vector for each word. In addition, we use
the Co-occurrence Retrieval Model (CRM) feature
from our previous work (Zhu and Lan, 2013) as
another corpus-based feature. The CRM is calcu-
lated based on a notion of substitutability, that is,
the more appropriate it is to substitute word w1

in place of word w2 in a suitable natural language
task, the more semantically similar they are. At
last, 6 corpus based features are extracted.

Syntactic features. Dependency relations of sen-
tences often contain semantic information. In this
work we follow two syntactic dependency similar-
ity features presented in our previous work (Zhu
and Lan, 2013), i.e., Simple Dependency Overlap
and Special Dependency Overlap. The Simple De-
pendency Overlap measures all dependency rela-
tions while the Special Dependency Overlap fea-
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ture only focuses on the primary roles extracted
from several special dependency relations, i.e.,
subject, object and predict.
Machine Translation based features. Machine
translation (MT) evaluation metrics are designed
to assess whether the output of a MT system is
semantically equivalent to a set of reference trans-
lations. This type of feature has been proved to
be effective in our previous work (Zhu and Lan,
2013). As a result, we extend the original 6 lexical
level MT metrics to 10 metrics, i.e., WER, TER,
PER, BLEU, NIST, ROUGE-L, GTM-1,GTM-2,
GTM-3 and METEOR-ex. All these metrics are
calculated using the Asiya Open Toolkit for Auto-
matic Machine Translation (Meta-) Evaluation4.
Multi-level text Features. (Pilehvar et al., 2013)
presented a unified approach to semantic similar-
ity at multiple levels from word senses to text
documents through the semantic signature repre-
sentation of texts (e.g., sense, word or sentence).
Given initial nodes (senses), they performed ran-
dom walks on semantic network like WordNet,
then the resulting frequency distribution over all
nodes in WordNet served as semantic signature of
the text. By doing so the similarity of two texts
can be computed as the similarity of two seman-
tic signatures. In this work, we borrowed their
semantic signature method and adopted 3 similar-
ity measures to estimate two semantic signatures,
i.e., Cosine similarity, Weighted Overlap and Top-
k Jaccard (k=250, 500).
Other Features. Besides, other simple surface
features from texts, such as numbers, symbols and
length of texts, are extracted. Following (Šaric et
al., 2012) we adopt relative length difference, rela-
tive information content difference, numbers over-
lap, case match and stocks match.

2.3 Features on Ph-W Level

For Ph-W level, since word and phrase no longer
share the property of sentence, most features used
for sentence similarity estimation are not applica-
ble for this level. Therefore, we adopt the follow-
ing features as the basic feature set for Ph-W level.
String features. This type contains two fea-
tures. The first is a boolean feature which records
whether the word appears in the phrase. The sec-
ond is the Weighted Word Overlap feature men-
tioned in Section 2.2.
Knowledge based features. As described in Sec-

4http://nlp.lsi.upc.edu/asiya/

tion 2.2, we compute the averaged score and the
maximal score between word and phrase using the
four word similarity measures based on WordNet,
i.e., Path, WUP, LCH and Lin.
Corpus based features. We adopt the Vector
Space Similarity described in Section 2.2. Specif-
ically, for word the single distributional vector is
the LSA vector of itself.
Multi-level text Features. As described in Sec-
tion 2.2, since the semantic signatures are pro-
posed for various kinds of texts (e.g., sense, word
or sentence), they serve as one basic feature.

Obviously, the above features extracted from
the phrase-word pair is significantly less than the
features used in P-S level and S-Ph level. This is
because the information contained in phrase-word
pair is much less than that in sentences and para-
graphs. To overcome this information insufficient
problem, we propose an information enrichment
method based on WordNet to extend the initial
word in Ph-W level as below.
Word Expansion with Definition. For the word
part in Ph-W level, we extract its definition in
terms of its most common concept in WordNet and
then replace the initial word with this definition.
This gives a much richer set of initial single word.
Since a word may have many senses, not all of
this word definition expansion are correct. But we
show below empirically that using this expanded
set improves performance. By doing so we treat
the phrase and the definition of the original word
as two sentences, and thus, all features described
in Section 2.2 are calculated.

2.4 Features on W-Se Level

For W-Se level, the information that a word and
a sense carry is less than other levels. Hence, the
basic features that can be extracted from the origi-
nal word-sense pair are even less than Ph-W level.
Therefore the basic features we use for W-Se level
are as follows.
String features. Two boolean string features
are used. One records whether the word-sense
pair shares the same POS tag and another records
whether the word-sense pair share the same word.
Knowledge based features. As described in Sec-
tion 2.2, four knowledge-based word similarity
measures based on WordNet are calculated.
Multi-level text Features. The multi-level text
features are the same as Ph-W level.

In consideration of the lack of contextual infor-
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mation between word-sense pair, we also propose
three information enrichment methods in order to
generate more effective information for word and
sense with the aid of WordNet.
Word Expansion with Synonyms. For the word
part in W-Se level, we extract its synonyms with
the help of WordNet, then update the values
of above basic features if its synonyms achieve
higher feature value than the original word itself.
Sense Expansion with Definition. For the sense
in W-Se level, we directly use its definition in
WordNet to enrich its information. By doing so
the similarity estimation of W-Se level can be con-
verted to that of word-phrase level, therefore we
use all basic features for Ph-W level described in
Section2.3.
Word-Sense Expansion with Definition. Un-
like the above two expansion methods which focus
only on one part of W-Se level, the third method is
to enrich information for word and sense together
by using their definitions in WordNet. As before
we extract the word definition in terms of its most
common concept in WordNet and then replace the
initial word with this definition. Then we use all
features in Section 2.2.

3 Experiment and Results

We adopt supervised regression model for each
cross level. In order to compare the performance
of different regression algorithms, we perform 5-
fold cross validation on training data for each cross
level. We used several regression algorithms in-
cluding Support Vector Regression (SVR) with
3 different kernels (i.e., linear, polynomial and
rbf), Random Forest, Stochastic Gradient Descent
(SGD) and Decision Tree implemented in the
scikit-learn toolkit (Pedregosa et al., 2011). The
system performance is evaluated in Pearson corre-
lation (r) (official measure) and Spearman’s rank
correlation (ρ).

3.1 Results on Training Data

Table 1 and Table 2 show the averaged perfor-
mance of different regression algorithms in terms
of Pearson correlation (r) and Spearman’s rank
correlation (ρ) on the training data of P-S level and
S-Ph level using 5-fold cross validation, where the
standard deviation is given in brackets. The re-
sults show that Random Forest performs the best
both on P-S level and S-Ph level whether in (r) or
(ρ). We also find that the results of P-S level are

better than that of S-Ph level, and the reason may
be that paragraph and sentence pair contain more
information than the sentence and phrase pair.

Regression Algorithm r (%) ρ (%)
SVR, ker=rbf 80.70 (±1.47) 79.90 (±1.66)

SVR, ker=poly 73.78 (±1.57) 74.41 (±1.89)
SVR, ker=linear 80.43 (±1.13) 79.46 (±1.51)
Random Forest 80.92 (±1.40) 80.20 (±2.00)

SGD 77.61 (±0.76) 77.14 (±1.49)
Decision Tree 73.23 (±2.14) 71.84 (±2.55)

Table 1: Results of different algorithms using 5-
fold cross validation on training data of P-S level

Regression Algorithm r (%) ρ (%)
SVR, ker=rbf 66.14 (±5.14) 65.76 (±5.93)

SVR, ker=poly 58.93 (±2.29) 63.62 (±4.15)
SVR, ker=linear 66.78 (±4.51) 66.34 (±4.90)
Random Forest 73.18 (±5.23) 70.30 (±5.51)

SGD 63.18 (±3.61) 64.80 (±4.21)
Decision Tree 67.66 (±6.76) 66.03 (±6.64)

Table 2: Results of different algorithms using 5-
fold cross validation on training data of S-Ph level

Table 3 shows the results of different regression
algorithms and different feature sets in terms of
r and ρ on the training data of Ph-W level us-
ing 5-fold cross validation, where the basic fea-
tures are denoted as Feature Set A and their com-
bination with word definition expansion features
are denoted as Feature Set B. The results show
that almost all algorithms performance have been
improved by using word definition expansion fea-
ture except Decision Tree. This proves the effec-
tiveness of the information enrichment method we
proposed in this level. Besides, Random Forest
achieves the best performance again with r=44%
and ρ=41%. However, in comparison with P-S
level and S-Ph level, all scores in Table 3 drop a
lot even with information enrichment method. The
possible reason may be two: the reduction of in-
formation on Ph-W level and our information en-
richment method brings in a certain noise as well.

For W-Se level, in order to examine the perfor-
mance of different information enrichment meth-
ods, we perform experiments on 4 different fea-
ture sets from A to D, where feature set A con-
tains the basic features, feature set B, C and D
add one information enrichment method based on
former feature set. Table 4 and 5 present the r
and ρ results of 4 feature sets using different re-
gression algorithms. From Table 4 and 5 we see
that most correlation scores are below 40% and
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Regression Algorithm r (%) ρ (%)
Feature Set A1 Feature Set B2 Feature Set A Feature Set B

SVR, ker=rbf 34.67 (±4.34) 42.62 (±6.36) 33.26 (±4.24) 40.87 (±6.24)
SVR, ker=poly 19.00 (±4.26) 24.06 (±5.55) 21.13 (±4.86) 28.35 (±6.11)
SVR, ker=linear 34.87 (±4.65) 41.91 (±2.05) 35.42 (±5.05) 42.69 (±0.55)
Random Forest 43.17 (±7.72) 44.00 (±6.88) 40.34 (±5.71) 41.80 (±6.76)

SGD 26.20 (±3.37) 38.69 (±4.60) 23.55 (±5.01) 38.00 (±2.64)
Decision Tree 39.22 (±7.54) 32.22 (±12.74) 38.90 (±6.03) 31.64 (±10.47)

1 Feature Set A = basic feature set
2 Feature Set B = Feature Set A + Word Definition Expansion Features

Table 3: Results of different algorithms using 5-fold cross validation on training data of Ph-W level

the performance of W-Se level is the worst among
all these four levels. This illustrates that the less
information the texts contain, the worse perfor-
mance the model achieves. Again the Random
Forest algorithm performs the best among all algo-
rithms. Again almost all information enrichment
features perform better than Feature set A. This il-
lustrates that these information enrichment meth-
ods do help to improve performance. When we ob-
serve the three information enrichment methods,
we find that feature set C performs the best. In
comparison with feature set C, feature set B only
used word synonyms to expand information and
this expansion is quite limited. Feature set D per-
forms better than B but still worse than C. The rea-
son may be that when we extend sense with its def-
inition, the definition is accurate and exactly repre-
sents the meaning of sense. However since a word
often contains more than one concepts, and when
we use the definition of the most common concept
to extend word, such extension may not be correct
and the generated information may contain more
noise and/or change the original meaning of word.

3.2 Results on Test Data

According to the experiments on training data, we
select Random Forest as the final regression algo-
rithm. The number of trees in Random Forest n is
optimized to 50 and the rest parameters are set to
be default. All features in Section 2.2 are used on
P-S level, S-Ph level and Ph-W level. For W-Se
level, we take all features except word-sense def-
inition expansion feature which has been shown
to impair the system performance. For each level,
all training examples are used to learn the corre-
sponding regression model. According to the offi-
cial results released by organizers, Table 6 and Ta-
ble 7 list the top 3 systems in terms of r (official)
and ρ. Our final systems rank the second both in
terms of r and ρ and also achieve the second place
on P-S level, S-Ph level and Ph-W level, as well

as the 4th place on W-Se level in terms of official
Pearson correlation.

Team P-S S-Ph Ph-W W-Se r Rank
SimCompass 0.811 0.742 0.415 0.356 1

ECNU 0.834 0.771 0.315 0.269 2
UNAL-NLP 0.837 0.738 0.274 0.256 3

Table 6: Pearson Correlation (official) on test data

Team P-S S-Ph Ph-W W-Se ρ Rank
SimCompass 0.801 0.728 0.424 0.344 1

ECNU 0.821 0.757 0.306 0.263 2
UNAL-NLP 0.820 0.710 0.249 0.236 6

Table 7: Spearman Correlation on test data

4 Conclusion

We build a supervised Random Forest regression
model for each cross level. For P-S and S-Ph level,
we adopt the ensemble of heterogeneous similar-
ity features, i.e., string features, knowledge based
features, corpus based features, syntactic features,
machine translation based features, multi-level
text features and other features to capture the se-
mantic similarity between two texts with distinc-
tively different lengths. For Ph-W and W-Se level,
we propose information enrichment methods to
lengthen original texts in order to generate more
semantic features, which has been proved to be ef-
fective. Our submitted final systems rank the 2nd
out of 18 teams both on Pearson Rank (official
rank) and Spearman Rank, and also rank the sec-
ond place on P-S level, S-Ph level and Ph-W level,
as well as the 4th place on W-Se level in terms of
Pearson correlation. In future work we will focus
on information enrichment methods which bring
in more accurate information and less noises.
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Regression Algorithm Feature Set A1 Feature Set B2 Feature Set C3 Feature Set D4

SVR, ker=rbf 29.85 (±7.29) 34.49 (±5.55) 36.80 (±6.46) 22.19 (±6.49)
SVR, ker=poly 24.62 (±3.63) 29.27 (±3.53) 26.55 (±1.27) 25.89 (±5.63)
SVR, ker=linear 29.58 (±5.88) 34.87 (±3.97) 35.96 (±1.75) 34.57 (±3.75)
Random Forest 22.87 (±5.59) 33.97 (±1.78) 40.43 (±3.00) 37.54 (±3.20)

SGD 26.32 (±7.31) 27.36 (±6.44) 32.50 (±6.02) 18.00 (±6.13)
Decision Tree 23.40 (±5.65) 26.33 (±3.86) 33.64 (±6.97) 31.86 (±3.95)

1 Feature Set A = basic feature set
2 Feature Set B = Feature Set A + Synonym Expansion
3 Feature Set C = Feature Set B + Sense Definition Expansion Features
4 Feature Set D = Feature Set C + Word-Sense Definition Expansion Features

Table 4: Results of different algorithms using 5-fold CV on training data of W-Se level (r (%))

Regression Algorithm Feature Set A Feature Set B Feature Set C Feature Set D
SVR, ker=rbf 28.41 (±8.99) 29.61 (±6.23) 34.18 (±6.36) 22.90 (±6.78)

SVR, ker=poly 23.05 (±7.53) 22.47 (±4.47) 21.63 (±4.37) 25.37 (±7.25)
SVR, ker=linear 27.29 (±7.02) 31.79 (±4.00) 34.75 (±3.55) 34.19 (±3.06)
Random Forest 19.66 (±6.75) 31.98 (±3.21) 38.57 (±3.60) 37.56 (±3.15)

SGD 24.12 (±7.98) 24.62 (±6.36) 29.27 (±5.86) 23.05 (±11.23)
Decision Tree 22.30 (±5.25) 25.09 (±3.64) 31.99 (±7.81) 30.51 (±5.27)

Table 5: Results of different algorithms using 5-fold CV on training data of W-Se level (ρ (%))
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Abstract

This paper presents our approach to se-
mantic relatedness and textual entailment
subtasks organized as task 1 in SemEval
2014. Specifically, we address two ques-
tions: (1) Can we solve these two sub-
tasks together? (2) Are features proposed
for textual entailment task still effective
for semantic relatedness task? To address
them, we extracted seven types of features
including text difference measures pro-
posed in entailment judgement subtask, as
well as common text similarity measures
used in both subtasks. Then we exploited
the same feature set to solve the both sub-
tasks by considering them as a regression
and a classification task respectively and
performed a study of influence of differ-
ent features. We achieved the first and the
second rank for relatedness and entailment
task respectively.

1 Introduction

Distributional Semantic Models (DSMs)(surveyed
in (Turney et al., 2010)) exploit the co-occurrences
of other words with the word being modeled to
compute the semantic meaning of the word un-
der the distributional hypothesis: “similar words
share similar contexts” (Harris, 1954). Despite
their success, DSMs are severely limited to model
the semantic of long phrases or sentences since
they ignore grammatical structures and logical
words. Compositional Distributional Semantic
Models (CDSMs)(Zanzotto et al., 2010; Socher et

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

al., 2012) extend DSMs to sentence level to cap-
ture the compositionality in the semantic vector
space, which has seen a rapidly growing interest
in recent years. Although several CDSMs have
been proposed, benchmarks are lagging behind.
Previous work (Grefenstette and Sadrzadeh, 2011;
Socher et al., 2012) performed experiments on
their own datasets or on the same datasets which
are limited to a few hundred instances of very short
sentences with a fixed structure.

To provide a benchmark so as to compare dif-
ferent CDSMs, the sentences involving composi-
tional knowledge task in SemEval 2014 (Marelli et
al., 2014) develops a large dataset which is full of
lexical, syntactic and semantic phenomena. It con-
sists of two subtasks: semantic relatedness task,
which measures the degree of semantic relatedness
of a sentence pair by assigning a relatedness score
ranging from 1 (completely unrelated) to 5 (very
related); and textual entailment (TE) task, which
determines whether one of the following three re-
lationships holds between two given sentences A
and B: (1) entailment: the meaning of B can be
inferred from A; (2) contradiction: A contradicts
B; (3) neutral: the truth of B cannot be inferred on
the basis of A.

Semantic textual similarity (STS) (Lintean and
Rus, 2012) and semantic relatedness are closely
related and interchangeably used in many liter-
atures except that the concept of semantic simi-
larity is more specific than semantic relatedness
and the latter includes concepts as antonymy and
meronymy. In this paper we regard the semantic
relatedness task as a STS task. Besides, regardless
of the original intention of this task, we adopted
the mainstream machine learning methods instead
of CDSMs to solve these two tasks by extracting
heterogenous features.
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Like semantic relatedness, TE task (surveyed
in (Androutsopoulos and Malakasiotis, 2009)) is
also closely related to STS task since in TE task
lots of similarity measures at different levels are
exploited to boost classification. For example,
(Malakasiotis and Androutsopoulos, 2007) used
ten string similarity measures such as cosine sim-
ilarity at the word and the character level. There-
fore, the first fundamental question arises, i.e.,
“Can we solve both of these two tasks together?”
At the same time, since high similarity does not
mean entailment holds, the TE task also utilizes
other features besides similarity measures. For ex-
ample, in our previous work (Zhao et al., 2014)
text difference features were proposed and proved
to be effective. Therefore, the second question sur-
faces here, i.e., “Are features proposed for TE task
still effective for STS task?” To answer the first
question, we extracted seven types of features in-
cluding text similarity and text difference and then
fed them to classifiers and regressors to solve TE
and STS task respectively. Regarding the second
question, we conducted a series of experiments
to study the performance of different features for
these two tasks.

The rest of the paper is organized as follows.
Section 2 briefly describes the related work on
STS and TE tasks. Section 3 presents our systems
including features, learning methods, etc. Section
4 shows the experimental results on training data
and Section 5 reports the results of our submitted
systems on test data and gives a detailed analysis.
Finally, Section 6 concludes this paper with future
work.

2 Related Work

Existing work on STS can be divided into 4
categories according to the similarity measures
used (Gomaa and Fahmy, 2013): (1) string-based
method (Bär et al., 2012; Malakasiotis and An-
droutsopoulos, 2007) which calculates similarities
using surface strings at either character level or
word level; (2) corpus-based method (Li et al.,
2006) which measures word or sentence similar-
ities using the information gained from large cor-
pora, including Latent Semantic Analysis (LSA),
pointwise mutual information (PMI), etc. (3)
knowledge-based method (Mihalcea et al., 2006)
which estimates similarities with the aid of ex-
ternal resources, such as WordNet1; (4) hybrid

1http://wordnet.princeton.edu/

method (Zhu and Lan, 2013; Croce et al., 2013)
which integrates multiple similarity measures and
adopts supervised machine learning algorithms to
learn the different contributions of different fea-
tures.

The approaches to the task of TE can be roughly
divided into two groups: (1) logic inference
method (Bos and Markert, 2005) where automatic
reasoning tools are used to check the logical repre-
sentations derived from sentences and (2) machine
learning method (Zhao et al., 2013; Gomaa and
Fahmy, 2013) where a supervised model is built
using a variety of similarity scores.

Unlike previous work which separately ad-
dressed these two closely related tasks by using
simple feature types, in this paper we endeavor to
simultaneously solve these two tasks by using het-
erogenous features.

3 Our Systems

We consider the two tasks as one by exploiting the
same set of features but using different learning
methods, i.e., classification and regression. Seven
types of features are extracted and most of them
are based on our previous work on TE (Zhao et
al., 2014) and STS (Zhu and Lan, 2013). Many
learning algorithms and parameters are examined
and the final submitted systems are configured ac-
cording to the preliminary results on training data.

3.1 Preprocessing
Three text preprocessing operations were per-
formed before we extracted features, which in-
cluded: (1) we converted the contractions to their
formal writings, for example, doesn’t is rewrit-
ten as does not. (2) the WordNet-based Lemma-
tizer implemented in Natural Language Toolkit2

was used to lemmatize all words to their nearest
base forms in WordNet, for example, was is lem-
matized to be. (3) we replaced a word from one
sentence with another word from the other sen-
tence if the two words share the same meaning,
where WordNet was used to look up synonyms.
No word sense disambiguation was performed and
all synsets for a particular lemma were considered.

3.2 Feature Representations
3.2.1 Length Features (len)
Given two sentences A and B, this feature type
records the length information using the follow-

2http://nltk.org/
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ing eight measure functions:
|A|, |B|, |A−B|, |B −A|, |A ∪B|, |A ∩B|, (|A|−|B|)

|B| ,
(|B|−|A|)

|A|

where |A| stands for the number of non-repeated
words in sentence A , |A−B| means the number of
unmatched words found in A but not in B , |A ∪B|
stands for the set size of non-repeated words found
in either A or B and |A ∩ B| means the set size of
shared words found in both A and B .

Moreover, in consideration of different types of
words make different contributions to text similar-
ity, we also recorded the number of words in set
A−B and B −A whose POS tags are noun, verb,
adjective and adverb respectively. We used Stan-
ford POS Tagger3 for POS tagging. Finally, we
collected a total of sixteen features.

3.2.2 Surface Text Similarity (st)
As shown in Table 1, we adopted six commonly
used functions to calculate the similarity between
sentence A and B based on their surface forms,
where −→x and −→y are vectorial representations of
sentences A and B in tf ∗ idf schema.

Measure Definition
Jaccard Sjacc = |A ∩ B|/|A ∪ B|

Dice Sdice = 2 ∗ |A ∩ B|/(|A|+ |B|)
Overlap Sover = |A ∩ B|/|A| and |A ∩ B|/|B|
Cosine Scos = −→x · −→y /(∥ −→x ∥ · ∥ −→y ∥)

Manhattan M(−→x ,−→y ) =
n∑

i=1
|xi − yi|

Euclidean E(−→x ,−→y ) =

√
n∑

i=1
(xi − yi)2

Table 1: Surface text similarity measures and their
definitions used in our experiments.

We also used three statistical correlation coef-
ficients (i.e., Pearson, Spearmanr, Kendalltau) to
measure similarity by regarding the vectorial rep-
resentations as different variables. Thus we got ten
features at last.

3.2.3 Semantic Similarity (ss)
The above surface text similarity features only
consider the surface words rather than their ac-
tual meanings in sentences. In order to build the
semantic representations of sentences, we used a
latent model to capture the contextual meanings
of words. Specifically, we adopted the weighted
textual matrix factorization (WTMF) (Guo and
Diab, 2012) to model the semantics of sentences
due to its reported good ability to model short
texts. This model first factorizes the original term-
sentence matrix X into two matrices such that

3http://nlp.stanford.edu/software/tagger.shtml

Xi,j ≈ P T
∗,i.Q∗,j , where P∗,i is a latent seman-

tic vector profile for word wi and Q∗,j is a vector
profile that represents the sentence sj . Then we
employed the new representations of sentences,
i.e., Q, to calculate the semantic similarity be-
tween sentences using Cosine, Manhattan, Eu-
clidean, Pearson, Spearmanr, Kendalltau measures
respectively, which results in six features.

3.2.4 Grammatical Relationship (gr)

The grammatical relationship feature measures
the semantic similarity between two sentences
at the grammar level and this feature type was
also explored in our previous work (Zhao et al.,
2013; Zhu and Lan, 2013). We used Stanford
Parser4 to acquire the dependency information
from sentences and the grammatical information
are represented in the form of relation unit, e.g.
nsubj(example, this), where nsubj stands for a de-
pendency relationship between example and this.
We obtained a sequence of relation units for each
sentence and then used them to estimate similarity
by adopting eight measure functions described in
Section 3.2.1, resulting in eight features.

3.2.5 Text Difference Measures (td)

There are two types of text difference measures.
The first feature type is specially designed for
the contradiction entailment relationship, which
is based on the following observation: there ex-
ist antonyms between two sentences or the nega-
tion status is not consistent (i.e., one sentence has
a negation word while the other does not have) if
contradiction holds. Therefore we examined each
sentence pair and set this feature as 1 if at least one
of these conditions is met, otherwise -1. WordNet
was used to look up antonyms and a negation list
with 28 words was used.

The second feature type is extracted from two
word sets A−B and B−A as follows: we first cal-
culated the similarities between every word from
A − B and every word from B − A , then took the
maximum, minimum and average value of them as
features. In our experiments, four WordNet-based
similarity measures (i.e., path, lch, wup, jcn (Go-
maa and Fahmy, 2013)) were used to calculate the
similarity between two words.

Totally, we got 13 text difference features.

4http://nlp.stanford.edu/software/lex-parser.shtml
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3.2.6 String Features (str)
This set of features is taken from our previous
work (Zhu and Lan, 2013) due to its superior per-
formance.
Longest common sequence (LCS) We computed
the LCS similarity on the original and lemmatized
sentences. It was calculated by finding the maxi-
mum length of a common contiguous subsequence
of two strings and then dividing it by the smaller
length of two strings to eliminate the impacts of
length imbalance.
Jaccard similarity using n-grams We obtained
n-grams at three different levels, i.e., the origi-
nal word level, the lemmatized word level and the
character level. Then these n-grams were used for
calculating Jaccard similarity defined in Table 1.
In our experiments, n = {1, 2, 3} were used for
the word level and n = {2, 3, 4} were used for the
character level.
Weighted word overlap (WWO) Since not all
words are equally important, the traditional Over-
lap similarity may not be always reasonable. Thus
we used the information content of word w to es-
timate the importance of word w as follows:

ic(w) = ln
∑

w′∈C freq(w′)
freq(w)

where C is the set of words in the corpus and
freq(w) is the frequency of the word w in the
corpus. To compute ic(w), we used the Web 1T
5-gram Corpus 5. Then the WWO similarity of
two sentence s1 and s2 was calculated as follows:

Simwwo(s1, s2) =

∑
w∈s1∩s2

ic(w)∑
w′∈s2

ic(w′)

Due to its asymmetry, we used the harmonic mean
of Simwwo(s1, s2) and Simwwo(s2, s1) as the fi-
nal WWO similarity. The WWO similarity is cal-
culated on the original and lemmatized strings re-
spectively.

Finally, we got two LCS features, nine Jaccard
n-gram features and two WWO features.

3.2.7 Corpus-based Features (cps)
Two types of corpus-based feature are also bor-
rowed from our previous work (Zhu and Lan,
2013), i.e., vector space sentence similarity and
co-occurrence retrieval model (CRM), which re-
sults in six features.

5https://catalog.ldc.upenn.edu/LDC2006T13

Co-occurrence retrieval model (CRM) The
CRM word similarity is calculated as follows:

SimCRM (w1, w2) =
2 ∗ |c(w1) ∩ c(w2)|
|c(w1)|+ |c(w2)|

where c(w) is the set of words that co-occur with
word w. We used the 5-gram part of the Web 1T
5-gram Corpus to obtain c(w). We only consid-
ered the word w with |c(w)| > T and then took
the top 200 co-occurring words ranked by the co-
occurrence frequency as its c(w). In our experi-
ment, we set T = {50, 200}. To propagate the
similarity from words to sentences, we adopted
the best alignment strategy used in (Banea et al.,
2012) to align two sentences.
Vector space sentence similarity This feature set
is taken from (Šarić et al., 2012), which is based
on distributional vectors of words. First we per-
formed latent semantic analysis (LSA) over two
corpora, i.e., the New York Times Annotated Cor-
pus (NYT) (Sandhaus, 2008) and Wikipedia, to es-
timate the distributions of words. Then we used
two strategies to convert the distributional mean-
ings of words to sentence level: (i) simply sum-
ming up the distributional vector of each word w
in the sentence, (ii) using the information content
ic(w) to weigh the LSA vector of each word w and
summing them up. Then we used cosine similarity
to measure the similarity of two sentences.

3.3 Learning Algorithms
We explored several classification algorithms to
classify entailment relationships and regression
algorithms to predict similarity scores using the
above 72 features after performing max-min stan-
dardization procedure by scaling them to [-1,1].
Five supervised learning methods were explored:
Support Vector Machine (SVM) which makes the
decisions according to the hyperplanes, Random
Forest (RF) which constructs a multitude of de-
cision trees at training time and selects the mode
of the classes output by individual trees, Gradient
Boosting (GB) that produces a prediction model
in the form of an ensemble of weak prediction
models, k-nearest neighbors (kNN) that decides
the class labels with the aid of the classes of k
nearest neighbors, and Stochastic Gradient De-
scent (SGD) which uses SGD technique to min-
imize loss functions. These supervised learning
methods are implemented in scikit-learn toolkit
(Pedregosa et al., 2011). Besides, we also used
a semi-supervised learning strategy for both tasks
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in order to make full use of unlabeled test data.
Specifically, the co-training algorithm was used to
address TE task according to (Zhao et al., 2014).
Its strategy is to train two classifiers with two data
views and to add the top confident predicted in-
stances by one classifier to expand the training set
of another classifier and then to re-train the two
classifiers on the expanded training sets. For STS
task, we utilized CoReg algorithm (Zhou and Li,
2005) which uses two kNN regressors to perform
co-training paradigm.

3.4 Evaluation Measures
In order to evaluate the performance of differ-
ent algorithms, we adopted the official evaluation
measures, i.e., Pearson correlation coefficient for
STS task and accuracy for TE task.

4 Experiments on Training Data

To make a reasonable comparison between differ-
ent algorithms, we performed 5-fold cross valida-
tion on training data with 5000 sentence pairs. The
parameters tuned in different algorithms are listed
below: the trade-off parameter c in SVM, the num-
ber of trees n in RF, the number of boosting stages
n in GB, the number of nearest neighbors k in kNN
and the number of passes over the training data n
in SGD. The rest parameters are set to be default.

Algorithm STS task TE task
Pearson para. Accuracy para.

SVM .807±.058 c=10 83.46±2.09 c=100
RF .805±.052 n=40 83.16±2.64 n=30
GB .806±.055 n=210 83.22±2.48 n=140

kNN .797±.062 k=25 82.54±2.45 k=17
SGD .765±.064 n=29 78.88±1.99 n=15

Table 2: The 5-fold cross validation results on
training data with mean and standard deviation for
each algorithm.

Table 2 reports the experimental results of 5-
fold cross validation with mean and standard devi-
ation and the optimal parameters on training data.
The results of semi-supervised learning methods
are not listed because only a few parameters are
tried due to the limit of time. From this table we
see that SVM, RF and GB perform comparable re-
sults to each other.

5 Results on Test Data

5.1 Submitted System Configurations
According to the above preliminary experimental
results, we configured five final systems for each

task. Table 3 presents the classification and regres-
sion algorithms with their parameters used in the
five systems for each task.

System STS task TE task
1 SVR, c=10 SVC, c=100
2 GB, n=210 GB, n=140
3 RF, n=40 RF, n=30
4 CoReg, k=13 co-training, k=40
5 majority voting majority voting

Table 3: Five system configurations for test data
for two tasks.

Among them, System 1 acts as our primary
and baseline system that employs SVM algorithm
and as comparison System 2 and System 3 exploit
GB and RF algorithm respectively. Unlike super-
vised settings in the aforementioned systems, Sys-
tem 4 employs a semi-supervised learning strategy
to make use of unlabeled test data. For CoReg,
the number of iteration and the number of near-
est neighbors are set as 100 and 13 respectively,
and for each iteration in co-training, the number
of confident predictions is set as 40. To further
improve performance, System 5 combines the re-
sults of 5 different algorithms (i.e. MaxEnt, SVM,
kNN, GB, RF) through majority voting. We used
the averaged values of the outputs from different
regressors as final similarity scores for semantic
similarity measurement task and chose the major
class label for entailment judgement task.

5.2 Results and Discussion

Table 4 lists the final results officially released by
the organizers in terms of Pearson and accuracy.
The best performance among these five systems is
shown in bold font. All participants can submit a
maximum of five runs for each task and only one
primary system is involved in official ranking. The
lower part of Table 4 presents the top 3 results and
the results with ∗ are achieved by our systems.

System STS task TE task(%)
1 0.8279 83.641
2 0.8389 84.128
3 0.8414 83.945
4 0.8210 81.165
5 0.8349 83.986

rank 1st 0.8279* 84.575
rank 2nd 0.8272 83.641*
rank 3rd 0.8268 83.053

Table 4: The results of our five systems for two
tasks and the officially top-ranked systems.

From this table, we found that (1) System 3 (us-
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ing GB algorithm) and System 2 (using RF algo-
rithm) achieve the best performance among three
supervised systems in STS and TE task respec-
tively. However, there is no significant difference
among these systems. (2) Surprisingly, the semi-
supervised system (i.e., System 4) that employs
the co-training strategy to make use of test data
performs the worst, which is beyond our expecta-
tion. Based on our further observation in TE task,
the possible reason is that a lot of misclassified ex-
amples are added into the training pool in the ini-
tial iteration, which results in worse models built
in the subsequent iterations. And we speculate that
the weak learner kNN employed in CoReg may
lead to poor performance as well. (3) The major-
ity voting strategy fails to boost the performance
since GB and RF algorithm obtain the best perfor-
mance among these algorithms. (4) Our systems
obtain very good results on both STS and TE task,
i.e., we rank 1st out of 17 participants in STS task
and rank 2nd out of 18 participants in TE task ac-
cording to the results of primary systems and as
shown in Table 4 our primary system (i.e., System
1) do not achieve the best performance.

In a nutshell, our systems rank first and second
in STS and TE task respectively. Therefore the
answer to the first question raised in Section 1 is
yes. For two tasks, i.e., STS and TE, which are
very closely related but slightly different, we can
use the same features to solve them together.

5.3 Feature Combination Experiments

To answer the second question and explore the in-
fluences of different feature types, we performed
a series of experiments under the best system set-
ting. Table 5 shows the results of different feature
combinations where for each time we selected and
added one best feature type. From this table, we
find that for STS the most effective feature is cps
and for TE task is td. Almost all feature types have
positive effects on performance. Specifically, td
alone achieves 81.063% in TE task which is quite
close to the best performance (84.128%) and cps
alone achieves 0.7544 in STS task. Moreover, the
td feature proposed for TE task is quite effective
in STS task as well, which suggests that text se-
mantic difference measures are also crucial when
measuring sentence similarity.

Therefore the answer to the second question is
yes. It is clear that the features proposed for TE are
also effective for STS and heterogenous features

yield better performance than a single feature type.

len st ss gr td str cps result
+ 0.7544 (STS)

+ + 0.8057(+5.13)
+ + + 0.8280(+2.23)
+ + + + 0.8365(+0.85)

+ + + + + 0.8426(+0.61)
+ + + + + + 0.8432(+0.06)

+ + + + + + + 0.8429(-0.03)
+ 81.063 (TE)

+ + 82.484(+1.421)
+ + + 82.992(+0.508)
+ + + + 83.844(+0.852)
+ + + + + 83.925(+0.081)
+ + + + + + 84.067(+0.142)

+ + + + + + + 84.128(+0.061)

Table 5: Results of feature combinations, the num-
bers in the brackets are the performance incre-
ments compared with the previous results.

6 Conclusion

We set up five state-of-the-art systems and each
system employs different classifiers or regressors
using the same feature set. Our submitted systems
rank the 1st out of 17 teams in STS task with the
best performance of 0.8414 in terms of Pearson
coefficient and rank the 2nd out of 18 teams in
TE task with 84.128% in terms of accuracy. This
result indicates that (1) we can use the same fea-
ture set to solve these two tasks together, (2) the
features proposed for TE task are also effective
for STS task and (3) heterogenous features out-
perform a single feature. For future work, we may
explore the underlying relationships between these
two tasks to boost their performance by each other.

Acknowledgments

This research is supported by grants from Na-
tional Natural Science Foundation of China
(No.60903093) and Shanghai Knowledge Service
Platform Project (No. ZF1213).

References
Ion Androutsopoulos and Prodromos Malakasiotis.

2009. A survey of paraphrasing and textual entail-
ment methods. arXiv preprint arXiv:0912.3747.

Carmen Banea, Samer Hassan, Michael Mohler, and
Rada Mihalcea. 2012. Unt:a supervised synergistic
approach to semantictext similarity. In First Joint
Conference on Lexical and Computational Seman-
tics (*SEM.

276



Daniel Bär, Chris Biemann, Iryna Gurevych, and
Torsten Zesch. 2012. Ukp: Computing seman-
tic textual similarity by combining multiple content
similarity measures. In Proceedings of the First
Joint Conference on Lexical and Computational Se-
mantics, pages 435–440. Association for Computa-
tional Linguistics.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceed-
ings of the conference on Human Language Tech-
nology and Empirical Methods in Natural Language
Processing, pages 628–635. Association for Compu-
tational Linguistics.

Danilo Croce, Valerio Storch, and Roberto Basili.
2013. Unitor-core typed: Combining text similarity
and semantic filters through sv regression. In Pro-
ceedings of the 2nd Joint Conference on Lexical and
Computational Semantics, page 59.

Wael H Gomaa and Aly A Fahmy. 2013. A survey of
text similarity approaches. International Journal of
Computer Applications, 68(13):13–18.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011.
Experimental support for a categorical composi-
tional distributional model of meaning. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 1394–1404. Asso-
ciation for Computational Linguistics.

Weiwei Guo and Mona Diab. 2012. Modeling sen-
tences in the latent space. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics.

Zellig S Harris. 1954. Distributional structure. The
Philosophy of Linguistics,.

Yuhua Li, David McLean, Zuhair A Bandar, James D
O’shea, and Keeley Crockett. 2006. Sentence sim-
ilarity based on semantic nets and corpus statistics.
Knowledge and Data Engineering, IEEE Transac-
tions on, 18(8):1138–1150.

Mihai C. Lintean and Vasile Rus. 2012. Measuring se-
mantic similarity in short texts through greedy pair-
ing and word semantics. In FLAIRS Conference.
AAAI Press.

Prodromos Malakasiotis and Ion Androutsopoulos.
2007. Learning textual entailment using svms and
string similarity measures. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 42–47. Association for Com-
putational Linguistics.

M. Marelli, L. Bentivogli, M. Baroni, R. Bernardi,
S. Menini, and R. Zamparelli. 2014. Semeval-2014
task 1: Evaluation of compositional distributional
semantic models on full sentences through seman-
tic relatedness and textual entailment. In Proceed-
ings of SemEval 2014: International Workshop on
Semantic Evaluation.

Rada Mihalcea, Courtney Corley, and Carlo Strappa-
rava. 2006. Corpus-based and knowledge-based
measures of text semantic similarity. In AAAI, vol-
ume 6, pages 775–780.
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Abstract

This paper describes the system used
in Task-7 (Analysis of Clinical Text) of
SemEval-2014 for detecting disorder men-
tions and associating them with their re-
lated CUI of UMLS1. For Task-A, a CRF
based sequencing algorithm was used to
find different medical entities and a binary
SVM classifier was used to find relation-
ship between entities. For Task-B, a dic-
tionary look-up algorithm on a customized
UMLS-2012 dictionary was used to find
relative CUI for a given disorder mention.
The system achieved F-score of 0.714 for
Task A & accuracy of 0.599 for Task B
when trained only on training data set, and
it achieved F-score of 0.755 for Task A &
accuracy of 0.646 for Task B when trained
on both training as well as development
data set. Our system was placed 3rd for
both task A and B.

1 Introduction

A clinical document contains plethora of informa-
tion regarding patient’s medical condition in un-
structured format. So a sophisticated NLP sys-
tem built specifically for clinical domain can be
very useful in many different clinical applications.
In recent years, clinical NLP has gained a lot
of significance in research community because it
contains challenging tasks such as medical entity
recognition, abbreviation disambiguation, inter-
conceptual relationship detection, anaphora res-
olution, and text summarization. Clinical NLP
has also gained a significant attraction among the

1http://www.nlm.nih.gov/research/umls/
This work is licenced under a Creative Commons Attribution

4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

health care industry because it promises to de-
liver applications like computer assisted coding,
automated data abstraction, core/quality measure
monitoring, fraud detection, revenue loss preven-
tion system, clinical document improvement sys-
tem and so on.

Task-7 of SemEval-2014 was in continuation
of the 2013 ShaRe/CLEF Task-1 (Sameer Prad-
han, et al., 2013). This task was about finding
disorder mentions from the clinical text and as-
sociating them with their related CUIs (concept
unique identifiers) as given in the UMLS (Unified
Medical Language System). UMLS is the largest
available medical knowledge resource. It contains
2,885,877 different CUIs having 6,497,937 differ-
ent medical terms from over 100 different medi-
cal vocabularies. Finding accurate CUIs from free
clinical text can be very helpful in many healthcare
applications. Our aim for participating in this task
was to explore new techniques of finding CUIs
from clinical document.

Over the last few years many different Clin-
ical NLP systems like cTAKES (Savova, Guer-
gana K., et al., 2010), MetaMap (A. Aronson,
2001), MedLEE (C. Friedman et al., 1994) have
been developed to extract medical concepts from
a clinical document. Most of these systems focus
on rule based, medical knowledge driven dictio-
nary look-up approaches. In very recent past, a
few attempts have been made to use supervised or
semi-supervised learning models. In 2009, Yefang
Wang (Wang et al., 2009) used cascading clas-
sifiers on manually annotated data which fetched
F-score of 0.832. In 2010, i2b2 shared task chal-
lenge focused on finding test, treatment and prob-
lem mentions from clinical document.

In 2013, ShARe/CLEF task focused on finding
disorder mentions from clinical document and as-
signing relevant CUI code to it. In both i2b2 task
and ShaRe/CLEF task most of the systems used
either supervised or semi-supervised learning ap-
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proaches.
In this paper we have proposed a hybrid super-

vised learning approach based on CRF and SVM
to find out disorder mentions from clinical doc-
uments and a dictionary look-up approach on a
customized UMLS meta-thesaurus to find corre-
sponding CUI.

2 Data

The SemEval-2014 corpus comprises of de-
identified plain text from MIMIC2 version 2.5
database. A disorder mention was defined as any
span of text which can be mapped to a concept
in UMLS and which belongs to the Disorder se-
mantic group. There were 431 notes extracted
from intensive care unit having various clinical
report types (like radiology, discharge summary,
echocardiogram and ECG), out of which 99 notes
were used in development data set, 199 notes were
used in training data set and 133 notes were used
in testing data set.

Preliminary analysis on this data showed that
number of sentences in training documents were
comparatively smaller than the development or
test data set (Table 1). Number of disorder men-
tions were also significantly lower in training data
set than in development data set (Table 1).

Type Dev Train Test
Docuemnts 99 199 133
Sentence 9860 10485 17368
Token 102k 113k 177k
Avg token/sen 10.42 10.79 10.24
Cont. entity 4912 5,165 7,186
Disjoint Entity 439 651 4588
Avg Ent/Doc 54.05 29.22 57.47
Distinct CUI 1007 938 NA

Table 1: Numerical analysis on data.

3 System Design

Analysis of Task-A showed that disorder men-
tions also contain other UMLS semantic types like
findings, anatomical sites and modifiers (Table 2).
So we divided the task of finding disorder men-
tion in to two subtasks. First a CRF based se-
quencing model was used to find different disorder
mentions, modifiers, anatomical sites and findings.

2http://mimic.physionet.org/database/
releases/70-version-25.html

Then a binary SVM classifier was used to check
if relationship exists between a disorder and other
types of entities or not.

Example D
is

or
de

r

Fi
nd

in
gs

A
na

to
m

y

M
od

ifi
er

There is persistent
left lower lobe opacity
presumably atelectasis.

3 3 7 7

He had substernal chest
pain, sharp but without
radiation.

3 3 7 7

Patientt also developed
some erythema around
the stoma site on
hospital day two.

3 7 3 7

The tricuspid valve
leaflets are mildly thick-
ened.

7 3 3 7

Please call,if you find
swelling in the wound.

3 3 7 7

She also notes new sharp
pain in left shoulder
blade/back area.

3 7 3 7

An echocardiogram
demonstrated mild
left and right atrial
dilatation

3 7 7 3

Table 2: Entity Types co-relation and examples

For Task-B, we have used a simple dictionary
look up algorithm on a customized UMLS dictio-
nary. A preliminary analysis of UMLS entities in
general show that a single disorder mention may
consist of various types of linguistic phrases. It is
not necesarry that the system to detect these enti-
ties as a single phrase. The entities and their re-
lations may also occur in disjoint phrases as well.
Our analysis of the disorder entities inside UMLS
reveals that out of a total 278,859 disorders (based
on SNOMED-CT library), 96,069 are such that
can be broken down into more than one phrase,
which is roughly 1/3 of total number of disorders
in the UMLS.

3.1 System Workflow

The Work-flow of the system is as follow:
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Figure 1: System Workflow

3.1.1 Pre-processing

All the clinical documents used in this task
were de-identified. So information related to
hospital name, patient demographics, physician
names/signatures, dates, places, and certain lab-
data were converted into predefined patterns.
These patterns were hindering the flow of natu-
ral language. As a result of it, we were unable to
get accurate results for PoS tagging and chunking
of the sentences. So we replaced all of these de-
identified patterns with some text that appear more
as natural language. There were also some head-
ers and footers associated with all the documents,
which were actually irrelevant to this task. There-
fore all headers and footers were also removed at
the pre-processing level.

3.1.2 openNLP
We have used openNLP3 to perform basic NLP
tasks like sentence detection, tokenizing, PoS tag-
ging, chunking, parsing and stemming.

3.1.3 Dictionary Lookup
UMLS 2012AA dictionary with Lexical Variant
Generator (LVG)4 was used to perform dictionary
lookup task. Even though the task was only about
finding disorder mentions, we also identified en-
tities like procedures, finding, lab data, medicine,
anatomical site and medical devices to be used as
features in our CRF model. This was helpful in
decreasing the number of false positive. UMLS
TUI (Type Unique Identifier) used for different
entity type is described in Table 3. A rule-based
approach on the output of the OpenNLP syntac-
tic parser was used to detect possible modifiers for
disorder mentions.

Type Tui list

Disorder
T046,T047,T048,T049,T050,T191,
T037,T019,T184

Anatomical
Sites

T017,T021,T023,T024,T025,T026,
T029,T030

Procedures T059,T060,T061
Medicines T200,T120,T110
Lab Data T196,T119
Modifiers Customized Dictionary

Findings
T033,T034,T041,T084,T032,T201,
T053,T054

Table 3: Entity Types and their related TUI list
from UMLS

3.1.4 CRF Feature Generation
The feature sets were divided into three categories.
1) Clinical Features

i) Section Headers: A clinical note is often di-
vided into relevant segments called Section Head-
ers. These section headers provide very useful
information at the discourse level. Same section
header can have multiple variants. For example
History of Present Illness can also be written as
HPI, HPIS, Brief History etc. We have created a
dictionary of more than 550 different section head-
ers and classified them into more than 40 hierar-
chical categories. But using only section header
dictionary for classification can fetch many false

3https://opennlp.apache.org/
4http://lexsrv2.nlm.nih.gov/
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positives. Section header always appears in a pre-
defined similar sequences. So to remove these
false positives, we have used a Hidden Markov
Model(HMM) (Parth Pathak, et al, 2013). For this
task, we have used unigram section header id as a
feature for all the tokens in CRF.

ii) Dictionary Lookup: A binary feature was
used for all the different entity types detected from
UMLS dictionary from last pipeline.

iii) Abbreviations: Abbreviations Disambigua-
tion is one of the most challenging tasks in clinical
NLP. The primary reason for the same is a lack of
dictionary which contains most of the valid list of
abbreviations. For this task, we have used LRABR
as base dictionary to find out all the possible ab-
breviations and on top of that, a binary SVM clas-
sifier was used to check if the given abbreviation
has medical sense or not.
2) Textual Feature:

Snowball stemmer5 was used to find out stem
value of all the word tokens. Prefix and suffix of
length 2 to 5 were also used as features. Different
orthographic features like whole word capital, first
char capital, numeric values, dates, words contain-
ing hyphen or slash, medical units (mg/gram/ltr
etc.) were used as features.
3) Syntactic Features:

Different linguistic features like PoS tags and
chunks for each token were used. We have also
used head of the noun phrase as one of the feature
which can be very helpful in detecting the type of
an entity.

3.1.5 CRF toolkit
All the annotated data was converted into BIO
sequencing format. CRF++6 toolkit was used to
train and predict the model.

3.1.6 SVM
SVM was used to check whether a relationship ex-
ists between two entities or not. For this purpose
all the tokens between these two entities, their part
of speech tags and chunks were used as features.
Rules based on output of a syntactic parser were
also used as a binary feature. Some orthographic
features like all letter capital, contains colon (:),
contains semi colon (;), were also used as features.
LibSVM7 was used to train as well as predict the

5http://snowball.tartarus.org/
6http://crfpp.googlecode.com/
7http://www.csie.ntu.edu.tw/\˜cjlin/

libsvm/

model.

3.1.7 Dictionary Look-up for CUI detection
For a better mapping of the entities detected by
NLP inside the given input text, we found it to
be a better approach to divide the UMLS enti-
ties into various phrases. This was done semi-
automatically by splitting the strings based on
function words such as prepositions, particles and
non-nominal word classes such as verbs, adjec-
tives and adverbs. While most of the disorder enti-
ties in UMLS can be contained into a single noun
phrase (NP) there are also quite a few that contain
multiple NPs related with prepositional phrases
(PPs), verb phrases (VPs) and adjectival phrases
(ADJPs).

This task gave us a modified version of the
UMLS disorder entities along with their CUIs.
The following table (Table 4) gives a snapshot
of what this customized UMLS dictionary looked
like.

CUI Text P1 P2 P3

C001
3132

Dribbling
from
mouth

Dribbling from mouth

C001
4591

Bleeding
from nose

Bleeding from nose

C002
9163

Hemorr-
hage from
mouth

Hemo-
rrhage

from mouth

C039
2685

Chest pain
at rest

Chest pain at rest

C026
9678

Fatigue
during
pregnancy

Fatigue during
pregn
ancy

Table 4: An example of the modified UMLS disor-
der entities split as per their linguistic phrase types

Our dictionary look-up algorithm used this cus-
tomized UMLS dictionary as resource to find the
entities and assign the right CUIs.

4 Results & Error Analysis

4.1 Evaluation Calculations
The evaluation measures for Task A are Precision,
Recall and F-Meas, defined as:

Precision = TP
FP+TP

Recall = TP
TP+FN
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F-measure = 2∗Precision∗Recall
Precision+Recall

where
TP = Disorder mention span matches with gold
standard
FP = Disorder mention span detected by the
system was not present in the gold standard;
FN = Disorder mention span was present in the
gold standard but system was not able detect it

In Task B, the Accuracy was defined as the
number of pre-annotated spans with correctly
generated code divided by the total number of
pre-annotated spans.

Strict Accuracy = Total correct CUIs
Total annotation in gold standard

Relaxed Accuracy = Total correct CUIs
Total span detected by system

4.2 System Accuracy
The system results were calculated on two dif-
ferent runs. For the first evaluation, only training
data was used for the training purpose while for
the second evaluation, both the training as well as
the development data sets were used for training
purpose. The results for Task A and B are as
follows:

Precision Recall F-Meas
Strict
(T)

0.750 0.682 0.714

Relaxed
(T)

0.915 0.827 0.869

Strict
(T+D)

0.770 0.740 0.755

Relaxed
(T+D)

0.911 0.887 0.899

Table 5: Task-A Results

where T= Training Data set
D= Development Data set

4.3 Error Analysis
Error Analysis on training data revealed that for
Task-A our system got poor results in detecting
non-contiguous disjoint entities. Our system also
performed very poorly in identifying abbrevia-
tions and misspelled entities. We also observed

Accuracy
Strict
(T)

0.599

Relaxed
(T)

0.878

Strict
(T+D)

0.643

Relaxed
(T+D) 0.868

Table 6: Task-B Results

that the accuracy of the part of speech tagger and
the chunker also contributes a lot towards the final
outcome. For Task-B, we got many false positives.
Many CUIs which we identified from the UMLS
were not actually annotated.

5 Conclusion

In this paper we have proposed a CRF and SVM
based hybrid approach to find Disorder mentions
from a given clinical text and a novel dictio-
nary look-up approach for discovering CUIs from
UMLS meta-thesaurus. Our system did produce
competitive results and was third best among the
participants of this task. In future, we would like
to explore semi-supervised learning approaches to
take advantage of large amount of available un-
annotated free clinical text.
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Abstract

Recently, the task of measuring seman-
tic similarity between given texts has
drawn much attention from the Natural
Language Processing community. Espe-
cially, the task becomes more interesting
when it comes to measuring the seman-
tic similarity between different-sized texts,
e.g paragraph-sentence, sentence-phrase,
phrase-word, etc. In this paper, we, the
FBK-TR team, describe our system par-
ticipating in Task 3 "Cross-Level Seman-
tic Similarity", at SemEval 2014. We also
report the results obtained by our system,
compared to the baseline and other partic-
ipating systems in this task.

1 Introduction

Measuring semantic text similarity has become a
hot trend in NLP as it can be applied to other
tasks, e.g. Information Retrieval, Paraphrasing,
Machine Translation Evaluation, Text Summariza-
tion, Question and Answering, and others. Several
approaches proposed to measure the semantic sim-
ilarity between given texts. The first approach is
based on vector space models (VSMs) (Meadow,
1992). A VSM transforms given texts into "bag-
of-words" and presents them as vectors. Then, it
deploys different distance metrics to compute the
closeness between vectors, which will return as
the distance or similarity between given texts. The
next well-known approach is using text-alignment.
By assuming that two given texts are semantically
similar, they could be aligned on word or phrase
levels. The alignment quality can serve as a simi-
larity measure. "It typically pairs words from the
two texts by maximizing the summation of the

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

word similarity of the resulting pairs" (Mihalcea
et al., 2006). In contrast, the third approach uses
machine learning techniques to learn models built
from different lexical, semantic and syntactic fea-
tures and then give predictions on degree of simi-
larity between given texts (Šarić et al., 2012).

At SemEval 2014, the Task 3 "Cross-Level Se-
mantic Similarity" (Jurgens et al., 2014) is to eval-
uate the semantic similarity across different sizes
of texts, in particular, a larger-sized text is com-
pared to a smaller-sized one. The task consists
of four types of semantic similarity comparison:
paragraph to sentence, sentence to phrase, phrase
to word, and word to sense. The degree of similar-
ity ranges from 0 (different meanings) to 4 (simi-
lar meanings). For evaluation, systems were eval-
uated, first, within comparison type and second,
across all comparison types. Two methods are
used to evaluate between system outputs and gold
standard (human annotation), which are Pearson
correlation and Spearman’s rank correlation (rho).

The FBK-TR team participated in this task with
three different runs. In this paper, we present a
clear and comprehensive description of our sys-
tem which obtained competitive results. Our main
approach is using machine learning technique to
learn models from different lexical and semantic
features from train corpora to make prediction on
the test corpora. We used support vector machine
(SVM) regression model to solve the task.

The remainder of the paper is organized as fol-
lows. Section 2 presents the system overview.
Sections 3, 4 and 5 describe the Semantic Word
Similarity, String Similarity and other features, re-
spectively. Section 6 discusses about SVM ap-
proach. Section 7 presents the experiment settings
for each subtask. Finally, Sections 8 and 9 present
the evaluation and conclusion.
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Figure 1: System Overview.

2 System Overview

Our system was built on different linguistic fea-
tures as shown in Figure 1. By constructing a
pipeline system, each linguistic feature can be
used independently or together with others to mea-
sure the semantic similarity of given texts as well
as to evaluate the significance of each feature to
the accuracy of system’s predictions. On top of
this, the system is expandable and scalable for
adopting more useful features aiming for improv-
ing the accuracy.

3 Semantic Word Similarity Measures

At the lexical level, we built a simple, yet effec-
tive Semantic Word Similarity model consisting of
three components: WordNet similarity, Wikipedia
relatedness and Latent Semantic Analysis (LSA).
These components played important and compli-
mentary roles to each other.

3.1 Data Processing

We used the TreeTagger tool (Schmid, 1994) to
extract Part-of-Speech (POS) from each given
text, then tokenize and lemmatize it. On the basis
of the POS tags, we only picked lemmas of con-
tent words (Nouns and Verbs) from the given texts
and then paired them up regarding to similar POS
tags.

3.2 WordNet Similarity and Levenshtein
Distance

WordNet (Fellbaum, 1999) is a lexical database
for the English language in which words are
grouped into sets of synonyms (namely synsets,

each expressing a distinct concept) to provide
short, general definitions, and record the vari-
ous semantic relations between synsets. We used
Perdersen’s package WordNet:Similarity (Peder-
sen et al., 2004) to obtain similarity scores for
the lexical items covered in WordNet. Similarity
scores have been computed by means of the Lin
measure (Lin, 1998). The Lin measure is built on
Resnik’s measure of similarity (Resnik, 1995):

Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)
(1)

where IC(LCS) is the information content (IC) of
the least common subsumer (LCS) of two con-
cepts.

To overcome the limit in coverage of WordNet,
we applied the Levenshtein distance (Levenshtein,
1966). The distance between two words is defined
by the minimum number of operations (insertions,
deletions and substitutions) needed to transform
one word into the other.

3.3 Wikipedia Relatedness
Wikipedia Miner (Milne and Witten, 2013) is a
Java-based package developed for extracting se-
mantic information from Wikipedia. Through our
experiments, we observed that Wikipedia related-
ness plays an important role for providing extra
information to measure the semantic similarity be-
tween words. We used the package Wikipedia
Miner from University of Waikato (New Zealand)
to extract additional relatedness scores between
words.

3.4 Latent Semantic Analysis (LSA)
We also took advantage from corpus-based ap-
proaches to measure the semantic similarity be-
tween words by using Latent Semantic Analysis
(LSA) technique (Landauer et al., 1998). LSA as-
sumes that similar and/or related words in terms
of meaning will occur in similar text contexts. In
general, a LSA matrix is built from a large cor-
pus. Rows in the matrix represent unique words
and columns represent paragraphs or documents.
The content of the matrix corresponds to the word
count per paragraph/document. Matrix size is then
reduced by means of Single Value Decomposition
(SVD) technique. Once the matrix has been ob-
tained, similarity and/or relatedness between the
words is computed by means of cosine values
(scaled between 0 and 1) for each word vector
in the matrix. Values close to 1 are assumed to
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be very similar/related, otherwise dissimilar. We
trained our LSA model on the British National
Corpus (BNC) 1 and Wikipedia 2 corpora.

4 String Similarity Measures

The Longest Common Substring (LCS) is the
longest string in common between two or more
strings. Two given texts are considered similar if
they are overlapping/covering each other (e.g sen-
tence 1 covers a part of sentence 2, or otherwise).
We implemented a simple algorithm to extract the
LCS between two given texts. Then we divided the
LCS length by the product of normalized lengths
of two given texts and used it as a feature.

4.1 Analysis Before and After LCS
After extracting the LCS between two given texts,
we also considered the similarity for the parts be-
fore and after the LCS. The similarity between the
text portions before and after the LSC has been ob-
tained by means of the Lin measure and the Lev-
enshtein distance.

5 Other Features

To take into account other levels of analysis for se-
mantic similarity between texts, we extended our
features by means of topic modeling and Named
Entities.

5.1 Topic Modeling (Latent Dirichlet
Allocation - LDA)

Topic modeling is a generative model of docu-
ments which allows to discover topics embedded
in a document collection and their balance in each
document. If two given texts are expressing the
same topic, they should be considered highly sim-
ilar. We applied topic modeling, particularly, La-
tent Dirichlet allocation (LDA) (Blei et al., 2003)
to predict the topics expressed by given texts.

The MALLET topic model package (McCal-
lum, 2002) is a Java-based tool used for inferring
hidden "topics" in new document collections us-
ing trained models. We used Mallet topic model-
ing tool to build different models using BNC and
Wikipedia corpora.

We noticed that, in LDA, the number of top-
ics plays an important role to fine grained predic-
tions. Hence, we built different models for differ-
ent numbers of topics, from minimum 20 topics to

1http://www.natcorp.ox.ac.uk
2http://en.wikipedia.org/wiki/Wikipedia:Database_download

maximum 500 topics (20, 50, 100, 150, 200, 250,
300, 350, 400, 450 and 500). From the proportion
vectors (distribution of documents over topics) of
given texts, we applied three different measures to
compute the distance between each pair of texts,
which are Cosine similarity, Kullback-Leibler and
Jensen-Shannon divergences (Gella et al., 2013).

5.2 Named-Entity Recognition (NER)

NER aims at identifying and classifying entities
in a text with respect to a predefined set of cate-
gories such as person names, organizations, loca-
tions, time expressions, quantities, monetary val-
ues, percentages, etc. By exploring the training
set, we observed that there are lot of texts in this
task containing named entities. We deployed the
Stanford Named Entity Recognizer tool (Finkel et
al., 2005) to extract the similar and overlapping
named entities between two given texts. Then we
divided the number of similar/overlapping named
entities by the sum length of two given texts.

6 Support Vector Machines (SVMs)

Support vector machine (SVM) (Cortes and Vap-
nik, 1995) is a type of supervised learning ap-
proaches. We used the LibSVM package (Chang
and Lin, 2011) to learn models from the different
linguistic features described above. However, in
SVM the problem of finding optimal kernel pa-
rameters is critical and important for the learning
process. Hence, we used practical advice (Hsu et
al., 2003) for data scaling and a grid-search pro-
cess for finding the optimal parameters (C and
gamma) for building models. We trained the SVM
models in a regression framework.

7 Experiment Settings

For subtasks paragraph-to-sentence and sentence-
to-phrase, since the length between two units is
completely different, we decided, first to apply
topic model to identify if two given texts are ex-
pressing a same topic. Furthermore, named enti-
ties play an important role in these subtasks. How-
ever, as there are many named entities which are
not English words and cannot be identified by the
NER tool, we developed a program to detect and
identify common words occurring in both given
texts. Then we continued to extract other lexical
and semantic features to measure the similarity be-
tween the two texts.
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Team Para2Sent Para2Sent
(Pearson) (Spearman)

UNAL-NLP, run2 (ranked 1st) 0.837 0.820
ECNU, run1(ranked 1st) 0.834 0.821
FBK-TR, run2 0.77 0.775
FBK-TR, run3 0.759 0.770
FBK-TR, run1 0.751 0.759
Baseline (LCS) 0.527 0.613

Table 1: Results for paragraph-to-sentence.

Team Sent2Phr Sent2Phr
(Pearson) (Spearman)

Meerkat_Mafia, 0.777 0.760
SuperSaiyan (ranked 1st)
FBK-TR, run3 0.702 0.695
FBK-TR, run1 0.685 0.681
FBK-TR, run2 0.648 0.642
Baseline (LCS) 0.562 0.626

Table 2: Results for sentence-to-phrase.

For the subtask word-to-sense, we used the Se-
mantic Word Similarity model which consists of
three components: WordNet similarity, Wikipedia
relatedness and LSA similarity (described in sec-
tion 3). For phrase-to-word, we extracted all
glosses of the given word, then computed the simi-
larity between the given phrase and each extracted
gloss. Finally, we selected the highest similarity
score for result.

8 Evaluations

As a result, we report our performance in the four
subtasks as follows.

8.1 Subtasks: Paragraph-to-Sentence and
Sentence-to-Phrase

The evaluation results using Pearson and Spear-
man correlations show the difference between our
system and best system in these two subtasks in
the Tables 1 and 2.

Team Para2Sent Sent2Phr Phr2Word Word2Sens Sum
SimCompass 0.811 0.742 0.415 0.356 2.324
(ranked 1st)
FBK-TR 0.759 0.702 0.305 0.155 1.95
Baseline 0.527 0.562 0.165 0.109 1.363

Table 3: Overall result using Pearson.

Team Para2Sent Sent2Phr Phr2Word Word2Sens Sum
SimCompass 0.801 0.728 0.424 0.344 2.297
(ranked 1st)
FBK-TR 0.770 0.695 0.298 0.150 1.913
Baseline 0.613 0.626 0.162 0.130 1.528

Table 4: Overall result using Spearman.

8.2 Subtasks: Phrase-to-Word and
Word-to-Sense

Even though we did not submit the results as
they looked very low, we report the scores for
the phrase-to-word and word-to-sense subtasks. In
the phrase-to-word subtask, we obtained a Pearson
score of 0.305 and Spearman value of 0.298. As
for the word-to-sense subtask, we scored 0.155 for
Pearson and 0.150 for Spearman.

Overall, with the submitted results for two sub-
tasks described in Section 8.1, our system’s runs
ranked 20th, 21st and 22nd among 38 participat-
ing systems. However, by taking into account the
un-submitted results for the two other subtasks,
our best run obtained 1.95 (Pearson correlation)
and 1.913 (Spearman correlation), which can be
ranked in the top 10 among 38 systems (figures
are reported in Table 3 and 4).

9 Conclusions and Future Work

In this paper, we describe our system participating
in the Task 3, at SemEval 2014. We present a com-
pact system using machine learning approach (par-
ticularly, SVMs) to learn models from a set of lex-
ical and semantic features to predict the degree of
similarity between different-sized texts. Although
we only submitted the results for two out of four
subtasks, we obtained competitive results among
the other participants. For future work, we are
planning to increase the number of topics in LDA,
as more fine-grained topics should allow predict-
ing better similarity scores. Finally, we will inves-
tigate more on the use of syntactic features.
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Abstract

This paper reports the description and
scores of our system, FBK-TR, which
participated at the SemEval 2014 task
#1 "Evaluation of Compositional Distribu-
tional Semantic Models on Full Sentences
through Semantic Relatedness and Entail-
ment". The system consists of two parts:
one for computing semantic relatedness,
based on SVM, and the other for identi-
fying the entailment values on the basis
of both semantic relatedness scores and
entailment patterns based on verb-specific
semantic frames. The system ranked 11th

on both tasks with competitive results.

1 Introduction

In the Natural Language Processing community,
meaning related tasks have gained an increasing
popularity. These tasks focus, in general, on a
couple of short pieces of text, like pair of sen-
tences, and the systems are required to infer a cer-
tain meaning relationship that exists between these
texts. Two of the most popular meaning related
tasks are the identification of Semantic Text Sim-
ilarity (STS) and Recognizing Textual Entailment
(RTE). The STS tasks require to identify the de-
gree of similarity (or relatedness) that exists be-
tween two text fragments (sentences, paragraphs,
. . . ), where similarity is a broad concept and its
value is normally obtained by averaging the opin-
ion of several annotators. The RTE task requires
the identification of a directional relation between
a pair of text fragments, namely a text (T) and a
hypothesis (H). The relation (T→ H) holds when-
ever the truth of H follows from T.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

At SemEval 2014, the Task #1 "Evaluation
of Compositional Distributional Semantic Models
on Full Sentences through Semantic Relatedness
and Entailment" (Marelli et al., 2014a) primarily
aimed at evaluating Compositional Distributional
Semantic Models (CDSMs) of meaning over two
subtasks, namely semantic relatedness and tex-
tual entailment (ENTAILMENT, CONTRADIC-
TION and NEUTRAL), over pairs of sentences
(Marelli et al., 2014b). Concerning the relatedness
subtask, the system outputs are evaluated against
gold standard ratings in two ways, using Pearson
correlation and Spearman’s rank correlation (rho).
The Pearson correlation is used for evaluating and
ranking the participating systems. Similarly, for
the textual entailment subtask, system outputs are
evaluated against a gold standard rating with re-
spect to accuracy.

Our team, FBK-TR, participated in both sub-
tasks with five different runs. In this paper, we
present a comprehensive description of our system
which obtained competitive results in both tasks
and which is not based on CDSMs. Our approach
for the relatedness task is based on machine learn-
ing techniques to learn models from different lexi-
cal and semantic features from the train corpus and
then to make prediction on the test corpus. Par-
ticularly, we used support vector machine (SVM)
(Chang and Lin, 2011), regression model to solve
this subtask. On the other hand, the textual en-
tailment task uses a methodology mainly based on
corpus patterns automatically extracted from an-
notated text corpora.

The remainder of the paper is organized as
follows: Section 2 presents the SVM system
for semantic relatedness. Section 3 describes
the methodology used for extracting patterns and
computing the textual entailment values. Finally,
Section 4 discusses about the evaluations and Sec-
tion 5 presents conclusions and future work.
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Figure 1: Schema of the system for computing entailment.

2 System Overview for Semantic
Relatedness Subtask

Concerning the Semantic Relatedness subtask our
SVM system is built on different linguistic fea-
tures, ranging from relatedness at the lexical level
(WordNet based measures, Wikipedia relatedness
and Latent Semantic Analysis), to sentence level,
including topic modeling based on Latent Dirich-
let allocation (LDA) and string similarity (Longest
Common Substring).

2.1 Lexical Features

At the lexical level, we built a simple, yet effective
Semantic Word Relatedness model, which con-
sists of 3 components: WordNet similarity (based
on the Lin measure as implemented in Pedersen
package WordNet:Similarity (Pedersen et
al., 2004), Wikipedia relatedness (as provided by
the Wikipedia Miner package (Milne and Witten,
2013)), and Latent Semantic Analysis (Landauer
et al., 1998), with a model trained on the British
National Corpus (BNC) 1 and Wikipedia. At this
level of analysis, we concentrated only on the
best matched (lemma) pairs of content words, i.e.
Noun-Noun, Verb-Verb, extracted from each sen-
tence pair. The content words have been automati-
cally extracted by means of part-of-speech tagging
(TreeTagger (Schmid, 1994)) and lemmatization.

For words which are not present in WordNet,
the relatedness score has been obtained by means
of the Levenshtein distance (Levenshtein, 1966).

1http://www.natcorp.ox.ac.uk

2.2 Topic Modeling
We have applied topic modeling based on Latent
Dirichlet allocation (LDA) (Blei et al., 2003) as
implemented in the MALLET package (McCal-
lum, 2002). The topic model was developed us-
ing the BNC and Wikipedia (with the numbers
of topics varying from 20 to 500 topics). From
the proportion vectors (distribution of documents
over topics) of the given texts, we apply 3 differ-
ent measures (Cosine similarity, Kullback-Leibler
and Jensen-Shannon divergences) to compute the
distances between each pair of sentences.

2.3 String Similarity: Longest Common
Substring

As for the string level, two given sentences are
considered similar/related if they are overlap-
ping/covering each other (e.g sentence 1 covers
a part of sentence 2, or otherwise). Hence, we
considered the text overlapping between two
given texts as a feature for our system. The
extraction of the features at the string level was
computed in two steps: first, we obtained Longest
Common Substring between two given sentences.
After this, we also considered measuring the
similarity for the parts before and after the LCS
between two given texts, by means of the Lin
measure and the Levenshtein distance.

3 System Overview for RTE Subtask

The system for the identification of the entailment
values is illustrated in Figure 1. Entailment values
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are computed starting from a baseline (only EN-
TAILMENT and NEUTRAL values) which relies
on the output (i.e. scores) of the semantic related-
ness system. After this step, two groups of entail-
ment patterns are applied whether the surface form
of a sentence pair is affirmative (i.e. absence of
negation words) or negative. Each type of pattern
provides in output an associated entailment value
which corresponds to the final value assigned by
the system.

The entailment patterns are based on verb-
specific semantic frames that include both syn-
tactic and semantic information. Hence, we have
explicit access to the information that individual
words have and to the process of combining them
in bigger units, namely phrases, which carry out
meanings. The patterns have two properties: i.)
the senses of the words inside the pattern are sta-
ble, they do not change whatever context is added
to the left, right or inside the phrase matching the
pattern, and ii.) the replacement of a word with an-
other word belonging to a certain class changes the
senses of the words. Patterns with these properties
are called Sense Discriminative Patterns (SDPs).
It has been noted (Popescu et al., 2011) that we can
associate to a phrase that is matched by an SDP a
set of phrases for which an entailment relationship
is decidable showing that there is a direct relation-
ship between SDPs and entailment .

SDP patterns have been obtained from large
parsed corpora. To maximize the accuracy of the
corpus we have chosen sentences containing at
maximum two finite verbs from BNC and Anno-
tated English Gigaword. We parsed this corpus
with the Stanford parser, discarding the sentences
from the Annotated English Gigaword which have
a different parsing. Each words is replaced with
their possible SUMO attributes (Niles and Pease,
2003). Only the following Stanford dependen-
cies are retained as valid [n, nsub]sbj, [d,i,p]obj,
prep, [x,c]comp. We considered only the most fre-
quent occurrences of such patterns for each verb.
To cluster into a single SDP pattern, all patterns
that are sense auto-determinative, we used the
OntoNotes (Hovy et al., 2006) and CPA (Hanks,
2008) lexica. Inside each cluster, we searched
for the most general hypernyms for each syntac-
tic slot such that there are no common patterns
between clusters (Popescu, 2013). However, the
patterns thus obtained are not sufficient enough
for the task. Some expressions may be the para-

phrasis a word in the context of an SDP. To ex-
tract this information, we considered all the pairs
in training that are in an ENTAILMENT relation-
ship, with a high relatedness score (4 to 5), and we
extracted the parts that are different for each gram-
matical slot. In this way, we compiled a list of
quasi synonym phrases that can be replaced inside
an SDP without affecting the replacement. This
is the only component that depends on the train-
ing corpus. Figure 2 describes the algorithm for
computing entailment on the basis of the SDPs.
The following subsections illustrate the identifi-
cation of entailment relation for affirmative sen-
tences and negated sentences.

Figure 2: Algorithm for computing entailment.

3.1 Entailment on Affirmative Sentences
Affirmative sentences use three types of entail-
ment patterns. The switch baseline and hyponym
patterns works in this way: If two sentences are
matched by the same SDP, and the difference be-
tween them is that the second one contains a hy-
pernym on the same syntactic position, then the
first one is entailed by the second (i.e. ENTAIL-
MENT). If the two SDPs are such that the dif-
ference between them is that the second contains
a word which is not synonym, hypernym or hy-
ponym on the same syntactic position, then there is
no entailment between the two phrases (i.e. NEU-
TRAL). The entailment direction is from the sen-
tence that contains the hyponym toward the other
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sentence. The antonym patterns check if the two
SDPs are the same, with the only difference be-
ing in the verb of the second sentence being an
antonym of the verb in the first sentence (i.e.
CONTRADICTION).

3.2 Entailment on Negative Sentences

As for negated sentences, we distinguish between
existential negative phrases (i.e. there is no or
there are no) and factual negative ones (presence
of a negative polarity word). An assumption re-
lated to each SDP is that it entails the existence
of any of the component of the pattern which can
be expressed by means of dedicated phrases. A
SDP of the kind "[Human] beat [Animal]", en-
tails both phrases, namely there is a [Human] and
there is a [Animal]. We call this set of associ-
ated existential phrases, Existential Assumptions
(EAs). This type of existential entailment obtained
through the usage of SDP has a direct consequence
for handling the ENTAILMENT, CONTRADIC-
TION and NEUTRAL types of entailment when
one of the phrases is negated. If the first phrase
belongs to the EA of the second one, then the
first phrase is entailed by the second phrase; if the
first phrase is an existential negation of a phrase
belonging to the EA set of the second phrase,
meaning that it contains the string there is/are no,
then the first one is a contradiction of the second
phrase; if neither the first phrase, nor its negation
belong to the EA set of the second phrase, then the
two sentences are neutral with respect to the en-
tailment. The general rule described in 3.1 applies
to these types of phrases as well: replacing a word
on the same syntactic slot inside a phrase that is
matched by a SDP leads to a CONTRADICTION
type of entailment, if the replacement is a hyper-
nym of the original word. Similarly, the approach
can be applied to factual negative phrases. The
scope of negation is considered to be the extension
of the SDP and thus the negative set of EAs.

4 Evaluation and Ranking

Table 1 illustrates the results for Pearson and
Spearman correlations for the relatedness subtask
on the test set. Table 2 reports the Accuracy values
for the entailment subtask on the test set.

Concerning the relatedness results our systems
ranked 11th out of 17 participating systems. Best
score of our system is reported in Table 1. One
of the main reason for the relatively low results

Team Pearson Spearman
ECNU_run1 (ranked 1st) 0.82795 0.76892
FBK-TR_run3 0.70892 0.64430

Table 1: Results for semantic relatedness subtask.

Team Accuracy
Illinois-LH_run1 (ranked 1st) 84.575
FBK-TR_run3 75.401
∗FBK-TR_baseline 64.080
∗FBK-TR_new 85.082

Table 2: Results for entailment subtask.

of the systems for this subtask concerns the fact
that it is designed for a general-level of texts (i.e.
compositionality is not taken into account).

As for the entailment subtask, our system
ranked 11th out of 18 participating systems. The
submitted results of the system are illustrated in
Table 2 and are compared against the best system,
our baseline system (∗FBK-TR_baseline) as de-
scribed in Figure 1, and a new version of the par-
ticipating system after fixing some bugs in the sub-
mitted version due to the processing of the parser’s
output (∗FBK-TR_new). The new version of the
system scores in the top provides a new state of the
art result, with an improvement of 10 points with
respect to our submitted system.

5 Conclusion and Future Work

This paper reports the description of our system,
FBK-TR, which implements a general SVM se-
mantic relatedness system based on distributional
features (LSA, LDA), knowledge-based related
features (WordNet and Wikipedia) and string over-
lap (LCS). On top of that, we added structural in-
formation at both semantic and syntactic level by
using SDP patterns. The system reached compet-
itive results in both subtasks. By correcting some
bugs in the entailment scripts, we obtained an im-
provement over our submitted systems as well as
for the best ranking system. We plan to improve
and extend the relatedness system by means of
compositional methods. Finally, the entailment
system can be improved by taking into account
additional linguistic evidences, such as the alter-
nation between indefinite and definite determiners,
noun modifiers and semantically empty heads.
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Abstract

In this paper we describe the system sub-
mitted for the SemEval 2014 Task 9 (Sen-
timent Analysis in Twitter) Subtask B. Our
contribution consists of a supervised ap-
proach using machine learning techniques,
which uses the terms in the dataset as fea-
tures. In this work we do not employ any
external knowledge and resources. The
novelty of our approach lies in the use
of words, ngrams and skipgrams (not-
adjacent ngrams) as features, and how they
are weighted.

1 Introduction

The Web 2.0 has become one of the most im-
portant sources of data to extract useful and het-
erogeneous knowledge from. Texts can provide
factual information, such as descriptions and lists
of features, and opinion-based information, which
would include reviews, emotions, or feelings. This
subjective information can be expressed through
different textual genres, such as blogs, forums, so-
cial networks and microblogs.

An example of microblogging social network is
Twitter1, which has gained much popularity in the
last years. This website enables its users to send
and read text-based messages of up to 140 char-
acters, known as tweets. This site can be a vast
source of subjective information in real time; mil-
lions of users share opinions on different aspects
of their everyday life. Extracting this subjective
information has a great value for both general and
expert users. However, it is difficult to exploit it
accordingly, mainly because of the short length of

This work is licensed under a Creative Commons Attribu-
tion 4.0 International Licence. Page numbers and proceed-
ings footer are added by the organisers. Licence details:
creativecommons.org/licenses/by/4.0/

1http://twitter.com

the tweets, the informality, and the lack of context.
Sentiment Analysis (SA) systems must be adapted
to face the challenges of this new textual genre.

International competitions related to the assess-
ment of SA systems in Twitter have taken place.
Some of them include the TASS workshop in the
SEPLN conference (Villena-Román et al., 2013),
the RepLab workshop in the CLEF conference
(Amigó et al., 2012), and the Sentiment Analysis
in Twitter task (Task 2) in the last SemEval work-
shop (Nakov et al., 2013).

In this paper we describe the system submit-
ted for the SemEval 2014 Sentiment Analysis in
Twitter task (Task 9 Subtask B)2 (Rosenthal et al.,
2014). This task consists of performing an au-
tomatic sentiment analysis to determine whether
a message expresses a positive, negative, or neu-
tral sentiment. The organisers of this task provide
three datasets: training, development training, and
development test. The participants can use the
training and development training datasets to train
and validate their models, but the development test
dataset can only be used for validation. The size
and distribution of polarities of these datasets is
shown in Table 1. Once their systems are ready,
the participants must classify each text in the offi-
cial test corpus and send the results to the organis-
ers, who will perform the official evaluation.

Polarity Train Dev Train Dev Test
Positive 2,148 362 1,572
Neutral 2,915 448 1,640
Negative 836 187 601
Total 5,899 997 3,813

Table 1: Dataset distribution in number of tweets.

The goal of the present work is to create a re-
liable polarity classifier, built only from a training
set without any external knowledge and resources.

2http://alt.qcri.org/semeval2014/
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Our contribution consists of a supervised approach
using machine learning techniques, which uses the
terms in the dataset as features. The novelty of our
approach lies in the feature generation and weight-
ing, using not only single words and ngrams as
features but also skipgrams. This approach is de-
scribed in detail in Section 3. Subsequently, in
Section 4 we show the assessment of our model
in the competition. Finally, the conclusions and
future work are presented in Section 5. The fol-
lowing Section 2 shows some relevant background
related to this work.

2 Related Work

The goal of Sentiment analysis (SA) is to identify
the opinions expressed in text and classify texts
accordingly (Dadvar et al., 2011). Two main ap-
proaches can be followed (Annett and Kondrak,
2008; Liu, 2010; Taboada et al., 2011): lexical ap-
proaches (unsupervised SA) and machine learning
approaches (supervised SA). Lexical approaches
focus on building dictionaries and lexicons of la-
belled words. This labeling gives a score for each
word, that indicates how strong is the relation be-
tween that word and each polarity. The most com-
mon way to classify a text using these scores is
by adding the positive values and subtracting the
negative values of the terms in that text. If the to-
tal score is positive, that text is classified as pos-
itive, otherwise it is classified as negative. These
dictionaries can be created manually (Stone et al.,
1966) or automatically (Turney, 2002). Examples
of lexicons are WordNet Affect (Strapparava and
Valitutti, 2004), SentiWordNet (Esuli and Sebas-
tiani, 2006), MicroWNOP (Cerini et al., 2007) or
JRC Tonality (Balahur et al., 2009). However, it
is very difficult to collect and maintain a univer-
sal sentiment lexicon because different words may
be used in different domains (Qiu et al., 2009) and
some words are domain dependent (Turney, 2002).

The second approach uses machine learning
techniques. These techniques require the previous
creation of a corpus containing a set of classified
texts to train a classifier, which can then be applied
to classify a set of unclassified texts. The majority
of the researches employ Support Vector Machines
(Mullen and Collier, 2004; Prabowo et al., 2009;
Wilson et al., 2005) or Naı̈ve Bayes (Pang and Lee,
2004; Wiebe et al., 2005; Tan et al., 2009) classi-
fiers because they usually obtain the best results.
In this approach, texts are represented as vectors

of features, and depending on the features used
the system can reach better results (bag-of-words
and lexeme-based features are the more commonly
used (Pang and Lee, 2008)). These classifiers per-
form very well in the domain that they are trained
on, but their performance drops when the same
classifier is used in a different domain (Pang and
Lee, 2008; Tan et al., 2009).

The problem of the domain dependence is com-
mon to both approaches. When the lexicons and
classifiers generated are used in a domain different
from the one they were built for, they use to per-
form worse (Turney, 2002; Pang and Lee, 2008;
Qiu et al., 2009; Tan et al., 2009). Creating a
domain-specific lexicon or classifier means mak-
ing a manual effort. Although some studies try
to overcome this problem by generating the lexi-
cons automatically (Turney, 2002), learning from
unannotated texts (Wiebe et al., 2005) or using hy-
brid approaches (Andreevskaia and Bergler, 2008;
Bollen et al., 2011; Zhang and Ye, 2008), a min-
imal intervention from experts in the domain is
needed. In this study we use the machine learning
approach due to the promising results obtained in
previous works (Boldrini et al., 2009; Fernández
et al., 2011; Fernández et al., 2013).

3 Methodology

Our contribution consists of a supervised approach
using machine learning techniques, which uses the
terms in the dataset as features. In summary, our
approach starts making a basic normalisation of
each tweet in the dataset (see Section 3.1). Next,
these texts are tokenised to extract their terms, and
these terms are combined to create skipgrams (see
Section 3.2). Finally, these skipgrams are em-
ployed as features for a supervised machine learn-
ing algorithm (see Section 3.3).

3.1 Basic normalisation

We perform a very basic normalisation, as we
do not want to lose the potential subjective infor-
mation given by the not normalised original text.
Each tweet in the dataset is normalised following
these steps:

1. Lower case conversion. All the characters in
the tweet text are converted to lower case.

2. Character repetition removal. If the same
character is repeated more than 3 times, the
rest of repetitions are removed, so we can
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still recognize if a word had repeated char-
acters. For example, the words gooood and
gooooood would be normalised to goood, but
the word good would remain the same. We
assume the ambiguity of some words like the
one in the example, which can refer to the
words good and god.

3. Usernames and hashtags substitution. We
do not consider usernames and hashtags as
they are not usually the words that represent
a subjective sentence, they use to be the topic
of the tweet. They are not removed com-
pletely but they are replaced by the strings
USERNAME and HASHTAG.

So excited to go to #Alicante tomorrow
with the best friend everrrrr @John!!!!

↓
so excited to go to #alicante tomorrow
with the best friend everrrrr @john!!!!

↓
so excited to go to #alicante tomorrow

with the best friend everrr @john!!!
↓

so excited to go to HASHTAG tomorrow
with the best friend everrr USERNAME!!!

Figure 1: Example of normalisation process.

3.2 Tokenisation
Once we have normalised the texts, we extract all
their terms. In this work, we consider a term as a
group of adjacent characters of the same type (let-
ters, numbers or punctuation symbols). For exam-
ple, the text want2go!! would be tokenised to the
terms want, 2, go, and !!. Note that we employ all
the terms extracted, not filtering any of them.

Finally, we obtain the skipgrams of the terms in
the text. Skipgrams are a technique largely used in
the field of speech processing, whereby n-grams
are formed (bigrams, trigrams, etc.) but in addi-
tion to allowing adjacent sequences of words, it
also allows tokens to be skipped (Guthrie et al.,
2006). More specifically, in a k-skip-n-gram, n de-
termines the maximum number of terms, and k the
maximum number of skips allowed. In this way
skipgrams are new terms that retain part of the se-
quentiality of the terms, but in a more flexible way
than ngrams. Note that a ngram can be described
as a skipgram where k = 0. An example is shown
in Figure 2.

Normalised tweet
so excited to go to HASHTAG tomorrow

with the best friend everrr USERNAME!!!
↓

Single terms
(so) (excited) (to) (go) (to) (HASHTAG) (with)

(the) (best) (friend) (everrr) (USERNAME) (!!!)
↓

Skipgrams (n = 2, k = 1)
(so) (so excited) (so to) (excited) (excited to)

(excited go)
(to) (to go) (to to) (go) (go to) (go HASHTAG) (to)
(to HASHTAG) (to with) (HASHTAG) (HASHTAG
with) (HASHTAG the) (with) (with the) (with best)

(the) (the best) (the friend) (best) (best friend)
(best everrr) (friend) (friend everrr) (friend
USERNAME) (everrr) (everrr USERNAME)
(everrr !!!) (USERNAME) (USERNAME !!!)

Figure 2: Example of tokenisation process.

3.3 Supervised Learning
To build our model we employed Support Vector
Machines (SVM) as the supervised machine learn-
ing algorithm, as it has been proved to be effective
on text categorisation tasks and robust on large
feature spaces (Sebastiani, 2002; Mohammad et
al., 2013). More specifically, we used the Weka3

(Hall et al., 2009) LibSVM (Chang and Lin, 2011)
implementation with the default parameters (lin-
ear kernel, C = 1, ε = 0.1).

The skipgrams extracted in the previous step are
employed as features for the SVM. The weight of
each feature in each text will be calculated depend-
ing on the skipgram it represents, using the for-
mula in Equation 1.

w(s, t) =
terms(s)

terms(s) + skips(s, t)
(1)

Wherew(s, t) represents the weight of the skip-
gram s in the text t, terms is a function that
returns the number of terms in skipgram s, and
skips is a function that returns the number of skips
of the skipgram s in the text t. This formula gives
more importance to the skipgrams with a lower
number of skips. In the example of the Figure 2,
the skipgram best friend would have a weight of
2/(2 + 0) = 1, while skipgram best everrr would
have a weight of 2/(2 + 1) = 0.66.

3http://www.cs.waikato.ac.nz/ml/weka/
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Parameters P R F1 Score
Baseline 0.630 0.604 0.580 0.447
Words n = 1 0.611 0.612 0.604 0.530
Ngrams n = 2 0.617 0.620 0.618 0.557

n = 3 0.620 0.621 0.621 0.564
n = 4 0.620 0.621 0.620 0.565
n = max 0.621 0.622 0.621 0.566

Skipgrams n = 2, k = 1 0.623 0.625 0.624 0.571
n = 2, k = 2 0.626 0.624 0.626 0.572
n = 2, k = max 0.627 0.624 0.625 0.575
n = 3, k = 1 0.620 0.616 0.617 0.566
n = 3, k = 2 0.625 0.614 0.618 0.564
n = 3, k = max 0.636 0.588 0.599 0.544

Table 2: Experiments performed and scores obtained.

4 Evaluation

We performed a series of experiments employ-
ing both the training corpus and the development
training corpus to create our model, and the devel-
opment test corpus to validate it. We used as base-
line the system presented to the workshop TASS
2012 (Fernández et al., 2013), which also uses
skipgrams and scores them depending on their
density but, instead of using the skipgrams as fea-
tures of a machine learning model, the polarity of
each text is determined by a combination of the
scores of its skipgrams.

The results of our experiments are shown in Ta-
ble 2. In this table we show the weighted precision
(P), the weighted recall (R), the weighted F-score
(F1) and the score obtained using the scorer tool
provided by the workshop organisers (Score). The
notation n = max indicates there was no limit
with the number of terms, and k = max indi-
cates there was no restriction with the number of
skips. As we can see, the presented approach out-
performs the baseline proposed and the best results
are obtained using skipgrams, specifically when
n = 2 and k = max. These are the parameters
of the system submitted to the competition.

Our main observation is that incrementing the
number of terms increases the precision of the sys-
tem. A possible explanation for this might be that
ngrams/skipgrams with a greater number of words
are more specific and representative of a given
polarity. In addition, using skipgrams insted of
ngrams also improves the precision. However, no
significant differences were found between exper-
iments with a different number of skips.

In Table 3 we can see the official results ob-
tained in the SemEval 2014 competition. The
best rank was obtained in the experiments with the
Twitter 2014 Sarcasm dataset.

Dataset Rank Score
Live Journal 34 0.573
SMS 2013 35 0.466
Twitter 2013 28 0.575
Twitter 2014 30 0.561
Twitter 2014 Sarcasm 8 0.539

Table 3: Official SemEval 2014 Subtask B results.

5 Conclusions

In this paper we described the system submitted
for the SemEval 2014 Task 9 (Sentiment Analysis
in Twitter). It consists of a supervised approach
using machine learning techniques, without em-
ploying any external knowledge and resources.
The novelty of our approach lies in the feature gen-
eration and weighting, using not only single words
and ngrams as features but also skipgrams. In the
experiments performed we showed that employ-
ing skipgrams instead of single words or ngrams
improves the results for these datasets. This fact
suggests that our approach is promising and en-
courages us to continue with our research.

As future work, we plan to find new methods
to combine the weights of the skipgrams, evaluate
our approaches on different corpora and different
domains (in order to check their robustness), and
start adding external knowledge and resources.
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cio Martı́nez-Barco, Andrés Montoyo, and Rafael
Muñoz. 2013. Sentiment Analysis of Spanish
Tweets Using a Ranking Algorithm and Skipgrams.
In XXIX Congreso de la Sociedad Española de
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Abstract

In this paper, we describe our sub-
mission to the Shared Task #1. We
tried to follow the underlying idea of
the task, that is, evaluating the gap
of full-fledged recognizing textual en-
tailment systems with respect to com-
positional distributional semantic mod-
els (CDSMs) applied to this task. We
thus submitted two runs: 1) a sys-
tem obtained with a machine learning
approach based on the feature spaces
of rules with variables and 2) a sys-
tem completely based on a CDSM that
mixes structural and syntactic infor-
mation by using distributed tree ker-
nels. Our analysis shows that, under
the same conditions, the fully CDSM
system is still far from being competi-
tive with more complex methods.

1 Introduction

Recognizing Textual Entailment is a largely
explored problem (Dagan et al., 2013). Past
challenges (Dagan et al., 2006; Bar-Haim et
al., 2006; Giampiccolo et al., 2007) explored
methods and models applied in complex and
natural texts. In this context, machine learn-
ing solutions show interesting results. The
Shared Task #1 of SemEval instead wants to
explore systems in a more controlled textual
environment where the phenomena to model
are clearer. The aim of the Shared Task is to
study how RTE systems built upon composi-
tional distributional semantic models behave

This work is licenced under a Creative Commons At-
tribution 4.0 International License. Page numbers and
proceedings footer are added by the organizers. License
details: http://creativecommons.org/licenses/by/
4.0/

with respect to the above tradition. We tried
to capture this underlying idea of the task.

In this paper, we describe our submission
to the Shared Task #1. We tried to fol-
low the underlying idea of the task, that is,
evaluating the gap of full-fledged recognizing
textual entailment systems with respect to
compositional distributional semantic models
(CDSMs) applied to this task. We thus sub-
mitted two runs: 1) a system obtained with a
machine learning approach based on the fea-
ture spaces of rules with variables (Zanzotto
et al., 2009) and 2) a system completely based
on a CDSM that mixes structural and syntac-
tic information by using distributed tree ker-
nels (Zanzotto and Dell’Arciprete, 2012). Our
analysis shows that, under the same condi-
tions, the fully CDSM system is still far from
being competitive with more complete meth-
ods.

The rest of the paper is organized as follows.
Section 2 describes the full-fledged recognizing
textual entailment system that is used for com-
parison. Section 3 introduces a novel composi-
tional distributional semantic model, namely,
the distributed smoothed tree kernels, and the
way this model is applied to the task of RTE.
Section 4 describes the results in the challenge
and it draws some preliminary conclusions.

2 A Standard full-fledged Machine
Learning Approach for RTE

For now on, the task of recognizing textual en-
tailment (RTE) is defined as the task to decide
if a pair p = (a, b) like:

(“Two children are lying in the snow and are
making snow angels”, “Two angels are
making snow on the lying children”)

is in entailment, in contradiction, or neutral.
As in the tradition of applied machine learn-
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ing models, the task is framed as a multi-
classification problem. The difficulty is to de-
termine the best feature space on which to
train the classifier.

A full-fledged RTE systems based on ma-
chine learning that has to deal with natural
occurring text is generally based on:

• some within-pair features that model the
similarity between the sentence a and the
sentence b

• some features representing more complex
information of the pair (a, b) such as rules
with variables that fire (Zanzotto and
Moschitti, 2006)

In the following, we describe the within-pair
feature and the syntactic rules with variable
features used in the full-fledged RTE system.

As the second space of features is generally
huge, the full feature space is generally used in
kernel machines where the final kernel between
two instances p1 = (a1, b1) and p2 = (a2, b2) is:

K(p1, p2) = FR(p1, p2) +
+ (WTS(a1, b1) ·WTS(a2, b2) + 1)2

where FR counts how many rules are in com-
mon between p1 and p2 and WTS computes a
lexical similarity between a and b. In the fol-
lowing sections we describe the nature ofWTS
and of FR

2.1 Weighted Token Similarity (WTS)

This similarity model was first defined bt Cor-
ley and Mihalcea (2005) and since then has
been used by many RTE systems. The model
extends a classical bag-of-word model to a
Weighted-Bag-of-Word (wbow) by measuring
similarity between the two sentences of the
pair at the semantic level, instead of the lexical
level.

For example, consider the pair: “Os-
cars forgot Farrah Fawcett”, “Farrah Fawcett
snubbed at Academy Awards”. This pair is
redundant, and, hence, should be assigned
a very high similarity. Yet, a bag-of-word
model would assign a low score, since many
words are not shared across the two sen-
tences. wbow fixes this problem by match-
ing ‘Oscar’-‘Academy Awards’ and ‘forgot’-
‘snubbed’ at the semantic level. To provide

these matches, wbow relies on specific word
similarity measures over WordNet (Miller,
1995), that allow synonymy and hyperonymy
matches: in our experiments we specifically
use Jiang&Conrath similarity (Jiang and Con-
rath, 1997).

2.2 Rules with Variables as Features

The above model alone is not sufficient to
capture all interesting entailment features as
the relation of entailment is not only related
to the notion of similarity between a and b.
In the tradition of RTE, an interesting feature
space is the one where each feature represents
a rule with variables, i.e. a first order rule
that is activated by the pairs if the variables
are unified. This feature space has been
introduced in (Zanzotto and Moschitti, 2006)
and shown to improve over the one above.
Each feature 〈fr1, fr2〉 is a pair of syntactic
tree fragments augmented with variables.
The feature is active for a pair (t1, t2) if the
syntactic interpretations of t1 and t2 can
be unified with < fr1, fr2 >. For example,
consider the following feature:

〈

S
PPP���

NP X VP
HH��

VBP

bought

NP Y
,

S
PPP���

NP X VP
HH��

VBP
owns

NP Y
〉

This feature is active for the pair (“GM bought
Opel”,“GM owns Opel”), with the variable
unification X = “GM ” and Y = “Opel”. On
the contrary, this feature is not active for the
pair (“GM bought Opel”,“Opel owns GM ”) as
there is no possibility of unifying the two vari-
ables.

FR(p1, p2) is a kernel function that counts
the number of common rules with variables
between p1 and p2. Efficient algorithms for
the computation of the related kernel func-
tions can be found in (Moschitti and Zanzotto,
2007; Zanzotto and Dell’Arciprete, 2009; Zan-
zotto et al., 2011).

301



S(t) = {
S:booked::v

QQ��
NP VP

,
VP:booked::v

ZZ��
V NP

,
NP:we::p

PRP
,

S:booked::v
ZZ��

NP

PRP

VP , . . . ,

VP:booked::v
HH��

V

booked

NP

DT NN

, . . . }

Figure 1: Subtrees of the tree t in Figure 2 (a non-exhaustive list.)

3 Distributed Smoothed Tree
Kernel: a Compositional
Distributional Semantic Model
for RTE

The above full-fledged RTE system, although
it may use distributional semantics, is not a
model that applies a compositional distribu-
tional semantic model as it does not explic-
itly transform sentences in vectors, matrices,
or tensors that represent their meaning.

We here propose a model that can be con-
sidered a compositional distributional seman-
tic model as it transforms sentences into ma-
trices that are then used by the learner as fea-
ture vectors. Our model is called Distributed
Smoothed Tree Kernel (Ferrone and Zanzotto,
2014) as it mixes the distributed trees (Zan-
zotto and Dell’Arciprete, 2012) representing
syntactic information with distributional se-
mantic vectors representing semantic informa-
tion. The computation of the final matrix for
each sentence is done compositionally.

S:booked::v````̀
     

NP:we::p

PRP:we::p

We

VP:booked::vXXXX
����

V:booked::v

booked

NP:flight::n
PPP���

DT:the::d

the

NN:flight::n

flight

Figure 2: A lexicalized tree.

3.1 Notation

Before describing the distributed smoothed
trees (DST) we introduce a formal way to de-
note constituency-based lexicalized parse trees,
as DSTs exploit this kind of data structures.
Lexicalized trees are denoted with the letter t
and N(t) denotes the set of non terminal nodes
of tree t. Each non-terminal node n ∈ N(t)
has a label ln composed of two parts ln =
(sn, wn): sn is the syntactic label, while wn is
the semantic headword of the tree headed by

n, along with its part-of-speech tag. Termi-
nal nodes of trees are treated differently, these
nodes represent only words wn without any
additional information, and their labels thus
only consist of the word itself (see Fig. 2).
The structure of a DST is represented as fol-
lows: Given a tree t, h(t) is its root node and
s(t) is the tree formed from t but considering
only the syntactic structure (that is, only the
sn part of the labels), ci(n) denotes i-th child
of a node n. As usual for constituency-based
parse trees, pre-terminal nodes are nodes that
have a single terminal node as child.

Finally, we use
→
wn ∈ Rk to denote the distri-

butional vector for word wn, whereas T repre-
sents the matrix of a tree t encoding structure
and distributional meaning.

3.2 The Method in a Glance

We describe here the approach in a few sen-
tences. In line with tree kernels over struc-
tures (Collins and Duffy, 2002), we introduce
the set S(t) of the subtrees ti of a given lexi-
calized tree t. A subtree ti is in the set S(t) if
s(ti) is a subtree of s(t) and, if n is a node in
ti, all the siblings of n in t are in ti. For each
node of ti we only consider its syntactic label
sn, except for the head h(ti) for which we also
consider its semantic component wn (see Fig.
1). The functions DSTs we define compute the
following:

DST (t) = T =
∑

ti∈S(t)

Ti

where Ti is the matrix associated to each sub-
tree ti. The similarity between two text frag-
ments a and b represented as lexicalized trees
ta and tb can be computed using the Frobenius
product between the two matrices Ta and Tb,
that is:

〈Ta,Tb〉F =
∑

tai ∈S(ta)

tbj∈S(tb)

〈Ta
i ,T

b
j〉F (1)
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We want to obtain that the product 〈Ta
i ,T

b
j〉F

approximates the dot product between the
distributional vectors of the head words

(〈Ta
i ,T

b
j〉F ≈ 〈

→
h(tai ),

→
h(tbj)〉) whenever the syn-

tactic structure of the subtrees is the same
(that is s(tai ) = s(tbj)), and 〈Ta

i ,T
b
j〉F ≈ 0 oth-

erwise. This property is expressed as:

〈Ta
i ,T

b
j〉F ≈ δ(s(tai ), s(tbj)) · 〈

→
h(tai ),

→
h(tbj)〉 (2)

To obtain the above property, we define

Ti =
→

s(ti)
→

wh(ti)

>

where
→

s(ti) are distributed tree fragment
(Zanzotto and Dell’Arciprete, 2012) for the
subtree t and

→
wh(ti) is the distributional

vector of the head of the subtree t. Dis-
tributed tree fragments have the property

that
→

s(ti)
→

s(tj) ≈ δ(ti, tj). Thus, given the
important property of the outer product
that applies in the Frobenius product:

〈→a→w>,
→
b
→
v
>〉F = 〈→a ,

→
b 〉 · 〈→w,→v 〉. we have that

Equation 2 is satisfied as:

〈Ti,Tj〉F = 〈
→

s(ti),
→

s(tj)〉 · 〈 →wh(ti),
→

wh(tj)〉
≈ δ(s(ti), s(tj)) · 〈 →wh(ti),

→
wh(tj)〉

It is possible to show that the overall com-
positional distributional model DST (t) can be
obtained with a recursive algorithm that ex-
ploit vectors of the nodes of the tree.

The compositional distributional model is
then used in the same learning machine used
for the traditional RTE system with the fol-
lowing kernel function:

K(p1, p2) =
〈DST (a1), DST (a2)〉+ 〈DST (b1), DST (b2)〉+

+(WTS(a1, b1) ·WTS(a2, b2) + 1)2

4 Results and Conclusions

For the submission we used the java ver-
sion of LIBSVM (Chang and Lin, 2011).
Distributional vectors are derived with
DISSECT (Dinu et al., 2013) from a
corpus obtained by the concatenation of
ukWaC (wacky.sslmit.unibo.it), a mid-
2009 dump of the English Wikipedia

Model Accuracy (3-ways)
DST 69.42

full-fledged RTE System 75.66
Max 84.57
Min 48.73

Average 75.35

Table 1: Accuracies of the two systems on the
test set, together with the maximum, mini-
mum and average score for the challenge.

(en.wikipedia.org) and the British Na-
tional Corpus (www.natcorp.ox.ac.uk), for a
total of about 2.8 billion words. The raw co-
occurrences count vectors were transformed
into positive Pointwise Mutual Information
scores and reduced to 300 dimensions by
Singular Value Decomposition. This setup
was picked without tuning, as we found it
effective in previous, unrelated experiments.

We parsed the sentence with the Stanford
Parser (Klein and Manning, 2003) and ex-
tracted the heads for use in the lexicalized
trees with Collins’ rules (Collins, 2003).

Table 1 reports our results on the textual en-
tailment classification task, together with the
maximum, minimum and average score for the
challenge. The first observation is that the
full-fledged RTE system is still definitely bet-
ter than our CDSM system. We believe that
the main reason is that the DST cannot en-
code variables which is an important aspect
to capture when dealing with textual entail-
ment recognition. This is particularly true
for this dataset as it focuses on word order-
ing and on specific and recurrent entailment
rules. Our full-fledged system scored among
the first 10 systems, slightly above the over-
all average score, but our pure CDSM system
is instead ranked within the last 3. We think
that a more in-depth comparison with other
fully CDSM systems will give us a better in-
sight on our model and will also assess more
realistically the quality of our system.
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Abstract

This paper describes the HULTECH team par-
ticipation in Task 3 of SemEval-2014. Four
different subtasks are provided to the partici-
pants, who are asked to determine the semantic
similarity of cross-level test pairs: paragraph-
to-sentence, sentence-to-phrase, phrase-to-
word and word-to-sense. Our system adopts
a unified strategy (general purpose system) to
calculate similarity across all subtasks based
on word Web frequencies. For that purpose,
we define ClueWeb InfoSimba, a cross-level
similarity corpus-based metric. Results show
that our strategy overcomes the proposed base-
lines and achieves adequate to moderate re-
sults when compared to other systems.

1 Introduction
Similarity between text documents is considered a
challenging task. Recently, many works concentrate on
the study of semantic similarity for multi-level text doc-
uments (Pilehvar et al., 2013), but skipping the cross-
level similarity task. In the later, the underlying idea is
that text similarity can be considered between pairs of
text documents at different granularities levels: para-
graph, sentence, phrase or word. One obvious partic-
ularity of this task is that text pairs may not share the
same characteristics of size, context or structure, i.e.,
the granularity level.

In task 3 of SemEval-2014, two different strategies
have been proposed to solve this issue. On the one
hand, participants may propose a combination of indi-
vidual systems, each one solving a particular subtask.
On the other hand, a general purpose system may be
proposed, which deals with all the subtasks following
the exact same strategy.

In this paper, we describe a language-independent
corpus-based general purpose system, which relies on
a huge freely available Web collection called Anchor-
ClueWeb12 (Hiemstra and Hauff, 2010). In particular,
we calculate ClueWeb InfoSimba1 a cross-level seman-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1It is a Web version of InfoSimba (Dias et al., 2007).

tic similarity based on word-word frequencies. Indeed,
these frequencies are captured by the use of a colloca-
tion metric called SCP2 (Silva et al., 1999), which has
similar properties as the well studied PMI-IR (Turney,
2001) but does not over-evaluate rare events.

Our system outputs a normalized (between 0 and 1)
similarity value between two pieces of texts. However,
the subtasks proposed in task 3 of SemEval-2014 in-
clude a different scoring scale between 0 and 4. To
solve this issue, we applied linear, polynomial and ex-
ponential regressions as three different runs. Results
show that our strategy overcomes the proposed base-
lines and achieves adequate to moderate results when
compared to other systems.

2 System Description

Our system is based on a reduced version of the
ClueWeb12 dataset called Anchor ClueWeb12 and an
informative attributional similarity measure called In-
foSimba (Dias et al., 2007) adapted to this dataset.

2.1 Anchor ClueWeb12 Dataset

The Anchor ClueWeb12 dataset contains 0.5 billion
Web pages, which cover about 64% of the total num-
ber of Web pages in ClueWeb12. The particularity of
Anchor ClueWeb12 is that each Web page is repre-
sented by the anchor texts of the links pointing to it
in ClueWeb12. Web pages are indexed not on their
content but on their references. As such, the size of
the index is drastically reduced and the overall results
are consistent with full text indexing as discussed in
(Hiemstra and Hauff, 2010).

For development purposes, this dataset was indexed
in Solr 4.4 on a desktop computer using a batch in-
dexing script. Particularly, each compressed part file
of the Anchor ClueWeb12 was uncompressed, prepro-
cessed and indexed in a sequential way using the fea-
tures of incremental indexing offered by Solr (Smiley
and Pugh, 2009).

2.2 InfoSimba

In (Dias et al., 2007), the authors proposed the hypothe-
sis that two texts are similar if they share related (even-
tually different) constituents. So, their concept of simi-

2Symmetric Conditional Probability.
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larity is not any more based on the exact match of con-
stituents but relies on related constituents (e.g. words).
For example, it is clear that the following text pieces
extracted from the sentence-to-phrase subtask are re-
lated3 although they do not share any word.

1. he is a nose-picker

2. an uncouth young man

The InfoSimba similarity measure models this phe-
nomenon evaluating individual similarities between all
possible words pairs. Indeed, each piece of text is rep-
resented by the vector of its words. So, given two
pieces of texts Xi and Xj , their similarity is defined
in Equation 1 where SCP (., .) is the Symmetric Con-
ditional Probability association measure proposed in
(Silva et al., 1999) and defined in Equation 2.

IS(Xi, Xj) =
1
pq

p∑
k=1

q∑
l=1

SCP (wik, wjl). (1)

SCP (wik, wjl) =
P (wik, wjl)2

P (wik)× P (wjl)
. (2)

Following the previous example, the In-
foSimba value between the two vectors
X1 = {“he”, “is”, “a”, “nose-picker”} and
X2 = {“an”, “uncouth”, “young”, “man”} is
an average weight formed by all possible words pairs
associations as illustrated in Figure 1. Note that each
vertex is a word of a Xl vector and each edge is
weighted by the SCP (., .) value of the connected
words. In particular, each wij corresponds to the
word at the jth position in vector Xi, P (., .) is the
joint probability of two words appearing in the same
document, P (.) is the marginal probability of any
word appearing in a document and p (resp. q) is the
size of the vector Xi (resp. Xj).

Figure 1: Pairs of words evaluated when InfoSimba is
calculated.

In the case of task 3 of SemEval-2014, each text
pair is represented by two word vectors for which a
modified version of InfoSimba, ClueWeb InfoSimba,
is computed.

3The score of this pair (#85) in the training set is the max-
imum value 4.

2.3 ClueWeb InfoSimba

The final similarity metric, called ClueWeb InfoSimba
(CWIS), between two pieces of texts is defined in
Equation 3, where hits(w) returns the number of doc-
uments retrieved by Solr over Anchor ClueWeb12 for
the query w and hits(wa ∧ wb) is the number of doc-
uments retrieved when both words are present simul-
taneously. In this case, SCP is modified into SCP-IR
similarly as PMI is to PMI-IR, i.e., using hits counts
instead of probability values (see Equation 4).

CWIS(Xi, Xj) =
1
pq

p∑
k=1

q∑
l=1

SCP − IR(wik, wjl).

(3)

SCP − IR(wik, wjl) =
hits(wik ∧ wjl)2

hits(wik).hits(wjl)
. (4)

2.4 System Input

The task 3 of SemEval-2014 consists of (1) paragraph-
to-sentence, (2) sentence-to-phrase, (3) phrase-to-word
and (4) word-to-sense subtasks. Before submitting the
pieces of texts to our system, we first performed simple
stop-words removal with the NLTK toolkit (Bird et al.,
2009). Note that in the case of the word-to-sense sub-
task, the similarity is performed over the word itself
and the gloss of the corresponding sense4.

2.5 Output Values Transformations

The CWIS(., .) similarity metric returns a value be-
tween 0 and 1. However, the subtasks suppose that
each pair must be attributed a score between 0 and 4.
As such, an adequate scale transformation must be per-
formed. For that purpose, we proposed linear, polyno-
mial and exponential regressions and submitted three
different runs, one for each regression5. Note that the
regressions have been tuned on the training dataset us-
ing the respective R regression functions with default
parameters:

• lm(y ∼ x),

• lm(y ∼ x + I(x2) + I(x3)),

• lm(log(y + ε) ∼ x),

where ε6 is a small value included to avoid undefined
log values. The regression results on the test datasets
are presented in Figure 2.

4Glosses are obtained from WordNet using the sense id
provided for the task by the organizers.

5In the case of linear and exponential, these are mono-
thetic functions therefore ranking-based evaluation metrics
give the same score before and after this step.

6In our experiments, this value was set to 0.001.
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Figure 2: Linear, polynomial and exponential predic-
tions for the test dataset of the paragraph-to-sentence
subtask (colored dots). Black dots correspond to the
obtained ClueWeb InfoSimba value versus the manu-
ally assigned score in the training dataset.

3 Evaluation and Results
For evaluation purposes, two metrics have been se-
lected by the organizers: Pearson correlation (Pearson,
1895) and Spearman’s rank correlation (Hollander and
Wolfe, 1973). Detailed information about the evalu-
ation setup can be found in the task discussion paper
(Jurgens et al., 2014).

All results are given in Tables 1 and 2 for each
run. Note that the baseline metric is calculated for the
longest common string (LCS) and that each regression
has been tuned on the training dataset for each one of
the four tasks.

First, in almost all cases, the results outperform the
baseline. Second, performances show that with a cer-
tain amount of information (longer pieces of texts), in-
teresting results can be obtained. However, when the
size decreases, the performance diminishes and extra
information is certainly needed to better capture the se-
mantics between two pieces of text. Third, the poly-
nomial regression provides better results for the Pear-
son correlation evaluation, while for the Rho test, linear
and polynomial regressions get the lead. Note that this
situation depends on the data distribution and cannot
be seen as a conclusive remark. However, it is cer-
tainly an important subject of study for our unsuper-
vised methodology.

Another key point is that training examples were
used only for evaluation purposes7. In the case of
Spearman’s rank correlation, the linear and exponen-

7For Pearson correlation, valid interval was fixed to [0,4].

tial transformations obviously show exact same values
(See Table 2).

4 Conclusions
In this paper, we proposed a general purpose system
to deal with cross-level text similarity. The aim of
our research was to push as far as possible the lim-
its of language-independent corpus-based solutions in
a general context of text similarity. We were also con-
cerned with reproducibility and as such we exclusively
used publicly available datasets and tools8. The results
clearly show the limits of a simple solution based on
word statistics. Nevertheless, the framework can easily
be empowered with the straightforward introduction of
more competitive resources.
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Abstract 

This paper describes the aspect extraction 

system submitted by IHS R&D Belarus 

team at the SemEval-2014 shared task re-

lated to Aspect-Based Sentiment Analy-

sis. Our system is based on IHS Goldfire 

linguistic processor and uses a rich set of 

lexical, syntactic and statistical features 

in CRF model. We participated in two 

domain-specific tasks – restaurants and 

laptops – with the same system trained on 

a mixed corpus of reviews. Among sub-

missions of constrained systems from 28 

teams, our submission was ranked first in 

laptop domain and fourth in restaurant 

domain for the subtask A devoted to as-

pect extraction. 

1 Introduction 

With a rapid growth of the blogs, forums, review 

sites and social networks, more and more people 

express their personal views about products on 

the Internet in form of reviews, ratings, or rec-

ommendations. This is a great source of data 

used by many researchers and commercial appli-

cations that are focused on the sentiment analy-

sis to determine customer opinions. 

Sentiment analysis can be done on document, 

sentence, and phrase level (Jagtap, V. S., Ka-

rishma Pawar, 2013). Earlier works were focused 

mainly on the document (Turney, 2002; Pang, 

Lee and Vaithyanathan, 2002) and the sentence 

level (Kim and Hovy, 2004). However, this in-

formation can be insufficient for customers 

who 

are seeking opinions on specific product features 

(aspects) such as design, battery life, or screen. 

This fine-grained classification is a topic of as-

                                                 
      This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Page numbers and pro-

ceedings footer are added by the organisers. Licence details: 

http://creativecommons. org/licenses/by/4.0/ 

pect-based sentiment analysis (Moghaddam and 

Ester, 2012). 

Traditional approaches to aspect extraction are 

based on frequently used nouns and noun phrases 

(Popescu and Etzioni, 2005; Blair-Goldensohn et 

al., 2008), exploiting opinions (Zhuang et al., 

2006; Kobayashi, 2006), and supervised learning 

(Mukherjee and Liu, 2012). 

In this paper, we describe a system 

(IHS_RD_Belarus in official results) developed 

to participate in the international shared task or-

ganized by the Conference on Semantic Evalua-

tion Exercises (SemEval-2014) and focused on 

the phrase-level sentiment classification, namely 

aspect extraction (Pontiki et al., 2014). An aspect 

term means particular feature of a product or ser-

vice used in opinion-bearing sentences (My 

phone has amazing screen), as well as in 

neutral sentences (The screen brightness 
automatically adjusts). 

The organizers of SemEval-2014 task have 

provided a dataset of customer reviews with an-

notated aspects of the target entities from two 

domains: restaurants (3041 sentences) and lap-

tops (3045 sentences). The results were evaluat-

ed separately in each domain. Table 1 shows the 

distribution of the provided data for each domain 

dataset, training and testing set, with number of 

sentences and aspects.  

 Laptops Restaurants 

Training   

Sentences 3045 3041 

Aspects 2358 3693 

Testing   

Sentences 800 800 

Aspects 654 1134 

Table 1. Distribution of the provided data. 

Many studies showed that sentiment analysis 

is very sensitive to the source domain (training 

corpus domain) and performs poorly on data 

from other domain (Jakob and Gurevych, 2010). 

This restriction limits the applicability of in-
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domain models to a wide domain diversity of 

reviews. One of the common approaches to de-

velop a cross-domain system is training on a 

mixture of labeled data from different domains 

(Aue and Gamon, 2005). Cross-domain approach 

has the advantage of better portability, but it suf-

fers from lower accuracy compared to in-domain 

aspect extraction. Our cross-domain system is 

trained on mixed training data, and the same 

model was used unchanged for classification of 

both domain-specific test datasets. 

2 System Description 

Aspect extraction may be considered as a se-

quence labeling task because the product aspects 

occur at a sequence in a sentence (Liu, 2014). 

One of the state-of-the-art methods used for se-

quence labeling is Conditional Random Fields 

(CRF) (Lafferty, 2001). This method takes as an 

input a sequence of tokens, calculates the proba-

bilities of the various possible labelings and 

chooses the one with the maximum probability.  

We decided to deviate from Inside-Outside-

Begin (IOB) scheme used by Jakob and 

Gurevych (Jakob and Gurevych, 2010) and Li 

(Li et al., 2010) and introduced the following 

labels: FA for the attribute word preceding head 

word of a noun group; FH for the head word of a 

noun group; FPA for attribute word after head 

word of a noun group (Microsoft Office 

2003), and O for other non-aspect tokens. The 

following is an example of our suggested tag-

ging: I/O want/O to/O unplug/O 

the/O external/FA keyboard/FH. 

Our experiments showed that the words used 

in aspect terms are easier to recognize when they 

are always tagged with the same tags. For exam-

ple, let’s consider the tagging of the word “cam-

era” in the following cases: “camera” and “com-

pact camera”. We propose the FH tag for both 

examples, while the IOB scheme assumes the FB 

tag for the first example and the FI tag for the 

second.  

2.1 Pre-processing 

To facilitate feature generation for supervised 

CRF learning, sentences were pre-processed with 

IHS Goldfire linguistic processor that performs 

the following operations: slang and misspelling 

correction (“excelent” → "excellent" , “amazin” 

→ “amazing”, “wouldnt” → “wouldn’t”), part-

of-speech tagging, parsing, noun phrase extrac-

tion, semantic role labeling within expanded 

Subject-Action-Object (eSAO) relations 

(Todhunter et al., 2013), named entity recogni-

tion, labeling for predictive question-answering 

including rule-based sentiment analysis 

(Todhunter et al., 2014). 

In addition, we designed some simple rules to 

detect entity boundaries that take precedence 

over CRF labeling. For example, in the sentence 

“I run Final Cut Pro 7 and a few 

other applications”, our boundary detector 

recognizes “Final Cut Pro 7” as an entity 

represented by a single token (Tkachenko and 

Simanovsky, 2012). 

2.2 Features 

Below we will describe the features used in CRF 

model to represent the current token, two previ-

ous and two next tokens.  

Word features: 

 Token feature represents a base form of a 

token (word or entity) normalized by case 

folding. The vocabulary of terms is pretty 

compact within one domain, so this feature 

can have considerable impact on terms ex-

traction performance. 

 Part of speech feature represents the part-

of-speech tag of the current token with 

slight generalization, for example, the NNS 

tag (plural noun) is mapped to NN (singu-

lar noun). 

 Named entity feature labels named entities, 

e.g., people, organizations, locations, etc. 

 Semantic category denotes the presence of 

the token in manually crafted domain-

independent word-lists – sets of words hav-

ing a common semantic meaning – such as 

parameter (characteristics of object, e.g., 

“durability”), process (e.g., “charging”), 

sentiment-bearing word (e.g., “problem”), 

person (e.g., “sister”), doer of an action 

(someone or something that performs an 

action, e.g., “organizer”), temporal word 

(date- or time-related words, e.g., “Mon-

day”), nationality, word of reasoning (e.g., 

“decision”, “reason”), etc.  

 Semantic orientation (SO) score of token 

represents a low, mean or high SO score as 

separate feature values (the thresholds were 

determined experimentally). The SO of a 

word indicates the strength of its associa-

tion with positive and negative reviews. 

We calculated SO of each word w using 

Pointwise Mutual Information (PMI) 

measures as 

SO (w) = PMI(w, pr) – PMI(w, nr), 
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where PMI is the amount of information 

that we acquire about the presence of the 

word in positive pr or negative reviews nr 

(Turney, 2002). For the calculation of SO 

score, we used rated reviews from 

Epinions.com, Amazon.com and TripAdvi-

sor.com. To make corpus more precise, we 

included only 5-star reviews in our positive 

corpus, and 1-star reviews in our negative 

corpus. 

 Frequency of token occurrence is repre-

sented by five values ranging from very 

frequent to very rare words with an exper-

imentally determined threshold. The fre-

quency was obtained by dividing the num-

ber of reviews containing the token by the 

total number of reviews. The reason of us-

ing this as a feature is that people usually 

comment on the same product aspects and 

the vocabulary that they use usually con-

verges (Liu, 2012). 

 Opinion target feature is a binary feature 

that indicates whether a token is a part of 

an item which opinions are expressed on 

and comes from the rule-based sentiment 

analysis integrated in the predictive ques-

tion-answering component of the IHS 

Goldfire linguistic processor. Opinion tar-

get can be a product feature as well as a 

product itself. 

Noun phrase features: 

 Role of a token in a noun phrase: head 

word or attribute word. 

 Noun phrase introduction feature marks all 

tokens of noun phrase beginning with pos-

sessive pronoun, demonstrative pronoun, 

definite or indefinite article.  

 Number of attributes with SO score higher 

than the experimentally chosen threshold. 

This feature labels all words in a noun 

group. Our research showed that people of-

ten use sentiment-bearing adjectives to de-

scribe an aspect, e.g., “My phone has a 

great camera”. 

 List feature was added to designate the 

availability of list indicators (“and” or 

comma) in the noun group, e.g., “The 
leather carrying case, keyboard 

and mouse arrived in two days”. 

 Leaves-up feature denotes the number of 

of-phrases in a noun phrase before the to-

ken under consideration. For example, the 

token "battery" has one preceding of-

phrase in the phrase "durability of battery". 

 Leaves-down feature denotes the number of 

of-phrases in a noun phrase after the token 

under consideration. 

SAO features: 

 Semantic label feature represents the role 

of the token in eSAO relation: subject, ac-

tion, adjective, object, preposition, indirect 

object or adverb. 

 SAO feature labels all words presented in 

an eSAO relation. We used a set of eSAO 

patterns to determine basic relations be-

tween words. To form a SAO pattern, each 

non-empty component of an eSAO relation 

was mapped to an abstract value, e.g., 

proper noun phrases to “PNP”, common 

noun phrases to “CNP”, predicates are left 

in their canonical form. For example, the 

sentence "The restaurant Tal of-

fers authentic chongqing hot-

pot." is represented by the SAO pattern 

“PNP offer CNP”. All words from eSAO 

are marked with the same SAO feature. 

2.3 Results and Experiments 

Our CRF model was trained on the mixed set of 

6086 sentences with annotated aspect terms 

(3045 from the laptop domain and 3041 from the 

restaurant domain). The same model was applied 

unchanged to the test dataset from laptop domain 

(800 sentences) and restaurant domain (800 sen-

tences). We evaluated our system using 5-fold 

cross-validation: in each of the five iterations of 

the cross-validation, we used 80% of the provid-

ed training data for learning, and 20% for testing.  

 laptops restaurants 

training set 0.707 0.7784 

development set 0.7214 0.7865 

test set 0.7455 0.7962 

baseline 0.3564 0.4715 

Table 2. Performance on different datasets (F1-

score). 

The Table 2 shows the model performance (F1- 

score) obtained on the training set (using 5-fold 

cross validation), on the development set (we 

used a part of the training set as development 

set), on the final test set and the baseline provid-

ed by the task organizers. 

To evaluate the individual contribution of dif-

ferent feature sets, we performed ablation exper-

iment, presented in Table 3. This test involves 

removing one of the following feature sets at a 

time: current token and its POS tag (TOK), com-

binations with two previous and two next tokens 
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and their POS tags (CONT), named entity (NE), 

semantic category (SC), semantic orientation 

(SO), word frequency (WF), opinion target (OT), 

noun phrase related features (NP_F), and SAO 

pattern and semantic label (SAO_F). Some fea-

tures complement each other, so that despite 

small individual contribution, a cumulative im-

provement is generally achieved by using them 

in a set. 

 Dev set Test set 

lap rest lap rest 

overall 0.7214 0.7865 0.7455 0.7962 

-TOK 0.6642 

(-7.9%) 

0.7244 

(-7.9%) 

0.692 

(-7.2%) 

0.7445 

(-6.4%) 

-CONT 0.7101 

(-1.6%) 

0.77 

(-2.1%) 

0.7323 

(-1.8%) 

0.7811 

(-1.9%) 

-SC 0.6982 

(-3.3%) 

0.7854 

(-0.1%) 

0.7048 

(-5.8%) 

0.7864 

(-1.2%) 

-SO 0.709 

(-1.7%) 

0.7815 

(-0.6%) 

0.7442 

(-0.2%) 

0.7937 

(-0.3%) 

-OT 0.7026 

(-2.6%) 

0.7812 

(-0.7%) 

0.7381 

(-1%) 

0.7973 

(0.1%) 

-NP_F 0.717 

(-0.6%) 

0.777 

(-1.2%) 

0.7303 

(-2%) 

0.7801 

(-2%) 

-WF 0.716 

(-0.8%) 

0.788 

(0.2%) 

0.7399 

(-0.7%) 

0.7937 

(-0.3%) 

-SAO_F 0.7198 

(-0.2%) 

0.7854 

(-0.1%) 

0.7297 

(-2.1%) 

0.7981 

(0.2%) 

-NE 0.7191 

(-0.3%) 

0.7836 

(-0.4%) 

0.7444 

(-0.1%) 

0.7961 

(0) 

Table 3. Ablation experiment (F1-score). 

The importance of a feature set is measured by 

F1-score on development and testing datasets for 

both domains separately. 

Feature sets are listed in descending order of 

their impact on overall performance. The analy-

sis shows that the most important feature set is 

the combination of Token and POS features. 

Other features contribute to the performance to a 

smaller degree. 

As can be seen, the relative influence of fea-

tures on F1-score is similar on test and develop-

ment sets, showing that our model effectively 

overcomes the overfitting problem. 

We conducted several experiments on the 

training data to prove the domain portability of 

our CRF model. The results are shown in Table 4. 

As can be seen, the training on single-domain 

data improves the performance of in-domain 

classification by about 2%, but lowers the per-

formance of cross-domain classification by about 

40%. The training on the mixed dataset demon-

strates acceptable accuracy on both domain-

specific test sets. 

Training 

dataset 

Results on  

laptops dataset 

Results on  

restaurants dataset 

laptops  0.7667 0.3778 

restaurants 0.2961 0.8223 

mixed  0.7455 0.7962 

Table 4. Results of classification with different 

training datasets (F1-score). 

2.4 Error Analysis and Further Work 

The error analysis showed three main error 

types: not recognized, excessively recognized 

and partially recognized aspect terms (head word 

is recognized correctly, e.g., “separate RAM 

memory” instead of “RAM memory”). While 

first types are recall and precision errors respec-

tively, partial aspect extraction yields both recall 

and precision errors. A summary of the errors on 

test dataset is presented in Table 5. 

 laptops restaurants 

not recognized 68% 58% 

partially  

recognized 

18% 30% 

excessively 

recognized 

14% 12% 

Table 5. Error types distribution. 

From Table 5, we can see that a major source 

of errors is related to not recognized aspect 

terms. In the future, we would like to experiment 

with additional techniques to overcome recall 

problem, e.g., using dictionaries or concept tax-

onomies and employ skip-chain CRF, proposed 

by Li et al. (2010). Further improvements can also 

be made by tuning parameters of CRF learning. 

To verify the cross-domain portability of the 

system, we are going to test it on a third domain 

test dataset without including additional instanc-

es in the training corpus, as proposed by Aue and 

Gamon (2005). 

3 Conclusion 

In this paper, we have presented a CRF-based 

learning technique applied to the aspect extrac-

tion task. We implemented rich set of lexical, 

syntactic and statistical features and showed that 

our approach has good domain portability and 

performance ranked first out of 28 participating 

teams in the laptop domain and fourth in restau-

rant domain. 
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Abstract

In this paper we briefly describe our super-
vised machine learning approach for dis-
order mention detection system that we
submitted as part of our participation in
the SemEval-2014 Shared task. The main
goal of this task is to build a system that
automatically identifies mentions of clini-
cal conditions from the clinical texts. The
main challenge lies due in the fact that the
same mention of concept may be repre-
sented in many surface forms. We develop
the system based on the supervised ma-
chine learning algorithms, namely Condi-
tional Random Field and Support Vector
Machine. One appealing characteristics of
our system is that most of the features for
learning are extracted automatically from
the given training or test datasets with-
out using deep domain specific resources
and/or tools. We submitted three runs, and
best performing system is based on Condi-
tional Random Field. For task A, it shows
the precision, recall and F-measure values
of 50.00%, 47.90% and 48.90%, respec-
tively under the strict matching criterion.
When the matching criterion is relaxed, it
shows the precision, recall and F-measure
of 81.50%, 79.70% and 80.60%, respec-
tively. For task B, we obtain the accuracies
of 33.30% and 69.60% for the relaxed and
strict matches, respectively.

1 Introduction

The SemEval-2014 Shared Task 7 is concerned
with the analysis of clinical texts, particularly for
disorder mention detection and disambiguation.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

The purpose of this task is to enhance current
research in Natural Language Processing (NLP)
methods used in the clinical domain. The task is
a continuation of the CLEF/eHealth ShARe 2013
Shared Task. In particular there were two specific
tasks, viz. (i). Task A: To identify disorder men-
tions from biomedicine domain and (ii) Task B:
To classify each mention with respect to the Uni-
fied Medical Language System (UMLS) Concept
Unique Identifier (CUI). The task is challenging
in the sense that the same mention of concept may
be represented in many surface forms and men-
tion may appear in the different parts of texts.
Some systems (Cogley et al., 2013; Zuccon et al.,
2013; Tang et al., 2013; Cogley et al., 2013) are
available for disorder mention detection. Look-
ing at the challenges and resources available at
our hand we planned to adapt our existing system
(Sikdar et al., 2013) for disorder mention detec-
tion. The original architecture was conceptualized
as part of our participation in the BioCreative-IV
Track-2 Shared Task on Chemical Compound and
Drug Name Recognition. Although our submit-
ted system for SemEval-14 shared task is in line
with BioCreative-IV1, it has many different fea-
tures and characteristics.

We develop three systems (e.g. Model-1:
sikdar.run-0, Model-2: sikdar.run-1 and Model-
3: sikdar.run-2) based on the popular supervised
machine learning algorithms, namely Conditional
Random Field (CRF) (Lafferty et al., 2001) and
Support Vector Machine (SVM) (Cortes and Vap-
nik, 1995; Joachims, 1999). The models were de-
veloped by varying the features and feature tem-
plates. A baseline model is constructed by us-
ing the UMLS MetaMap2 tool. During testing
we merge the development set with the train-
ing set. Evaluation results on test data with the
benchmark set up show the F-measure values of

1www.biocreative.org/tasks/biocreative-iv/chemdner/
2http://mmtx.nlm.nih.gov/
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48.90%, 46.50% and 46.50%, respectively under
the strict criterion. Under relaxed matching cri-
terion the models show the F-measure values of
80.60%, 78.20% and 79.60%, respectively. Our
submission for Task-B is simple in nature where
we consider only those mentions that are also pre-
dicted in the baseline model, i.e. only the com-
mon CUIs are considered. It shows the accuracies
of 33.30%, 31.90% and 33.20%, respectively un-
der strict matching criterion; and 69.60%, 69.60%
and 69.10%, respectively under the relaxed match-
ing criterion.

2 Method

Our method for disorder mention detection from
clinical text is based on the supervised machine
learning algorithms, namely CRF and SVM. The
key focus was to develop a system that could be
easily adapted to other domains and applications.
We submitted three runs defined as below:
Model-1:sikdar.run-0: This is based on CRF,
and makes use of the features as mentioned below.
Model-2:sikdar.run-1: This model is built by
training a SVM classifier with the same set of
features as CRF.
Model-3:sikdar.run-2: This model is constructed
by defining a heuristics that looks at the outputs
of both the models. For given instance, if one of
the models predicts it to belong to the category
of candidate disorder mention then this is given
more priority in assigning the class. We observed
performance improvement on the development set
with this heuristic.

We identify and implement different features,
mostly without using any deep domain knowledge
or domain-specific external resources and/or tools.
The features that are used to train the classifiers are
briefly described below:

• Context words: Surrounding words carry ef-
fective information to identify disorder men-
tion. In our case we consider the previous
three and next three words as the features.

• MetaMap match: MetaMap is a widely used
tool that maps biomedical mention to the
UMLS CUI3. In UMLS, there are 11 seman-
tic types denoting disorders. These are Con-
genital Abnormality, Acquired Abnormality,
Injury or Poisoning, Pathologic Function,

3http://www.nlm.nih.gov/research/umls/

Disease or Syndrome, Mental or Behavioral
Dysfunction, Cell or Molecular Dysfunction,
Experimental Model of Disease, Anatomical
Abnormality, Neoplastic Process and Signs
and Symptoms. The training set is passed
through the MetaMap, and then we prepare a
list of mentions that belong to the UMLS se-
mantic types. A feature is thereafter defined
that takes a value of 1 if the current token ap-
pears in the list; otherwise the value becomes
0.

• Part-of-Speech (PoS) Information: In this
work, we use PoS information of the current
token as the feature. PoS information was
extracted from the GENIA tagger4 V2.0.2,
which is a freely available resource.

• Root words: Stems or root words, which
are extracted form GENIA tagger V2.0.2, are
used as the feature.

• Chunk information: We use GENIA tagger
V2.0.2 to extract the chunk information. It
helps to identify the boundaries of disorder
mentions.

• Initial capital: The feature is set to true if the
first character of the current token is a capital
letter.

• All capital: The feature is set to true if all the
letters of the current token are capitalized.

• Stop words: A feature is defined that is set
to one if the current token appears in the list
of stop words.

• Word normalization: Word shapes refer to
the mapping of each word to their equiva-
lence classes. Each capitalized character of
the word is replaced by ‘A’, small characters
are replaced by ‘a’ and digits are replaced by
‘0’.

• Word suffix and prefix: These features in-
dicate the fixed-length character sequences
(here 4) stripped either from the end (suffix)
or beginning positions of words. This is use-
ful in the sense that disorder mentions share
some common sub-strings.

4http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger
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• Unknown word: This feature is imple-
mented depending upon whether the current
token was found during training or not. For
the training set this has been set randomly.

• Word length: If the length of a token is more
than a predefined threshold (here 5) then it is
most likely a disorder mention. This feature
is defined with the observation that very short
words are most probably not disorder men-
tions.

• Alpha digit: If the current token contains
digit character(s), then the feature is set to
true otherwise false.

• Informative words: This feature is devel-
oped from the training dataset. The words or
the sequence of words that precede and fol-
low the disorder mentions could be useful for
mention detection. The most frequently oc-
curring words that appear within the context
of wi+2

i−2 = wi−2 . . . wi+2 of wi are extracted
from the training data. Two different lists are
prepared, one for the informative words that
precede the mentions and the other contains
the informative words that follow the men-
tions. Thereafter we define two features that
fire for the words of these lists.

• Disorder mention prefix and suffix: We ex-
tract most frequently occurring prefixes and
suffixes of length 2 from the disorder men-
tions present in the training data. We pre-
pare two lists containing the prefix and suffix
sub-sequences (of length two) that appear at
least 10 times in the training set. We define
two features that go on/off depending upon
whether the current word contains any sub-
sequence present in the lists.

• Dynamic information: The feature is ex-
tracted from the output label(s) of the previ-
ous token(s). The feature value is determined
at run time.

3 Experimental Results

3.1 Datasets
In SemEval-2014 Shared task 7, three types of
data were provided- training, development and
test. Training data contains four different types
of notes- discharge, ecg, echo and radiology. De-
velopment data consists of notes of three different

domains, viz. discharge, echo and radiology. But
the test set contains only the discharge notes. For
a given document, the start and end indices are
mentioned for the disorder mentions. There are
199, 99 and 133 documents in the training, devel-
opment and test set, respectively.

3.2 Results and Analysis

We use a regular expression based simple pattern
(e.g. dot and space) matching techniques for the
sentence splitting and tokenization. We use C++

based CRF++ package5 for CRF experiments. We
set the default values of the following parame-
ters (a). the hyper-parameter of CRF. With larger
value, CRF tends to overfit to the given training
data; (b). parameter which sets the cut-off thresh-
old for the features (default value is 1). CRF uses
only those features, having more than the cut-off
threshold in the given training data.

In case of SVM we used YamCha6 toolkit
along with TinySVM7. We use the polynomial
kernel function of degree two. In order to denote
the boundaries of a multi-word disorder mention
properly we use the standard BIO encoding
scheme, where B, I and O represent the beginning,
intermediate and outside, respectively, for a
multi-word token. Please note that the mentions
are not continuous, i.e. they could appear at the
various positions of the text. For example, in the
sentence The left atrium is moderately dilated,
there is a single mention left atrium dilated. Its
BIO format is represented in Table 1.

Token Tag
The O
left B-Men
atrium I-Men
is O
moderately O
dilated I-Men
. O

Table 1: An example of BIO representation.

Experiments are conducted on the benchmark
setup as provided by the competition organizer. At
first we train our system using the training set and
evaluate using the development set in order to de-

5http://crfpp.sourceforge.net
6http://chasen-org/ taku/software/yamcha/
7http://chasen.org/ taku/software/TinySVM/
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System Strict Relaxed
P R F P R F

Baseline 19.9 29.0 23.6 44.9 63.0 52.4
Model-1 52.5 43.0 47.3 86.2 72.6 78.8
Model-2 49.3 41.0 44.8 82.8 70.6 76.2
Model-3 46.7 44.0 45.3 81.2 77.5 79.3

Table 2: Results on development set for Task A.

System Strict Relaxed
Accuracy Accuracy

Baseline 24.6 85.1
Model-1 31.2 72.5
Model-2 29.9 73.0
Model-3 31.8 72.4

Table 3: Results on development set for Task B.

termine the best configuration. We define a base-
line model by passing the development set to the
UMLS MetaMap tool. Its results along with the
baseline model are reported in Table 2 for Task A.
Evaluation shows that our proposed system per-
forms reasonably better compared to the baseline
model. It is also to be noted that Model-1 performs
better compared to the other two submitted mod-
els for the strict matching, but for relaxed evalu-
ation, Model-3 performs better than Model-1 and
Model-2. Under strict matching criterion, Model-
1 achieves 2.7% and 5.0% increments in precision
over the second and third models, respectively.
For relaxed matching, Model-3 achieves 4.9% and
6.9% increments in recall over the first and sec-
ond models, respectively. Results on the develop-
ment set for Task-B are reported in Table 3. Please
note that although our system performs better than
the baseline in terms of strict matching, it does not
show better accuracy under relaxed matching cri-
terion. This is because our system for Task-B is
developed by considering only those mentions that
lie in the intersection of baseline and CRF models.
As a result many mentions are missed. During fi-
nal submissions we merged development sets with
the respective training sets, and perform evalua-
tion on the test sets. We report our results on the
test sets in Table 4 and Table 5 for Task-A and
Task-B, respectively.

We carefully analyze the results and find that
most of the errors encountered because of the dis-
contiguous mentions. Different components of a
mention may be mapped to the different concepts.
In our system we treat two mentions as a single

System Strict Relaxed
P R F P R F

Model-1 50.0 47.9 48.9 81.5 79.7 80.6
Model-2 47.3 45.8 46.5 78.9 77.6 78.2
Model-3 45.0 48.1 46.5 76.9 82.6 79.6

Table 4: Evaluation results on test set for Task A.

System Strict Relaxed
Accuracy Accuracy

Model-1 33.3 69.6
Model-2 31.9 69.6
Model-3 33.2 69.1

Table 5: Results of Task B for the test set.

unit if they have some shared tokens. For exam-
ple, the sentence “She also notes new sharp pain in
left shoulder blade/back area” contains two differ-
ent mentions, viz.“pain shoulder blade” and “pain
back”. Here shared word of these two mentions
is “pain”, but we consider these two mentions as
a single unit such as “pain shoulder blade back”.
This contributes largely to the errors that our sys-
tem faces for the first task. For the second task,
we miss a number of mentions, and this can be
captured if we directly match the system identified
mentions to the entire UMLS database.

4 Conclusion

In this paper we report on our works as part of our
participation in the SemEval-2014 shared task re-
lated to clinical text mining. We submitted three
runs for both the tasks, viz. disorder mention de-
tection and disambiguation. Our submitted runs
for the first task are based on CRF and SVM. We
make use of a set of features that are not very
domain-specific. The system developed for the
second task is very simple and is based on UMLS
Meta Map tool.

There are many avenues for future research:
identification of more features for the first task;
use of some domain-specific resources and/or
tools for the first task; use of entire UMLS the-
saurus for mapping the disorder mentions; use
of some machine learning techniques for disam-
biguation. We also plan to investigate how sys-
tematic feature selection, ensemble learning and
machine learning optimization have impact on dis-
order mention detection and disambiguation.
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Abstract

The shared task on Aspect based Senti-
ment Analysis primarily focuses on mining
relevant information from the thousands
of online reviews available for a popular
product or service. In this paper we re-
port our works on aspect term extraction
and sentiment classification with respect
to our participation in the SemEval-2014
shared task. The aspect term extraction
method is based on supervised learning
algorithm, where we use different classi-
fiers, and finally combine their outputs us-
ing a majority voting technique. For senti-
ment classification we use Random Forest
classifier. Our system for aspect term ex-
traction shows the F-scores of 72.13% and
62.84% for the restaurants and laptops re-
views, respectively. Due to some techni-
cal problems our submission on sentiment
classification was not evaluated. However
we evaluate the submitted system with the
same evaluation metrics, and it shows the
accuracies of 67.37% and 67.07% for the
restaurants and laptops reviews, respec-
tively.

1 Introduction

Nowadays user review is one of the means to drive
the sales of products or services. There is a grow-
ing trend among the customers who look at the on-
line reviews of products or services before taking
a final decision. In sentiment analysis and opinion
mining, aspect extraction aims to extract entity as-
pects or features on which opinions have been ex-
pressed (Hu and Liu, 2004; Liu, 2012). An aspect
is an attribute or component of the product that

This work is licensed under a Creative Commons At-
tribution 4.0 International License. Page numbers and pro-
ceedings footer are added by the organizers. License details:
http://creativecommons.org/licenses/by/4.0/

has been commented on in a review. For exam-
ple:“Dell Laptop has very good battery life and
click pads”. Here aspect terms are battery life and
click pads. Sentiment analysis is the task of iden-
tifying the polarity (positive, negative or neutral)
of review. Aspect terms can influence sentiment
polarity within a single domain. As an example,
for the restaurant domain cheap is usually posi-
tive with respect to food, but it denotes a negative
polarity when discussing the decor or ambiance
(Brody and Elhadad, 2010).

A key task of aspect based sentiment analysis
is to extract aspects of entities and determine the
sentiment corresponding to aspect terms that have
been commented in review document. In recent
times there has been huge interest to identify as-
pects and sentiments simultaneously. The method
proposed in (Hu and Liu, 2004) is based on infor-
mation extraction (IE) approach that identifies fre-
quently occurring noun phrases using association
mining. Some other works include the methods,
viz those that define aspect terms using a manually
specified subset of the Wikipedia category (Fahrni
and Klenner, 2008) hierarchy, unsupervised clus-
tering technique (Popescu and Etzionir, 2005) and
semantically motivated technique (Turney, 2002)
etc. Our proposed approach for aspect term ex-
traction is based on supervised machine learning,
where we build many models based on different
classifiers, and finally combine their outputs us-
ing majority voting. Before combining, the out-
put of each classifier is post-processed with a set
of heuristics. Each of these classifiers is trained
with a moderate set of features, which are gen-
erated without using any domain-specific knowl-
edge and/or resources. Our submitted system
for the second task is based on Random Forest
(Breiman, 2001).
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2 Tasks

The SemEval-2014 shared task on Aspect based
Sentiment Analysis 1 focuses on identifying the
aspects of a given target entities and the senti-
ment expressed towards each aspect. A bench-
mark setup was provided with the datasets con-
sisting of customer reviews with human-annotated
annotations of the aspects and their polarity infor-
mation. There were four subtasks, and we partic-
ipated in the first two of them. These are defined
as follows:
Subtask-1: The first task is related to aspect
term extraction. Given a set of sentences with
pre-identified entities, identify the aspect terms
present in the sentence and return a list containing
all the distinct aspect terms.
Substask-2: The second task addresses the as-
pect term polarity. For a given set of aspect terms
within a sentence, determine whether the polarity
of each aspect term is positive, negative, neutral or
conflict (i.e. both positive and negative).

3 Methods

3.1 Pre-processing
Each review is in the XML form. At first we ex-
tract the reviews along with their identifiers. Each
review is tokenized using the Stanford parser 2 and
Part-of-Speech tagged using the Stanford PoS tag-
ger 3. At the various levels we need the chunk-
level information. We extract these information
using the OpenNLP chunker available at 4.

3.2 Aspect Term Extraction
The approach we adopted for aspect term extrac-
tion is based on the supervised machine learn-
ing algorithm. An aspect can be expressed by
a noun, adjective, verb or adverb. But the re-
cent research in (Liu, 2007) shows that 60-70%
of the aspect terms are explicit nouns. The aspect
terms could also consist of multiword entities such
as “battery life” and “spicy tuna rolls” etc. As
the classification algorithms we make use of Se-
quential minimal optimization (SMO), Multiclass
classifier, Random forest and Random tree. For
faster computation of Support Vector Machine,
SMO (Platt, 1998) was proposed. Random tree
(Breiman, 2001) is basically a decision tree, and

1http://alt.qcri.org/semeval2014/task4/
2http://nlp.stanford.edu/software/lexparser.shtml
3http://nlp.stanford.edu/software/tagger.shtml
4http://opennlp.sourceforge.net/models-1.5/

in general used as a weak learner to be included in
some ensemble learning method. Multiclass clas-
sifier is a meta learner based on binary SMO. This
has been converted to multiclass classifier using
the pairwise method. In order to reduce the errors
caused by the incorrect boundary identification we
define a set of heuristics, and apply on each output.
At the end these models are combined together us-
ing a simple majority voting.

We implement the following set of features for
aspect terms extraction.

• Local context: Local contexts that span the
preceding and following few tokens of the
current word are used as the features. Here
we use the previous two and next two tokens
as the features.

• Part-of-Speech information: Part-of-
Speech(PoS)information plays an important
role in identifying the aspect terms. We use
the PoS information of the current token as
the feature.

• Chunk Information: Chunk information
helps in identifying the boundaries of aspect
terms. This is particularly more helpful to
recognize multiword aspect terms.

• Root word: Roots of the surface forms are
used as the features. We use the Porter Stem-
mer algorithm 5 to extract the root forms.

• Stop word: We use the list of stop words
available at 6. A feature is defined that takes
the value equal to 1 or 0 depending upon
whether it appears in the training/test set or
not.

• Length: Length of token plays an important
role in identifying the aspect terms. We as-
sume an entity as the candidate aspect term
if its length exceeds a predefined threshold
value equal to five.

• Prefix and Suffix: Prefix and suffix of fixed
length character sequences are stripped from
each token and used as the features of classi-
fier. Here we use the prefixes and suffixes of
length upto three characters as the features.

5http://tartarus.org/martin/PorterStemmer/java.txt
6http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words
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• Frequent aspect term: We extract the the as-
pect terms from the training data, and prepare
a list by considering the most frequently oc-
curring terms. We consider an aspect term to
be frequent if it appears at least five times in
the training data. A feature is then defined
that fires if and only if the current token ap-
pears in this list.

The output of each classifiers is post-processed
with a set of hand-crafted rules, defined as below:
Rule 1: If the PoS tag of the target token is noun,
chunk tag is I-NP (denoting the intermediate to-
ken of a noun phrase) and the observed class of the
previous token is O (other than aspect terms) then
the current token should be assigned the class B-
Aspect (denotes the beginning of an aspect term).
Rule 2: If the current token has PoS tag noun,
chunk tag I-NP and the observed class of the im-
mediately preceding token is B-Aspect then the
current token should be assigned the class I-Aspect
(denoting the intermediate token).

3.3 Polarity Identification

Polarity classification of aspect terms is the classi-
cal problem in sentiment analysis. The task is to
classify the sentiments or opinions into semantic
classes such as positive, negative, and neutral. We
develop a Random Forest classifier for this task.
In this particular task one more class conflict is in-
troduced. It is assigned if the sentiment can either
be positive or negative. For classification we make
use of some of the features such as local context,
PoS, Chunk, prefix and suffix etc., as defined in the
previous Subsection. Some other problem-specific
features that we implement for sentiment classifi-
cation are defined as below:

• MPQA feature: We make use of MPQA
subjectivity lexicon (Wiebe and Mihalcea,
2006) that contains sentiment bearing words
as feature in our classifier. This list was pre-
pared semi-automatically from the corpora of
MPQA7 and Movie Review dataset8. A fea-
ture is defined that takes the values as fol-
lows: 1 for positive; -1 for negative; 0 for
neutral and 2 for those words that do not ap-
pear in the list.

• Function words: A list of function words is
7http://cs.pitt.edu/mpqa/
8http://cs.cornell.edu/People/pabo/movie-review-data/

compiled from the web9. A binary-valued
feature is defined that fires for those words
that appear in this list.

4 Experiments and Analysis

We use the datasets and the evaluation scripts as
provided by the SemEval-2014 shared task orga-
nizer.

4.1 Datasets

The datasets comprise of the domains of restau-
rants and laptop reviews. The training sets con-
sist of 3,044 and 3,045 reviews. There are 3,699
and 2,358 aspect terms, respectively. The test set
contains 800 reviews for each domain. There are
1,134 and 654 test instances in the respective do-
mains.

4.2 Results and Analysis

At first we develop several machine learning mod-
els based on the different classification algorithms.
All these classifiers were trained using the same
set of features as mentioned in Section 3. We
use the default implementations of these classi-
fiers in Weka10. We post-process the outputs of
all the models using some heuristics. Finally, all
these classifiers are combined together using ma-
jority voting. It is to be noted that we determine
the best configuration by carrying out different ex-
periments on the development set, which is con-
structed by taking a part of the training set, and fi-
nally blind evaluation is performed on the respec-
tive test set. We use the evaluation script provided
with the SemEval-2014 shared task. The training
sets contain multiword aspect terms, and so we use
the standard BIO notation11 for proper boundary
marking.

Experiments show the precision, recall and F-
score values 77.97%, 72.13% and 74.94%, respec-
tively for the restaurant dataset. This is approxi-
mately 10 points below compared to the best sys-
tem. But it shows the increments of 4.16 and
27.79 points over the average and baseline mod-
els, respectively. For the laptop dataset we ob-
tain the precision, recall and F-score values of
70.74%, 62.84% and 66.55%, respectively. This
is 8 points below the best one and 10.35 points

9http://www2.fs.u-bunkyo.ac.jp/ gilner/wordlists.html
10www.cs.waikato.ac.nz/ml/weka/
11B, I and O denote the beginning, intermediate and out-

side tokens
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Model precision recall F-score
Random Tree 65.21 59.63 62.29

Random Forest 70.93 62.69 66.55
SMO 71.18 64.22 67.52

Multiclass 73.44 68.50 70.88
Ensemble 77.97 72.13 74.94

Best system 85.35 82.71 84.01
Average 76.74 67.26 70.78
Baseline - - 47.15

Table 1: Result of Task-A for restaurants dataset
with different classifiers (in %).

Model precision recall F-score
Random Tree 56.52 56.17 56.34

Random Forest 58.38 58.02 58.19
SMO 63.62 63.22 63.39

Multiclass 65.30 64.90 65.09
Ensemble 70.74 62.84 66.55

Best system 84.80 66.51 74.55
Average 68.97 50.45 56.20
Baseline - - 35.64

Table 2: Results of aspect term extraction for lap-
tops dataset with different classifiers (in %).

above the average system. Compared to the base-
line it achieves more than 20 point increment. De-
tailed evaluation results for all the classifiers are
reported in Table 1 and Table 2 for restaurant and
laptop datasets, respectively. Results show that
multiclass classifier achieves the highest perfor-
mance with precision, recall and F-score values
of 73.44%, 68.50% and 70.88%, respectively for
the restaurant dataset. The same model shows the
highest performance with precision, recall and F-
score values of 65.30%, 64.90% and 65.09%, re-
spectively for the laptop dataset. Because of ma-
jority ensemble we observe increments of 4.06%
and 1.46% F-score points over the best individual
model, respectively.

We also perform error analysis to understand
the possible sources of errors. We show only the
confusion matrix for Task-A in Table 3. It shows
that in most cases I-ASP is misclassified as B-ASP.
System also suffers because of the misclassifica-
tion of aspect terms to others.

Experiments for classification are reported in
Table 4. Evaluation shows that the system
achieves the accuracies of 67.37% and 67.07% for

B-ASP I-ASP Other
B-ASP 853 15 269
I-ASP 114 213 142
Other 123 35 11431

Table 3: Confusion matrix for Task-A on restau-
rants dataset.

Datasets #Aspect
Terms

#Correct
Identification

Accuracy
(in %)

Restaurants 1134 764 67.37
Laptops 654 438 67.07

Table 4: Results of aspect terms polarity (in %).

the restaurants and laptops datasets, respectively.
Please note that our system for the second task
was not officially evaluated because of the techni-
cal problems of the submitted zipped folder. How-
ever we evaluated the same system with the of-
ficial evaluation script, and it shows the accura-
cies as reported in Table 4. We observe that the
classifier performs reasonably well for the posi-
tive and negative classes, and suffers most for the
conflict classes. This may be due to the number
of instances present in the respective training set.
Results show that our system achieves much lower
classification accuracy (13.58 points below) com-
pared to the best system for the restaurant datasets.
However, for the laptop datasets the classification
accuracy is quite encouraging (just 3.42 points be-
low the best system). It is also to be noted that our
classifier achieves quite comparable performance
for both the datasets. Therefore it is more general
and not biased to any particular domain.

5 Conclusion

In this paper we report our works on aspect term
extraction and sentiment classification as part of
our participation in the SemEval-2014 shared task.
For aspect term extraction we develop an ensem-
ble system. Our aspect term classification model is
based on Random Forest classifier. Runs for both
of our systems were constrained in nature, i.e. we
did not make use of any external resources. Evalu-
ation on the shared task dataset shows encouraging
results that need further investigation.

Our analysis suggests that there are many ways
to improve the performance of the system. In fu-
ture we will identify more features to improve the
performance of each of the tasks.
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Abstract

In this paper we report our works for
SemEval-2014 Sentiment Analysis in
Twitter evaluation challenge. This is the
first time we attempt for this task, and
our submissions are based on supervised
machine learning algorithm. We use Sup-
port Vector Machine for both the tasks,
viz. contextual polarity disambiguation
and message polarity classification. We
identify and implement a small set of
features for each the tasks, and did not
make use of any external resources and/or
tools. The systems are tuned on the devel-
opment sets and finally blind evaluation is
performed on the respective test set, which
consists of the datasets of five different
domains. Our submission for the first
task shows the F-score values of 76.3%,
77.04%, 70.91%, 72.25% and 66.32% for
LiveJournal2014, SMS2013, Twitter2013,
Twitter2014 and Twitter2014Sarcasm
datasets, respectively. The system devel-
oped for the second task yields the F-score
values of 54.68%, 40.56%, 50.32%,
48.22% and 36.73%, respectively for the
five different test datasets.

1 Introduction

During the past few years, the communications in
the forms of microblogging and text messaging
have emerged and become ubiquitous. Opinions
and sentiments about the surrounding worlds are
widely expressed through the mediums of Twit-
ter messages (Tweets) and Cell phone messages
(SMS). The availability of social content gener-
ated on sites such as Twitter creates new opportu-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

nities to automatically study public opinion. Deal-
ing with these informal text genres presents new
challenges for data mining and language process-
ing techniques beyond those encountered when
working with more traditional text genres such as
newswire. Tweets and SMS messages are short
in length, usually a sentence or a headline rather
than a document. These texts are very informal in
nature and contains creative spellings and punctu-
ation symbols (Nakov et al., 2013). Text also con-
tains lots of misspellings, slang, out-of-vocabulary
words, URLs, and genre-specific terminology and
abbreviations, e.g., RT for reTweet and #hash-
tags. The kind of these specific features pose great
challenges for building various lexical and syntac-
tic resources and/or tools, which are required for
efficient processing of texts. These aspects also
introduce complexities to build the state-of-the-
art data mining systems. In recent times, there
has been a huge interest to mine and understand
the opinions and sentiments that people are com-
municating in social media (Barbosa and Feng,
2010; Bifet et al., 2011; Pak and Paroubek, 2010;
Kouloumpis et al., 2011). Recent studies show
the interests in sentiment analysis of Tweets across
a variety of domains such as commerce (Jansen
et al., 2009), health (Chew and Eysenbach, 2010;
Salathe and Khandelwal, 2011) and disaster man-
agement (Mandel et al., 2012).

Another aspect of social media data, such as
twitter messages, is that they include rich informa-
tion about the individuals involved in the commu-
nication. For e.g., twitter maintains information
about who follows whom. ReTweets (reshares of a
Tweet) and tags inside of Tweets provide discourse
information (Nakov et al., 2013). Efficient mod-
elling of such information is crucial in the sense
that it provides a mean to empirically study the
social interactions where opinion is conveyed.

Several corpora with detailed opinion and senti-
ment annotation have been made freely available,
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e.g., the MPQA corpus (Barbosa and Feng, 2005)
of newswire text; i-sieve (Kouloumpis et al., 2011)
and TASS corpus2 (Villena-Roman et al., 2013)
for Twitter sentiment. These resources were either
in non-social media or they were small and propri-
etary. They further focused on message-level sen-
timent. The SemEval-2013 shared task (Nakov et
al., 2013) on sentiment analysis in Twitter releases
SemEval Tweet corpus, which contains Tweets
and SMS messages with sentiment expressions an-
notated with contextual phrase-level polarity as
well as an overall message-level polarity. Among
the 44 submissions, the highest-performing sys-
tem (Mohammad et al., 2013) made use of Sup-
port Vector Machine (SVM) classifier. It obtained
the F-scores of 69.02% in the message-level task
and 88.93% in the term-level task. Variety of fea-
tures were implemented based on surface-forms,
semantics, and sentiment features. They generated
two large wordsentiment association lexicons, one
from Tweets with sentiment-word hashtags, and
one from Tweets with emoticons. They showed
that in message-level task, the lexicon-based fea-
tures gained 5 F-score points over all the others.

SemEval-14 shared task 1 on sentiment analy-
sis in Twitter is a continuing effort to promote the
research in this direction. Similar to the previ-
ous year’s evaluation campaigns two primary tasks
were addressed in this year challenge. The first
task (i.e. Subtask A) deals with contextual polar-
ity disambiguation and the second task (i.e. Sub-
task B) was about message polarity classification.
For Subtask A, for a given message containing a
marked instance of a word or phrase, the goal is to
determine whether that instance is positive, nega-
tive or neutral in that context. In Subtask B, for a
given message, the task is to classify whether the
message is of positive, negative, or neutral sen-
timent. For messages that convey both positive
and negative sentiments, the stronger one should
be chosen.

In this paper we report on our submissions as
part of our first-time participation in this kind of
task (i.e. sentiment classification). We develop the
systems based on supervised machine learning al-
gorithm, namely Support Vector Machine (SVM)
(Joachims, 1999; Vapnik, 1995). We identify and
implement a very small set of features that do not
make use of any external resources and/or tools.
For each task the system is tuned on the devel-

1http://alt.qcri.org/semeval2014/task9/

opment data, and finally blind evaluation is per-
formed on the test data.

2 Methods

We develop two systems, one for contextual polar-
ity disambiguation and the other for message po-
larity classification. Each of the systems is based
on supervised machine learning algorithm, namely
SVM. Support vector machines (Joachims, 1999;
Vapnik, 1995) have been shown to be highly ef-
fective at traditional text categorization, generally
outperforming many other classifiers such as naive
Bayes (Joachims, 1999; Vapnik, 1995). They are
large-margin, rather than probabilistic, classifiers.
For solving the two-class problem, the basic idea
behind the training procedure is to find a hyper-
plane, represented by vector ~w, that not only sepa-
rates the document vectors in one class from those
in the other, but for which the separation, or mar-
gin, is as large as possible. This search corre-
sponds to a constrained optimization problem; let-
ting cj in 1,-1 (corresponding to positive and neg-
ative classes, respectively) be the correct class of
the document dj , the solution could be written as:
~w :=

∑
j ajcj ~dj , aj >= 0

where, the aj’s are obtained by solving a dual opti-
mization problem. Those ~dj such that aj is greater
than zero are called support vectors, since they are
the only document vectors contributing to ~w. Clas-
sification of test instances consists simply of deter-
mining which side of ~w’s hyperplane they fall on.

2.1 Preprocessing

We pre-process Tweet to normalize it by replac-
ing all ”URLs” to ”http://url” and all user-ids
to ”@usr”, and this is performed by the regular
expression based simple pattern matching tech-
niques. We remove punctuation markers from the
start and end positions of Tweets. For e.g., ’the
day is beautiful!’ is converted to ’the day is beauti-
ful’. Multiple whitespaces are replaced with single
whitespace. Stop-words are removed from each
review.

2.2 Features

In this work we use same set of features for both
the tasks. Each Tweet is represented as a vector
consisting of the following features:

1. Local contexts: We extract the unigrams and
bigrams from the training and test datasets.
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A feature is defined that checks the occur-
rences of these n-grams in a particular Tweet
or phrase.

2. Upper case: This feature is binary valued
with a value set to 1 if all the characters of
a phrase or Tweet are capitalized, and 0 oth-
erwise. This indicates that the target message
or context contains either positive or negative
sentiment.

3. Elongated words: The feature checks
whether a word contains a character that re-
peats more than twice. This indicates the
presence of a positive sentiment word in the
surrounding. This was defined in lines with
the one reported in (Mohammad et al., 2013).

4. Hash tags: This feature checks the number
of hash tags in the Tweet. The value of this
feature is set equal to the absolute number of
features.

5. Repeated characters: This feature checks
whether the word(s) have at least three
consecutive repeated characters (e.g.,
happppppppy, hurrrrrey etc.). In such cases,
the words are normalized to contain only
upto two repeated characters. This helps to
capture the words having similar structures.

6. Negated contexts: A negated word can af-
fect the polarity of the target word. A negated
segment is defined as a sequence of tokens
that starts with a negation word (e..g, no,
couldn’t etc.) and ends with a punctuation
marks (e.g.,,,., :, ;, !, ?). All the words follow-
ing the negation word are suffixed with NEG-
ATIVE, and the polarity features are also
converted with NEGATIVE in line with (Mo-
hammad et al., 2013).

3 Experimental Results and Analysis

The SemEval-2014 shared task datasets are based
on SemEval-2013 competition datasets. It covers
a range of topics, including a mixture of entities,
products and events. Keywords and Twitter hash-
tags were used to identify messages relevant to the
selected topic. The selected test sets were taken
from the five different domains. We perform ex-
periment with the python based NLTK toolki2. We

2http://www.nltk.org/

Class precision recall F-score
Positive 72.02 90.45 80.19
Negative 76.86 53.70 63.23
Neutral 7.69 22.22 3.45
Average 52.19 55.46 53.77

Table 1: Results on development set for Task-A
(%).

Class precision recall F-score
Positive 49.92 63.75 55.99
Negative 42.59 31.94 36.51
Neutral 59.54 53.49 56.35
Average 50.68 49.73 66.39

Table 2: Results on development set for Task-B (in
%).

carried out experiments with the different classi-
fiers. However we report the results of SVM as
it produced the highest accuracy with respect to
this particular feature set. We use the default pa-
rameters of SVM as implemented in this toolkit.
We submitted two runs, one for each task. Both
of our submissions were constrained in nature, i.e.
we did not make use of any additional resources
and/or tools to build our systems.

We perform several experiments using the de-
velopment set. Best results are reported in Table 1
and Table 2 for Task-A and Task-B, respectively.
Evaluation shows that for message polarity dis-
ambiguation we obtain the average precision, re-
call and F-score values of 52.19%, 55.46% and
53.77%, respectively. For message polarity clas-
sification we obtain the precision, recall and F-
Score values of 50.68%, 49.73% and 66.39%, re-
spectively. It is evident from the evaluation that
the first task suffers most due to the problems in
classifying the tweets having neutral sentiments,
whereas the second task faces difficulties in clas-
sifying the negative sentiments. We report the con-
fusion matrices in Table 3 and Table 4 for the first

gs\pred positive negative neutral
positive 502 50 3
negative 160 196 9
neutral 35 9 1

Table 3: Confusion matrix for A. Here, gs: Gold
standard; pred: Predicted class.
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gs\pred positive negative neutral
positive 313 43 135
negative 102 92 94
neutral 212 81 337

Table 4: Confusion matrix for B. Here, gs: Gold
standard; pred: Predicted class.

and second development sets, respectively. Error
analysis suggests that most miss-classifications are
because of the less number of neutral instances
compared to the positive and negative instances in
Task-A. For the Task-B training set, the number
of instances of positive and neutral sentiments are
very low compared to the negative sentiment.

After tuning the systems on the development
sets, we perform blind evaluation on the test
datasets. Evaluation results on the test sets are
reported in Table 5 for both the tasks. The
evaluation is carried out based on the evaluation
scripts as provided by the organizers. For mes-
sage polarity disambiguation we obtain the high-
est F-score of 77.04% for the SMS data type
in Task-A. The system shows the F-scores of
76.03%, 70.91%, 72.25% and 66.35% for Live-
Journal2014, Twitter2013, Twitter2014 and Twit-
ter2014sarcasm, respectively. For the second task
the system attains the highest F-score value of
54.68% for the LiveJournal2014 dataset. For the
other datasets, the system shows the F-scores of
40.56%, 50.32%, 48.22% and 36.73% for the
SMS2013, Twitter2013 and Twitter2014Sarcasm,
respectively. We followed a simple approach that
needs fine-tuning in many places. Currently our
systems lack behind the best reported systems by
margins of approximately 11-18% F-scores for
Task-A, and 19-30% F-scores for Task-B.

4 Conclusion

In this paper we report our works as part of our
participation to the SemEval-14 shared task on
sentiment analysis for Twitter data. Our systems
were developed based on SVM. We use a small
set of features, and did not make use of any ex-
ternal resources and/or tools in any of the tasks.
Each of the systems is tuned on the development
set, and blind evaluation is performed on the test
set. Evaluation shows that our system achieves the
F-score values in the ranges of 66-76% for Task-A
and 36-55% for Task-B.

It is to be noted that this is our first participa-

Task Test-set Average
F-score

A LiveJournal2014 76.03
SMS2013 77.04
Twitter2013 70.91
Twitter2014 72.25
Twitter2014Sarcasm 66.35

B LiveJournal2014 54.68
SMS2013 40.56
Twitter2013 50.32
Twitter2014 48.22
Twitter2014Sarcasm 36.73

Table 5: Results on the test set.

tion, and there are many ways to improve the per-
formance of the models. Firstly we would like to
identify more features in order to improve the ac-
curacies. We also plan to come up with proper sets
of features for the two task. Efficient feature se-
lection techniques will be implemented to identify
the most effective feature set for each of the tasks.
We would like to apply evolutionary optimization
techniques to optimize the different issues of ma-
chine learning algorithm.
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Abstract

This paper describes and analyzes our Se-
mEval 2014 Task 1 system. Its features
are based on distributional and denota-
tional similarities; word alignment; nega-
tion; and hypernym/hyponym, synonym,
and antonym relations.

1 Task Description

SemEval 2014 Task 1 (Marelli et al., 2014a) eval-
uates system predictions of semantic relatedness
(SR) and textual entailment (TE) relations on sen-
tence pairs from the SICK dataset (Marelli et al.,
2014b). The dataset is intended to test compo-
sitional knowledge without requiring the world
knowledge that is often required for paraphrase
classification or Recognizing Textual Entailment
tasks. SR scores range from 1 to 5. TE relations
are ‘entailment,’ ‘contradiction,’ and ‘neutral.’

Our system uses features that depend on the
amount of word overlap and alignment between
the two sentences, the presence of negation, and
the semantic similarities of the words and sub-
strings that are not shared across the two sen-
tences. We use simple distributional similarities
as well as the recently proposed denotational sim-
ilarities of Young et al. (2014), which are intended
as more precise metrics for tasks that require en-
tailment. Both similarity types are estimated on
Young et al.’s corpus, which contains 31,783 im-
ages of everyday scenes, each paired with five de-
scriptive captions.

2 Our System

Our system combines different sources of seman-
tic similarity to predict semantic relatedness and

This work is licensed under a Creative Commons At-
tribution 4.0 International License. Page numbers and pro-
ceedings footer are added by the organizers. License de-
tails: http://creativecommons.org/licenses/
by/4.0/

textual entailment. We use distributional sim-
ilarity features, denotational similarity features,
and alignment features based on shallow syntac-
tic structure.

2.1 Preprocessing
We lemmatize all sentences with the Stanford
CoreNLP system1 and extract syntactic chunks
with the Illinois Chunker (Punyakanok and Roth,
2001). Like Young et al. (2014), we use the Malt
parser (Nivre et al., 2006) to identify 5 sets of con-
stituents for each sentence: subject NPs, verbs,
VPs, direct object NPs, and other NPs.

For stopwords, we use the NLTK English stop-
word list of 127 high-frequency words. We re-
move negation words (no, not, and nor) from the
stopword list since their presence is informative
for this dataset and task.

2.2 Distributional Similarities
After stopword removal and lemmatization, we
compute vectors for tokens that appear at least 10
times in Young et al. (2014)’s image description
corpus. In the vector space, each dimension corre-
sponds to one of the 1000 most frequent lemmas
(contexts). The jth entry of the vector of wi is the
positive normalized pointwise mutual information
(pnPMI) between target wi and context wj :

pnPMI(wi, wj) = max

0,
log
(

P (wi,wj)
P (wi)P (wj)

)
− log (P (wi, wj))


We define P (wi) as the fraction of images with

at least one caption containing wi, and P (wi, wj)
as the fraction of images whose captions contain
both wi and wj . Following recent work that ex-
tends distributional similarities to phrases and sen-
tences (Mitchell and Lapata, 2010; Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,

1http://nlp.stanford.edu/software/
corenlp.shtml
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Features Description # of features

Negation True if either sentence contains explicit negation; False otherwise 1
Word overlap Ratio of overlapping word types to total word types in s1 and s2 1
Denotational constituent similarity Positive normalized PMI of constituent nodes in the denotation

graph
30

Distributional constituent similarity Cosine similarity of vector representations of constituent phrases 30
Alignment Ratio of number of aligned words to length of s1 and s2; max, min,

average unaligned chunk length; number of unaligned chunks
23

Unaligned matching Ratio of number of matched chunks to unaligned chunks; max, min,
average matched chunk similarity; number of crossings in matching

31

Chunk alignment Number of chunks; number of unaligned chunk labels; ratio of un-
aligned chunk labels to number of chunks; number of matched la-
bels; ratio of matched to unmatched chunk labels

17

Synonym Number of matched synonym pairs (w1, w2) 1
Hypernym Number of matched hypernym pairs (w1, w2), number of matched

hypernym pairs (w2, w1)
2

Antonym Number of matched antonym pairs (w1, w2) 1

Table 1: Summary of features.

2011; Socher et al., 2012), we define a phrase vec-
tor p to be the pointwise multiplication product of
the vectors of the words in the phrase:

p = w1 � ...� wn

where � is the multiplication of corresponding
vector components, i.e. pi = ui · vi.

2.3 Denotational Similarities
In Young et al. (2014), we introduce denotational
similarities, which we argue provide a more pre-
cise metric for semantic inferences. We use an
image-caption corpus to define the (visual) de-
notation of a phrase as the set of images it de-
scribes, and construct a denotation graph, i.e. a
subsumption hierarchy (lattice) of phrases paired
with their denotations. For example, the denota-
tion of the node man is the set of images in the
corpus that contain a man, and the denotation of
the node person is rock climbing is the set of im-
ages that depict a person rock climbing. We de-
fine the (symmetric) denotational similarity of two
phrases as the pnPMI between their correspond-
ing sets of images. We associate each constituent
in the SICK dataset with a node in the denotation
graph, but new nodes that are unique to the SICK
data have no quantifiable similarity to other nodes
in the graph.

2.4 Features
Table 1 summarizes our features. Since TE is a
directional task and SR is symmetric, we express
features that depend on sentence order twice: 1)
f1 are the features of s1 and f2 are the features of
s2, 2) f1 are the features of the longer sentence

and f2 are the features of the shorter sentence.
These directional features are specified in the
following feature descriptions.

Negation In this dataset, contradictory sentence
pairs are often marked by explicit negation, e.g. s1
= “The man is stirring the sauce for the chicken”
and s2 = “The man is not stirring the sauce for
the chicken.” A binary feature is set to 1 if either
sentence contains not, no, or nobody, and set to 0
otherwise.

Word Overlap We compute |W1∩W2|
|W1∪W2| on lemma-

tized sentences without stopwords where Wi is
the set of word types that appear in si. Training
a MaxEnt or log-linear model using this feature
achieves better performance than the word overlap
baseline provided by the task organizers.

Denotational Constituent Similarity Denota-
tional similarity captures entailment-like relations
between events. For example, sit and eat lunch
have a high pnPMI, which follows our intuition
that a person who is eating lunch is likely to be
sitting. We use the same denotational constituent
features that Young et al. (2014) use for a textual
similarity task. C are original nodes, Canc are par-
ent and grandparent nodes, and sim(Ca, Cb) is the
maximum pnPMI of any pair of nodes a ∈ Ca,
b ∈ Cb.

C-C features compare constituents of the same
type. These features express how often we expect
corresponding constituents to describe the same
situation. For example, s1 = “Girls are doing
backbends and playing outdoors” and s2 = “Chil-
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dren are doing backbends” have subject nodes
{girl} and {child}. Girls are sometimes de-
scribed as children, so sim(girl, child) = 0.498.
In addition, child is a parent node of girl, so
max(sim(anc(girl), child)) = 1. There are 15
C-C features: sim(C1, C2), max(sim(C1, C

anc
2 ),

sim(Canc
1 , C2)), sim(Canc

1 , Canc
2 ) for each con-

stituent type.

C-all features compare different constituent
types. These features express how often we
expect any pair of constituents to describe the
same scene. For example, s1 = “Two teams are
competing in a football match” and s2 = “A
player is throwing a football” are topically related
sentences. Comparing constituents of different
types like player and compete or player and
football match gives us more information about
the similarity of the sentences. There are 15 C-all
features: the maximum, minimum, and sum of
sim(Ct

1, C2) and sim(C1, C
t
2) for each constituent

type.

Distributional Constituent Similarity Distribu-
tional vector-based similarity may alleviate the
sparsity of the denotation graph. For example,
for subject NP C-C features, we have non-zero
distributional similarity for 87% of instances in
the trial data, but non-zero denotational simi-
larity for only 56% of the same instances. The
football and team nodes may have no common
images in the denotation graph, but we still
have distributional vectors for football and for
team. The 30 distributional similarity features are
the same as the denotational similarity features
except sim(a, b) is the cosine similarity between
constituent phrase vectors.

Alignment Since contradictory and entailing sen-
tences have limited syntactic variation in this
dataset, aligning sentences can help to predict se-
mantic relatedness and textual entailment. We use
the Needleman-Wunsch algorithm (1970) to com-
pute an alignment based on exact word matches
between two lemmatized sentences. The similar-
ity between two lemmas is 1.0 if the words are
identical and 0.0 otherwise, and we do not penal-
ize gaps. This gives us the longest subsequence of
matching lemmas.

The alignment algorithm results in a sentence
pair alignment and 2 unaligned chunk sets defined
by syntactic chunks. For example, s1 = “A brown

and white dog is running through the tall grass”
and s2 = “A brown and white dog is moving
through the wild grass” are mostly aligned, with
the remaining chunks u1 = {[VP run], [NP tall]}
and u2 = {[VP move], [NP wild]}.

There are 23 alignment features. Directional
features per sentence are the number of words
(2 features), the number of aligned words (2
features), and the ratio between those counts (2
features). These features are expressed twice,
once according to the sentence order in the dataset
and once ordered by longer sentence before
shorter sentence, for a total of 12 directional fea-
tures. Non-directional features are the maximum,
minimum, and average unaligned chunk length for
each sentence and for both sentences combined (9
features), and the number of unaligned chunks in
each sentence (2 features).

Unaligned Chunk Matching We want to know
the similarity of the remaining unaligned chunks
because when two sentences have a high overlap,
their differences are very informative. For exam-
ple, in the case that two sentences are identical
except for a single word in each sentence, if we
know that the two words are synonymous, then we
should predict that the two sentences are highly
similar. However, if the two words are antonyms,
the sentences are likely to be contradictory.

We use phrase vector similarity to compute the
most likely matches between unaligned chunks.
We repeat the matching process twice: for sim-
ple matching, any 2 chunks with non-zero phrase
similarity can be matched across sentences, while
for strict matching, chunks can match only if they
have the same type, e.g. NP or VP. This gives us
two sets of features.

For s1 = “A brown and white dog is running
through the tall grass” and s2 = “A brown and
white dog is moving through the wild grass,” the
unaligned chunks are u1 = {[VP run], [NP tall]}
and u2 = {[VP move], [NP wild]}. For strict
matching, the only valid matches are [VP run]–
[VP move] and [NP tall]–[NP wild]. For simple
matching, [NP tall] could also match [VP move]
instead and [VP run] could match [NP wild].

There are a total of 31 unaligned chunk match-
ing features. Directional features per sentence
include the number of unaligned chunks (2
features) and the ratio of the number of matched
chunks to the total number of chunks (2 fea-
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tures). These features are expressed twice, once
according to the sentence order in the dataset and
once ordered by longer sentence before shorter
sentence, for a total of 8 directional features.
Non-directional features per sentence pair include
the maximum, minimum, and average similarity
of the matched chunks (3 features); the maximum,
minimum, and average length of the matched
chunks (3 features); and the number of matched
chunks (1 feature). We extract these 15 features
for both simple matching and strict matching. In
addition, we also count the number of crossings
that result from matching the unaligned chunks in
place (1 feature). This penalizes matched sets that
contain many crossings or long-distance matches.

Chunk Label Alignment and Matching Since
similar sentences in this dataset often have
similar syntax, we compare their chunk label
sequences, e.g. [NP A brown and white dog]
[VP is running] [PP through] [NP the tall grass]
becomes NP VP PP NP. We compute 17 features
based on aligning and matching these chunk
label sequences. Directional features are the total
number of labels in the sequence (2 features),
the number of unaligned labels (2 features), the
ratio of the number of unaligned labels to the
total number of labels (2 features), and the ratio
of the number of matched labels to the number of
unaligned labels (2 features). These features are
expressed twice, once according to the sentence
order in the dataset and once ordered by longer
sentence before shorter sentence, for a total of 16
directional features. We also count the number of
matched labels for the sentence pair (1 feature).

Synonyms and Hypernyms We count the num-
ber of synonyms and hypernyms in the matched
chunks for each sentence pair. Synonyms are
words that share a WordNet synset, and hyper-
nyms are words that have a hypernym relation
in WordNet. There are two hypernym features
because hypernymy is directional: num hyp1 is
the number of words in s1 that have a hypernym
in s2, while num hyp2 is the number of words
in s2 that have a hypernym in s1. For example,
s1 = “A woman is cutting a lemon” and s2 = “A
woman is cutting a fruit” have num hyp1 = 1.
For synonyms, num syn is the number of word
pairs in s1 and s2 that are synonyms. For example,
s1 = “A brown and white dog is running through

the tall grass” and s2 = “A brown and white
dog is moving through the wild grass” have
num syn = 1.

Antonyms When we match unaligned chunks, the
highest similarity pair are sometimes antonyms,
e.g. s1 = “Some people are on a crowded street”
and s2 = “Some people are on an empty street.”
In other cases, they are terms that we think of as
mutually exclusive, e.g. man and woman. In both
cases, the sentences are unlikely to be in an en-
tailing relationship. Since resources like WordNet
will fail to identify the mutually exclusive pairs
that are common in this dataset, e.g. bike and car
or piano and guitar, we use the training data to
build a list of these pairs. We identify the matched
chunks that occur in contradictory or neutral sen-
tences but not entailed sentences. We exclude syn-
onyms and hypernyms and apply a frequency filter
of n = 2. Commonly matched chunks in neutral
or contradictory sentences include sit–stand, boy–
girl, and cat–dog. These are terms with differ-
ent and often mutually exclusive meanings. Com-
monly matched chunks in entailed sentences in-
clude man–person, and lady–woman. These are
terms that could easily be used to describe the
same situation. However, cut–slice is a common
pair in both neutral and entailed sentences and we
do not want to count it as an antonym pair. There-
fore, we consider frequent pairs that occur in con-
tradictory or neutral but not entailed sentences to
be antonyms.

The feature num ant is the number of matched
antonyms in a sentence pair. We identify an
antonym if ca and cb are on the antonym list or
occur in one of these patterns: X–not X, X–no X,
X–no head-noun(X) (e.g. blue hat–no hat), X–
no hypernym(X) (e.g. poodle–no dog), X–no syn-
onym(X) (e.g. kid–no child). For each antonym
pair, we set the similarity score of that match to
0.0.

For example, num ant = 1 for s1 = “A small
white dog is running across a lawn” and s2 = “A
big white dog is running across a lawn.” In addi-
tion, num ant = 1 for s1 = “A woman is leaning
on the ledge of a balcony” and s2 = “A man is
leaning on the ledge of a balcony.”

2.5 Models

For the SR task, we implement a log-linear regres-
sion model using Weka (Hall et al., 2009). Specif-
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Accuracy Pearson ρ

Chance baseline 33.3 –
Majority baseline 56.7 –
Probability baseline 41.8 –
Overlap baseline 56.2 0.627
Submitted system 84.5 0.799

Table 2: TE and SR results on test data.

Model Accuracy Pearson ρ

Overlap baseline 56.8 0.646
Negation 61.0 0.093
Word overlap 65.0 0.694
(+Vector composition) 66.4 0.697
+Denotational similarity 74.4 0.751
+Distributional similarity 71.8 0.756
+Den +Dist 77.0 0.782
+Alignment 70.4 0.697
+Unaligned chunk matching 75.8 0.719
+Align +Match 75.2 0.728
+Synonyms 65.2 0.696
+Hypernyms 66.8 0.716
+Antonyms 71.0 0.704
All features 84.2 0.802

Table 3: TE and SR results on trial data.

ically, under Weka’s default settings, we train a
ridge regression model with regularization param-
eter α = 1×10−8. For the TE task, we use a Max-
Ent model implemented with MALLET (McCal-
lum, 2002). The MaxEnt model is optimized with
L-BFGS, using the default settings. Both models
use the same set of features.

3 Results

Our submitted system was trained on the full train-
ing and trial data (5000 sentences). Table 2 shows
our results on the test data. We substantially out-
perform all baselines.

3.1 Feature Ablation

We train models on the training data and test on
the trial data. Models marked with + include our
word overlap feature. We also examine a single
compositional feature (vector composition): the
cosine similarity of two sentence vectors. A sen-
tence vector is the pointwise multiplication prod-
uct of component word vectors.

Table 3 compares performance on both tasks.
For TE, unaligned chunk matching outperforms
other features. Denotational constituent similarity
also does well. For SR, distributional and deno-
tational features have the highest correlation with
gold scores. Combining them further improves
performance.

% Accuracy
Model N E C

Overlap baseline 77.3 44.8 0.0
Negation 85.4 0.0 86.4
Word overlap 82.9 63.8 0.0
(+Vector composition) 84.7 64.5 0.0
+Denotational similarity 83.6 67.3 52.7
+Distributional similarity 86.5 60.4 37.8
+Den +Dist 85.4 68.7 60.8
+Alignment 87.9 50.6 41.8
+Unaligned chunk matching 90.4 66.6 37.8
+Align +Match 88.6 61.8 50.0
+Synonyms 82.2 65.2 0.0
+Hypernyms 84.0 68.0 0.0
+Antonyms 83.6 82.6 0.0
All features 86.5 83.3 77.0

Table 4: TE accuracy on trial data by entailment
type (Neutral, Entailment, Contradiction).

Table 4 shows TE accuracy of each model by
entailment label. On contradictions, the negation
model has 86.0% accuracy while our final system
has only 77.0% accuracy. However, the negation
model cannot identify entailment. Its performance
is due to the high proportion of contradictions that
can be identified by explicit negation.

We expected antonyms to improve classifica-
tion of contradictions, but the antonym feature
actually has the highest accuracy of any feature
on entailed sentences. The dataset contains few
contradictions, and most involve explicit negation,
not antonyms. The antonym feature indicates that
when two sentences have high word overlap and
no antonyms, one is likely to entail the other. Neu-
tral sentences often contain word pairs that are
mutually exclusive, so the antonym feature distin-
guishes between neutral and entailed sentences.

4 Conclusion

Our system combines multiple similarity metrics
to predict semantic relatedness and textual entail-
ment. A binary negation feature and similarity
comparisons based on chunking do very well, as
do denotational constituent similarity features. In
the future, we would like to focus on multiword
paraphrases and prepositional phrases, which our
current system has trouble analyzing.
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Abstract

This submission to the open track of
Task 8 at SemEval 2014 seeks to connect
the Task to pre-existing, ‘in-house’ pars-
ing systems for the same types of target
semantic dependency graphs.

1 Background and Motivation

The three target representations for Task 8 at
SemEval 2014, Broad-Coverage Semantic Depen-
dency Parsing (SDP; Oepen et al., 2014), are
rooted in language engineering efforts that have
been under continuous development for at least
the past decade. The gold-standard semantic de-
pendency graphs used for training and testing in
the Task result from largely manual annotation, in
part re-purposing and adapting resources like the
Penn Treebank (PTB; Marcus et al., 1993), Prop-
Bank (Palmer et al., 2005), and others. But the
groups who prepared the SDP target data have also
worked in parallel on automated parsing systems
for these representations.

Thus, for each of the target representations,
there is a pre-existing parser, often developed in
parallel to the creation of the target dependency
graphs, viz. (a) for the DM representation, the
parser of the hand-engineered LinGO English Re-
source Grammar (ERG; Flickinger, 2000); (b) for
PAS, the Enju parsing system (Miyao, 2006), with
its probabilistic HPSG acquired through linguis-
tic projection of the PTB; and (c) for PCEDT,
the scenario for English analysis within the Treex
framework (Popel and Žabokrtský, 2010), com-
bining data-driven dependency parsing with hand-
engineered tectogrammatical conversion. At least

This work is licenced under a Creative Commons At-
tribution 4.0 International License; page numbers and the
proceedings footer are added by the organizers. http://
creativecommons.org/licenses/by/4.0/

for DM and PAS, these parsers have been exten-
sively engineered and applied successfully in a
variety of applications, hence represent relevant
points of comparison. Through this ‘in-house’
submission (of our ‘own’ parsers to our ‘own’
task), we hope to facilitate the comparison of dif-
ferent approaches submitted to the Task with this
pre-existing line of parser engineering.

2 DM: The English Resource Grammar

Semantic dependency graphs in the DM target rep-
resentation, DELPH-IN MRS-Derived Bi-Lexical
Dependencies, stem from a two-step ‘reduc-
tion’ (simplification) of the underspecified logical-
form meaning representations output natively by
the ERG parser, which implements the linguis-
tic framework of Head-Driven Phrase Structure
Grammar (HPSG; Pollard and Sag, 1994). Gold-
standard DM training and test data for the Task
were derived from the manually annotated Deep-
Bank Treebank (Flickinger et al., 2012), which
pairs Sections 00–21 of the venerable PTB Wall
Street Journal (WSJ) Corpus with complete ERG-
compatible HPSG syntactico-semantic analyses.
DeepBank as well as the ERG rely on Minimal Re-
cursion Semantics (MRS; Copestake et al., 2005)
for meaning representation, such that the exact
same post-processing steps could be applied to the
parser outputs as were used in originally reducing
the gold-standard MRSs from DeepBank into the
SDP bi-lexical semantic dependency graphs.

Parsing Setup The ERG parsing system is a hy-
brid, combining (a) the hand-built, broad-coverage
ERG with (b) an efficient chart parser for uni-
fication grammars and (c) a conditional proba-
bility distribution over candidate analyses. The
parser most commonly used with the ERG, called
PET (Callmeier, 2002),1 constructs a complete,

1The SDP test data was parsed using the 1212 release
of the ERG, using PET and converter versions from what
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subsumption-based parse forest of partial HPSG
derivations (Oepen and Carroll, 2000), and then
extracts from the forest n-best lists (in globally
correct rank order) of complete analyses according
to a discriminative parse ranking model (Zhang et
al., 2007). For our experiments, we trained the
parse ranker on Sections 00–20 of DeepBank and
otherwise used the default, non-pruning develop-
ment configuration, which is optimized for accu-
racy. In this setup, ERG parsing on average takes
close to ten seconds per sentence.

Post-Parsing Conversion After parsing, MRSs
are reduced to DM bi-lexical semantic dependen-
cies in two steps. First, Oepen and Lønning
(2006) define a conversion to variable-free Ele-
mentary Dependency Structures (EDS), which (a)
maps each predication in the MRS logical-form
meaning representation to a node in a dependency
graph and (b) transforms argument relations rep-
resented by shared logical variables into directed
dependency links between graph nodes. This first
step of the conversion is ‘mildly’ lossy, in that
some scope-related information is discarded; the
EDS graph, however, will contain the same num-
ber of nodes and the same set of argument de-
pendencies as there are predications and semantic
role assignments in the original MRS. In particu-
lar, the EDS may still reflect non-lexical semantic
predications introduced by grammatical construc-
tions like covert quantifiers, nominalization, com-
pounding, or implicit conjunction.2

Second, in another conversion step that is not
information-preserving, the EDS graphs are fur-
ther reduced into strictly bi-lexical form, i.e. a set
of directed, binary dependency relations holding
exclusively between lexical units. This conversion
is defined by Ivanova et al. (2012) and seeks to
(a) project some aspects of construction seman-
tics onto word-to-word dependencies (for example
introducing specific dependency types for com-
pounding or implicit conjunction) and (b) relate
the linguistically informed ERG-internal tokeniza-
tion to the conventions of the PTB.3 Seeing as both

is called the LOGON SVN trunk as of January 2014; see
http://moin.delph-in.net/LogonTop for detail.

2Conversely, semantically vacuous parts of the original
input (e.g. infinitival particles, complementizers, relative pro-
nouns, argument-marking prepositions, auxiliaries, and most
punctuation marks) were not represented in the MRS in the
first place, hence have no bearing on the conversion.

3Adaptations of tokenization encompass splitting ‘multi-
word’ ERG tokens (like such as or ad hoc), as well as ‘hiding’
ERG token boundaries at hyphens or slashes (e.g. 77-year-

conversion steps are by design lossy, DM seman-
tic dependency graphs present a true subset of the
information encoded in the full, original MRS.

3 PAS: The Enju Parsing System

Enju Predicate–Argument Structures (PAS) are
derived from the automatic HPSG-style annota-
tion of the PTB, which was primarily used for the
development of the Enju parsing system4 (Miyao,
2006). A notable feature of this parser is that the
grammar is not developed by hand; instead, the
Enju HPSG-style treebank is first developed, and
the grammar (or, more precisely, the vast major-
ity of lexical entries) is automatically extracted
from the treebank (Miyao et al., 2004). In this
‘projection’ step, PTB annotations such as empty
categories and coindexation are used for deriv-
ing the semantic representations that correspond
to HPSG derivations. Its probabilistic model for
disambiguation is also trained using this treebank
(Miyao and Tsujii, 2008).5

The PAS data set is an extraction of predicate–
argument structures from the Enju HPSG tree-
bank. The Enju parser outputs results in ‘ready-
to-use’ formats like phrase structure trees and
predicate–argument structures, as full HPSG anal-
yses are not friendly to users who are not famil-
iar with the HPSG theory. The gold-standard PAS
target data in the Task was developed using this
function; the conversion program from full HPSG
analyses to predicate–argument structures was ap-
plied to the Enju Treebank.

Predicate–argument structures (PAS) represent
word-to-word semantic dependencies, such as se-
mantic subject and object. Each dependency type
is represented with two elements: the type of the
predicate, such as verb and adjective, and the ar-
gument label, such as ARG1 and ARG2.6

old), which the PTB does not split.
4See http://kmcs.nii.ac.jp/enju/.
5Abstractly similar to the ERG, the annotations of the

Enju treebank instantiate the linguistic theory of HPSG.
However, the two resources have been developed indepen-
dently and implementation details are quite different. The
most significant difference is that the Enju HPSG treebank is
developed by linguistic projection of PTB annotations, and
the Enju parser derived from the treebank; conversely, the
ERG was predominantly manually crafted, and it was later
applied in the DeepBank re-annotation of the WSJ Corpus.

6Full details of the predicate–argument structures in the
Enju HPSG Treebank, are available in two documents linked
from the Enju web site (see above), viz. the Enju Output
Specification Manual and the XML Format Documentation.
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Parsing Setup Basically we used the publicly
available package of the Enju parser ‘as is’ (see the
above web site). We did not change default pars-
ing parameters (beam width, etc.) and features.
However, the release version of the Enju parser is
trained with the HPSG treebank corresponding to
the Penn Treebank WSJ Sections 2–21, which in-
cludes the test set of the Task (Section 21). There-
fore, we re-trained the Enju parser using Sections
0–20, and used this re-trained parser in preparing
the PAS semantic dependency graphs in this en-
semble submission.

Post-Parsing Conversion The dependency for-
mat of the Enju parser is almost equivalent to what
is provided as the PAS data set in this shared task.
Therefore, the post-parsing conversion for the PAS
data involves only formatting, viz. (a) format con-
version into the tabular file format of the Task; and
(b) insertion of dummy relations for punctuation
tokens ignored in the output of Enju.7

4 PCEDT: The Treex Parsing Scenario

The Prague Czech-English Dependency Treebank
(PCEDT; Hajič et al., 2012)8 is a set of parallel de-
pendency trees over the same WSJ texts from the
Penn Treebank, and their Czech translations. Sim-
ilarly to other treebanks in the Prague family, there
are two layers of syntactic annotation: analytical
(a-trees) and tectogrammatical (t-trees). Unlike
for the other two representations used in the Task,
for PCEDT there is no pre-existing parsing system
designed to deliver the full scale of annotations
of the SDP gold-standard data. The closest avail-
able match is a parsing scenario implemented in
the Treex natural language processing framework.

Parsing Setup Treex9 (Popel and Žabokrtský,
2010) is a modular, open-source framework origi-
nally developed for transfer-based machine trans-
lation. It can accomplish any NLP-related task
by sequentially applying to the same piece of data
various blocks of code. Blocks operate on a com-
mon data structure and are chained in scenarios.

Some early experiments with scenarios for tec-
togrammatical analysis of English were described
by Klimeš (2007). It is of interest that they report

7The Enju parser ignores tokens tagged as ‘.’, while
the PAS representation includes them with dummy relations;
thus, missing periods are inserted in post-processing by com-
parison to the original PTB token sequence.

8See http://ufal.mff.cuni.cz/pcedt2.0/.
9See http://ufal.mff.cuni.cz/treex/.

U.S. should regulate X more stringently than ε Y

CPR

PAT
PRED

ACT

PAT

MANN

CPR

PAT

PRED
ACT

PAT

MANN CPR

Figure 1: PCEDT asserts two copies of the token
regulate (shown here as ‘regulate’ and ‘ε’, under-
lined). Projecting t-nodes onto the original tokens,
required by the SDP data format, means that the
ε node will be merged with regulate. The edges
going to and from ε will now lead to and from reg-
ulate (see the dotted arcs), which results in a cycle.
To get rid of the cycle, we skip ε and connect di-
rectly its children, as shown in the final SDP graph
below the sentence.

an F1 score of assigning functors (dependency la-
bels in PCEDT terminology) of 70.3%; however,
their results are not directly comparable to ours.

Due to the modular nature of Treex, there are
various conceivable scenarios to get the t-tree of
a sentence. We use the default scenario that con-
sists of 48 blocks: two initial blocks (reading the
input), one final block (writing the output), two
A2N blocks (named entity recognition), twelve
W2A blocks (dependency parsing at the analytical
layer) and 31 A2T and T2T blocks (creating the
t-tree based on the a-tree).

Most blocks are highly specialized in one par-
ticular subtask (e.g. there is a block just to make
sure that quotation marks are attached to the root
of the quoted subtree). A few blocks are respon-
sible for the bulk of the work. The a-tree is con-
structed by a block that contains the MST Parser
(McDonald et al., 2005), trained on the CoNLL
2007 English data (Nivre et al., 2007), i.e. Sec-
tions 2–11 of the PTB, converted to dependencies.
The annotation style of CoNLL 2007 differs from
PCEDT 2.0, and thus the unlabeled attachment
score of the analytical parser is only 66%.

Obviously one could expect better results if we
retrained the MST Parser directly on the PCEDT
a-trees, and on the whole training data. The only
reason why we did not do so was lack of time.
Our results thus really demonstrate what is avail-
able ‘off-the-shelf’; on the other hand, the PCEDT
component of our ensemble fails to set any ‘upper
bound’ of output quality, as it definitely is not bet-
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John brought and ate ripe apples and pears

ACT
CONJ

CONJ

PRED.m PRED.m

RSTR

PAT.m PAT.m

PAT

TOP TOP

PAT PAT

ACT

ACT

CONJ.m CONJ.m

RSTR

RSTR

PAT

CONJ.m CONJ.m

Figure 2: Coordination in PCEDT t-tree (above)
and in the corresponding SDP graph (below).

ter informed than the other systems participating
in the Task.

Functor assignment is done heuristically, based
on POS tags and function words. The primary
focus of the scenario was on functors that could
help machine translation, thus it only generated
25 different labels (of the total set of 65 labels in
the SDP gold-standard data)10 and left about 12%
of all nodes without functors. Precision peaks at
78% for ACT(or) relations, while the most fre-
quent error type (besides labelless dependencies)
is a falsely proposed RSTR(iction) relation. Both
ACT and RSTR are among the most frequent de-
pendency types in PCEDT.

Post-Parsing Conversion Once the t-tree has
been constructed, it is converted to the PCEDT
target representation of the Task, using the same
conversion code that was used to prepare the gold-
standard SDP data.11

SDP graphs are defined over surface tokens but
the set of nodes of a t-tree need not correspond
one-to-one to the set of tokens. For example, there
are no t-nodes for punctuation and function words
(except in coordination); these tokens are rendered
as semantically vacuous in SDP, i.e. they do not
participate in edges. On the other hand, t-trees can
contain generated nodes, which represent elided
words and do not correspond to any surface to-

10The system was able to output the following functors (or-
dered in the descending order of their frequency in the sys-
tem output): RSTR, PAT, ACT, CONJ.member, APP, MANN,
LOC, TWHEN, DISJ.member, BEN, RHEM, PREC, ACMP,
MEANS, ADVS.member, CPR, EXT, DIR3, CAUS, COND,
TSIN, REG, DIR2, CNCS, and TTILL.

11In the SDP context, the target representation derived
from the PCEDT is called by the same name as the origi-
nal treebank; but note that the PCEDT semantic dependency
graphs only encode a subset of the information annotated at
the tectogrammatical layer of the full treebank.

DM PAS PCEDT
LF LM LF LM LF LM

Priberam .8916 .2685 .9176 .3783 .7790 .1068
In-House .9246 .4807 .9206 .4384 .4315 .0030

UF UM UF UM UF UM

Priberam .9032 .2990 .9281 .3924 .8903 .3071
In-House .9349 .5230 .9317 .4429 .6919 .0148

Table 1: End-to-end ‘in-house’ parsing results.

ken. Most generated nodes are leaves and, thus,
can simply be omitted from the SDP graphs. Other
generated nodes are copies of normal nodes and
they are linked to the same token to which the
source node is mapped. As a result, one token can
appear at several different positions in the tree; if
we project these occurrences into one node, the
graph will contain cycles. We decided to remove
all generated nodes causing cycles. Their chil-
dren are attached to their parents and inherit the
functor of the generated node (Figure 1). The con-
version procedure also removes cycles caused by
more fine-grained tokenization of the t-layer.

Furthermore, t-trees use technical edges to cap-
ture paratactic constructions where the relations
are not ‘true’ dependencies. The conversion pro-
cedure extracts true dependency relations: Each
conjunct is linked to the parent or to a shared child
of the coordination. In addition, there are also
links from the conjunction to the conjuncts and
they are labeled CONJ.m(ember). These links pre-
serve the paratactic structure (which can even be
nested) and the type of coordination. See Figure 2
for an example.

5 Results and Reflections

Seeing as our ‘in-house’ parsers are not directly
trained on the semantic dependency graphs pro-
vided for the Task, but rather are built from ad-
ditional linguistic resources, we submitted results
from the parsing pipelines sketched in Sections 2
to 4 above to the open SDP track. Table 1
summarizes parser performance in terms of la-
beled and unlabeled F1 (LF and UF)12 and full-
sentence exact match (LM and UM), comparing
to the best-performing submission (dubbed Prib-
eram; Martins and Almeida, 2014) to this track.
Judging by the official SDP evaluation metric, av-
erage labeled F1 over the three representations,
our ensemble ranked last among six participating

12Our ensemble members exhibit comparatively small dif-
ferences in recall vs. precision.
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teams; in terms of unlabeled average F1, the ‘in-
house’ submission achieved the fourth rank.

As explained in the task description (Oepen et
al., 2014), parts of the WSJ Corpus were excluded
from the SDP training and testing data because
of gaps in the DeepBank and Enju treebanks, and
to exclude cyclic dependency graphs, which can
sometimes arise in the DM and PCEDT conver-
sions. For these reasons, one has to allow for the
possibility that the testing data is positively bi-
ased towards our ensemble members.13 But even
with this caveat, it seems fair to observe that the
ERG and Enju parsers both are very competitive
for the DM and PAS target representations, respec-
tively, specifically so when judged in exact match
scores. A possible explanation for these results
lies in the depth of grammatical information avail-
able to these parsers, where DM or PAS seman-
tic dependency graphs are merely a simpliefied
view on the complete underlying HPSG analyses.
These parsers have performed well in earlier con-
trastive evaluation too (Miyao et al., 2007; Bender
et al., 2011; Ivanova et al., 2013; inter alios).

Results for the Treex English parsing scenario,
on the other hand, show that this ensemble mem-
ber is not fine-tuned for the PCEDT target rep-
resentation; due to the reasons mentioned above,
its performance even falls behind the shared task
baseline. As is evident from the comparison of
labeled vs. unlabeled F1 scores, (a) the PCEDT
parser is comparatively stronger at recovering se-
mantic dependency structure than at assigning la-
bels, and (b) about the same appears to be the case
for the best-performing Priberam system (on this
target representation).
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Abstract

This paper is an overview of the system
submitted to the SemEval-2014 shared
task on sentiment analysis in twitter. For
the very first time we participated in both
the tasks, viz contextual polarity disam-
biguation and message polarity classifi-
cation. Our approach is supervised in
nature and we use sequential minimal
optimization classifier. We implement
the features for sentiment analysis with-
out using deep domain-specific resources
and/or tools. Experiments within the
benchmark setup of SemEval-14 shows
the F-scores of 77.99%, 75.99%, 76.54
%, 76.43% and 71.43% for LiveJour-
nal2014, SMS2013, Twitter2013, Twit-
ter2014 and Twitter2014Sarcasm, respec-
tively for Subtask A. For Subtask B we
obtain the F-scores of 60.39%, 51.96%,
52.58%, 57.25%, 41.33% for five different
test sets, respectively.

1 Introduction

In current era microblogging is an efficient way
of communication where people can communicate
without physical presence of receiver(s). Twitter
is the medium where people post real time mes-
sages to discuss on the different topics, and ex-
press their sentiments. The texts used in twit-
ter are generally informal and unstructured in na-
ture. Tweets and SMS messages are very short
in length, usually a sentence or a headline rather
than a document. These texts are very informal
in nature and contains creative spellings and punc-
tuation symbols. Text also contains lots of mis-
spellings, slang, out-of-vocabulary words, URLs,

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

and genre-specific terminology and abbreviations,
e.g., RT for re-Tweet and #hashtags. Such kinds of
structures introduce difficulties in building various
lexical and syntactic resources and/or tools, which
are required for efficient processing of texts. Find-
ing relevant information from these posts poses
big challenges to the researchers compared to the
traditional text genres such as newswire.

In recent times, there has been a huge inter-
est to mine and understand the opinions and sen-
timents that people are communicating in social
media (Barbosa and Feng, 2010; Bifet et al.,
; Pak and Paroubek, 2010; Kouloumpis et al.,
2011). There is a tremendous interest in sentiment
analysis of Tweets across a variety of domains
such as commerce (Jansen et al., 2009), health
(Chew and Eysenbach, 2010; Salathe and Khan-
delwal, 2011) and disaster management (Verma
et al., 2011; Mandel et al., 2012). Agarwal et
al.(Agarwal et al., 2011) used tree kernel decision
tree that made use of the features such as Part-
of-Speech (PoS) information, lexicon-based fea-
tures and several other features. They acquired
11,875 manually annotated Twitter data (Tweets)
from a commercial source, and reported an accu-
racy of 75.39%. Semantics has also been used as
the feature to improve the performance of senti-
ment analysis (Saif et al., 2012). For each ex-
tracted entity (e.g. iPhone) from Tweets, they
added its semantic concept (e.g. Apple product)
as an additional feature. Thereafter they devised
a method to measure the correlation of the rep-
resentative concept with negative/positive senti-
ment, and applied this approach to predict sen-
timent for three different Twitter datasets. They
showed that semantic features produce better re-
call and F-score when classifying negative senti-
ment, and better precision with lower recall and
F-score in positive sentiment classification. The
benchmark corpus were made available with the
SemEval-2013 shared task (Nakov et al., 2013) on
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sentiment analysis in twitter. The datasets used are
from the domains of Tweets and SMS messages.
The datasets were labelled with contextual phrase-
level polarity and overall message-level polarity.
Among the 44 submissions, the support vector ma-
chine based system proposed in (Mohammad et
al., 2013) achieved the highest F-scores of 69.02%
for Task A, i.e. the message-level polarity and and
88.93% for Task B, i.e. term-level polarity.

The issues addressed in SemEval-13 are further
extended in SemEval-14 shared task 1. The same
two tasks, viz. Subtask A and Subtask B denot-
ing contextual polarity disambiguation and mes-
sage polarity classification. The goal of Subtask
A is to determine, for a given message containing
a marked instance of a word or phrase, whether
that instance is positive, negative or neutral in that
context. Given a message, the task is to classify
it with its entirety whether it is positive, negative,
or neutral sentiment. For messages that convey
both positive and negative sentiments, the stronger
one should be chosen. In this paper we report
on our submitted systems for both the tasks. Our
evaluation for the first task shows the F-scores of
77.99%, 75.99%, 76.54%, 76.43% and 71.43% for
LiveJournal2014, SMS2013, Twitter2013, Twit-
ter2014 and Twitter2014Sarcasm, respectively for
Subtask A. For Subtask B we obtain the F-scores
of 60.39%, 51.96%, 52.58%, 57.25%, 41.33% for
five different test sets, respectively.

2 Methods

In this section we describe preprocessing steps,
features and our methods for sentiment classifica-
tion

2.1 Preprocessing of Data

The data has to be pre-processed before being used
for actual machine learning training. Each Tweet
is processed to extract only those relevant parts
that are useful for sentiment classification. For
example, stop words are removed; symbols and
punctuation markers are filtered out; URLs are
replaced by the word URL etc. Each Tweet is
then passed through the ARK tagger developed by
CMU 2 for tokenization and Part-of-Speech (PoS)
tagging.

1http://alt.qcri.org/semeval2014/task9/
2http://www.ark.cs.cmu.edu/TweetNLP/

2.2 Approach

Our approach is based on supervised machine
learning. We explored different models such as
naive Bayes, decision tree and support vector ma-
chine. Based on the results obtained on the de-
velopment sets we finally select SVM for both
the tasks. We also carried out a number of ex-
periments with the various feature combinations.
Once the model is fixed with certain feature com-
binations, these are finally used for blind evalua-
tion on the test sets for both the tasks. We sub-
mit two runs, one for each task. Both of our sub-
missions were constrained in nature, i.e. we did
not make use of any additional resources and/or
tools to build our systems. We adapt a supervised
machine learning algorithm, namely Support Vec-
tor Machine (Joachims, 1999; Vapnik, 1995). We
use its sequential minimal optimization version for
faster training3. We use the same set of features
for both the tasks. Development sets are used to
identify the best feature combinations for both the
tasks. Default parameters as implemented in Weka
are used for the SVM experiments.

2.3 Features

Like any other classification algorithm, features
play an important role for sentiment classifica-
tion. For the very first time we participated in
this kind of task, and therefore had to spend quite
long time in conceptualization and implementa-
tion of the features. We focused on implementing
the features without using any domain-dependent
resources and/or tools. Brief descriptions of the
features that we use are presented below:

• Bag-of-words: Bag-of-words in the expres-
sion or in the entire Tweet is used as the fea-
ture(s).

• SentiWordNet feature: This feature is de-
fined based on the scores assigned to each
word of a Tweet using the SentiWordNet4. A
feature vector of length three is defined. The
scores of all words of the phrase or Tweet is
summed over and normalized in the scale of
3. We define the following three thresholds:
if the score is less than 0.5 then it is treated to
be a negative polarity; for the score above 0.8,
it is assumed to contain positive sentiment;

3http://research.microsoft.com/en-
us/um/people/jplatt/smo-book.pdf

4sentiwordnet.isti.cnr.it/
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and the polarity is considered to be neutral
for all the other words. Depending upon the
score the corresponding bit of the feature vec-
tor is set.

• Stop word: If a Tweet/phrase is having more
number of stop words then it most likely con-
tains neutral sentiment. We obtain the stop
words from the Wikipedia5. We assume that
a particular Tweet or phrase most likely bears
a neutral sentiment if 20% of its words be-
long to the category of stop words.

• All Cap Words: This feature is defined to
count the number of capitalized words in an
entire Tweet/phrase. More the number of
capitalized words, more the chances of being
positive or negative sentiment bearing units.
While counting, the words preceded by # are
not considered. We include this with the as-
sumption that the texts written in capitalized
letters express the sentiment strongly.

• Init Cap: The words starting with capital-
ized letter contribute more towards classify-
ing it.

• Percent Cap: This feature is based on the
percentage of capitalized characters in a
Tweet/phrase. If this is more than 75%, then
most likely it is not of neutral type.

• Psmiley (+ve Smiley): Generally people use
smileys to represent their emotions. A smiley
present in a Tweet/phrase directly represents
its sentiment. A feature is defined that takes
the value equal to the number of positive smi-
leys. We make use of the list available at this
page6.

• Nsmiley (-ve Smiley): The value of this fea-
ture is set to the number of negative smileys
present in the Tweet. This list was also ob-
tained from the web7.

• NumberPostive words: This feature takes
the value equal to the number of positive
words present in the Tweet/phrase. We search
the adjective words present in the Tweet in
the SentiWordNet to determine whether it
bears positive sentiment.

5http://en.wikipedia.org/wiki/Stop words
6http://en.wikipedia.org/wiki/List of emoticons
7http://en.wikipedia.org/wiki/List of emoticons

• NumberNegative words: This feature takes
the value equal to the number of negative
words present in the Tweet/phrase. The
words are again looked at the SentiWordNet
to determine its polarity.

• NumberNeutral words: This feature deter-
mines the number of neutral words present in
the Tweet or phrase. This information is ob-
tained by looking the adjective words in the
SentiWordNet.

• Repeating char: It has been seen that peo-
ple express strong emotion by typing a char-
acter many times in a Tweet. For exam-
ple, happppppppy, hurrrrrey etc. This feature
checks whether the word(s) have at least three
consecutive repeated characters.

• LenTweet: Length of the Tweet is used as
the feature. The value of this feature is set
equal to the number of words present in the
Tweet/phrase.

• Numhash: The value of this feature is set
equal to the number of hashtags present in the
Tweet.

3 Experiments and Analysis

SemEval-2014 shared task is a continuation of the
SemEval-2013 shared task. In 2014 shared task,
datasets from different domains were incorporated
with a wide range of topics, including a mixture of
entities, products and events. Messages relevant to
the topics are selected based on the keywords and
twitter hashtags.

The training set of Task-A has 4,914 positive,
2,592 negative and 384 neutral class instances.
The Task-B training set contains 3,057 positive,
1,200 negative and 3,941 neutral sentiments. De-
velopments sets contain 555, 45 and 365 positive,
negative and neutral sentiments, respectively for
the first task; and 493, 288 and 632 positive,
negative and neutral sentiments, respectively for
the second task. The selected test sets were taken
mainly from the following domains:
LiveJournal2014: 2000 sentences from Live-
Journal blogs;
SMS2013: SMS test from last year-used as a
progress test for comparison;
Twitter2013: Twitter test data from last year-used
as a progress test for comparison;
Twitter2014: A new Twitter test data of 2000
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Model Avg. F-score
Model-1 75.75
Model-2 72.69
Model-3 75.45
Model-4 75.77

Table 1: Results for Task-A on development set(in
%).

Tweets;
Twitter2014Sarcasm: 100 Tweets that are known
to contain sarcasm.

We build different models by varying the fea-
tures as follows:

1. Model-1: This model is constructed by
considering the features, ”Repeating char”,
”Numhash”, ”LenTweet”, ”Percent Cap”,
”Init Cap”, ”All Cap”, ”Bag-of-words”,
”Nsmiley”, ”Psmiley”, ”SentiWordNet” and
”Stop Words”.

2. Model-2: This model is constructed by the
features ”Repeating char”, ”Percent Cap”,
”Numhash”, ”LenTweet”, ”Init Cap”,
”All Cap”, ”Bag-of-words”, ”SentiWord-
Net” and ”Stop Words”.

3. Model-3: This model is built by consid-
ering the features ”Repeating char”, ”Bag-
of-words”, ”SentiWordNet”, ”Nsmiley” and
”Psmiley”.

4. Model-4: The model incorporates the fea-
tures ”Repeating char”, ”Bag-of-words”,
”SentiWordNet”, ”Nsmiley”, ”Psmiley”,
”Stop Words”, ”Numhash”, ”LenTweet”,
”Init Cap” and ”All Cap”.

Results on the development set for Task-A are
reported in Table 1 that shows the highest perfor-
mance in Model-4 with the average F-score value
of 75.77%. Thereafter we use this particular fea-
ture combination for training SVM, and to report
the results. Detailed results are reported in Table
2 for both the tasks. It shows 77.99%, 75.99%,
76.54 %, 76.43% and 71.43% F-scores for the
LiveJournal2014, SMS2013, Twitter2013, Twit-
ter2014 and Twitter2014Sarcasm, respectively for
Subtask A. For Subtask B we obtain the F-scores
of 60.39%, 51.96%, 52.58%, 57.25% and 41.33%
for the five different test sets, respectively. A

closer investigation to the evaluation results re-
veals that most of the errors are due to the con-
fusions between positive vs. neutral and negative
vs. neutral classes.

Comparisons with the best system(s) submitted
in this shared task show that we are behind ap-
proximately in the range of 6-14% F-score mea-
sures for all the domains for Task-A. Results that
we obtain in Task-B need more attention as these
fall much shorter compared to the best one (in the
the range of 14-18%).

Features used Classifier Result(Task A) Result(Task B)
SWN +ve LiveJournal2014 LiveJournal2014
SWN -ve 77.99 60.39
SWN neutral SMS2013 SMS2013
#Stop Words 75.99 51.96
#All Cap Words Twitter2013 Twitter2013
#Numhash 76.54 52.58
Len Tweet Twitter2014 Twitter2014
#Init Cap Words 76.43 57.25
% Init Cap SVM T2014S T2014S
#+ve Smiley 71.43 41.33
#-ve Smiley
#+ve Words
#-ve Words
#Neutral Words
#Bag of words
Rep character

Table 2: Result on test sets for Task-A and Task-B.

4 Conclusion

In this paper we report our works as part of our
participation to the SemEval-14 shared task on
sentiment analysis for twitter data. Our systems
were based on supervised classification, where we
fixed SVM to report the test results after conduct-
ing several experiments with different classifiers
on the development data. We implement a set of
features that are applied for both the tasks. Our
runs are constrained in nature, i.e. we did not make
use of any external resources and/or tools. Our re-
sults are quite promising that need further inves-
tigation. A closer analysis to the results suggest
that most of the errors are due to the confusions
between positive vs. neutral and negative vs. neu-
tral classes.

This is our first participation, and within the
short period of time we developed the systems
with reasonable accuracies. There are still many
ways to improve the performance. Possible im-
mediate future extension will be to investigate and
implement more features, specific to the task.
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Abstract

This work analyses various syntactic and
lexical features for sentence level aspect
based sentiment analysis. The task fo-
cuses on detection of a writer’s sentiment
towards an aspect which is explicitly men-
tioned in a sentence. The target sentiment
polarities are positive, negative, conflict
and neutral. We use a supervised learning
approach, evaluate various features and
report accuracies which are much higher
than the provided baselines. Best features
include unigrams, clauses, dependency re-
lations and SentiWordNet polarity scores.

1 Introduction

The term aspect refers to the features or aspects
of a product, service or topic being discussed in a
text. The task of detection of sentiment towards
these aspects involves two major processing steps,
identifying the aspects in the text and identifying
the sentiments towards these aspects. Our work
describes a submitted system in the Aspect Based
Sentiment Analysis task of SemEval 2014 (Pontiki
et al., 2014). The task was further divided into 4
subtasks; our work corresponds to the subtask 2,
called Aspect Term Polarity Detection. We pre-
dict the polarity of sentiments expressed towards
the aspect terms which are already annotated in a
sentence. The target polarity types are positive,
negative, neutral and conflict.
We employ a statistical classifier and experiment
with various syntactic and lexical features. Se-
lected features for the submitted system include
words which hold certain dependency relations
with the aspect terms, clause in which the aspect

This work is licensed under a Creative Commons Attribu-
tion 4.0 International Licence. Page numbers and proceed-
ings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

term appears, unigrams, and sum of lexicon based
sentiment polarities of the words in the clause.

2 Related Work

Pang et al. (2002) proved that unigrams and
bigrams, adjectives and part of speech tags are
important features for a machine learning based
sentiment classifier. Later, verbs and adjectives
were also identified as important features (Ches-
ley, 2006). Meena and Prabhakar (2007) per-
formed sentence level sentiment analysis using
rules based on clauses of a sentence. However,
in our case we cannot simply consider the adjec-
tives and verbs as features, since they might re-
late to different aspects. For example, in the sen-
tence ‘The pizza is the best if you like thin crusted
pizza.’, sentiment towards ‘pizza’ is positive be-
cause of the adjective ‘best’; however for the term
‘thin crusted pizza’, ‘like’ would be the sentiment
verb. Therefore, only those adjectives and verbs
which relate to the target aspect, can be consid-
ered as the indicator of their polarity. Wilson et
al. (2009) showed that the words which share cer-
tain dependency relations with aspect terms, tend
to indicate the sentiments expressed towards those
terms.
Saif et al. (2012) showed the co-relation between
topic and sentiment polarity in tweets, and as-
serted that majority of people tend to express sim-
ilar sentiments towards same topics, especially in
the case of positive sentiments. The baseline ap-
proach for this task (Pontiki et al., 2014) also as-
sociates polarity with aspect terms. Therefore, we
also consider aspect term as a potential feature.
Our approach for this task is based on our obser-
vation of the data, with a provenance of the above
mentioned findings.

3 Approach

We employ a statistical classifier which trains on
the provided training datasets.
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Datasets: Training datasets comprise of 3000 sen-
tences from laptop and restaurant reviews. Train-
ing sentences were tagged with the target aspect
term and the corresponding polarity, where more
than one aspect term can be tagged in a sentence.

3.1 Feature Sets

We divide the candidate features into four feature
sets.

1. Non-contextual: These features comprise of
training vocabulary. They do not target as-
pect based sentiments, but the overall senti-
ment of the sentence. There might be cases
where the aspect based sentiment is same as
the overall sentiment of the sentence. The
feature set comprises of three feature types,
unigrams, bigrams, adjectives and verbs of
the sentence.

2. Lexicon Non-Contextual: These features
are the Sentiwordnet v3.0 polarity scores
(Andrea Baccianella and Sebastiani, 2010)
of the words obtained from the best non-
contextual feature type. This feature set
would include two numerical features, posi-
tive polarity score and negative polarity score
of the best non-contextual feature types. Best
non-contextual feature type is decided by
comparing the classification accuracies of in-
dividual feature types, with cross validation
on the training data (Table 1). We evaluated
two algorithms to obtain the positive and neg-
ative polarities of words using SentiWordNet.
Later, we would provide details of these algo-
rithms.

3. Contextual: These features target aspect
based sentiments. Feature types comprise of
the clause in which an aspect term appears,
the adjective and verbs of this clause, aspect
term itself, and the words which hold certain
dependency relations with aspect term. We
only considered the Stanford parser depen-
dencies ‘nn’, ‘amod’, and ‘nsubj’. The de-
pendency relations were chosen on the basis
of best classification accuracy in a cross vali-
dation trial, where the only features were the
words holding different dependency relations
with the aspect term. However, we only list
the accuracy from the best performing depen-
dency relations in the Tables 1, 3. By the fea-

ture type clause, we mean the unigrams con-
tained in a clause.

4. Lexicon Contextual: Similar to Lexicon
Non-Contextual features, these are the nu-
meric values obtained from SentiWordNet
polarity scores of the best performing contex-
tual feature type.

Polarity Calculation using SentiWordNet:
WordNet (Fellbaum, 1998) is a lexical database
for the English language. It assigns each listed
word the senses to which it may belong, where
each unique sense is represented by a synset id.
SentiWordNet is built on the top of WordNet,
where a pair of positive and negative polarity
score is assigned to each sense of a word. Senti-
Wordnet entry for each word comprises of all the
possible parts of speech in which the word could
appear, all the senses corresponding to each part
of speech, and a pair of polarity scores associated
with each sense 1. The magnitude of positive and
negative polarity scores for each sense ranges
from 0 to 1.
In order to automatically obtain the polarity
scores corresponding to the desired sense of a
word, word sense disambiguation is required
to be performed. We did not perform sense
disambiguation, and picked the polarity scores
simply on the basis of word and part of speech
matching. This gives more than one candidate
senses, and thus more than one pair of polarity
scores for each word. We evaluated the following
2 methods to assign single values of sentiment
polarity scores to each word.

1. Default: The SentiWordnet website 2 pro-
vides a basic algorithm to assign sentiword-
net based polarities to a word. SentiWordnet
assigns a rank to each sense of a word, where
most commonly appearing sense is ranked
as 1. The default algorithm first calculates
an overall polarity (Positive score - Negative
score), for each sense of a word. It then cal-
culates a weighted sum of the overall polarity
scores of all the senses of a word, where the
weights are the ranks of senses. This sum is
considered as a single value polarity score of
a word, which can be a positive or negative
number.

1http://sentiwordnet.isti.cnr.it/search.php?q=good
2http://sentiwordnet.isti.cnr.it
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2. Our algorithm: We do not obtain an overall
polarity score for each word, but we obtain a
pair of aggregated negative and positive score
for each word. Aggregate positive score is
obtained by taking the average of the positive
scores of each sense of the word, and same
goes for the aggregate negative score.

One reason for keeping the positive and negative
scores separate in our algorithm is that the task
also involves sentiment classes conflict and neu-
tral. Using only the overall polarity score results
in a loss of information in the case of very low neg-
ativity and positivity (neutral sentiments), or high
but comparable negativity and positivity (conflict-
ing sentiments). Also, our algorithm produced
better results when used with an SVM classifier,
with features as unigrams and their polarity scores.

3.2 Classifier Model

Our system is built on the state of the art LibSVM
classifier (EL-Manzalawy and Honavar, 2005).
We used Weka 3.7.10 toolkit (Hall et al., 2009) for
our experiments. The parameters 3 of the SVM
classifier are tuned to the values which give best
results with unigrams. Table 2 provides the tuned
parameters, rest of the parameters are set at default
values.
Pre-processing: We perform stemming using
Weka’s implementation of Snowball stemmer,
convert strings to lower case and filter out stop-
words. We use a customised list of stopwords,
based on our observations of the data. The cus-
tomised list is created using the stopword list of
Weka, with certain words removed. For example,
negators like ’not’, ’didn’t’ etc. are important for
negative sentiments, for example ‘I can barely use
any usb devices because they will not stay prop-
erly connected’. Words like ‘but’, ‘however’ are
prominent in conflicting sentiments, for example
‘No backlit keyboard, but not an issue for me’. Ta-
bles 1, 3 show the difference in results on using fil-
tered stopword list, compared against no stopword
removal, and original stopword list.

G R C E Z
0.10 1.0 2 1.0 normalise

Table 2: Parameter Settings for SVM Classifier.

3http://weka.sourceforge.net/doc.stable/weka/classifiers/
functions/LibSVM.html

3.3 Feature Evaluation
We evaluated our features using 8-fold cross val-
idation on the training data. We evaluated each
feature by using it as the only feature for the clas-
sifier (Tables 1, 3). We performed experiments
on different combinations of features, but we only
present the best performing combination of fea-
tures in the last row of the tables. The baseline
approach (Pontiki et al., 2014) provided by the or-
ganisers, produced an accuracy of 47% for laptop
and 57% for restaurant, by splitting the training
data.
Metrics include, F score for each class, and overall
classification accuracy. F score ranges from 0-1,
and overall accuracy range from 0-100.

4 Submission and Results

Submission involved the prediction of sentiment
polarity towards the already tagged aspect terms
in two test datasets. There were 800 sentences
in each test dataset. The laptop test dataset was
obtained by dividing the original laptop data into
training and test. However, restaurant test dataset
and training dataset come from different sources.
We trained our classifier using the provided train-
ing dataset and the highlighted features (last row)
in the Tables 1, 3. In order to evaluate the submis-
sion, gold standard datasets corresponding to each
test dataset were later released, and submission’s
accuracy was compared against it.
Results: The system performance was evaluated
and ranked on the basis of overall accuracy of sen-
timent prediction. We were ranked as 20/32 for
the laptop domain, and 16/34 for the restaurant
domain. The task organisers reported that 8 polar-
ity predictions for laptop data, and 34 for restau-
rant data were missing from our submission. We
later debugged our system, and obtained the actual
accuracy which our system is capable of produc-
ing with the given test data. The results are sum-
marised in Table 4.

5 Observations and Analysis

We hypothesize that aspect terms should serve as
features when training data and test data come
from same source, which means that they relate
to the same brand, product, service etc. This is
because aspect terms change with data, for exam-
ple names of dishes would change with different
restaurants even if the domain is same. In our
case, the laptop test data was obtained from the
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Feature Set Features Positive Negative Conflict Neutral Accuracy

non-contextual

unigrams,bigrams 0.827 0.590 0.210 0.422 70.699
unigrams 0.830 0.584 0.154 0.413 70.962
adjectives,verbs 0.704 0.412 0.000 0.257 63.465
adjectives 0.623 0.430 0.000 0.000 56.410

non-contextual + lexicon unigrams, unigram polarity scores 0.833 0.596 0.154 0.414 71.300

contextual

clause 0.823 0.571 0.117 0.0.456 71.170
adjective, verbs within clause 0.784 0.472 0.000 0.257 66. 465
aspects 0.734 0.154 0.000 0.264 59.442
dependencies 0.751 0.235 0.000 0.061 61.257

contextual + lexicon clause, clause polarity score 0.735 0.000 0.000 0.000 58.101

combined
unigrams, clause, dependencies,
clause polarity score, filtered
stopword list

0.837 0.610 0.162 0.418 71.960

used original stopword 0.825 0.587 0.078 0.371 70.830
no stopwords used 0.830 0.610 0.151 0.435 72.000

Table 1: Feature Analysis for Restaurant Reviews.

Feature Set Features Positive Negative Conflict Neutral Accuracy

Non-Contextual

unigrams,bigrams 0.827 0.590 0.210 0.422 70.699
unigrams 0.781 0.747 0.110 0.484 71.202
adjectives,verbs 0.569 0.620 0.000 0.164 54.516
adjectives 0.521 0.613 0.000 0.090 51.230

non-contextual + lexicon unigrams, unigram polarity scores 0.783 0.754 0.179 0.529 71.850

Contextual

Clause 0.823 0.571 0.117 0.0.456 71.170
adjective, verbs within clause 0.569 0.620 0.000 0.164 54.510
aspects 0.602 0.259 0.000 0.050 45.240
dependencies 0.590 0.078 0.000 0.000 42.480

contextual + lexicon clause, clause polarity score 0.750 0.705 0.000 0.407 67.230

combined
unigrams, clause, dependencies,
clause polarity score, filtered
stopword list

0.786 0.752 0.100 0.498 71.600

weka stopword list 0.780 0.744 0.113 0.442 70.590
no stopwords 0.782 0.758 0.154 0.530 72.170

Table 3: Feature Analysis for Laptop Reviews.

same dataset which was used to prepare training
data, while restaurant was from a different source.
We observed that, although aspect terms produced
better results with cross validation, it did not hap-
pen in the case of test data. The restaurant test data
produced better accuracy without aspect term fea-
tures, while laptop test data produced better accu-
racy with aspect term features. We submitted our
systems without using aspect terms as features. If
aspect terms were used as features, the laptop test
data would have been classified with an accuracy
of 60.8 %. Another interesting observation is, uni-
grams produce better results on their own, as com-
pared to adjectives and verbs. Dependency and
clauses also seem to be very important features,
since they produce an accuracy of above 60% on
their own. We also observed that some stopwords
are important features for this task, and complete
removal of stopwords lowers the classification ac-
curacy.

Domain Baseline Best
System

Submitted
System

Debugged
System

laptop 51.07 70.48 57.03 59.15
restaurant 64.28 80.95 70.70 71.44

Table 4: Results on Gold Standard Data.

6 Conclusion

We presented an analysis and evaluation of syn-
tactic and lexical features for performing sentence
level aspect based sentiment analysis. Our fea-
tures depend on part of speech tagging and depen-
dency parsing, and therefore the accuracy might
vary with different parsers. Although our system
did not produce the highest accuracy for the task, it
is capable of achieving accuracies much above the
baselines. Therefore, the proposed features can be
worth testing on different datasets and can be used
in combination with other features.
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Abstract
This paper describes our approach for the
fourth task of the SemEval 2014 challenge:
Aspect Based Sentiment Analysis. Our sys-
tem is designed to solve all four subtasks:
(i) identifying aspect terms, (ii) determin-
ing the polarity of an aspect term, (iii) de-
tecting aspect categories, and (iv) determin-
ing the polarity of a predefined aspect cate-
gory. Our system is based on the Stanford
sentiment tree.

1 Introduction

Online reviewing, rating, and recommendation
have become quite popular nowadays. Based
on online reviews and rating, people may decide
whether to buy a certain product or visit a certain
place (restaurant, shop, etc.). Due to the increasing
number of reviews, an automatic system is needed
that can evaluate these reviews as positive, negative,
or neutral.

In this paper, we propose a system for the fourth
task of the SemEval 2014 challenge (Aspect Based
Sentiment Analysis). The target is to identify as-
pects of given target entities and to determine the
sentiment that is expressed towards each aspect in
terms of a polarity. The problem has been divided
into four different subtasks: (i) extracting aspects
from a given sentence, (ii) determining the polarity
of each aspect, (iii) matching suitable aspect cat-
egories and (iv) identifying the polarity of these
categories.

2 Related Work

There are several different approaches to perform
sentiment analysis on a given sentence. Refer-
ences Turney (2002) and Pang et al. (2002) started
This work is licenced under a Creative Commons Attribu-
tion 4.0 International License. Page numbers and proceed-
ings footer are added by the organizers. License details:
http://creativecommons.org/licenses/by/4.0/

to classify a given sentence to be either positive or
negative. Dave et al. (2003) continued to include
the neutral semantic orientation to his work. These
approaches perform sentiment analysis on a whole
sentence and use phrases such as adjectives and
adverbs to get a polarity. They collect all these
phrases and determine their polarity (e.g. positive,
neutral, or negative). Hence, it differs from our
work that performs sentiment analysis based on
each aspect term.

Another approach by Snyder and Barzilay (2007)
tries to perform aspect based sentiment analysis,
which performs sentiment analysis for various as-
pects for a given restaurant. Our work differs from
their approach and is more closely related to Hu
and Liu (2004). Individual parts of the sentence
are classified separately since different parts can
express different polarities. But the authors only
consider product features instead of aspect terms.
Aspect terms can be product features but they can
also include conditions such as ambience that in-
fluences an opinion which have not been addressed
in Hu and Liu (2004).

3 Preliminaries

Our system is based on Natural Language Process-
ing (NLP) libraries such as the Stanford CoreNLP.1

The system is heavily based on the Stanford senti-
ment tree.

3.1 Stanford sentiment tree

The sentiment treebank introduced by Socher et al.
(2013) was developed at the University of Stanford
to predict the sentiment of movie reviews. It con-
tains approximately 12,000 sentiment annotated
parse trees of movie reviews. The sentiment pre-
diction can determine five sentiment classes (very
negative, negative, neutral, positive, very positive)
using a recursive neural tensor network trained on

1http://nlp.stanford.edu/software/corenlp.shtml
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Table 1: Removed word categories with examples.
Category Example

person husband, wife, mother, boyfriend
time date, year, month, Monday-Sunday
location NYC, Manhattan, street, Avenue
misstagged everything, something, none, some, any

the sentiment treebank. We aggregate the senti-
ment classes into three classes (negative, neutral,
positive).

4 Implementation

Our system is divided into four subsystems that are
described separately in the following section. Al-
though described separately, some subtasks depend
on each other (e.g. Aspect Category Extraction and
Aspect Category Polarity).

4.1 Aspect term extraction
The aim of this subtask is to find aspect terms that
are discussed in a given sentence. Our approach
follows an idea presented by Hu and Liu (2004).
A word in a given sentence is considered to be
an aspect term if it satisfies the following three
conditions.

C1.1 It is tagged as a noun (tagged with NN, NNS,
NNP, or NNPS).

C1.2 It is one of the 20% most common nouns of
all given sentences.

C1.3 It does not belong to a forbidden word cate-
gory (listed in Table 1).

Following this extraction, adjacent aspect terms are
combined to multi-word aspect terms.

Example 1 “My wife bought it and was very
happy, especially with the hard drives and battery
life.” The result of the rule application is shown in
Table 2. When multi-word aspect terms are consid-
ered, battery and life are combined to a single term.
The row indicated by terms shows the extracted
aspect terms of the sentence. In the last row gold
terms are compared to actual aspect terms given
by the training data.

The results of our system are shown in Table 3.
These results could be improved by using typed
dependencies. The use of the adjectival modi-
fier (amod) and the noun compound modifier (nn)
relations can help to improve finding multi-word
aspect terms.

Table 2: Rule-satisfication for example.
Rule Result

found nouns wife drives battery life
frequent noun? X X X X
non-forbidden? x X X X
terms drives battery life
gold terms hard drives battery life

Table 3: Results for term extraction.
Domain Precision Recall F-measure

Laptop 0.23 0.25 0.24
Restaurant 0.37 0.40 0.38

4.2 Aspect term polarity
After extracting the aspect term from the sentence
the next task is to predict its polarity. For this task
we are using the Stanford sentiment tree.

The sentiment tree is designed to predict the sen-
timent of a whole sentence. Because the sentiment
tree contains polarities for every node of the parse
tree it is reasonable to use it for aspect sentiment
prediction.

Our algorithm examines the sentiment tree nodes
to predict the polarity of an aspect. The following
outlines the basic steps for aspect sentiment predic-
tion.

−

0

0 0

−

0 −

0 0

0

The keyboard (1) is

too slik

.

−

neutral (2)

neutral (3)

negative (4)

Figure 1: Example of the sentiment tree algorithm
for the sentence “The keyboard is too slik.”.

1. Create the sentiment tree for the sentence and
fetch the node of the aspect term stem.

2. Traverse the tree from that node up to the root.
The first non-neutral polarity on the path from
the node to the root node is chosen.

3. If the algorithm reaches the root node without
finding a non-neutral polarity, the aspect term
is predicted as neutral.
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Table 4: Results for term polarity.
Domain Prec. Rec. F-measure Accuracy

Laptop 0.52
- negative 0.31 0.79 0.45
- neutral 0.33 0.09 0.15
- positive 0.79 0.65 0.72
Restaurant 0.62
- negative 0.35 0.78 0.48
- neutral 0.25 0.05 0.08
- positive 0.83 0.75 0.79

Example 2 Figure 1 illustrates the algorithm for
the sentence “The keyboard is too slik.”. The aspect
term keyboard is underlined. The algorithm starts
at the keyboard node (denoted with 1) and examines
the parent node (2). Since the parent node has a
neutral polarity, the root node needs to be examined
(3). Due to the negative polarity of the root node,
the aspect term keyboard is negative (4).

The results of the algorithm with the test data
set are shown in Table 4. We got quite good results
for negative and positive aspect terms. But there
are problems to predict neutral aspect terms, due
to the fact that the sentiment tree rarely predicts
neutral polarities. Overall our accuracy is nearly
10 percent points above the ABSA baselines.

4.3 Aspect category detection
This section describes the approach for the third
subtask that identifies aspect categories discussed
in a given sentence, using a predefined set of aspect
categories, such as food, service, ambience, price,
and anecdotes/miscellaneous as a neutral category.
Our approach is twofold, depending on whether the
sentence contains aspect terms or not.

Sentences with aspect terms. We illustrate our
approach with the following example sentence.

Example 3 Consider the sentence “Even though
it is good seafood, the prices are too high.” with
the predefined aspects terms seafood and price.

1. If the aspect term is a category, it can be di-
rectly assigned as a category. In this example
the category price is present and will be as-
signed.

2. Dishes are very challenging to detect as an
aspect term. For that problem we added a list
of dishes scraped from Wikipedia to detect
them. If a noun is not part of the list we search
DuckDuckGo2 for the description of that noun

2https://duckduckgo.com

Table 5: Result for category extraction.
Domain Precision Recall F-measure

Restaurant 0.63 0.52 0.59

and check whether it is a dish. If it is a dish,
then the category food is assigned.

3. For unassigned aspect terms, the similarity
between aspect terms and all categories will
be calculated. For this purpose, RiTa.WordNet
similarity has been used. If the path length is
smaller than 0.4 (with the help of the training
data we experimentally determined the best
comparison value) the aspect term is assigned
to the category. In our example seafood is
similar to food and therefore the category is
food.

4. If no aspect category could be found, the cate-
gory is anecdotes/miscellaneous.

Sentences without aspect term. The third step
from the previous approach is executed for all
nouns in the sentence. But the threshold is de-
creased to 0.19 to reduce the number of recognized
categories. If no similarity falls below the thresh-
old, the category is anecdotes/miscellaneous.

The results of the third subtask are presented in
Table 5. Although the presented results are mod-
erately good, there exist some issues worth to be
considered here: Using WordNet (Miller, 1995), it
is only possible to find the similarity between two
concepts and not a group of concepts. For example
Japanese Tapas with food would not work. Fur-
thermore, WordNet only recognizes the similarity
between words of the same part of speech, it means
many possible relations between verbs and nouns,
and also adjectives and nouns are missing. Also,
we were not able to calculate the similarity between
a term and the default category.

4.4 Category polarity
This section describes the last subtask which aims
to find the polarity of an aspect category for a given
sentence. For the given aspect category which
can be food, service, ambience, price, or anec-
dotes/miscellaneous, the task is to find its polarity.
This subtask is applied only for the topic restau-
rant. The second and third subtask must have been
solved since their evaluations are required to clas-
sify which aspect term belongs to which aspect
category. In the third subtask all aspect terms are
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grouped in categories and in the second one the
aspect terms are set with their polarities, which we
use to calculate how many times a specific polarity
is chosen under the same aspect category. Then we
can assign a polarity to a specific aspect category.
In order to find the polarities of an aspect category
we carefully analyzed the training data and defined
a set of rules to find all possible cases. We will
discuss these rules in the following.

R4.1 If the aspect term polarities of the same
category are equal, then their polarity is tagged as
the category polarity.

Example 4 “Prices are higher to dine in and their
chicken tikka marsala is quite good.” The found as-
pect terms in this sentence are Prices which is neg-
ative and chicken tikka marsala which is positive.
Both aspect terms belong to different categories.
The category food (chicken tikka marsala) is posi-
tive and the category price (Prices) is negative.

R4.2 If one of the aspects of a specified category
is neutral, it has no influence on the polarity of
a category, as long as at least one other polarity
exists. The polarities of all other aspect terms will
determine the polarity of a specific category.

Example 5 “Our server checked on us maybe
twice during the entire meal.” In this sentence
the following aspect terms are found: server as
negative and meal as neutral. Both aspect terms be-
long to the same category service, so the category
service has the value negative.

R4.3 If the aspect term polarities under a same
category are both positive and negative, then the
category polarity is tagged as conflict.

Example 6 As an example consider the sentence:
“The sweet lassi was excellent as was the lamb chet-
tinad and the garlic naan but the rasamalai was
forgettable.” Here four aspect terms were found:
sweet lassi, lamb chettinad, and garlic naan with
positive polarities but rasamalai has a negative po-
larity. This results in a conflict polarity for the
category food.

R4.4 If the found category was annotated as anec-
dotes/miscellaneous but no aspect term was found
in the second subtask, then we use the sentiment
tree. It generates a specific polarity for the entire
sentence which we define as the category’s polarity.

Example 7 The sentence: “A guaranteed delight!”
has no aspect term. Using the sentiment tree the

Table 6: Results for category polarity.
Domain Prec. Rec. F-measure Accuracy

Restaurant 0.63
- conflict 0.08 0.10 0.09
- negative 0.45 0.73 0.56
- neutral 0.24 0.17 0.20
- positive 0.86 0.70 0.77

polarity for the category anecdotes/miscellaneous
is positive.

We applied our approach on the training data.
The results are shown in Table 6. We achieved an
F-measure of 0.85 for the positive polarity. Our
accuracy is 0.56 which is not a good achievement
in comparison to other submissions in this subtask.
The possible reason for this result could be that
the first subtask also did not reach good accuracy
measures.

5 Conclusion & future works

This paper describes our system to solve the indi-
vidual subtasks by using the Stanford CoreNLP,
RiTa.WordNet (Guerini et al., 2013) and a food
database developed by ourselves. These libraries
offer methods to classify sentences and determine
the polarities.

Through the usage of the library based methods,
it is not possible to take effect to the result. At
this point other libraries such as NLTK3 could help
to increase it. They offer the possibility to train
several classifiers with own data. But the classifier
are not domain independent, because they need to
be trained with sentences that belong to a specific
domain, e.g. laptop or restaurant, in order to get
the right polarity.

Our approach is more domain independent, be-
cause we do not need any domain to calculate the
right polarities. That’s why we can use our tool to
process sentences of any domain, without further
changing the algorithms.

In the future, we expect progress towards the
following directions. First, we want to improve the
identification of aspect terms which consist of more
than two consecutive nouns. Second, we want to
identify aspect terms which are not available as a
part of the sentence. Finally, improvements to de-
termine polarity of sentences with unclear context
(i.e. the absence of adjectives).

3http://www.nltk.org/
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Abstract

We describe the Indiana University sys-
tem for SemEval Task 5, the L2 writ-
ing assistant task, as well as some exten-
sions to the system that were completed
after the main evaluation. Our team sub-
mitted translations for all four language
pairs in the evaluation, yielding the top
scores for English-German. The system
is based on combining several information
sources to arrive at a final L2 translation
for a given L1 text fragment, incorporating
phrase tables extracted from bitexts, an L2
language model, a multilingual dictionary,
and dependency-based collocational mod-
els derived from large samples of target-
language text.

1 Introduction

In the L2 writing assistant task, we must translate
an L1 fragment in the midst of an existing, nearly
complete, L2 sentence. With the presence of this
rich target-language context, the task is rather dif-
ferent from a standard machine translation setting,
and our goal with our design was to make effec-
tive use of the L2 context, exploiting collocational
relationships between tokens anywhere in the L2
context and the proposed fragment translations.

Our system proceeds in several stages: (1) look-
ing up or constructing candidate translations for
the L1 fragment, (2) scoring candidate transla-
tions via a language model of the L2, (3) scoring
candidate translations with a dependency-driven
word similarity measure (Lin, 1998) (which we
call SIM), and (4) combining the previous scores
in a log-linear model to arrive at a final n-best
list. Step 1 models transfer knowledge between

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

the L1 and L2; step 2 models facts about the L2
syntax, i.e., which translations fit well into the lo-
cal context; step 3 models collocational and se-
mantic tendencies of the L2; and step 4 gives dif-
ferent weights to each of the three sources of in-
formation. Although we did not finish step 3 in
time for the official results, we discuss it here, as
it represents the most novel aspect of the system –
namely, steps towards the exploitation of the rich
L2 context. In general, our approach is language-
independent, with accuracy varying due to the size
of data sources and quality of input technology
(e.g., syntactic parse accuracy). More features
could easily be added to the log-linear model, and
further explorations of ways to make use of target-
language knowledge could be promising.

2 Data Sources

The data sources serve two major purposes for our
system: For L2 candidate generation, we use Eu-
roparl and BabelNet; and for candidate ranking
based on L2 context, we use Wikipedia and the
Google Books Syntactic N-grams.

Europarl The Europarl Parallel Corpus (Eu-
roparl, v7) (Koehn, 2005) is a corpus of pro-
ceedings of the European Parliament, contain-
ing 21 European languages with sentence align-
ments. From this corpus, we build phrase tables
for English-Spanish, English-German, French-
English, Dutch-English.

BabelNet In the cases where the constructed
phrase tables do not contain a translation for a
source phrase, we need to back off to smaller
phrases and find candidate translations for these
components. To better handle sparsity, we extend
look-up using the multilingual dictionary Babel-
Net, v2.0 (Navigli and Ponzetto, 2012) as a way to
find translation candidates.
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Wikipedia For German and Spanish, we use re-
cent Wikipedia dumps, which were converted to
plain text with the Wikipedia Extractor tool.1 To
save time during parsing, sentences longer than 25
words are removed. The remaining sentences are
POS-tagged and dependency parsed using Mate
Parser with its pre-trained models (Bohnet, 2010;
Bohnet and Kuhn, 2012; Seeker and Kuhn, 2013).
To keep our English Wikipedia dataset to a man-
ageable size, we choose an older (2006), smaller
dump. Long sentences are removed, and the re-
maining sentences are POS-tagged and depen-
dency parsed using the pre-trained Stanford Parser
(Klein and Manning, 2003; de Marneffe et al.,
2006). The resulting sizes of the datasets are
(roughly): German: 389M words, 28M sentences;
Spanish: 147M words, 12M sentences; English:
253M words, 15M sentences. Dependencies ex-
tracted from these parsed datasets serve as training
for the SIM system described in section 3.3.

Google Books Syntactic N-grams For English,
we also obtained dependency relationships for our
word similarity statistics using the arcs dataset of
the Google Books Syntactic N-Grams (Goldberg
and Orwant, 2013), which has 919M items, each
of which is a small “syntactic n-gram”, a term
Goldberg and Orwant use to describe short de-
pendency chains, each of which may contain sev-
eral tokens. This data set does not contain the ac-
tual parses of books from the Google Books cor-
pus, but counts of these dependency chains. We
converted the longer chains into their component
(head, dependent, label) triples and then collated
these triples into counts, also for use in the SIM
system.

3 System Design

As previously mentioned, at run-time, our system
decomposes the fragment translation task into two
parts: generating many possible candidate transla-
tions, then scoring and ranking them in the target-
language context.

3.1 Constructing Candidate Translations
As a starting point, we use phrase tables con-
structed in typical SMT fashion, built with the
training scripts packaged with Moses (Koehn et
al., 2007). These scripts preprocess the bitext, es-
timate word alignments with GIZA++ (Och and

1http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor

Ney, 2000) and then extract phrases with the
grow-diag-final-and heuristic.

At translation time, we look for the given
source-language phrase in the phrase table, and if
it is found, we take all translations of that phrase
as our candidates.

When translating a phrase that is not found in
the phrase table, we try to construct a “synthetic
phrase” out of the available components. This
is done by listing, combinatorially, all ways to
decompose the L1 phrase into sub-phrases of at
least one token long. Then for each decomposi-
tion of the input phrase, such that all of its compo-
nents can be found in the phrase table, we gen-
erate a translation by concatenating their target-
language sides. This approach naively assumes
that generating valid L2 text requires no reorder-
ing of the components. Also, since there are 2n−1

possible ways to split an n-token phrase into sub-
sequences (i.e., each token is either the first token
in a new sub-sequence, or it is not), we perform
some heuristic pruning at this step, taking only
the first 100 decompositions, preferring those built
from longer phrase-table entries. Every phrase in
the phrase table, including these synthetic phrases,
has both a “direct” and “inverse” probability score;
for synthetic phrases, we estimate these scores by
taking the product of the corresponding probabili-
ties for the individual components.

In the case that an individual word cannot be
found in the phrase table, the system attempts to
look up the word in BabelNet, estimating the prob-
abilities as uniformly distributed over the available
BabelNet entries. Thus, synthetic phrase table
entries can be constructed by combining phrases
found in the training data and words available in
BabelNet.

For the evaluation, in cases where an L1 phrase
contained words that were neither in our train-
ing data nor BabelNet (and thus were simply out-
of-vocabulary for our system), we took the first
translation for that phrase, without regard to con-
text, from Google Translate, through the semi-
automated Google Docs interface. This approach
is not particularly scalable or reproducible, but
simulates what a user might do in such a situation.

3.2 Scoring Candidate Translations via a L2
Language Model

To model how well a phrase fits into the L2 con-
text, we score candidates with an n-gram lan-
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guage model (LM) trained on a large sample of
target-language text. Constructing and querying
a large language model is potentially computa-
tionally expensive, so here we use the KenLM
Language Model Toolkit and its Python interface
(Heafield, 2011). Here our models were trained
on the Wikipedia text mentioned previously (with-
out filtering long sentences), with KenLM set to
5-grams and the default settings.

3.3 Scoring Candidate Translations via
Dependency-Based Word Similarity

The candidate ranking based on the n-gram lan-
guage model – while quite useful – is based on
very shallow information. We can also rank the
candidate phrases based on how well each of the
components fits into the L2 context using syntactic
information. In this case, the fitness is measured in
terms of dependency-based word similarity com-
puted from dependency triples consisting of the
the head, the dependent, and the dependency la-
bel. We slightly adapted the word similarity mea-
sure by Lin (1998):

SIM(w1, w2) =
2 ∗ c(h, d, l)

c(h,−, l) + c(−, d, l)
(1)

where h = w1 and d = w2 and c(h, d, l)
is the frequency with which a particular
(head, dependent, label) dependency triple
occurs in the L2 corpus. c(h,−, l) is the fre-
quency with which a word occurs as a head
in a dependency labeled l with any dependent.
c(−, d, l) is the frequency with which a word
occurs as a dependent in a dependency labeled
l with any head. In the measure by Lin (1998),
the numerator is defined as the information of all
dependency features that w1 and w2 share, com-
puted as the negative sum of the log probability of
each dependency feature. Similarly, the denom-
inator is computed as the sum of information of
dependency features for w1 and w2.

To compute the fitness of a word wi for its
context, we consider a set D of all words that are
directly dependency-related to wi. The fitness of
wi is thus computed as:

FIT (wi) =

∑D
wj

SIM(wi, wj)

|D| (2)

The fitness of a phrase is the average word sim-
ilarity over all its components. For example, the

fitness of the phrase “eat with chopsticks” would
be computed as:

FIT (eat with chopsticks) =
FIT (eat) + FIT (with) + FIT (chopsticks)

3
(3)

Since we consider the heads and dependents
of a target phrase component, these may be situ-
ated inside or outside the phrase. Both cases are
included in our calculation, thus enabling us to
consider a broader, syntactically determined local
context of the phrase. By basing the calculation on
a single word’s head and dependents, we attempt
to avoid data sparseness issues that we might get
from rare n-gram contexts.

Back-Off Lexical-based dependency triples suf-
fer from data sparsity, so in addition to computing
the lexical fitness of a phrase, we also calculate the
POS fitness. For example, the POS fitness of “eat
with chopsticks” would be computed as follows:

FIT (eat/VBG with/IN chopsticks/NNS) =
FIT (VBG) + FIT (IN) + FIT (NNS)

3
(4)

Storing and Caching The large vocabulary
and huge number of combinations of our
(head, dependent, label) triples poses an effi-
ciency problem when querying the dependency-
based word similarity values. Thus, we stored
the dependency triples in a database with a
Python programming interface (SQLite3) and
built database indices on the frequent query types.
However, for frequently searched dependency
triples, re-querying the database is still inefficient.
Thus, we built a query cache to store the recently-
queried triples. Using the database and cache sig-
nificantly speeds up our system.

This database only stores dependency triples
and their corresponding counts; the dependency-
based similarity value is calculated as needed, for
each particular context. Then, these FIT scores
are combined with the scores from the phrase ta-
ble and language model, using weights tuned by
MERT.
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system acc wordacc oofacc oofwordacc
run2 0.665 0.722 0.806 0.857
SIM 0.647 0.706 0.800 0.852

nb 0.657 0.717 0.834 0.868

Figure 1: Scores on the test set for English-
German; here next-best is CNRC-run1.

system acc wordacc oofacc oofwordacc
run2 0.633 0.72 0.781 0.847
SIM 0.359 0.482 0.462 0.607
best 0.755 0.827 0.920 0.944

Figure 2: Scores on the test set for English-
Spanish; here best is UEdin-run2.

3.4 Tuning Weights with MERT
In order to rank the various candidate translations,
we must combine the different sources of infor-
mation in some way. Here we use a familiar log-
linear model, taking the log of each score – the di-
rect and inverse translation probabilities, the LM
probability, and the surface and POS SIM scores –
and producing a weighted sum. Since the original
scores are either probabilities or probability-like
(in the range [0, 1]), their logs are negative num-
bers, and at translation time we return the trans-
lation (or n-best) with the highest (least negative)
score.

This leaves us with the question of how to
set the weights for the log-linear model; in this
work, we use the ZMERT package (Zaidan, 2009),
which implements the MERT optimization algo-
rithm (Och, 2003), iteratively tuning the feature
weights by repeatedly requesting n-best lists from
the system. We used ZMERT with its default
settings, optimizing our system’s BLEU scores
on the provided development set. We chose, for
convenience, BLEU as a stand-in for the word-
level accuracy score, as BLEU scores are maxi-
mized when the system output matches the refer-
ence translations.

4 Experiments

In figures 1-4, we show the scores on this year’s
test set for running the two variations of our sys-
tem: run2, the version without the SIM exten-
sions, which we submitted for the evaluation, and
SIM, with the extensions enabled. For compar-
ison, we also include the best (or for English-
German, next-best) submitted system. We see here

system acc wordacc oofacc oofwordacc
run2 0.545 0.682 0.691 0.800
SIM 0.549 0.687 0.693 0.800
best 0.733 0.824 0.905 0.938

Figure 3: Scores on the test set for French-English;
here best is UEdin-run1.

system acc wordacc oofacc oofwordacc
run2 0.544 0.679 0.634 0.753
SIM 0.540 0.676 0.635 0.753
best 0.575 0.692 0.733 0.811

Figure 4: Scores on the test set for Dutch-English;
here best is UEdin-run1.

that the use of the SIM features did not improve
the performance of the base system, and in the
case of English-Spanish caused significant degra-
dation, which is as of yet unexplained, though we
suspect difficulties parsing the Spanish test set, as
for all of the other language pairs, the effects of
adding SIM features were small.

5 Conclusion

We have described our entry for the initial run-
ning of the “L2 Writing Assistant” task and ex-
plained some possible extensions to our base log-
linear model system.

In developing the SIM extensions, we faced
some interesting software engineering challenges,
and we can now produce large databases of depen-
dency relationship counts for various languages.
Unfortunately, these extensions have not yet led
to improvements in performance on this particu-
lar task. The databases themselves seem at least
intuitively promising, capturing interesting infor-
mation about common usage patterns of the tar-
get language. Finding a good way to make use
of this information may involve computing some
measure that we have not yet considered, or per-
haps the insights captured by SIM are covered ef-
fectively by the language model.

We look forward to future developments around
this task and associated applications in helping
language learners communicate effectively.
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Abstract

This paper presents the results of the Ix-
aMed team at the SemEval-2014 Shared
Task 7 on Analyzing Clinical Texts.
We have developed three different sys-
tems based on: a) exact match, b) a
general-purpose morphosyntactic analyzer
enriched with the SNOMED CT termi-
nology content, and c) a perceptron se-
quential tagger based on a Global Linear
Model. The three individual systems re-
sult in similar f-score while they vary in
their precision and recall. We have also
tried direct combinations of the individual
systems, obtaining considerable improve-
ments in performance.

1 Introduction

This paper presents the results of the IxaMed team.
The task is focused on the identification (Task A)
and normalization (Task B) of diseases and disor-
ders in clinical reports.

We have developed three different systems
based on: a) exact match, b) a general-
purpose morphosyntactic analyzer enriched with
the SNOMED CT terminology content, and c) a
perceptron sequential tagger based on a Global
Linear Model. The first system can be seen as
a baseline that can be compared with other ap-
proaches, while the other two represent two alter-
native approaches based on knowledge organized
in dictionaries/ontologies and machine learning,
respectively. We also tried direct combinations of
the individual systems, obtaining considerable im-
provements in performance.

These approaches are representative of different
solutions that have been proposed in the literature

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organizers. License details:
http://creativecommons.org/licenses/by/4.0/

(Pradhan et al., 2013), which can be broadly clas-
sified in the following types:

• Knowledge-based. This approach makes use
of large-scale dictionaries and ontologies,
that are sometimes integrated in general tools
adapted to the clinical domain, as MetaMap
(Aronson and Lang, 2010) and cTAKES (Xia
et al., 2013).

• Rule-based. For example, in (Wang and
Akella, 2013) the authors show the use
of a rule-based approach on the output of
MetaMap.

• Statistical techniques. These systems take a
training set as input and apply different vari-
ants of machine learning, such as sequen-
tial taggers based on hidden Markov mod-
els (HMMs) or conditional random fields
(CRFs) (Zuccon et al., 2013; Bodnari et al.,
2013; Gung, 2013; Hervas et al., 2013; Lea-
man et al., 2013).

• Combinations. These approaches try to take
the advantages of different system types, us-
ing methods such as voting or metaclassi-
fiers (Liu et al., 2013).

In the rest of the paper, we will first introduce
the different systems that we have developed in
section 2, presenting the main results in section 3,
and ending with the main conclusions.

2 System Description

The task of detecting diseases and their corre-
sponding concept unique identifiers (CUI) has
been faced using three methods that are described
in the following subsections.

2.1 Exact Match
The system based on Exact Match (EM) simply
obtained a list of terms and their corresponding
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CUI identifier from the training set and marked
any appearance of those terms in the evaluation
set. This simple method was improved with some
additional extensions:

• Improving precision. In order to reduce the
number of false positives (FP), we applied
first the EM system to the training set it-
self. This process helped to measure FPs,
for example, blood gave 184 FPs and 2 true
positives (TPs). For the sake of not hurting
the recall, we allowed the system to detect
only those terms where TP > FP , that is,
“blood” would not be classified as disorder.

• Treatment of discontinuous terms. For
these terms, our system performed a soft-
matching comparison allowing a limited vari-
ation for the text comprised between the
term elements (for example “right atrium is
mildly/moderately dilated”). These patterns
were tuned manually.

2.2 Adapting Freeling to the Medical Domain
Freeling is an open-source multilingual language
processing library providing a wide range of ana-
lyzers for several languages (Padró et al., 2010),
Spanish and English among others. We had al-
ready adapted Freeling to the medical domain in
Spanish (Oronoz et al., 2013), so we used our pre-
vious experience to adapt the English version to
the same domain. For the sake of clarity, we will
refer to this system as FreeMed henceforth.

The linguistic resources (lexica, grammars,. . . )
in Freeling can be modified, so we took advantage
of this flexibility extending two standard Freel-
ing dictionaries: a basic dictionary of terms con-
sisting of a unique word, and a multiword-term
dictionary. Both of them were enriched with a
dictionary of medical abbreviations1 and with the
Systematized Nomenclature of Medicine Clinical
Terms (SNOMED CT) version dated 31st of July
of 2013. In addition to the changes in the lexica,
we added regular expressions in the tokenizer to
recognize medical terms as “Alzheimer’s disease”
as a unique term.

In our approach, the system distinguishes be-
tween morphology and syntax on one side and
semantics on the other side. First, on the mor-
phosyntactic processing, our system only catego-
rizes word-forms using their basic part-of-speech

1http://www.jdmd.com/abbreviations-glossary.asp

(POS) categories. Next, the semantic distinctions
are applied (the identification of the term as sub-
stance, disorder, procedure,. . . ). Following this
approach, whenever the specific term on the new
domain (biomedicine in this case) was already in
Freeling’s standard dictionaries, the specific en-
tries will not be added to the lexicon. Instead,
medical meanings are added in a later semantic
tagging stage. For example: the widely used term
“fever”, as common noun, was not added to the
lexicon but its semantic class is given in a sec-
ond stage. Only very specific terms not appear-
ing in the lexica as, for instance, “diskospondyli-
tis” were inserted. This solution helps to avoid
an explosion of ambiguity in the morphosyntactic
analysis and, besides, it enables a clear separation
between morphosyntax and semantics.

In figure 1 the results of both levels of anal-
ysis, morphosyntactic and semantic, are shown.
The linguistic and medical information of medical
texts is stored in the Kyoto Annotation Format or
KAF (Bosma et al., 2009) that is based in the eX-
tended Markup Language (XML). In this example
the term aneurysm is analyzed as NN (meaning
noun) and it is semantically categorized as mor-
phological abnormality and disorder.

SNOMED CT is part of the Metathesaurus,
one of the elements of the Unified Medical Lan-
guage System (UMLS). We used the Metathe-
saurus vocabulary database to extract the map-
ping between SNOMED CT’s concept identifiers
and their corresponding UMLS’s concept unique
identifier (CUI). All the medical terms appearing
in SNOMED CT and analyzed with FreeMed are
tagged with both identifiers. For instance, the term
aneurysm in figure 1 has the 85659009 SNOMED
CT identifier when the term is classified in the
morphological abnormality content hierarchy and
the 432119003 identifier as disorder. Both are
linked to the same concept identifier, C0002940,
in UMLS. This mapping has been used for Task
B, whenever the CUI is the same in all the analy-
sis of the same term.

All the terms from all the 19 content hierarchies
of SNOMED CT were tagged with semantic infor-
mation in the provided texts.

The training corpus was linguistically analyzed
and its format was changed from XML to the for-
mat specified at the shared task. After a manual
inspection of the results and the Gold Standard,
some selection of terms was performed:
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<term tid=”t241” lemma=”aneurysm” pos=”NN”>
<extRefs>
<extRef resource=”SCT 20130731” reference=”85659009”

reftype=”morphologic abnormality” >
<extRef resource=”UMLS-2010AB” reference=”C0002940”/ >

</extRef>
<extRef resource=”SCT 20130731” reference=”432119003”

reftype=”disorder” >
<extRef resource=”UMLS-2010AB” reference=”C0002940”/>

</extRef>
</extRefs>

</term>

Figure 1: Analysis with augmented information.

• Selection and combination of semantic
classes. All the terms from the disor-
der semantic class (for example “Hypothy-
roidism”) and from the finding class (for in-
stance “headache”) are chosen, as well as
some tag combinations (see figure 1). After
analyzing the train corpus we decided to join
into a unique term a body structure immedi-
ately followed by a disorder/finding. In this
way, we identify terms as “MCA aneurysm”
that are composed of the MCA abbreviation
(meaning “middle cerebral artery”) and the
inmediately following “aneurysm” disorder.

• Filtering. Not all the terms from the men-
tioned SNOMED CT hierarchies are identi-
fied as disorders in the Gold Standard. Some
terms are discarded following these criteria:
i) findings describing personal situations (e.g.
“alcoholic”), ii) findings describing current
situations (e.g. “awake”), iii) findings with
words indicating a negation or normal situ-
ation (e.g. “stable blood pressure”) and iv)
too general terms (e.g. “problems”).

The medical terms indicating disorders that are
linked to more than one CUI identifier, were
tagged as CUI-less. That is, we did not perform
any CUI disambiguation.

In subsequent iterations and after analyzing our
misses, new terms and term variations (Hina et
al., 2013) are added to the lexica in Freeling with
the restriction that, at least, one synonym should
appear in SNOMED CT. Thus, equivalent forms
were created for all the terms indicating a cancer,
a tumor, a syndrome, or a specific disease. For in-
stance, variants for the term “cancer of colon” and
with the same SNOMED CT concept identifier
(number 363406005) are created with the forms
“colon cancer”, “cancer of the colon” and “can-
cer in colon”. Some abbreviation variations found

in the Gold Standard are added in the lexica too,
following the same criteria.

2.3 Perceptron Sequential Tagger

This system uses a Global Linear Model (GLM),
a sequential tagger using the perceptron algorithm
(Collins, 2002), that relies on Viterbi decoding of
training examples combined with simple additive
updates. The algorithm is competitive to other op-
tions such as maximum-entropy taggers or CRFs.

The original textual files are firstly processed by
FreeMed, and then the tagger uses all the available
information to assign tags to the text. Each token
contains information about the word form, lemma,
part of speech, and SNOMED CT category.

Our GLM system only deals with Task A, and
it will not tackle the problem of concept normal-
ization, due to time constraints. In this respect, for
Task B the GLM system will simply return the first
SNOMED CT category given by FreeMed. This
does not mean that GLM and FreeMed will give
the same result for Task B, as the GLM system
first categorizes each element as a disease, and it
gives a CUI only when that element is identified.

2.4 Combinations

The previous subsections presented three differ-
ent approaches to the problem that obtain com-
parable scores (see table 1). In the area of auto-
matic tagging, there are several works that com-
bine disparate systems, usually getting good re-
sults. For this reason, we tried the simplest ap-
proach of merging the outputs of the three individ-
ual systems into a single file.

3 Results

Table 1 presents the results of the individual and
combined systems on the development set. Look-
ing at the individual systems on Task A, we can see
that all of them obtain a similar f-score, although
there are important differences in terms of preci-
sion and recall. Contrary to our initial intuition,
the FreeMed system, based on dictionaries and on-
tologies, gives the best precision and the lowest re-
call. In principle, having SNOMED CT as a base,
we could expect that the coverage would be more
complete (attaining the highest recall). However,
the results show that there is a gap between the
writing of the standard SNOMED CT terms and
the terms written by doctors in their notes. On the
other hand, the sequential tagger gives the best re-
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Task A Task B
Strict Relaxed Strict Relaxed

System Precision Recall F-Score Precision Recall F-Score Accuracy
INDIVIDUAL SYSTEMS

Exact Match (EM) 0.804 0.505 0.620 0.958 0.604 0.740 0.479 0.948
FreeMed 0.822 0.501 0.622 0.947 0.578 0.718 0.240 0.479

GLM 0.715 0.570 0.634 0.908 0.735 0.813 0.298 0.522
COMBINATIONS

FreeMed + EM 0.766 0.652 0.704 0.936 0.754 0.835 0.556 0.855
FreeMed + GLM 0.689 0.668 0.678 0.903 0.790 0.843 0.345 0.518

EM + GLM 0.680 0.679 0.679 0.907 0.819 0.861 0.398 0.598
FreeMed + EM + GLM 0.659 0.724 0.690 0.899 0.845 0.871 0.421 0.584

Table 1: Results of the different systems on the development set.

Task A Task B
Strict Relaxed Strict Relaxed

System Precision Recall F-Score Precision Recall F-Score Accuracy
FreeMed + EM 0.729 0.701 0.715 0.885 0.808 0.845 0.604 0.862

FreeMed + EM + GLM 0.681 0.786 0.730 0.872 0.890 0.881 0.439 0.558
Best system 0.843 0.786 0.813 0.936 0.866 0.900 0.741 0.873

Table 2: Results on the test set.

call. Since the tagger uses both contextual words
and prefixes and suffixes as features for learning,
this method has proven helpful for the recognition
of terms that do not appear in the training data (see
the difference with the EM approach).

Looking at the different combinations in table 1,
we see that two approaches work best, either com-
bining FreeMed and EM, or combining the three
individual systems. The inclusion of GLM results
in the best coverage, but at the expense of preci-
sion. On the other hand, combining FreeMed and
EM gives a better precision but lower coverage.
As pointed out by Collins (2002), the results of
the perceptron tagger are competitive with respect
to other statistical approaches such as CRFs (Zuc-
con et al., 2013; Bodnari et al., 2013; Gung, 2013;
Hervas et al., 2013; Leaman et al., 2013).

Regarding Task B, we can see that the EM sys-
tem is by far the most accurate, while FreeMed
is well below its a priori potential. The reason of
this low result is mainly due to the high ambiguity
found on the output of the SNOMED CT tagger, as
many terms are associated with more than one CUI
and, consequently, are left untagged. This problem
deserves future work on automatic semantic dis-
ambiguation. On the combinations, FreeMed and
EM together give the best result. However, as we
told before, the GLM system was only trained for
Task A, so it is not surprising to see that its results
deteriorate the accuracy in Task B.

We chose these best two combinations for the
evaluation on the test set (using training and de-

velopment for experimentation or training), which
are presented in table 2. Here we can see that re-
sults on the development also hold on the test set.

Given the unsophisticated approach to combine
the systems, we can figure out more elaborated so-
lutions, such as majority or weighted voting, or
even more, the definition of a machine learning
classifier to select the best system for every pro-
posed term. These ideas are left for future work.

4 Conclusions

We have presented the IxaMed approach, com-
posed of three systems that are based on exact
match, linguistic and knowledge repositories, and
a statistical tagger, respectively. The results of in-
dividual systems are comparable, with differences
in precision and recall. We also tested a sim-
ple combination of the systems, which proved to
give significant improvements over each individ-
ual system. The results are competitive, although
still far from the winning system.

For future work, we plan to further improve the
individual systems. Besides, we hope that the ex-
perimentation with new combination approaches
will offer room for improvement.
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Abstract 

In this paper, we describe how we cre-
ated a meta-classifier to detect the mes-
sage-level sentiment of tweets. We par-
ticipated in SemEval-2014 Task 9B by 
combining the results of several exist-
ing classifiers using a random forest. 
The results of 5 other teams from the 
competition as well as from 7 general-
purpose commercial classifiers were 
used to train the algorithm. This way, 
we were able to get a boost of up to 
3.24 F1 score points. 

1 Introduction 

The interest in sentiment analysis grows as pub-
licly available text content grows. As one of the 
most used social media platforms, Twitter pro-
vides its users a unique way of expressing them-
selves. Thus, sentiment analysis of tweets has 
become a hot research topic among academia 
and industry. 
In this paper, we describe our approach of com-
bining multiple sentiment classifiers into a meta-
classifier. The introduced system participated in 
SemEval-2014 Task 9: “Sentiment Analysis in 
Twitter, Subtask–B Message Polarity Classifica-
tion” (Rosenthal et al., 2014). The goal was to 
classify a tweet on the message level using the 
three classes positive, negative, and neutral. The 
performance is measured using the macro-
averaged F1 score of the positive and negative 
classes which is simply named “F1 score” 

throughout the paper. An almost identical task 
was already run in 2013 (Nakov et al., 2013).  
The tweets for training and development were 
only provided as tweet ids. A fraction (10-15%) 
of the tweets was no longer available on twitter, 
which makes the results of the competition not 
fully comparable. For testing, in addition to last 
year’s data (tweets and SMS) new tweets and 
data from a surprise domain (LiveJournal) were 
provided. An overview of the provided data is 
shown in Table 1. 

Using additional manually labelled data for 
training the algorithm was not allowed for a 
“constrained” submission. Submissions using 
additional data for training were marked as “un-
constrained”. 
 
Dataset Total Pos Neg Neu 
Training (Tweets) 8224 3058 1210 3956 
Dev (Tweets) 1417 494 286 637 
Test: Twitter2013 3813 1572 601 1640 
Test: SMS2013 2093 492 394 1207 
Test: Twitter2014 1853 982 202 669 
Test: Twitter’14Sarcasm 86 33 40 13 
Test: LiveJournal2014 1142 427 304 411 
Table 1: Number of Documents we were able to 
download for Training, Development and Test-
ing. 

Our System.  The results of 5 other teams from 
the competition as well as from 7 general-
purpose commercial classifiers were used to train 
our algorithm. Scientific subsystems were s_gez 
(Gezici et al., 2013), s_jag (Jaggi et al., 2014), 
s_mar (Marchand et al., 2013), s_fil (Filho and 
Pardo, 2013), s_gun (Günther and Furrer, 2013). 
They are all “constrained” and machine learning-
based, some with hybrid rule-based approaches.  
Commercial subsystems were provided by This work is licensed under a Creative Commons Attribution 

4.0 International Licence. Page numbers and proceedings 
footer are added by the organisers. Licence details: 
http://creativecommons.org/licenses/by/4.0/ 
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Lymbix (c_lym), MLAnalyzer1 (c_mla), Seman-
tria (c_sem), Sentigem (c_snt), Syttle (c_sky), 
Text-Processing.com (c_txp), and Webknox 
(c_web). Subsystems c_txp and c_web are ma-
chine learning-based, c_sky is rule-based, and 
m_mla is a mix (other tools unknown). All sub-
systems were designed to handle tweets and fur-
ther text types. 

Our submission included a subset of all classi-
fiers including unconstrained ones, leading to an 
unconstrained submission. The 2014 winning 
team obtained an F1 score of 70.96 on the Twit-
ter2014 test set. Our approach was ranked on the 
12th place out of the 50 participating submis-
sions, with an F1 score of 66.79. Our further 
rankings were 12th on the LiveJournal data, 12th 
on the SMS data, 12th on Twitter-2013, and 26th 
on Twitter Sarcasm. 

Improvement. Although our meta-classifier 
did not reach a top position in the competition, 
we were able to beat even the best single subsys-
tem it was based on for almost all test sets (ex-
cept sarcasm). In previous research we showed 
that same behaviour on different systems and 
data sets (Cieliebak et al., 2014). This shows that 
also other systems from the competition, even 
best ones, probably can be improved using our 
approach. 
 

2 Approach 

Meta-Classifier. A meta-classifier is an ap-
proach to predict a classification given the indi-
vidual results of other classifiers by combining 
them. A robust classifier, which can naturally 
handle categorical input such as sentiments by 
design, is the random forest classifier (Breiman, 
2001). The algorithm uses the outputs of individ-
ual classifiers as features and the labels on the 
training data as input for training. Afterwards, in 
the test phase, the random forest makes predic-
tions using the outputs of the same individual 
classifiers. We use the random forest implemen-
tation of the R-package "randomForest" and treat 
the three votes (negative, neutral, positive) as 
categorical input. 

Training Data. To build a meta-classifier, first, 
one has to train all the subsystems with a dataset. 
Second, the meta-classifier has to be trained 
based on the output of the subsystems with a dif-
ferent dataset than the one used for training the 

1 mashape.com/mlanalyzer/ml-analyzer 

subsystems. We decided to take the natural split 
of the data provided by the organizers (see Table 
1). For the scientific subsystems we used the 
Training set to train on; for training the random 
forest classifier we used the Dev set. The com-
mercial systems were used "as-is", in particular, 
we did not train them on any of the provided data 
sets. Table 2 shows the performance of the indi-
vidual subsystems on the different data sets. 

ID
 

D
ev

 

SM
S2

01
3 

T
w

itt
er

20
13

 

T
w

itt
er

20
14

 

Sa
rc

as
m

20
14

 

L
iv

eJ
ou

rn
al

20
14

 

s_gez 32.22 31.23 30.77 28.57 51.57 50.83 
s_jag 61.47 56.17 60.21 62.73 44.26 63.91 
s_mar 28.95 22.94 26.68 22.86 31.01 24.47 
s_fil 52.88 49.94 55.61 55.08 38.22 56.41 
s_gun 63.93 61.51 65.33 65.09 48.80 68.91 
       c_lym 48.38 44.40 48.68 54.17 34.87 58.71 
c_mla 49.79 46.41 50.17 47.74 43.16 59.02 
c_sma 55.89 52.26 56.15 53.51 49.33 56.53 
c_sky 56.30 52.04 54.67 56.28 40.60 54.61 
c_txp 43.69 46.47 41.15 44.00 59.74 56.57 
c_web 47.44 41.64 45.21 48.83 45.25 53.45 
c_snt 56.86 58.42 62.17 58.35 36.08 65.74 
Table 2: F1 scores of the individual systems. 
Bold shows the best commercial or scientific 
system per data set; grey cells indicates the over-
all maximum. 

3 Experiments 

There exist three obvious selections of subsys-
tems for our meta-classifier: all subsystems, only 
scientific subsystems, and only commercial sub-
systems (called All_Subsystems, All_Scientific, 
and All_Commercial, respectively). Table 3 
shows performance of these selections of subsys-
tems on the data sets. For comparison, the table 
shows also the performance of the overall best 
individual subsystem in the first row. It turns out 
that All_Subsystems is almost always better than 
the best individual subsystem, while the other 
two meta-classifiers are inferior. 
Testing All Subsets. We performed a systematic 
evaluation on how the performance depends on 
the choice of a particular selection of individual 
subsystems. This resembles feature selection, 
which is a common task in machine learning, and  
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As a general trend we see that the performance 
increases with the number of classifiers; howev-
er, there exist certain subsets which perform bet-
ter than using all available classifiers. 
 
Best Subset Selection. In Figure 1, we marked 
for each number of subsystems the highest OOB-
F1-Score on the Dev set by a diamond. In addi-
tion, the subset with the overall highest OOB-F1-
Score, consisting of 7 classifiers, is displayed as 
a filled diamond.  
 

 
Figure 1: Box Plot showing the F1 scores (out-of-
bag) for all subsets on the Dev set. Diamonds 
mark the best combination of classifiers for the 
corresponding number. 

 
We also evaluated the performance of these 
“best” subsets on other unseen test data. In Fig-
ure 2, we show the results of the test set Twit-
ter2014. The scores for the very subsets marked 
in Figure 1 are displayed in the same way here.  

 

 

 
Figure 2: F1 scores of all subsets on the Twit-
ter2014 test set. 

 
For comparison, we marked the performance 

of the system with all classifiers by a straight 
line. We find that all subsets that are “best” on 
the Dev set perform very well on the Twit-
ter2014 set. In fact, some even beat the system 
with all classifiers. Similar behaviour can be ob-
served for Twitter2013 and LiveJournal2014 (da-
ta not shown), while All_Subsets yields signifi-
cantly superior results on SMS2013 (see Figure 
3). No conclusive observation is possible for 
Sarcasm2014 (data not shown).  

 
To elucidate on the question whether to use a 
subset with the highest OOB-F1 on the Dev set 
(called Max_OOB_Subset) or to use all available 
classifiers, we show in Table 3 the performance 
of these systems on all test sets in rows 2 and 5, 
respectively. Since All_Systems is in 2 out of 5 
cases the best classifier, and 
“Max_OOB_Subset” in 3 out of 5 cases, a deci-
sive answer cannot be drawn. However, we find 

 Dev 
(OOB) 

SMS2013 Twitter2013 Twitter2014 Twitter2014 
Sarcasm 

LiveJournal2014 

Best Individual 63.93 61.51 65.33 65.09 48.80 68.91 
All_Subsystems 63.54 64.22 67.03 67.70 46.37 71.11 
All_Scientific 64.52 60.42 64.54 64.99 43.35 67.86 
All_Commercial 62.11 58.34 60.70 63.86 44.85 65.57 
Max_OOB_Subset 68.27 63.02 67.49 68.33 45.40 71.43 
Our Submission 65.00 62.20 66.61 66.79 45.40 70.02 
Table 3: Performance (in F1 score) of meta-classifiers with different subsystems. The subset used in 
our submission is composed of s_gez, s_jag, s_mar, s_fil, s_gun, c_sma, c_sky, c_snt. 
“Max_OOB_Subset” is composed of s_jag, s_mar, s_gun, c_lym, c_sma, c_sky, c_txp. Bold shows 
best result per data set. The first row shows results of the best individual subsystem. 
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that All_Systems generalizes better to foreign 
types of data, while Max_OOB_Subset performs 
well on similar data (in this case, tweets). 
 

 
Figure 3: F1 score of all subsets on the SMS2013 
test set. 

4 Conclusion 

We have shown that a meta-classifier approach 
using random forest can beat the performance of 
the individual sentiment classifiers it is based on. 
Typically, the more subsystems are used, the bet-
ter the performance. However, there exist selec-
tions of only few subsystems that perform com-
parable to using all subsystems. In fact, a good 
selection strategy is to select the subset which 
has maximum out-of-bag F1 score on the training 
data. This subset performs slightly better than 
All_Systems on similar data sets, and only slight-
ly worse on new types of data. Advantage of this 
subset is that it requires less classifiers (7 instead 
of 12 in our case), which reduces the cost 
(runtime or license fees) of the meta-classifier. 
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Abstract 

The fast upswing of online reviews and their 

sentiments on the Web became very useful 

information to the people. Thus, the opin-

ion/sentiment mining has been adopted as a 

subject of increasingly research interest in 

the recent years. Being a participant in the 

Shared Task Challenge, we have developed a 

Conditional Random Field based system to 

accomplish the Aspect Based Sentiment 

Analysis task. The aspect term in a sentence 

is defined as the target entity. The present 

system identifies aspect term, aspect catego-

ries and their sentiments from the Laptop 

and Restaurants review datasets provided by 

the organizers. 

1 Introduction 

In recent times, the research activities in the 

areas of Opinion Mining/Sentiment Analysis in 

natural language texts and other media are gain-

ing ground under the umbrella of subjectivity 

analysis and affect computing1. The reason may 

be the huge amount of available text data in So-

cial Web in the forms of news, reviews, blogs, 

chat and twitter etc. Majority of research efforts 

are being carried out for the identification of pos-

itive or negative polarity from the textual con-

tents like sentence, paragraph, or text span re-

gardless of the entities (e.g., laptops, restaurants) 

and their aspects (e.g., battery, screen; food, ser-

vice). 

                                                 
This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Page numbers and pro-

ceedings footer are added by the organisers. Licence details: 

http://creativecommons.org/licenses/by/4.0/ 
1http://www.saaip.org/ 

Aspect is a multinomial distribution over 

words that represent a more specific topic in re-

views (Jo and Oh, 2011). For example, in case of 

Laptop reviews, “touchpad” is considered an 

aspect. Similarly, given a predefined entity, an 

aspect term describes a specific aspect of that 

entity (e.g., for the entity “restaurant”, “wine” 

can be an aspect term). Aspect term can be ap-

peared as a single word (e.g., “menu”) or multi-

ple words (“side dish”). 

It is observed that for a particular entity, one 

or more number of aspect terms can be grouped 

into a single category (e.g., aspect terms 

“drinks”, “main course” belongs to the same cat-

egory, “food”).  

The main goal of the Aspect Based Sentiment 

Analysis (ABSA) (Pontiki et al., 2014) task is to 

identify the aspect terms and their categories 

from the given target entities as well as to identi-

fy the sentiments expressed towards each of the 

aspect terms. The datasets provided by the 

shared task organizers consist of customer re-

views with human-annotations. 

We have participated in all of the four tasks. A 

combination of Conditional Random Field (CRF) 

based machine learning algorithm and rule based 

techniques has been adopted for identifying the 

aspect term, aspect category and their senti-

ments. We have used several features like Part of 

Speech (POS), Stanford dependency relations2, 

WordNet information, and sentiment lexicon 

(SentiWordNet3) to accomplish these tasks. 

The rest of the paper is organized in the fol-

lowing manner. Section 2 provides the details of 

previous works. Section 3 provides an elabora-

tive description of the data used in the task. Fea-

tures used in these experiments are described in 

Section 4. The detailed setup of experimentation 

and analysis of the results are described in Sec-

                                                 
2 http://nlp.stanford.edu/software/lex-parser.shtml 
3 http://sentiwordnet.isti.cnr.it/ 
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tion 5. Finally, conclusions and future directions 

are presented. 

2 Related Work 

It has been observed that most of the previous 

works on aspect detection were based on infor-

mation extraction, to find the most frequent noun 

phrases (Hu and Liu, 2004). This approach is 

generally useful in finding aspects which are 

strongly associated with a single noun. But, one 

principal disadvantage of this approach is that it 

cannot detect the aspect terms which are of low 

frequency and noun phrases (e.g., different 

names of dishes like Biryani, Dosa and Uttapam 

etc. for the aspect category, “food”). The pro-

posed work of such problem involves semantic 

hierarchy, rule-based or combination of both 

(Popescu and Etzioni 2005). More recent ap-

proaches of aspect detection are based on topic 

modelling, that use Latent Dirichlet Allocation 

(LDA) (Brody and Elhadad, 2010). But, the 

standard Latent Dirichlet Allocation (LDA) is 

not exactly suitable for the task of aspect detec-

tion due to their inherent nature of capturing 

global topics in the data, rather than finding local 

aspects related to the predefined entity. This ap-

proach was further modified in Sentence-LDA 

(SLDA) and Aspect and Sentiment Unification 

Model (ASUM) (Jo and Oh, 2011). Similarly, the 

identification of focussed text spans for opinion 

topics and targets were identified in (Das and 

Bandyopadhyay, 2010). 

Snyder and Barzilay (2007) addressed the 

problem of identifying categories for multiple 

related aspect terms appeared in the text. For 

instance, in a restaurant review, such categories 

may include food, ambience and service etc. In 

our task, we call them as aspect or review cate-

gories. The authors implemented the Good Grief 

decoding algorithm on a corpus collected on res-

taurant review4, which outperforms over the fa-

mous PRank algorithm (Crammer and Singer, 

2001). 

Ganu et al., (2009) have classified the restau-

rant reviews collected from City search New 

York5 into six categories namely Food, Service, 

Price, Ambience, Anecdotes, and Miscellaneous. 

Sentiment associated with each category has also 

been identified and both the experiments were 

carried out using Support Vector Machine classi-

fiers. Finally, they implemented the regression 

based model containing MATLAB regression 

                                                 
4 http://people.csail.mit.edu/bsnyder/naacl07/ 
5 http://www.citysearch.com/guide/newyork-ny-metro 

function (mvregress) to give rating (1 to 5) to 

each review.  

To determine the sentiment or polarity of the 

aspect term and aspect category, we need a prior 

sentiment annotated lexicon. Several works have 

been conducted on building emotional corpora in 

different English languages such as SentiWord-

Net (Baccianella et al., 2010), WordNet Affect 

(Strapparava and Valitutti, 2004) (Patra et al., 

2013) etc. Among all these publicly available 

sentiment lexicons, SentiWordNet is one of the 

well-known and widely used ones (number of 

citations is higher than other resources6) that has 

been utilized in several applications such as sen-

timent analysis, opinion mining and emotion 

analysis.  

Several works have been performed on the au-

tomated opinion detection or polarity identifica-

tion from reviews (Yu and Hatzivassiloglou, 

2003; Hu and Liu, 2004). Yu and Hatzivass-

iloglou (2003) has focused on characterizing 

opinions and facts in a generic manner, without 

examining who the opinion holder is or what the 

opinion is about. Then, they have identified the 

polarity or sentiment of the fact using Naive 

Bayes classifier. Hu and Liu, (2004) has summa-

rized the customer review and then identified the 

sentiment of that review. They have achieved 

promising accuracy in case of identifying polari-

ty of the reviews.  

3 Data 

The sentences collected from the customer re-

views of Restaurants and Laptops are used in 

these tasks. The training data of Restaurant re-

views contains 3041 English sentences annotated 

with aspect terms and aspect categories along 

with their polarity. The training data of Laptop 

reviews contains 3045 sentences annotated with 

aspect terms along with their polarity. The test 

data contains 800 sentences from each of the re-

view sets.  

An example extracted from the corpus is as 

follows:  

But the staff was so horrible to us.  

Here, "staff" is the aspect term and its polarity 

is "negative". The aspect category is "service" 

and polarity of the aspect category is also "nega-

tive". 

                                                 
6 http://citeseerx.ist.psu.edu/index 
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4 Feature Analysis 

In general, the feature selection always plays 

an important role in any machine learning 

framework and depends upon the data set used 

for the experiments. Based on a preliminary in-

vestigation of the dataset, we have identified 

some of the following features. Different combi-

nations of the features have also been used to get 

the best results from the classification task. 

Parts-of-Speech (POS): the aspect terms are 

basically represented by the noun phrases. On the 

other hand, the POS tag plays an important role 

in aspect term identification (Hu and Liu, 2004; 

Brody and Elhadad, 2010). Thus, we have used 

the Stanford CoreNLP7 tool to parse each of the 

review sentences to find out the part-of-speech 

tag of each word and included them as a feature 

in all of our experiments.  

POS Frequency: We have observed that the 

aspect terms surrounded by a noun or adjective 

are also denoted as aspect terms. Therefore, we 

have utilized this information in our system. For 

example, in the phrase “external_JJ mouse_NN”. 

Here the word “mouse” is an object and aspect 

term. The word “external” is also tagged as as-

pect term. 

Before be verb: We have observed that the 

nouns occur before the “be” verbs denote the 

aspect terms in most of the cases. e.g. “The hard 

disk is noisy”. Here “hark disk” is an aspect term 

and is followed by the “be” verb "is". 

Inanimate words: In case of the Restaurant 

and Laptop reviews, we observed that many of 

the inanimate nouns occur as aspect terms. We 

have used the hyponym tree of RiTa.WordNet8 to 

identify the inanimate words. For example, in the 

following sentence, the words food, kitchen and 

menu are inanimate nouns occurred as aspect 

terms. 

“The food is uniformly exceptional, with a 

very capable kitchen which will proudly whip up 

whatever you feel like eating, whether it's on the 

menu or not.”  

Dependency Relation for finding Object: We 

have identified the object based dependency rela-

tions from parsed sentences, as we have observed 

that the words occupied in such relations are rep-

resented as aspect terms in many cases. “dobj”, 

“obj” and “xobj” are considered as the probable 

candidate relations for identifying the aspect 

                                                 
7
http://nlp.stanford.edu/software/corenlp.shtml 

8www.rednoise.org/rita/reference/RiWordNet.html 

terms. Here, the Stanford Parser9 has been used 

to get the dependency relations. 

Ontology Information (Liu, 2012): We have 

counted the aspect terms in the training data. The 

aspect terms occurred more than five times in the 

corpus are considered during our experiments. At 

first, we have tested this ontology information on 

the development set and observed that the aspect 

terms with frequency five or more also give bet-

ter results in the test set. 

Sentiment Words: We have used the senti-

ment words as a feature for the sentiment identi-

fication tasks (Liu, 2012; Brody and Elhadad, 

2010). Words are identified as positive, negative 

or neutral using SentiWordNet10. 

WordNet Information: The RiTa.WordNet 

package has been used to extract different prop-

erties of the words.  

For aspect category identification, we have 

matched the hypernym tree of each word with 

the four categories (service, price, food, and am-

bience). If the hypernym tree does not contain 

any of such words, we check the next level hy-

pernym tree of the words derived from hypernym 

of previous word. We have checked up to the 

second degree hypernym tree. We also searched 

hypernym tree of the synset of each word.  

Number of Sentence: It has been found that 

many reviews contain more than one sentence. 

Therefore, we have included the number of sen-

tence as a feature based on the output of Stanford 

Parser. We have split the output of Stanford 

Parser by the mark, “(S”.  

In case of our experiments, the stop words are 

excluded. Total of 329 stop words was prepared 

manually.  

5 Experimentation and Result Analysis 

We have used the CRF++ 0.58 11 , an open 

source tool for implementing the machine learn-

ing framework for our experiments. CRF is well 

known for sequence labeling tasks (Lafferty et 

al., 2001). Similarly, in the present task, the as-

pect terms use the context information and are 

represented in sequences. Many of the aspect 

terms are multiword expressions such as “hard 

disk”. We have created different templates for 

different subtasks to capture all the relations be-

tween different sequence related features.  

 

                                                 
9http://nlp.stanford.edu/software/lex-parser.shtml 
10http://sentiwordnet.isti.cnr.it/ 
11http://crfpp.googlecode.com/svn/trunk/doc/index.htm 
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a. Classification of Aspect Term 

Features used in case of identifying aspect 

terms are POS, POS Frequency, Before be verb, 

Inanimate word, objects of the sentence, ontolo-

gy information. We have used several rules to 

identify these features. Then, we have used the 

CRF++ to identify the aspect terms. Some post 

processing techniques are also used in order to 

get better accuracy. The present system identifies 

only single word aspect terms. But it is found in 

the training data that many aspect terms consist 

of multiple words. Therefore, if there is a stop 

word in between two system identified aspect 

words, the stop word is also considered as a part 

of the aspect term. We have joined the aspect 

words along with the stop words to form a single 

but multiword aspect terms.  

Precisions, Recalls and F-scores are recorded 

for our system in Table 1. The maximum F-

scores achieved in the aspect term identification 

task for Laptop and Restaurant are 0.7455012 

and 0.84012544, respectively. Our system per-

forms better on Restaurant reviews than Laptop 

reviews.  

 Laptop Restaurant 

Precision 0.4938838 0.6481481 

Recall 0.7442396 0.8184855 

F-score 0.59375 0.72342515 

Table 1: JU_CSE system result for aspect 

term identification. 

b. Classification of Aspect Category 

Features used in this experiment are POS, De-

pendency relations for object and a few semantic 

relations of WordNet. In this subtask, we have 

also used aspect term knowledge as a feature. 

We identified the POS of the words using Stan-

ford CoreNLP tool and used the words which are 

not listed in our stop-word list. The objects are 

identified from the dependency relations. The 

hpernym trees of these words are searched up to 

second degree to find four aspect categories 

(service, price, food, and ambience). If we don’t 

find these four categories in the hypernym tree, 

we increase the frequency of anecdotes/ miscel-

laneous category. Frequency counts of these 

matched words are listed as a feature. The accu-

racy of the system for aspect categories in the 

Restaurant reviews are shown in Table 2.  

Maximum F-score achieved in this aspect cat-

egory identification is 0.8857715. The main 

problem faced in this task was to assign the an-

ecdotes/ miscellaneous category to the respective 

reviews. There are many cases in which the an-

ecdotes/miscellaneous categories occurred with 

other categories. In these cases, our system fails 

to identify the anecdotes/miscellaneous category.  

 

Restaurant 

Precision Recall F-score 

0.7307317 0.68029064 0.7046096 

Table 2: JU_CSE system result for aspect 

category identification. 

We have also observed that every review has 

at least one category. If any word of the review 

does not belong to any of the four categories, we 

assign these reviews with anecdotes/ miscellane-

ous category at the time of post processing.  

c. Classification of Sentiment of Aspect 

term and category 

Features used in these experiments are POS, 

Positive, Negative and Neutral words and num-

ber of sentences. Some reviews with multiple 

sentences contain different sentiments associated 

with different aspect terms. This observation also 

leads to conflict sentiment. Therefore, we have 

also included the aspect term and aspect catego-

ry information during sentiment identification. 

The accuracy of the system is given in the Table 

3. 

Accuracy 

 

Aspect 

Term  

Sentiment 

Aspect 

Category 

Sentiment 

Laptop 0.5321101 NaN 

Restaurant 0.65547705 0.6409756 

Table 3: JU_CSE system result for aspect 

term and category sentiment identification. 

Our system performs moderate in case of sen-

timent identification. Mainly, the system was 

biased towards the positive tags. It is found that 

the number of positive tags in the training data 

was more as compared to others. We have ob-

served that a conflict tag occurs when an aspect 

term was present as both positive and negative. 

As the present system identifies the sentiment 

based on word level only, it was unable to detect 

the conflict tags. The feature, number of sentenc-

es fails to identify the conflict tags. Therefore, 

we need to find more suitable features for our 

system to improve the accuracy. 

373



6 Conclusion 

In this paper, we have presented a CRF based 

system for identifying the aspect terms, aspect 

categories and their sentiments. We believe that 

this problem will become increasingly important 

for common people. This task will not only be 

useful to common shoppers, but also crucial to 

product manufacturers and restaurateurs.  

Overall accuracies of our system were moder-

ate. In future, we will include more suitable fea-

tures to improve accuracy of our system. We also 

intend to explore different machine learning al-

gorithms for these tasks in future.  
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Abstract 

Text Analytics using semantic information is 

the latest trend of research due to its potential 

to represent better the texts content compared 

with the bag-of-words approaches. On the 

contrary, representation of semantics through 

graphs has several advantages over the tradi-

tional representation of feature vector. There-

fore, error tolerant graph matching techniques 

can be used for text comparison. Neverthe-

less, not many methodologies exist in the lit-

erature which expresses semantic representa-

tions through graphs. The present system is 

designed to deal with cross level semantic 

similarity analysis as proposed in the 

SemEval-2014 : Semantic Evaluation, Inter-

national Workshop on Semantic Evaluation, 

Dublin, Ireland.  

1 Introduction 

Text Analytics has been the focus of much re-

search work in the last years. State of the art ap-

proaches typically represent documents as vec-

tors (bag-of-words) and use a machine learning 

algorithm, such as k-NN or SVM, to create a 

model and to compare and classify new docu-

ments. However, and in spite of being able to 

obtain good results, these approaches fail to rep-

resent the semantic content of the documents, 

losing much information and limiting the tasks 

that can be implemented over the document rep-

resentation structures. To overcome these short-

comings some research has been done aiming to 

use and evaluate more complex knowledge rep-

resentation structures. In this paper, a new ap-

proach which integrates a deep linguistic analysis 

of the documents with graph-based classification 

algorithms and metrics has been proposed.  

2 Overview of the Task 

This task provides an evaluation for semantic 

similarity across different sizes of text, which we 

refer to as lexical levels. Specifically, this task 

encompasses four semantic similarity compari-

sons: 

 paragraph to sentence(P2S), 

 sentence to phrase(S2Ph), 

 phrase to word(Ph2W), and 

 word to sense(W2S). 

Task participants were provided with pairs of 

each comparison type and asked to rate the pair 

according to the semantic similarity of the small-

er item to the larger item. As an example, given a 

sentence and a paragraph, a system would assess 

how similar is the meaning of the sentence to the 

meaning of the paragraph. Ideally, a high-

similarity sentence would reflect overall meaning 

of the paragraph. The participants were expected 

to assign a score between [0,4] to each pairs of 

sentences, where 0 shows no similarity in con-

cept while 4 shows complete similarity in con-

cept. 

3 Theoretical Concepts 

3.1 Discourse Representation Structures 

Extraction and representation of the information 

conveyed by texts can be performed through 

several approaches, starting from statistical anal-

ysis to deep linguistic techniques. In this paper 

This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Page numbers and 

proceedings footer are added by the organisers. Licence 

details: http://creativecommons.org/licenses/by/4.0/ 
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we will use a deep linguistic processing se-

quence: lexical, syntactic, and semantic analysis. 

One of the most prominent research work on 

semantic analysis is the Discourse Representa-

tion Theory (DRT)(Kamp & Reyle, 1993). In 

DRT, we aim to associate sentences with expres-

sions in a logical language, which indicate their 

meaning. In DRT, each sentence is viewed as an 

update of an existing context, having as result a 

new context. 

DRT provides a very powerful platform for 

the representation of semantic structures of doc-

uments including complex relations like implica-

tions, propositions and negations. It is also able 

to separately analyse almost all kinds of events 

and find out their agent and patient. 

The main component of DRT is the Discourse 

Representation Structure (DRS These expres-

sions have two main parts: a) a set of referents, 

which refer to entities present in the context and 

b) a set of conditions, which are the relations that 

exist between the entities. An example of a DRS 

representation for the sentence "He throws a 

ball." is shown below. 
[ 

x1, x2, x3: 

male(x1), 

ball(x2), 

throw(x3), 

event(x3), 

agent(x3,x1), 

patient(x3, x2) 

] 

3.2 GML Structure 

Graph Modelling Language (GML)(Himsolt & 

Passau, 1996) is a simple and efficient way to 

represent weighted directed graphs. A GML file 

is basically a 7-bit ASCII file, and, as such, can 

be easily read, parsed, and written. Several open 

source applications
1

 are available that enable 

viewing and editing GML files. 

Graphs are represented by the keys viz. graph, 

node and edge. The basic structure is modelled 

with the node's id and the edge's source and tar-

get at-tributes. The id attributes assign numbers 

to nodes, which are then referenced by source 

and target. Weights can be represented by the 

label attribute. 

                                                 
1
http://en.wikipedia.org/wiki/Graph_Modelling_Lang

uage 

3.3 Similarity Metrics for Graphs 

It has already been mentioned that the objective 

of the present work is to generate similarity 

scores among documents of different lexical lev-

els using an approach which integrates a deep 

linguistic analysis of the documents with graph-

based classification algorithms and metrics. 

Here, five different distance metrics taken from 

(Bunke, 2010) are utilized for this purpose. They 

are popularly used in object recognition task, but 

for text similarity measure they have not yet been 

used.  

For two graphs    and   , if  (     ) is the 

dissimilarity/similarity measure, then this meas-

ure would be a distance if   has the following 

properties: 

1.  (     )   , iff         
2.  (     )   (     ) 
3.  (     )   (     )   (     ) 

 

The measures used in the present work follow 

the above rules and the corresponding equations 

are 

    (     )       
|   (     )|

   (|  | |  |)
                  ( ) 

    (     )      
|   (     )|

|  |  |  |  |   (     )|
  

…(2) 

    (     )   |  |  |  |    |   (     )|  

…(3) 

     (     )  |   (     )|  |   (     )| 

…(4) 

      (     )     
|   (     )|

|   (     )|
                 ( ) 

In the equations    (     )  and 

   (     ) denote maximal common subgraph 

and minimum common super graphs of two 

graphs    and   . Theoretically    (     )  is 

the largest graph in terms of edges that is iso-

morphic to a subgraph of     and   . The 

   (     ) has been formally defined in a work 

of Horst Bunke (Bunke, Foggia, Guidobaldi, 

Sansone, & Vento, 2002).  As stated earlier, it is 

a NP complete problem and actually, the method 

of finding the    ()  is a brute force method 

which finds all the subgraphs of both the graphs 

and select the maximum graph which is common 

to both. To make the program computationally 

faster, the program is modified  to an approxi-
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mate version of    (     ) on the fact that  the 

vertices which exhibit greater similarity in their 

local structures among the two graphs have a 

greater probability of inclusion in the    ()  The 

two pass approach used in the present work to 

form the approximate    (     ) is as follows: 

 All the node pairs (one from each graph) 

are ranked according the number of 

matching self-loops. 

 The mcs is built by including each node 

pair (starting with the one with the highest 

number of matching self-loops) and con-

sidering it as a common node; and then in-

clude the rest of the edges (i.e. non-self-

loop edges) which occur in the same fash-

ion in both the graphs. 

In this way it ensures that the approximation 

version exhibits most of the properties of a mcs, 

while keeping the complexity in a polynomial 

time. 

The minimum common supergraph 

(   )(Angelova & Weikum, 2006) is formed 

using the union of two graphs, i.e. 

   (     )       . 

The distance metrics of Equations 1-3 were 

used directly without any modifications; the ones 

of Equations 3-4 were divided by (|  |  |  |) 
and |   (     )     (     )|   respectively 

to make them normalized, keeping the value of 

distance metrics within the range [   ]  
It is worthy to note that label matching that is 

performed during the above mentioned step may 

not necessarily be exact matching. Rather in this 

case we have used the WordNet to find an ap-

proximate conceptual similarity between two 

labels. For our experiment we have used the Wu 

and  Palmer‟s conceptual similarity (Wu & 

Palmer, 1994).  

        (     ) , where   and    are a pair 

of concepts corresponding to   two words and 

   (     ) means the lowest super ordinate then, 

     (     )

 
       ( )

   (    )     (    )         ( )
 

3.4 Tools Used 

In order to process texts C&C/Boxer (Bos, 2008; 

Curran, Clark, & Bos, 2007) a well-known open 

source  tool available as a plugin to Natural Lan-

guage Toolkit (NLTK) is used. The tool consists 

of a combinatory categorical grammar (CCG) 

(Curran et al., 2007) parser and outputs the se-

mantic representations using discourse represen-

tation structures (DRS) of Discourse Representa-

tion Theory (DRT) (Kamp & Reyle, 1993). 

4  System Description 

The method described in the present work, is 

mainly divided into three major components. The 

first is the creation of the DRS of the semantic 

interpretation of the text. The second is the con-

struction of graphs in GML from the obtained 

DRS using some predefined rules. The third one 

is the classification phase where the different 

graph distances are assessed using a k-NN classi-

fier (Zhang, Li, Sun, & Nadee, 2013).  

The algorithm semantic evaluation of text con-

tent may be described as follows. 

 NLTK Module : For each pair of text, to 

Figure 1: Graphical overview of  mcs and MCS:  (a), (b) graph representation of sentences 

meaning “Mary drinks water” and “David drinks water ” respectively, (c)  maximum com-

mon subgraph,  (d) minimum common supergraph. 377



compare their similarity measure we need 

to find their DRS using the C&C/Boxer 

toolkit. The toolkit first uses the C&C Par-

ser to find the combinatorial categorical 

grammar(CCG) of the text. Next the Boxer 

Module uses the CCG to find the discourse 

representation structures. 

 Graph building module : In general Box-

er represents a sentence through some dis-

course referents and conditions based on 

the semantic interpretation of the sentence. 

In the graph, the referent is represented by 

vertex after resolving the equity among 

different referents of the DRS; and a con-

dition is represented by an edge value be-

tween two referents. The condition of a 

single referent is represented as a self-loop 

of the referent (source and destination ref-

erents are same). Special relationships 

such as proposition, implication etc. are 

treated as edge values between two refer-

ents; Agent and patient are also treated as 

conditions of discourse, hence represented 

by the edge values of two referents. 

 Calculating Similarity Index : It has al-

ready been mentioned that the different 

distance metrics (see Equations 1-5) calcu-

lated based on the mcs() and MCS(). The 

values of  mcs() and MCS() are represent-

ed by the number of similar edges. Thus, 

ten different distances are calculated based 

on Equations 1-5. 

 Learning : We obtained 5 similarity 

scores for each pair of texts. Our task re-

quires us to assign a score between 0-4 for 

each pair of text. Hence using the gold 

standard a K-NN Classifier have been 

trained to find the output score for a test 

sample. The value of K has been empiri-

cally adjusted using the cross validation 

technique to find the optimal value. 

Our method works smoothly for the first two 

lexical levels. But for the last two levels i.e. 

phrase to word and word to sense it is not possi-

ble to find out DRS for a single word. Hence we 

have used the WordNet(Fellbaum, 1998) to ex-

tract the definition of the word in question and 

calculate its DRS and proceed with the method. 

When a word has multiple definitions, all the 

definitions are fused to a single sentence after 

conjugating them with the conjunction „or‟. 

5 Results and Discussions 

The JU-Evora system performed fairly in the 

SemEval Competition 2014. All the correlation 

scores are not as good as the Baseline(LCS) 

scores, however it provides a better  Pearson cor-

relation score in case of Paragraph to Sentence. 

The other scores, though not higher, are in the 

vicinity of the baseline. All the scores are shown 

below in Table 1. 

 

 

Table 1: Performance of JU-Evora system with 

respect to Baseline. 

6 Conclusion 

In this paper a new approach has been proposed 

to the text comparison task which integrates a 

deep linguistic analysis of the documents with a 

graph-based comparison algorithm. In the lin-

guistic analysis, discourse representation struc-

tures (DRS) are used to represent text semantic 

content and, afterwards, these structures are 

transformed into graphs. We have evaluated ex-

istent graph distance metrics and proposed some 

modifications, more adequate to calculate graph 

distances between graph-drs structures. Finally, 

we integrated graph-drs structures and the pro-

posed graph distance metrics into a k-NN classi-

fier for calculating the similarity between two 

documents. Future works in this area would  be 

concentrated on the use of external knowledge 

sources to make the system more robust. 
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Abstract

Sentiment Analysis has become an in-
creasingly important research topic. This
paper describes our approach to building a
system for the Sentiment Analysis in Twit-
ter task of the SemEval-2014 evaluation.
The goal is to classify a phrase within a
short piece of text as positive, negative
or neutral. In the evaluation, classifiers
trained on Twitter data are tested on data
from other domains such as SMS, blogs as
well as sarcasm. The results indicate that
apart from sarcasm, classifiers built for
sentiment analysis of phrases from tweets
can be generalized to other short text do-
mains quite effectively. However, in cross-
domain experiments, SMS data is found to
generalize even better than Twitter data.

1 Introduction

In recent years, new forms of communication such
as microblogging and text messaging have become
quite popular. While there is no limit to the range
of information conveyed by tweets and short texts,
people often use these messages to share their sen-
timents. Working with these informal text gen-
res presents challenges for natural language pro-
cessing beyond those typically encountered when
working with more traditional text genres. Tweets
and short texts are shorter, the language is very
informal, with creative spelling and punctuation,
misspellings, slang, new words, URLs, and genre-
specific terminology such as, RT for “re-tweet”
and #hashtags for tagging (Rosenthal et al., 2014).

Although several systems have tackled the task
of analyzing sentiment from entire tweets, the
task of analyzing sentiments of phrases (a word

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

or more) within a tweet has remained largely un-
explored. This paper describes the details of
our system that participated in the subtask A
of Semeval-2014 Task 9: Sentiment Analysis in
Twitter (Rosenthal et al., 2014). The goal of this
task is to determine whether a phrase within a mes-
sage is positive, negative or neutral in that context.
Here, a message indicates any short informal piece
of text such as a tweet, SMS data, or a sentence
from Live Journal blog, which is a social network-
ing service where Internet users keep an online di-
ary. A phrase could be a word or a few consecutive
words within a message.

The novelty of this task lies in the fact that a
model built using only Twitter data is used to clas-
sify instances from other short text domains such
as SMS and Live Journal. Moreover, a short test
corpus of sarcastic tweets is also used to test the
performance of the sentiment classifier.

The main contributions of this paper include
a) developing a sentiment analysis classifer for
phrases; b) training on Twitter data and testing on
other domains such as SMS and Live Journal data
to see how well the classifier generalizes to differ-
ent types of text, and c) testing on sarcastic tweets.

2 Related Work

Sentiment analysis from Twitter data has attracted
much attention from the research community in
the past few years (Asiaee T. et al., 2012; Go et
al., 2009; Pang et al., 2002; Pang and Lee, 2004;
Wilson et al., 2005). However, most of these
approaches classify entire tweets by their overall
sentiment (positive, negative, or neutral).

The task at hand is to classify the sentiment of a
phrase within a short message. The challenges of
classifying contextual polarity of phrases has been
previously explored by first determining whether
the phrase is neutral or polar, and then disam-
biguating the polarity of the polar phrases (Wil-
son et al., 2005). Another approach entails using

380



manually developed patterns (Nasukawa and Yi,
2003). Both these techniques, however, experi-
mented with general web pages and online reviews
but not Twitter data.

Previously, a few systems that participated in
Semeval-2013: Sentiment Analysis in Twitter task
(Wilson et al., 2013; Mohammad et al., 2013;
Gunther and Furrer, 2013) tackled the problem of
sentiment analysis of phrases by training on data
that exclusively came from tweets and tested on
a corpus made up of tweets and SMS data. This
time though, the task is to see how well a system
trained on tweets will perform on not only SMS
data, but also blog sentences from Live Journal, as
well as sarcastic tweets.

3 Task Setup

Formally, given a message containing a phrase
(one or more words), the task is to determine
whether that phrase is positive, negative or neutral
in that context. We were able to download 8880
tweets (7910 for training, and 970 for develop-
ment) from the corpus made available by the task
organizers, where each tweet includes a phrase
marked as positive, negative or neutral. Keywords
and hashtags were used to identify and collect
messages, which were then annotated using Ama-
zon Mechanical Turk. This task setup is further
described in the task description paper (Rosenthal
et al., 2014).

The evaluation consists of Twitter data as well
as surprise genres such as SMS, Live Journal and
Twitter Sarcasm. The purpose of hidden test gen-
res was to see how well a system trained on tweets
will perform on previously unseen domains.

4 System Description

This section describes the system components.

4.1 Supervised Machine Learning

During development time, we experimented with
various supervised machine learning classifiers,
but the final model was trained using Support Vec-
tor Machines (SVM) with a linear kernel as it out-
performed all other classifiers. The c value was
empirically selected and set to 1.

4.2 Features

For all tweets, the URL links and @username
mentions are replaced by “URL” and “username”

placeholders, respectively. The following features
were included in the final model:

• Prior polarities: Previous research (Agrawal
and An, 2013; Mohammad et al., 2013) has
shown prior polarities of words to be one
of the most important features in contex-
tual sentiment analysis of phrases. So, for
one of the features, the sum of the sentis-
cores of all the terms in the phrase was com-
puted from SentiWordNet (Esuli and Sebas-
tiani, 2006). For another feature, the prior
polarity of the phrase was estimated by aver-
aging the positive/negative strength of all its
terms by looking them up in the Subjectivity
Clues database (Wilson et al., 2005).

• Emoticons: An emoticon lexicon containing
frequent positive and negative emoticons, as
well as some of their misspellings that are
generally found in tweets, was created manu-
ally1. The prior positive and negative emoti-
con features contain the counts of all positive
and negative emoticons in the phrase.

• Lengths: Counts of the total number of words
in the phrase, the average number of char-
acters in the phrase, and the total number of
words in the message were included.

• Punctuation: Whether the phrase contains
punctuation such as ’?’, ’!’, ’...’, etc.

• Clusters: Word cluster IDs were obtained for
each term via unsupervised Brown clustering
of tweets (Owoputi et al., 2013). For exam-
ple, words such as anyone, anybody, any1,
ne1 and anyonee are all represented by clus-
ter path 0111011110. This allows grouping
multiple (mis)spellings of a word together,
which would otherwise be unique unigrams.

• Unigrams: Each phrase consists of one or
more words, with the average number of
words in a phrase being 2. We used only un-
igrams as bigrams were found to reduce the
accuracy on the development set.

5 Experiments and Discussion

The task organizers made available a test data set
composed of 10681 instances. Table 1 describes

1http://goo.gl/fh6Pjr
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Test sets (# instances) Sentiment Example Phrase to be classified (in bold)
Twitter (6908) positive No school at the Cuse till Wednesday #hyped

negative i know it’s in january, but i can’t wait for Winter Jam !

neutral Bye bye Kyiv! See you in December :-*
SMS (2334) positive later on wanna catch a movie?

negative U had ur dinner already? She just wont believe wat i said, haiz..

neutral Im free on sat ... Ok we watch together lor

LiveJournal (1315) positive And Tess you are going to prom too on the same day as us as well

negative Does not seem likely that there would be any confusion .

neutral if i am ever king i will make it up to you .

TwitterSarcasm (124) positive @ImagineMore CHEER up. It’s Monday after all. #mondayblues

negative I may or may not be getting sick...perfect. #idontwantit
neutral @Ken Rosenthal mistakes? C’mon Kenny!! ;)

Table 1: Test corpus details.

the breakdown of the various types of text, with
example phrases that are to be classified.

As expected, Live Journal has a slightly more
formal sentence structure with properly spelt
words, whereas Twitter and SMS data include
more creative spellings. Clearly, the sarcasm cat-
egory includes messages with two contradictory
sentiments in close proximity. The challenge of
this task lies precisely in the fact that one classifier
trained on Twitter data should be able to general-
ize reasonably well on different types of text.

5.1 Task Results

We participated in the constrained version of the
task which meant working with only the provided
Twitter training data without any additional an-
notated messages. The macro-average F1-scores
of the positive and negative classes, which were
the evaluation criteria for the task, of our sys-
tem (trained on Twitter training data and tested on
Twitter test, SMS and Live Journal blog data) are
presented in Table 2.

There are two interesting observations here:
firstly, even though the classifier was trained solely
on tweets, it performs equally well on SMS and
Live Journal data; and secondly, the sarcasm cate-
gory has the poorest overall performance, unsur-
prisingly. This suggests that cross-domain sen-
timent classification of phrases in short texts is
a feasible option. However, sarcasm seems to
be a subtle sentiment and calls for exploring fea-
tures that capture not only semantic but also syn-
tactic nuances. The low recall of the negative
sarcastic instances could be due to the fact that
30% of the negative phrases are hashtags (e.g.,

#don’tjudge, #smartmove, #killmenow, #sadlife,
#runninglate, #asthmaticproblems, #idontwantit),
that require term-splitting.

Further analysis reveals that generally the pos-
itive class has better F1-scores than the negative
class across all domains, except for the SMS data.
One possible reason for this could be the fact that,
while in all data sets (Twitter train, Twitter test,
Sarcasm test) the ratio of positive to negative in-
stances is nearly 2:1, the SMS test set is the only
one with class distribution different from the train-
ing set (with less positive instances than negative).
The extremely low F1-score for the neutral class is
perhaps also due to the skewed class distribution,
where in all data sets, the neutral instances only
make up about 4 to 9% of the data.

The positive class also has a better recall than
the negative class across all domains, which sug-
gests that the system is able to identify most of the
positive test instances, perhaps due to the bigger
proportion of positive training instances as well as
positive words in the polarity lexicons. One simple
way of improving the recall of the negative class
could be by increasing the number of negative in-
stances in the training set. In fact, in a prelimi-
nary experiment with an increased number of neg-
ative instances (resampled using SMOTE (Chawla
et al., 2002)), the macro-average F1-score of the
SMS data set improved by 0.5 points and that of
the Sarcasm set by almost 2 points. However,
there was no notable improvement in the Twitter
and Live Journal test sets.

We also ran some ablation experiments on the
test corpus after the submission to observe the in-
fluence of individual features on the classification
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POS. NEG. NEU. AVG.
P R F P R F P R F

Twitter 87.6 89.7 88.6 82.4 76.2 79.2 23.3 28.2 25.5 83.90
SMS 75.9 89.9 82.3 89.8 82.4 86.0 32.7 10.7 16.1 84.14
LiveJournal 76.1 87.3 81.3 81.8 80.2 81.0 42.1 16.7 23.9 81.16
Sarcasm 77.0 93.9 84.6 72.2 35.1 47.3 16.7 20.0 18.2 65.94

Table 2: Macro-average F1-scores. P, R and F represent precision, recall and F1-score, respectively.

process. Table 3 reports the macro-average F1-
scores of the experiments. The “all features*”
scores here are different from those submitted as
the four test corpora were tested individually here
as opposed to all instances mixed into one data set.
The row “- prior polarities” indicates a feature set
that excludes the prior polarities feature, and its ef-
fect on the F1-score. MCB is the Majority Class
Baseline, whereas unigrams uses only the phrase
unigrams, with no additional features.

Twitter SMS Jour. Sarc.
MCB 39.65 31.45 33.40 39.80

unigrams 81.85 82.15 79.95 74.85

all features* 86.20 87.80 81.90 78.05
- prior polarity -1.8 -0.1 -0.05 -1.95

- lengths -0.3 0 -0.20 -1.3

- punctuation -0.45 -0.45 +0.10 -2.95
- emoticon lex -0.15 0 +0.05 0

- word clusters -0.15 -1.25 +0.05 -0.25

Table 3: Ablation tests: Trained on Twitter only.

A few observations from the feature ablation
study include:

• The prior polarities and lengths seem to be
two of the most distinguishing features for
Twitter and Twitter Sarcasm, whereas for
SMS data, the word clusters are quite useful.

• While for Twitter Sarcasm, punctuation
seems to be the most important feature, it
has the opposite effect on the Live Journal
blog data. This may be because the punctua-
tion features learned from Twitter data do not
translate that well to blog data due to their
dissimilar writing styles.

• Even though the classifier was trained on
Twitter data, it has quite a strong performance
on the SMS data, which is rather unsurprising
in retrospect as both genres have similar char-
acter limits, which leads to creative spellings
and slang.

• While using all the features leads to almost 5
F1-score points improvement over unigrams
baseline in Twitter, SMS and Sarcasm data
sets, they increase only 2 F1-score points in
Live Journal blog data set, suggesting that
this feature set is only marginally suited for
blog instances. This prompted us to explore
the hypothesis: how well do SMS and Live
Journal data generalize to other domains, dis-
cussed in the following section.

5.2 Cross-domain Experiments

In this section, we test how well the classifiers
trained on one type of text classify other types of
text. In table 4, for example, the last row shows the
results of a model trained on Journal data (1000 in-
stances) and tested on Twitter, SMS and Sarcasm
test sets, and 10-fold cross-validated on Journal
data. Since this experiment measures the gener-
alizability of different data sets, we randomly se-
lected 500 positive and 500 negative instances for
each data set, in order to minimize the influence
of the size of the training data set on the classifi-
cation process. Note that this experiment does not
include the neutral class. As expected, the best
results on the test sets are obtained when using
cross-validation (except on Twitter set). However,
the model built using SMS data has the best or the
second-best result overall, which suggests that out
of the three types of text, it is the SMS data that
generalize the best.

Test

Twitter SMS Journal
Twitter (1000) 76.4 (cv) 80.2 78.1

SMS (1000) 76.8 87.1 (cv) 79.4
Journal (1000) 73.8 82.8 85.3 (cv)

Table 4: Cross-domain training and tests.
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6 Conclusion

This paper presents the details of our system that
participated in the subtask A of SemEval:2014:
Sentiment Analysis in Twitter. An SVM classifier
was trained on a feature set consisting of prior po-
larities, word clusters and various Twitter-specific
features. Our experiments indicate that prior po-
larities are one of the most important features in
the sentiment analysis of phrases from short texts.
Furthermore, a classifier trained on just tweets can
generalize considerably well to other texts such
as SMS and blog sentences, but not to sarcasm,
which calls for more research. Lastly, SMS data
generalizes to other texts better than Twitter data.
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Abstract

When executing commands, a robot has
a certain level of contextual knowledge
about the environment in which it oper-
ates. Taking this knowledge into account
can be beneficial to disambiguate com-
mands with multiple interpretations. We
present an approach that uses combina-
tory categorial grammars for improving
the semantic parsing of robot commands
that takes into account the spatial context
of the robot. The results indicate a clear
improvement over non-contextual seman-
tic parsing. This work was done in the
context of the SemEval-2014 task on su-
pervised semantic parsing of spatial robot
commands.

1 Introduction

One of the long-standing goals of robotics is to
build autonomous robots that are able to perform
everyday tasks. Two important requirements to
achieve this are an efficient way of communicating
with the robot, and transforming these commands
such that the robot is able to capture their mean-
ing. Furthermore, this needs to be consistent with
the context in which the robot is operating, i.e., the
robot’s belief.

Semantic parsing focuses on translating natural
language (NL) into a formal representation that
captures the meaning of the sentence. Most of
the current semantic parsing approaches are non-
contextual, i.e., they do not take into account the
context in which the command sentence should be
executed. This can lead to erroneous parses, most
often due to ambiguity in the original sentence.
Consider the following example sentence “Move

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

the pyramid on the blue cube on the gray cube”.
This sentence has two valid interpretations. Either
the robot needs to move the pyramid that is cur-
rently standing on the blue cube and put it on the
gray cube, or move the pyramid and place it on the
blue cube that is standing on the gray cube.

Humans will decide on the correct interpreta-
tion by taking into account the context. For in-
stance, by looking at Figure 1, it is clear that the
second interpretation is not possible, because there
is no blue cube on top of a gray cube. However,
there is a pyramid on top of a blue cube, making
the first interpretation possible. The goal of this
paper is to improve on non-contextual semantic
parsing by tailoring the context to guide the parser.
In this way, part of the ambiguity that causes mul-
tiple interpretations can be resolved.

Figure 1: Possible situation (taken from (Dukes,
2013b)).

Our approach consists of two steps. First, non-
contextual semantic parsing using combinatory
categorial grammars (CCG) (Steedman, 1996;
Steedman, 2000) is performed on the sentence.
This returns multiple possible parses, each with an
attached likelihood of correctness. Subsequently,
each parse is checked against the current context.
The parse with the highest score that is possible
given the current context is returned.
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This paper is organized as follows. In Section 2
we discuss related work, followed by a detailed
description of our approach in Section 3. In Sec-
tion 4, the approach is evaluated and compared to
non-contextual parsing. Finally, in Section 5 we
conclude and outline directions for future work.

The software is available from https://
github.com/wmattelaer/Thesis.

2 Related Work

There is a significant body of previous work on
learning semantic parsers. We will first review
approaches that translate NL sentences into a for-
mal representation without taking context into ac-
count, followed by related techniques that use the
context to improve the parsing.

Our approach is inspired by the work of
Kwiatkowski et al. (2010). The authors present
a supervised CCG approach to parse queries to
a geographical information database and a flight-
booking system. This differs from the current set-
ting in that the database querying does not require
to take the context of the environment into ac-
count, as is the case when executing robot com-
mands. SILT (Kate et al., 2005) uses transfor-
mation rules to translate the NL sentence to a
query for the robot. This approach was extended
to tailor support vector machines with string ker-
nels (KRISP) (Kate and Mooney, 2006) and statis-
tical machine learning (WASP) (Mooney, 2007).
Also unsupervised approaches exist. Poon (2013)
solves this lack of supervision by 1) inferring su-
pervision using the target database, which con-
strains the search space, and 2) by using aug-
mented dependency trees.

Artzi and Zettlemoyer (2013) study the use of
grounded CCG semantic parsing using weak su-
pervision for interpreting navigational robot com-
mands. Their approach is similar to ours, but in-
stead of postprocessing the results in a verification
step, the context (or state) is added to the training
data. Krishnamurthy and Kollar (2013) use CCGs
as a foundation, but match it to the context using
an evaluation function. This evaluation function
scores a denotation, i.e., the set of entity referents
for the entire sentence, given a logical form and a
knowledge base, which is considered as the con-
text.

3 Methodology

Our approach consists of two steps: a parse step
and a verification step. Before these steps can
be executed, a Combinatory Categorial Grammar
needs to be trained. The training data for this
grammar consists of typed λ-expressions (Car-
penter, 1997) that are annotated with their cor-
responding NL sentences. As the input data for
the SemEval-2014 task consists of Robot Control
Language (RCL) expressions (Dukes, 2013a)1, the
data needs to be preprocessed first.

3.1 Preprocessing
During preprocessing, the RCL expressions are
transformed into equivalent λ-expressions. In the
λ-expressions, each entity is represented by a
lambda term where the variable is a reference to
the object. The properties of an entity are defined
by a conjunction of literals with two arguments.
The predicate details the property that is being de-
fined. An example entity, a blue cube, can be rep-
resented as λx.color(x, blue), type(x, cube). A
spatial relation between two entities is a literal
with three arguments: the variable of the first en-
tity, the type of relation and the second entity. The
latter is given by its lambda term. This lambda
term has to be wrapped in a definite determiner,
det, that selects a single element from the set cre-
ated by the lambda term (Artzi and Zettlemoyer,
2013). For example: the RCL expression

(entity:
(type: prism)
(spatial-relation:

(relation: above)
(entity:

(color: blue)
(type: cube))))

is transformed to the λ-calculus expression

λx.type(x,prism), relation(x, above,
det(λy.color(y, blue), type(y, cube)))

Events are contained in one lambda term with
one variable per event. There are three possible
event predicates. The action predicate defines the
action by detailing the action type and the object
entity. The destination predicate will set the des-
tination of the object2. Finally, the sequence pred-
icate is necessary to detail the order of the events.

1RCL is a linguistically-oriented formal language for
controlling a robot arm, that represents entities, attributes,
anaphora, ellipsis and qualitative spatial relations.

2Note that this event is not always necessary, e.g., in the
case of a take action, the robot will not release the object.
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An example of this can be seen at the bottom of
Figure 2.

Besides transforming the RCL expressions to λ-
calculus, also the action types of the events are
checked. If an event has an action of type move
or drop, it is changed to the combined move &
drop action type. This change was introduced be-
cause the actual verbs that are used to instruct the
robot to perform one of these two actions are often
the same. To illustrate this, consider the following
two sentences taken from the training data: “place
blue block on top of single red block” and “place
green block on top of blue block”. In the former,
the intended action is a drop action, while in the
latter the action should be a move action. During
parsing, the correct action can be selected by look-
ing at the context it has to be executed in. If the
robot is currently grasping an object, the intended
action is a drop action, otherwise it is a move ac-
tion.

Furthermore, the anaphoric references are
resolved in the natural language sentences.
Anaphoric references are words that refer to one or
more words mentioned earlier in the sentence. The
sentences of the dataset are annotated with mark-
ers that capture the references in the sentence. The
markers that are used are [1], (1) and {1} and
are placed right after the word that is used for the
reference. [1] is used to mark a word that is re-
ferred to by another word, whereas (1) is used
to detail a word that refers to another word, e.g.,
it. Finally, {1} marks a word that refers to the
type of an earlier entity, e.g., one. The numbers
in these markers can increase if there are differ-
ent references in one sentence, but the sentences
of this dataset do not contain different references.
For instance, the sentence Pick the blue block and
place it above the gray one is transformed to the
sentence Pick the blue block [1] and place it (1)
above the gray one {1}.

The anaphoric references are found using
the coreference resolution system of Stanford
CoreNLP (Recasens et al., 2013; Lee et al., 2013;
Lee et al., 2011; Raghunathan et al., 2010). How-
ever, it is not capable of finding references that use
one. This can be solved by letting the one always
refer to the first entity of the sentence, because of
the simplicity of the sentences.

3.2 Parsing

To parse the robot commands, a Probabilis-
tic Combinatory Categorial Grammar (PCCG)
(Kwiatkowski et al., 2010) is used. Regular CCGs
consist out of two sets: a lexicon of lexical items
and a set of operations. A lexical entry combines
a word or phrase with its meaning. This meaning
is represented by a category. A category captures
the syntactic as well as the the semantic informa-
tion of a word. A number of primitive symbols, a
subset of the part-of-speech tags, are used to rep-
resent the syntax. These primitive symbols can be
combined using specific operator symbols (/, \).
The semantics are represented by a λ-expression.
Some example lexical entries are:

blue ` ADJ : λx.color(x, blue)
pyramid ` N : λx.type(x, prism)
pick up ` S/NP : λyλx.action(x, take, y)

The operator symbols can now be used to de-
termine how the categories can be combined using
operations. The operations that are used by the
CCG take one or two categories as input and re-
turn one category as output. These operations will
simultaneously address syntax and semantics. The
two most frequently used operations are the appli-
cation operations, i.e., forward (>) and backward
(<):

X/Y : f Y : g ⇒ X : f(g) (>)
Y : g X\Y : f ⇒ X : f(g) (<)

The forward application takes as input a CCG
category with syntax X/Y and λ-expression f
followed by a category with syntax Y and λ-
expression g and returns a CGG category with syn-
tax X and λ-expression f(g).

The operations will derive syntactic and seman-
tic information, while keeping track of the word
order that is encoded using the slash direction.

Another important operation deals with the def-
inite determiner in the λ-expressions:

N : f ⇒ NP : det(f)

This operation takes a single noun (N) category
as input and returns an noun phrase (NP) category
where the original λ-expression is wrapped in a
determiner. A complete parsing example is shown
in Figure 2.

CCGs will usually have multiple possible parses
for a sentence given a certain lexicon for which it
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Take
S/NP

λzλy.action(y, take, z)

the
N/N
λx.x

pyramid
N

λx.type(x, prism)
>

N
λx.type(x, prism)

NP
det(λx.type(x, prism))

>
S

λy.action(y, take, det(λx.type(x, prism)))

Figure 2: A possible parse for the sentence “Take
the pyramid”.

is not possible to determine which of these is best.
To alleviate this problem, PCCGs have been intro-
duced (Kwiatkowski et al., 2010). PCCGs will re-
turn the most likely parse using a log-linear model
that contains a parameter vector θ, estimated us-
ing stochastic gradient updates. The joint proba-
bility of a λ-calculus expression z and a parse y is
given by P (y, z|x; θ,Λ), with Λ being the entire
lexicon. The most likely λ-calculus expression z
given a sentence x can then be found by:

f(x) = arg max
z

P (z|x; θ,Λ)

where the probability of z is equal to the sum of
the probabilities of all parses that produce z:

P (z|x; θ,Λ) =
∑

y

P (y, z|x; θ,Λ)

For training the PCCGs, the algorithm as de-
scribed by Kwiatkowski et al. (2010) was used. It
consists of two steps. In the first step the lexicon is
expanded with new lexical items. The second step
will update the parameters of the grammar using
stochastic gradient updates (LeCun et al., 1998).
All parameters are associated with a feature. The
system uses lexical features: for each item in the
lexicon a feature is added that fires when the item
is used.

3.3 Verification
The parser will return multiple λ-expressions,
each with an attached likelihood score. In the
verification step, these resulting expressions are
checked against the context. These λ-expressions
are first transformed to RCL expressions3. Next,
the entities are extracted from the RCL expres-
sions and for each entity a corresponding object
is searched using a spatial planner, provided by
the task organizer. This spatial planner will, given

3Note that during pre- and postprocessing no information
is lost, as the mapping between λ-calculus and RCL is a one-
to-one function.

Complete Partial Without context
Correct 71.29% 78.58% 57.76%
Wrong 11.66% 4.37% 27.72%

No result 17.05% 17.05% 14.52%
Table 1: Results.

an entity description in RCL, return the objects in
the context that satisfy that description. RCL ex-
pressions with entities that have no corresponding
object in the context are discarded. From the re-
maining RCL expressions the one with the highest
likelihood is returned.

4 Evaluation

The provided dataset for the task was crowd-
sourced using Train Robots, an online game in
which players were given before and after im-
ages of a scene and were asked to give the NL
command that the robot had executed (Dukes,
2013a). Each scene is a formal description of a
discrete 8x8x8 3D game board consisting of col-
ored blocks. The entire dataset consists of 3409
annotated examples, and was split in a training and
test set of 2500 and 909 sentences respectively.

The results are listed in Table 1. The first col-
umn (“Complete”) contains the results when the
resulting RCL expression is exactly the same as
the ground-truth RCL expression. Next to the full
matching scores, we also provide the scores for
partial matching of the RCL expressions (“Par-
tial”), based on the Parseval metric (Black et al.,
1991). Each RCL expression is scored between 0
and 1 according to the resemblance with the ex-
pected expression. The tree representations of the
RCL expressions are compared and the number of
correct nodes in the actual expression are divided
by the number of nodes in the tree of the expected
expression to calculate the score. A node is correct
if it is present at the same position in both trees and
if all children are correct.

The last column (“Without context”) contains
the results when using the parser without the veri-
fication step. This can be considered a baseline.

It may be clear that the use of contextual parsing
is advantageous when comparing the contextual
with the non-contextual setting, with an increase
of 13% in the number of correct results.

Error Analysis
When inspecting the wrong parses, it could be ob-
served that the wrong results were usually mini-
mally wrong. Either the value of a certain element
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Expected Actual Occurrences
edge region 17
above within 15
right left 8
left front 7

within above 6
Table 2: Wrong values.

was wrong, an unnecessary element was added
to the expression or a required element was not
present in the resulting expression. This is also
clear when comparing the complete with the par-
tial match results, from which it can be seen that
66 sentences were only partially incorrect. Some
of the most commonly wrong values are listed in
Table 2. A final common reason for a wrong parse
was that a sequence of a take and a drop action
is considered as a single move action. There are
6 occurrences of this final case of which 5 would
result in the same end state.

One of the most common reasons that the parser
returned no result for a sentence, is because one
type of sentences was not present in the training
set. Sentences of the form “pick up red block. put
it on grey block” were completely absent from the
training data, but did appear 34 times in the test
set. Their structure is quite simple and should not
present a problem, but the parser was only trained
on sentences that combined the two actions with
an “and” connective. This is a problem because
the trained grammar is very dependent on the pro-
vided training data. Another difficult type of sen-
tences are the ones that contain measures. Only
17 of these were parsed correctly, while 70 had no
result and 3 were wrong.

Without considering the context, the combined
move& drop action is not possible, since the con-
text is required to decide afterwards which specific
action has to be executed. 59 sentences (6.5%)
were wrong because a wrong action was selected.

5 Conclusions and Future Work

In this paper we have presented an improved se-
mantic parsing approach for robot commands by
integrating spatial context. It consists of two steps.
First, the sentence is parsed using a Probabilis-
tic Combinatory Categorial Grammar. Next, the
parses are checked against the context. The re-
sulting parse is the one with the highest likeli-
hood that is valid given the context. This ap-
proach was evaluated on the SemEval-2014 Task
6 dataset. The results indicate that integrating

contextual knowledge is advantageous for parsing
spatial robot commands.

In future work, we will perform an in-depth
analysis of our system in comparison with the
other participating systems. Furthermore, we will
extend our approach to contexts that also contain
probabilistic facts, in order to be able to handle
noisy sensor data.
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Abstract 

This paper presents the system submitted 

by KUNLPLab for SemEval-2014 Task9 

- Subtask B: Message Polarity on Twitter 

data.  Lexicon features and bag-of-words 

features are mainly used to represent the 

datasets. We trained a logistic regression 

classifier and got an accuracy of 6% in-

crease from the baseline feature represen-

tation. The effect of pre-processing on the 

classifier’s accuracy is also discussed in 

this work. 

1 Introduction 

Microblogging sites has become a common 

way of reflecting peoples’ opinion. Unlike the 

regular blogs, the size of a message on a mi-

croblogging site is relatively small. The need to 

automatically detect and summarize the sentiment 

of messages from users on a given topic or prod-

uct has gained the interest of researchers. 

The sentiment of a message can be negative, 

positive, or neutral. In the broader sense, automat-

ically detecting the polarity of a message would 

help business firms easily detect customers’ feed-

back on their product or services. Which in turn 

helps them improve their decision making by 

providing information of user preferences, prod-

uct trend, and user categories.(Chew and Eysen-

bach, 2010; Salethe and Khandelwal,2011). Sen-

timent analysis is also used in other do-

mains.(Mandel et al.,2012). 

 Twitter is one of the mostly widely used mi-

croblogging web site with  over 200 million users 

send over 400 million tweets daily(September 

2013). A peculiar characteristic of a Twitter data 

are as follow: emoticons are widely used, the 

maximum length of a tweet is 140 character, some 

words are abbreviated, or some are elongated by 

repeating letters of a word multiple times.  

The organizers of the SemEval-2014 has pro-

vided a corpus of tweets and posted a task to au-

tomatically detect their respective sentiments.  

Sub task B of Task 9: Sentiment Analysis on 

Twitter is describe as follows 

 

Task B - Message Polarity Classification  

 

“Given a message, classify whether the mes-

sage is of positive, negative, or neutral sentiment. 

For messages conveying both a positive and neg-

ative sentiment, whichever is the stronger senti-

ment should be chosen.” 

 

This paper describes the system submitted by 

KUNLBLab for participation in SemEval-2014 

Task 9 subtask B. Models were trained using the 

LIBLINEAR classification library (Fan et al., 

2008). An accuracy of 66.11% is attained by the 

classifier by testing on the development set.  

The remaining of the document is organized as 

follows: Section 2 presents a brief literature re-

view on sentiment analysis on Twitter data.  Sec-

tion 3 discusses the system developed to solve the 

above task, characteristics of the dataset, prepress-

ing on the dataset, and various feature representa-

tion. Section 4 illustrates the evaluation results. 

Section 5 presents conclusion and remarks. 

2  Related Work 

Sentiment analysis has been studied in Natural 

Language Processing. Different approaches have 

been implemented to automatically detect senti-

ment on texts (Pang et al., 2002; Pang and Lee, 

2004; Wiebe and Riloff, 2005; Glance et al., 2005; 

Wilson et al., 2005).  

There is also an active research on Sentiment 

analysis on Twitter data. (Go et al., 2009, 

Bermingham and Smeaton, 2010, and Pak and 
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Koc Unversity 
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This work is licenced under a Creative Commons Attribu-

tion 4.0 International License. Page numbers and proceed-
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Paroubek 2010) consider tweets with good emot-

icons as positive examples and tweets with bad 

emoticons as negative examples for the training 

data, and built a classifier using unigrams and bi-

grams as features. 

Barbosa and Feng (2010) classified the subjec-

tivity of tweets based on traditional features with 

the inclusion of some witter specific clues such as 

retweets, hashtags, links, uppercase words, emot-

icons, and exclamation and question marks. 

(Agarwal et al. 2011 ) introduced a  POS-

specific prior polarity features and  used  a tree 

kernel to obviate the need for tedious feature 

engineering. 

3  System Description 

3.1 Dataset 

The organizer of SemEval-2014 have provided 

training and development sets. Table 1 bellow il-

lustrates the characteristics of the dataset. 

 
 Positive Negative Neutral 

Train 3045 1,209 4004 

Dev 575 340 739 

Table 1. Dataset characteristics  

3.2 Pre-processing 

   We employed two major pre-processing in 

the datasets. Converting terms to their correct rep-

resentation, and stemming. 

 Mostly, in Twitter, words are not written in 

their correct/full form. For instance, love, 

loooove,  looove convey the same meaning as the 

word love alone regardless of the extent of the em-

phasis intended to describe. Reducing this various 

representations of the same term to common word 

helps in better matching them even if they are 

written in different way. This is more problematic 

if our features are based on term matching and 

hence increase the number of unknown terms. 

The second pre-processing we employed is 

stemming the terms in the dataset. In most cases, 

morphological variants of words have similar se-

mantic interpretations and can be considered as 

equivalent.  The advantage of stemming is two-

fold. Primarily it reduces the number of OOVs 

(Out Of Vocabulary) terms. The second one is 

feature reduction. 

3.3 Features 

There are two main categories of features used 

in the development of this system. Bag-of-Words 

and sentiment lexicon features.   

Bag-of-Words features takes a given input text 

and extracts the raw words as features independ-

ent of one another. One issue in using this feature 

is how to represent negations.  In the texts “I like 

the movie. “, and “I do not like the movie.”, the 

sentiment of the words in the two texts is opposite 

since the two statements are negations of one an-

other. One way of representing the negated word 

is by appending the tag _NOT (Chen (2001) and 

Pang et al. (2002). The _NOT tag suffixes all 

words between the negation word and the first 

punctuation mark after the negation word. In the 

above example the second text is transformed to “ 

I do like_NOT  the_NOT movie _NOT”. In repre-

sentation of the negations, we employ the above 

approach. Lee Becker et al. (2013) directly inte-

grated the polarized word representation in their 

system.  One disadvantage of this representation 

is the number of features doubles in worst case. 

Sentiment lexicons are words, which have as-

sociation with positive or negative sentiments.  

Unlike the Bag-Of-Words, instead of taking the 

raw word as a feature, every word has a score, 

which is a measure of how much positive or neg-

ative sentiment the lexicon has. In this work we 

use the NRC Hashtag Sentiment Lexicon, and 

Sentiment140 Lexicon (Mohammad 2013). Both 

list of lexicons are used in the SemEval 2013 by 

NRC-Canada team. 

The NRCHashtag Sentiment Lexicon is based 

on the common practice that users use the # sym-

bol to emphasis on a topic or a word. The hashtag 

lexicon was created from a collection of tweets 

that had a positive or a negative word hashtag 

such as #good, #excellent, #bad, and #terrible 

(Mohammad 2012). It  was created from 775,310 

tweets posted between April and December 2012 

using a list of 78 positive and negative word 

hashtags. They have provided unigram, bigram, 

and trigram datasest.  In this work however, we 

used the unigram features which contains 54,129 

terms. 

The Sentiment140  is also a list of words with 

associations to positive an negative sentiments. It 

has the same format as the NRC Hashtag 

Sentiment Lexicon. However, it was created from 

the sentiment140 corpus of 1.6 million tweets, and 

emoticons were used as positive and negative 

labels (instead of hashtagged words). 

In order to investigate  the effect of the features 

listed above, we have used various combination of 

them. Table 2 shows 12 kinds of features used for 

the system we have developed. 

The converted versions of the features are the 

ones where the enlongated words are shortened to 
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their normal form and terms with less than 5 

occurances in the training set are ignored. 

 
Code Features 

F1 RawBag-Of-Word 

F2 Bag-Of-WordStemmed 

F3 ConvertedStemedBag-Of-Word 

F4 Hashtag 

F5 Sentiment140 

F6 CombinedLexicons 

F7 ConvertedHashtag 

F8 ConvertedSentiment140 

F9 ConvertedNegatedHashtag 

F10 ConvertedNegatedSentiment140 

F11 ConvertedStemmeLexicon 

F12 AllCombined 

Table 2. Code of features and their names  

 

The description of the features is as follow, F1 

is a raw Bag-Of-Word features in which terms 

with more than five frequency are taken as fea-

tures. F2 takes the stem of the words whereas F3 

applies both stemmig and shortening of elongeted 

words to the corpus then takes Bag-Of-Word fea-

tures of the converted corpus.   

F4 and F5 are sentiment lexcon features 

hashtag. F6 is a combined Sentiment140, and 

Hashtag features. F7 and F8 are applications of 

the sentiment lexicons after applying shortening 

and steming. Negative message representation is 

included in features F9 and F10. F11 is the com-

bination of a preprocessed corpus by applicaiton 

of stemming and short represenation of elnogated 

terms, negative message representation,  and ex-

tracting a combined sentiword140 and hash tag 

features. 

Feature F12 is the combination of all the fea-

tures. If a term after being preprocessed is found 

in one of the lexicon features, the lexicon polarity 

measure is taken as feature value.Otherwise; we 

resort to the Bag-Of-Word feature.  

3.4 The classifier 

For this task, we have used L2 regularized lo-

gistic regression and used the LIBLINEAR imple-

mentation (Rong-En Fan et al.).To estimate the 

hyper parameters, we applied a 10 fold cross val-

idation on the training set. Liblinear implementa-

tion of a L2 regularized logistic regression takes a 

single cost C parameter. The value of the cost C 

parameter decides the weight between the L1 reg-

ularization term and L2 regularization term. If the 

value of C is less than one, it means the more 

weight it given to the L1 regularization term. On 

the other hand C values more than one gives more 

weight to the L2 regularizing term. The cost pa-

rameter C=1 gives the best result on the cross val-

idation test. The same value is used to train our 

model. 

4 Evaluation Results 

As described in Table 2 of section 3.3, the ma-

jor features used in this work are bag-of-word and 

sentiment lexicon features. In addition to the fea-

ture representation, pre-processing has been done 

on the datasets.  

F1 is a baseline feature (raw Bag-Of-Word), 

with a total accuracy of 60.16. Simply converting 

the elongated terms to their normal form and ap-

plying stemming on the corpus increase the accu-

racy from 60.16 to 64.92 (4.76%). 

 
 Positive Negative Neutral Total 

F1 61.71 52.48 60.55 60.16 

F2` 61.71 51.43 61.18 60.36 

F3 67.64 62.86 63.64 64.92 

F4 66.67 52.94 60.10 61.65 

F5 67.91 54.72 61.00 62.54 

F6 64.86 55.24 61.47 61.94 

F7 67.72 60.42 63.07 63.51 

F8 70.29 58.93 63.02 64.17 

F9 70.27 56.12 62.28 63.36 

F10 71.73 59.29 62.86 64.65 

F11 67.25 62.89 63.14 64.52 

F12 71.12 61.4 64.13 66.11 

Table 3. Results of the evaluation on the devel-

opment set 

F6 (the combined lexicon feature- senti-

word140 and hashtag) yields an accuracy of 

61.94. Applying conversion, negative representa-

tion and stemming raises the accuracy to 64.52 

(F11) 

 
Testset MacroF1 

LiveJournal2014 63.77 

SMS2013 55.89 

Twitter2013 58.12 

Twitter2014 61.72 

Twitter2014Sarcasm 44.60 

Table 4. Evaluation result on test set 
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The accuracy of identifying negative sentiment 

is the least in all features. This shows that we need 

a better representation of negated messages. 

A test dataset was also provided by the organ-

izer of semEval-2014. Table 4 show the accuracy 

of the KUNPLab classifier.  

Our model has performed poorly on the Twit-

ter2014Sarcasm  test set (44.60%). The perfor-

mance of our classifier on  LiveJournal2014 is 

similar to the development set test performance. 

5 Conclusion 

The performance of a classifier depends on fea-

ture representation, hyperparameter optimization 

and regularization. In this work, we mainly used 

bag-of-word features and sentiment lexicon fea-

tures. We trained a L2 regularized logistic regres-

sion model. Two major features are used to repre-

sent the datasets; Bag-of-Word features and Lex-

ical features. It has been shown that stemming the 

terms increases accuracy of the classifier in either 

case. The accuracy of the classifier on develop-

ment set and training set is reported and has 

shown an increase of 6% in accuracy form the 

baseline with 95% confidence interval..The eval-

uation of our system on SemEval-2014 test data is 

also shown with an F measure of 44.60 to 63.77%.   
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Abstract

We turn the Eisner algorithm for parsing
to projective dependency trees into a cubic-
time algorithm for parsing to a restricted
class of directed graphs. To extend the algo-
rithm into a data-driven parser, we combine
it with an edge-factored feature model and
online learning. We report and discuss re-
sults on the SemEval-2014 Task 8 data sets
(Oepen et al., 2014).

1 Introduction

This paper describes the system that we submit-
ted to the closed track of the SemEval-2014 Task
on Broad-Coverage Semantic Dependency Parsing
(Oepen et al., 2014).1 However, the main contribu-
tion of the paper is not the system as such (which
had the lowest score among all systems submitted
to the task), but the general approach for which it
is a proof of concept.

Graphs support natural representations of lin-
guistic structure. For this reason, algorithms that
can learn, process and transform graphs are of cen-
tral importance to language technology. Yet, most
of the algorithms that are used in natural language
processing today focus on the restricted case of
trees, and do so for a reason: Computation on gen-
eral graphs is hard or even intractable, and efficient
processing is possible only for restricted classes (cf.
Courcelle and Engelfriet (2012)). The task then
is to identify classes of graphs that are both ex-
pressive enough to cover the linguistic data, and
restricted enough to facilitate efficient processing.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1https://github.com/liu-nlp/gamma

This paper shows that there are graphs that sat-
isfy both of these desiderata. Our system is based
on a new algorithm for parsing to a restricted class
of directed graphs (Section 2). This class is re-
stricted in so far as our algorithm runs in cubic
time with respect to the length of the sentence; it
thus has the same asymptotic complexity as parsing
with context-free phrase structure grammars. The
class of graphs defined by our algorithm is also
expressive, in so far that it covers more than 98%
of the SemEval data.

To demonstrate that our parsing algorithm can be
turned into a practical system, we combine it with
two techniques taken straight from the literature on
data-driven syntactic dependency parsing:

� an edge-factored scoring model, as it has been
used as the core of practical parsers since the
seminal work of McDonald et al. (2005), and

� online learning using the structured percep-
tron, in the style of Collins (2002).

State-of-the-art parsers use considerably more ad-
vanced (and computationally more demanding)
techniques, and therefore our system cannot be
expected to deliver competitive results. (Its results
on the SemEval data are reported in Section 4.)
Instead, the main point of our contribution to the
SemEval Task is to provide evidence that research
on classes of graphs that balance linguistic cover-
age and parsing efficiency holds a lot of potential.

2 Parsing Algorithm

We start the description of our system with the
description of our cubic-time parsing algorithm.
The remaining components of our system will be
described in Section 3.
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Items:
i j i j i j i j

1 � i � j � n Axioms:
i i i i

Goal:
1 n

Rules:
i j � 1 j k

i k

attach-r
i j j k

i k

complete-r

Figure 1: The Eisner algorithm for building the packed forest of all projective dependency trees with n
nodes. Only the rightward versions of attach and complete are shown here.

2.1 The Eisner Algorithm
We recall the algorithm for projective dependency
parsing by Eisner and Satta (1999). The declara-
tive specification of this algorithm in terms of a
deduction system (Shieber et al., 1995) is given in
Figure 1. The algorithm uses four types of items,

, , , and , and two types of inference rules
called attach and complete. These rules can be
interpreted as operations on graphs: An attach
rule concatenates two graphs and adds one of two
possible edges—from the left endpoint of the first
graph to the right endpoint of the second graph, or
vice versa. Similarly, a complete rule fuses two
graphs by unifying the right endpoint of the first
with the left endpoint of the second. The algorithm
by Eisner and Satta (1999) produces a compact
representation of the set of all dependency graphs
over the input sentence that can be built using these
operations. This is exactly the set of projective
dependency trees for the input sentence.

2.2 The Graph-Parsing Algorithm
To parse to dependency graphs rather than trees,
we modify the Eisner algorithm as follows:

� We give up the distinction between and .
This distinction is essential for ensuring that
the parser builds a tree. Since our goal is to
parse to graphs, we do not need it.

� We allow attach to add one, zero, or several
edges. This modification makes it possible to
parse graphs with reentrancies (several incom-
ing edges) and isolated nodes.

To implement the first modification, we introduce
a new type of items, , that subsumes and .

To implement the second modification, we
parametrize the attach rule by a set ! that spec-
ifies the edges that are added during the concate-
nation. We refer to the left and right endpoints of

a graph as its ports and number the ports of the
antecedents of the attach rule left-to-right from 1

to 4. A set ! then takes the form

! �
�
f1; 2g � f3; 4g

�
[

�
f3; 4g � f1; 2g

�
:

The rule attach! adds an edge u ! v if and
only if u and v are nodes corresponding to ports
s and t , respectively, and .s; t/ 2 !. For example,
the attach rule in Figure 1 is specified by the
set ! D f.1; 4/g: it adds one edge, from the left
endpoint of the graph corresponding to the first
antecedent to the right endpoint of the other graph.

The complete parsing algorithm is specified in
Figure 2, where the rule conc (for concatenation)
corresponds to the two conflated attach rules and
fuse corresponds to the two complete rules. In-
specting the specification, we find that the algo-
rithm runs in time O.mn3/ where n is the number
of nodes and m is the number of concatenation
rules. Note that, because each concatenation rule
is determined by a set ! as defined above, each
parser in our framework can use at most 28 D 256

different conc rules.2

3 Data-Driven Parsing

We now extend our parsing algorithm into a simple
parser for data-driven parsing. We cast parsing
as an optimization problem over a parametrized
scoring function: Given a sentence x we compute

Oy D arg max
y2Y.x/

s.x; y/ (1)

where Y.x/ is the set of candidate graphs for x and
the scoring function is decomposed as s.x; y/ D
� � f .x; y/. The function f returns a high-dimen-
sional feature vector that describes characteristic
properties of the sentence–graph pair .x; y/, and
the vector � assigns to each feature a weight.

2This is because a set ! specifies up to 2 � 2C 2 � 2 D 8
different concatenation operations.
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Items:
i j i j i j

1 � i � j � n Axioms:
i i i i

Goal:
1 n

Rules:
i j � 1 j k

i k

conc!

i j j k

i k

fuse-l
i j j k

i k

fuse-r

Figure 2: The parsing algorithm used in this paper. The concatenation rules (conc) are parametrized with
respect to an edge specification ! (see Section 2.2).

3.1 Candidate Graphs
Our set of candidate graphs is the set of all graphs
that can be built using the operations of our pars-
ing algorithm. The size of this set and hence the
maximal coverage of our parser is determined by
the set of conc rules: The more different concate-
nation operations we use, the more graphs we can
build. At the same time, increasing the number of
operations also increases the runtime of our parser.
This means that we need to find a good trade-off
between coverage and parsing efficiency.

To obtain upper bounds on the coverage of our
parser we compute, for each graph G in the Sem-
Eval test data, a graph QG that maximizes the set
of edges that it has in common with G. This can
be done using a Viterbi-style variant of our parsing
algorithm that scores an item by the number of
edges that it has in common withG. The results are
reported in Table 1. As we can see, our approach
has the potential to achieve more than 98% labelled
recall (LR) on all three representation types used
in the task. This figure is obtained for the full set
of concatenation operations. For our submission
we chose to optimize for parsing speed and used a
parser with a reduced set of only three operations:

!1 D f.1; 4/g ; !2 D f.4; 1/g ; !3 D fg :

These are the two operations that correspond to
the attach rules of the algorithm by Eisner and
Satta (!1, !2), together with the operation that
concatenates two graphs without adding any edges
at all (!3). The latter is required to produce graphs

DM PAS PCEDT

full 98.25 / 75.74 98.13 / 69.81 98.19 / 83.23
reduced 95.70 / 52.15 93.06 / 23.66 93.51 / 54.75

Table 1: Upper bounds for recall (LR/LM) on the
test data for two different sets of operations.

where a node has no incoming edges. As can be
seen in Table 1, the upper bounds for the reduced
set of operations are still surprisingly high when
measured in terms of LR: 95.70% for DM, 93.06%
for PAS, and 93.51% for PCEDT. However, there
is a significant loss when coverage is measured in
terms of labelled exact match (LM).

3.2 Scoring Function

We use the same features as in the first-order model
implemented in the MSTParser system for syntac-
tic dependency parsing (McDonald et al., 2005).3

Under this model, the feature vector for a depen-
dency graph is the sum of the feature vectors of
its edges, which take into account atomic features
such as the word forms and part-of-speech tags of
the tokens connected by the edge, the length of the
edge, the edge label, as well as combinations of
those atomic features. To set the feature weights
we use averaged perceptron training in the style of
Collins (2002).

3.3 Top-Node Tagger

The final component in our system is a simple tag-
ger that is used to annotate the output of our parser
with information about top nodes (as defined in the
task’s data format). It is based on Matthew Honni-
bal’s part-of-speech tagger4 and uses features based
on the word form and part-of-speech of the node
to be tagged, as well as the labels of the edges in-
cident to that node; these features were selected
based on tagging accuracy with the recommended
development train/dev-split. The tagger is a se-
quence model without global constraints; in partic-
ular, it does not enforce unique top nodes. Tagging
accuracy on the final test set was 98.50% for DM,
99.21% for PAS, and 99.94% for PCEDT.

3http://sourceforge.net/projects/mstparser/
4http://honnibal.wordpress.com/
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DM PAS PCEDT

LP LR LF LP LR LF LP LR LF

Baseline 83.20% 40.73% 54.68% 88.34% 35.74% 50.89% 74.82% 62.08% 67.84%
Linköping 78.54% 78.05% 78.29% 76.16% 75.55% 75.85% 60.66% 64.35% 62.45%
Task average 84.21% 81.29% 82.69% 87.95% 83.57% 85.65% 72.17% 68.44% 70.21%
Peking 90.27% 88.54% 89.40% 93.44% 90.69% 92.04% 78.75% 73.96% 76.28%

Table 2: Labelled precision (LP), labelled recall (LR), and labelled F1 (LF) scores of our own system
(Linköping) and three points of comparison on the SemEval-2014 Task 8 test data: baseline, task average,
and the best-performing system from Peking University (Du et al., 2014).

4 Experiments

We report experimental results on the SemEval data
sets (closed track). We trained one parser for each
representation (DM, PAS, PCEDT). Averaged per-
ceptron training can be parametrized by the number
N of iterations over the training data; to determine
the value of this parameter, for each representation
type and each 1 � N � 10 we trained a develop-
ment system using the recommended development
train/dev-split and selected that value of N which
gave the highest accuracy on the held-out data. The
selected values and the number of (binary) features
in the resulting systems are reported in Table 3.
Training took around 8 minutes per iteration on an
iMac computer (Late 2013, 3,4 GHz Intel Core i5)
with a 6 GB Java heap size.

4.1 Results

Table 2 reports the labelled precision (LP) and la-
belled recall (LR) of our system on the final test
data. Compared to the tree-based baseline, our
system has substantially lower precision (between
4.66 and 14.16 points) but substantially higher re-
call (between 2.27 and 39.81 points). Compared to
the top-scoring system, our system is way behind
in terms of both scores (11.11–16.19 points). The
scores of our system are also substantially below
the task average, which resulted in it being ranked
last of all six systems participating in the closed
track. Given these results, we have refrained from
doing a detailed error analysis. It may be interest-
ing to note, however, that our system is the only
one in the task for which labelled F1 is higher on
the DM data than on the PAS data.

DM PAS PCEDT

# iterations 4 1 9
# features 7.3M 8.7M 8.1M

Table 3: Characteristics of the trained models.

4.2 Discussion

The comparatively low scores of our system do not
come unexpected. Our parser uses a very simple
scoring model and learning method, whereas even
the baseline relies on a state-of-the-art syntactic de-
pendency parser (Bohnet, 2010). Also, we did not
do any feature engineering (on the parser), but just
used the feature extraction procedure of MSTParser.
Regarding both of these points, the potential for
improving the system is apparent. Finally, our post-
hoc prediction of top nodes is extremely simplistic.
It would have been much more desirable to inte-
grate this prediction into the parser, for example
by adding virtual incoming dependencies to all top
nodes. However, preliminary experiments showed
that this particular strategy had a severely negative
impact on coverage.

5 Conclusion

We have presented a new algorithm for parsing to
a restricted class of digraphs and shown how to
extend this algorithm into a system for data-driven
dependency parsing. Our main goal was to show
that it is possible to develop algorithms for direct
parsing to directed graphs that are both efficient
and achieve good coverage on practical data sets:
Our algorithm runs in cubic time in the length of
the sentence, and has more than 98% coverage on
each of the three data sets.

Our future work will address both theoretical and
practical issues. On the theoretical side, we feel
that it is important to obtain a better understanding
of the specific graph-structural properties that char-
acterise the linguistic data. Our parser provides an
operational definition of a class of graphs (those
graphs that can be built by the parser); it would be
more satisfying to obtain a declarative characteri-
sation that does not depend on a specific algorithm.
Such a characterisation would be interesting even
for a restricted set of operations.
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On the practical side, we would like to extend
our approach into a more competitive system for
semantic dependency parsing. In particular, we
would like to use a more powerful scoring function
(incorporating second- and third-order features)
and a more predicative learning method (such as
max-margin training).
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Abstract

This paper describes the system used by
the LIPN team in the task 10, Multilin-
gual Semantic Textual Similarity, at Sem-
Eval 2014, in both the English and Span-
ish sub-tasks. The system uses a sup-
port vector regression model, combining
different text similarity measures as fea-
tures. With respect to our 2013 partici-
pation, we included a new feature to take
into account the geographical context and
a new semantic distance based on the
Bhattacharyya distance calculated on co-
occurrence distributions derived from the
Spanish Google Books n-grams dataset.

1 Introduction

After our participation at SemEval 2013 with
LIPN-CORE (Buscaldi et al., 2013) we found that
geography has an important role in discriminating
the semantic similarity of sentences (especially in
the case of newswire). If two events happened in
a different location, their semantic relatedness is
usually low, no matter if the events are the same.
Therefore, we worked on a similarity measure able
to capture the similarity between the geographic
contexts of two sentences. We tried also to rein-
force the semantic similarity features by introduc-
ing a new measure that calculates word similari-
ties on co-occurrence distributions extracted from
Google Books bigrams. This measure was intro-
duced only for the Spanish runs, due to time con-
straints. The regression model used to integrate
the features was the ν-Support Vector Regression

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence de-
tails:http://creativecommons.org/licenses/by/4.0/

model (ν-SVR) (Schölkopf et al., 1999) imple-
mentation provided by LIBSVM (Chang and Lin,
2011), with a radial basis function kernel with the
standard parameters (ν = 0.5). We describe all
the measures in Section 2; the results obtained by
the system are detailed in Section 3.

2 Similarity Measures

In this section we describe the measures used as
features in our system. The description of mea-
sures already used in our 2013 participation is less
detailed than the description of the new ones. Ad-
ditional details on the measures may be found in
(Buscaldi et al., 2013). When POS tagging and
NE recognition were required, we used the Stan-
ford CoreNLP1 for English and FreeLing2 3.1 for
Spanish.

2.1 WordNet-based Conceptual Similarity

This measure has been introduced in order to mea-
sure similarities between concepts with respect to
an ontology. The similarity is calculated as fol-
lows: first of all, words in sentences p and q are
lemmatised and mapped to the related WordNet
synsets. All noun synsets are put into the set of
synsets associated to the sentence, Cp and Cq, re-
spectively. If the synsets are in one of the other
POS categories (verb, adjective, adverb) we look
for their derivationally related forms in order to
find a related noun synset: if there exists one, we
put this synset in Cp (or Cq). No disambigua-
tion process is carried out, so we take all possible
meanings into account.

Given Cp and Cq as the sets of concepts con-
tained in sentences p and q, respectively, with

1http://www-nlp.stanford.edu/software/corenlp.shtml
2http://nlp.lsi.upc.edu/freeling/
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|Cp| ≥ |Cq|, the conceptual similarity between p
and q is calculated as:

ss(p, q) =

∑
c1∈Cp

max
c2∈Cq

s(c1, c2)

|Cp|

where s(c1, c2) is a conceptual similarity mea-
sure. Concept similarity can be calculated in dif-
ferent ways. We used a variation of the Wu-Palmer
formula (Wu and Palmer, 1994) named “Proxi-
Genea3”, introduced by (Dudognon et al., 2010),
which is inspired by the analogy between a family
tree and the concept hierarchy in WordNet. The
ProxiGenea3 measure is defined as:

s(c1, c2) =
1

1 + d(c1) + d(c2)− 2 · d(c0)
where c0 is the most specific concept that is

present both in the synset path of c1 and c2 (that is,
the Least Common Subsumer or LCS). The func-
tion returning the depth of a concept is noted with
d.

2.2 IC-based Similarity

This measure has been proposed by (Mihalcea et
al., 2006) as a corpus-based measure which uses
Resnik’s Information Content (IC) and the Jiang-
Conrath (Jiang and Conrath, 1997) similarity met-
ric. This measure is more precise than the one
introduced in the previous subsection because it
takes into account also the importance of concepts
and not only their relative position in the hierarchy.
We refer to (Buscaldi et al., 2013) and (Mihalcea
et al., 2006) for a detailed description of the mea-
sure. The idf weights for the words were calcu-
lated using the Google Web 1T (Brants and Franz,
2006) frequency counts, while the IC values used
are those calculated by Ted Pedersen (Pedersen et
al., 2004) on the British National Corpus3.

2.3 Syntactic Dependencies

This measure tries to capture the syntactic simi-
larity between two sentences using dependencies.
Previous experiments showed that converting con-
stituents to dependencies still achieved best results
on out-of-domain texts (Le Roux et al., 2012), so
we decided to use a 2-step architecture to obtain
syntactic dependencies. First we parsed pairs of
sentences with the LORG parser4. Second we con-

3http://www.d.umn.edu/ tpederse/similarity.html
4https://github.com/CNGLdlab/LORG-Release

verted the resulting parse trees to Stanford depen-
dencies5.

Given the sets of parsed dependencies Dp and
Dq, for sentence p and q, a dependency d ∈ Dx

is a triple (l, h, t) where l is the dependency label
(for instance, dobj or prep), h the governor and
t the dependant. The similarity measure between
two syntactic dependencies d1 = (l1, h1, t1) and
d2 = (l2, h2, t2) is the levenshtein distance be-
tween the labels l1 and l2 multiplied by the aver-
age of idfh ∗ sWN (h1, h2) and idft ∗ sWN (t1, t2),
where idfh and idft are the inverse document fre-
quencies calculated on Google Web 1T for the
governors and the dependants (we retain the max-
imum for each pair), respectively, and sWN is cal-
culated using formula ??. NOTE: This measure
was used only in the English sub-task.

2.4 Information Retrieval-based Similarity

Let us consider two texts p and q, an IR system S
and a document collection D indexed by S. This
measure is based on the assumption that p and q
are similar if the documents retrieved by S for the
two texts, used as input queries, are ranked simi-
larly.

Let be Lp = {dp1 , . . . , dpK} and Lq =
{dq1 , . . . , dqK}, dxi ∈ D the sets of the top K
documents retrieved by S for texts p and q, respec-
tively. Let us define sp(d) and sq(d) the scores as-
signed by S to a document d for the query p and
q, respectively. Then, the similarity score is calcu-
lated as:

simIR(p, q) = 1−

∑
d∈Lp∩Lq

√
(sp(d)−sq(d))2

max(sp(d),sq(d))

|Lp ∩ Lq|

if |Lp ∩ Lq| 6= ∅, 0 otherwise.
For the participation in the English sub-task we

indexed a collection composed by the AQUAINT-
26 and the English NTCIR-87 document collec-
tions, using the Lucene8 4.2 search engine with
BM25 similarity. The Spanish index was cre-
ated using the Spanish QA@CLEF 2005 (agencia
EFE1994-95, El Mundo 1994-95) and multiUN

5We used the default built-in converter provided with the
Stanford Parser (2012-11-12 revision).

6http://www.nist.gov/tac/data/data desc.html#AQUAINT-
2

7http://metadata.berkeley.edu/NTCIR-GeoTime/ntcir-8-
databases.php

8http://lucene.apache.org/core
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(Eisele and Chen, 2010) collections. The K value
was set to 70 after a study detailed in (Buscaldi,
2013).

2.5 N-gram Based Similarity
This measure tries to capture the fact that similar
sentences have similar n-grams, even if they are
not placed in the same positions. The measure is
based on the Clustered Keywords Positional Dis-
tance (CKPD) model proposed in (Buscaldi et al.,
2009) for the passage retrieval task.

The similarity between a text fragment p and
another text fragment q is calculated as:

simngrams(p, q) =
∑
∀x∈Q

h(x, P )∑n
i=1wid(x, xmax)

Where P is the set of the heaviest n-grams in p
where all terms are also contained in q; Q is the
set of all the possible n-grams in q, and n is the
total number of terms in the longest sentence. The
weights for each term wi are calculated as wi =
1 − log(ni)

1+log(N) where ni is the frequency of term
ti in the Google Web 1T collection, and N is the
frequency of the most frequent term in the Google
Web 1T collection. The weight for each n-gram
(h(x, P )), with |P | = j is calculated as:

h(x, P ) =
{ ∑j

k=1wk if x ∈ P
0 otherwise

The function d(x, xmax) determines the minimum
distance between a n-gram x and the heaviest one
xmax as the number of words between them.

2.6 Geographical Context Similarity
We observed that in many sentences, especially
those extracted from news corpora, the compati-
bility of the geographic context between the sen-
tences is an important clue to determine if the sen-
tences are related or not. This measure tries to
measure if the two sentences refer to events that
took place in the same geographical area. We built
a database of geographically-related entities, using
geo-WordNet (Buscaldi and Rosso, 2008) and ex-
panding it with all the synsets that are related to a
geographically grounded synset. This implies that
also adjectives and verbs may be used as clues for
the identification of the geographical context of a
sentence. For instance, “Afghan” is associated to
“Afghanistan”, “Sovietize” to “Soviet Union”, etc.
The Named Entities of type PER (Person) are also

used as clues: we use Yago9 to check whether the
NE corresponds to a famous leader or not, and in
the affirmative case we include the related nation
to the geographical context of the sentence. For in-
stance, “Merkel” is mapped to “Germany”. Given
Gp and Gq the sets of places found in sentences p
and q, respectively, the geographical context simi-
larity is calculated as follows:

simgeo(p, q) = 1−logK

1 +

∑
x∈Gp

min
y∈Gq

d(x, y)

max(|Gp|, |Gq|)



Where d(x, y) is the spherical distance in Km. be-
tween x and y, and K is a normalization factor set
to 10000 Km. to obtain similarity values between
1 and 0.

2.7 2-grams “Spectral” Distance

This measure is used to calculate the seman-
tic similarity of two words on the basis of their
context, according to the distributional hypothe-
sis. The measure exploits bi-grams in the Google
Books n-gram collection10 and is based on the dis-
tributional hypothesis, that is, “words that tend to
appear in similar contexts are supposed to have
similar meanings”. Given a word w, we calcu-
late the probability of observing a word x know-
ing that it is preceded by w as p(x|w) = p(w ∩
x)/p(w) = c(“wx”)/c(“w”), where c(“wx”) is
the number of bigrams “w x” observed in Google
Books (counting all publication years) 2-grams
and c(“w”) is the number of occurrences of w ob-
served in Google Books 1-grams. We calculate
also the probability of observing a word y know-
ing that it is followed by w as p(y|w) = p(w ∩
y)/p(w) = c(“yw”)/c(“w”). In such a way, we
may obtain for a word wi two probability distri-
butions Dwi

p and Dwi
f that can be compared to the

distributions obtained in the same way for another
word wj . Therefore, we calculate the distance of
two words comparing the distribution probabilities
built in this way, using the Bhattacharyya coeffi-
cient:

9http://www.mpi-inf.mpg.de/yago-naga/yago/
10https://books.google.com/ngrams/datasets
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sf (wi, wj) = − log

(∑
x∈X

√
Dwi

f (x) ∗Dwj

f (x)

)

sp(wi, wj) = − log

(∑
x∈X

√
Dwi

p (x) ∗Dwj
p (x)

)

the resulting distance between wi and wj is cal-
culated as the average between sf (wi, wj) and
sp(wi, wj). All words in sentence p are compared
to the words of sentence q using this similarity
value. The words that are semantically closer are
paired; if a word cannot be paired (average dis-
tance with any of the words in the other sentence
> 10), then it is left unpaired. The value used as
the final feature is the averaged sum of all distance
scores.

2.8 Other Measures
In addition to the above text similarity measures,
we used also the following common measures:

Cosine
Cosine distance calculated between
p = (wp1 , . . . , wpn) and q = (wq1 , . . . , wqn), the
vectors of tf.idf weights associated to sentences
p and q, with idf values calculated on Google Web
1T.

Edit Distance
This similarity measure is calculated using the
Levenshtein distance on characters between the
two sentences.

Named Entity Overlap
This is a per-class overlap measure (in this way,
“France” as an Organization does not match
“France” as a Location) calculated using the Dice
coefficient between the sets of NEs found, respec-
tively, in sentences p and q.

3 Results

3.1 Spanish
In order to train the Spanish model, we trans-
lated automatically all the sentences in the English
SemEval 2012 and 2013 using Google Translate.
We also built a corpus manually using definitions
from the RAE11 (Real Academia Española de la
Lengua). The definitions were randomly extracted
and paired at different similarity levels (taking into

11http://www.rae.es/

account the Dice coefficient calculated on the def-
initions bag-of-words). Three annotators gave in-
dependently their similarity judgments on these
paired definitions. A total of 200 definitions were
annotated for training. The official results for the
Spanish task are shown in Table 1. In Figure 1 we
show the results obtained by taking into account
each individual feature as a measure of similarity
between texts. These results show that the combi-
nation was always better than the single features
(as expected), and the feature best able to capture
semantic similarity alone was the cosine distance.
In Table 2 we show the results of the ablation
test, which shows that the features that most con-
tributed to improve the results were the IR-based
similarity for the news dataset and the cosine dis-
tance for the Wikipedia dataset. The worst feature
was the NER overlap (not taking into account it
would have allowed us to gain 2 places in the final
rankings).

Wikipedia News Overall
LIPN-run1 0.65194 0.82554 0.75558
LIPN-run2 0.71647 0.8316 0.7852
LIPN-run3 0.71618 0.80857 0.77134

Table 1: Spanish results (Official runs).

The differences between the three submit-
ted runs are only in the training set used.
LIPN-run1 uses all the training data available
together, LIPN-run3 uses a training set com-
posed by the translated news for the news dataset
and the RAE training set for the Wikipedia dataset;
finally, the best run LIPN-run2 uses the same
training sets of run3 together to build a single
model.

3.2 English

Our participation in the English task was ham-
pered by some technical problems which did not
allow us to complete the parsing of the tweet data
in time. As a consequence of this and some er-
rors in the scripts launched to finalize the experi-
ments, the submitted results were incomplete and
we were able to detect the problem only after the
submission. We show in Table 3 the official re-
sults of run1 with the addition of the results on the
OnWN dataset calculated after the participation to
the task.
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Figure 1: Spanish task: results taking into account the individual features as semantic similarity mea-
sures.

Ablated feature Wikipedia News Overall diff
LIPN-run2 (none) 0.7165 0.8316 0.7852 0.00%
1:CKPD 0.7216 0.8318 0.7874 0.22%
2:WN 0.7066 0.8277 0.7789 −0.63%
3:Edit Dist 0.708 0.8242 0.7774 −0.78%
4:Cosine 0.6849 0.8235 0.7677 −1.75%
5:NER overlap 0.7338 0.8341 0.7937 0.85%
6:Mihalcea-JC 0.7103 0.8301 0.7818 −0.34%
7:IRsim 0.7161 0.8026 0.7677 −1.74%
8:geosim 0.7185 0.8325 0.7865 0.14%
9:Spect. Dist 0.7243 0.8311 0.7880 0.28%

Table 2: Spanish task: ablation test.

Dataset Correlation
Complete (official + OnWN) 0.6687
Complete (only official) 0.5083
deft-forum 0.4544
deft-news 0.6402
headlines 0.6527
images 0.8094
OnWN (unofficial) 0.8039
tweet-news 0.5507

Table 3: English results (Official run + unofficial
OnWN).

4 Conclusions and Future Work

The introduced measures were studied on the
Spanish subtask, observing a limited contribu-
tion from geographic context similarity and spec-

tral distance. The IR-based measure introduced
in 2013 proved to be an important feature for
newswire-based datasets as in the 2013 English
task, even when trained on a training set derived
from automatic translation, which include many
errors. Our participation in the English subtask
was inconclusive due to the technical faults experi-
enced to produce our results. We will nevertheless
take into account the lessons learned in this partic-
ipation for future ones.
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Abstract

This paper describes our contribution to the
SemEval-2014 Task 9 on sentiment analysis in
Twitter. We participated in both strands of the
task, viz. classification at message-level (subtask
B), and polarity disambiguation of particular text
spans within a message (subtask A). Our experi-
ments with a variety of lexical and syntactic fea-
tures show that our systems benefit from rich fea-
ture sets for sentiment analysis on user-generated
content. Our systems ranked ninth among 27 and
sixteenth among 50 submissions for task A and B
respectively.

1 Introduction

Over the past few years, Web 2.0 applications
such as microblogging services, social network-
ing sites, and short messaging services have con-
siderably increased the amount of user-generated
content produced online. Millions of people rely
on these services to send messages, share their
views or gather information about others. Si-
multaneously, companies, marketeers and politi-
cians are anxious to detect sentiment in UGC since
these messages might contain valuable informa-
tion about the public opinion. This explains why
sentiment analysis has been a research area of
great interest in the last few years (Wiebe et al.,
2005; Wilson et al., 2005; Pang and Lee, 2008;
Mohammad and Yang, 2011). Though first studies
focussed more on product or movie reviews, we
see that analyzing sentiment in UGC is currently
becoming increasingly popular. The main differ-
ence between these two sources of information is
that the former is rather long and contains quite
formal language whereas the latter one is gener-
ally very brief and noisy and thus represents some
different challenges (Maynard et al., 2012).

In this paper, we describe our contribution to
the SemEval-2014 Task 9: Sentiment Analysis in

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

Twitter (Rosenthal et al., 2014), which was a rerun
of SemEval-2013 Task 2 (Nakov et al., 2013) and
consisted of two subtasks:

• Subtask A - Contextual Polarity
Disambiguation: Given a message contain-
ing a marked instance of a word or phrase,
determine whether that instance is positive,
negative or neutral in that context.

• Subtask B - Message Polarity
Classification: Given a message, classify
whether the message is of positive, negative,
or neutral sentiment. For messages convey-
ing both a positive and negative sentiment,
whichever is the stronger sentiment should be
chosen.

The datasets for training, development and test-
ing were provided by the task organizers. The
training datasets consisted of Twitter messages
on a variety of topics. The test sets con-
tained regular tweets (Twitter2013, Twitter2014),
tweets labeled as sarcastic (TwitterSarcasm), SMS
messages (SMS2013), and blog posts (LiveJour-
nal2014). For both subtasks, the possible polar-
ity labels were positive, negative, neutral, and ob-
jective. The datasets for subtask B contained an
additional label, i.e. objective-OR-neutral. Ta-
ble 1 presents an overview of all provided datasets.
For each task and test dataset, two runs could be
submitted: a constrained run using the provided
training data only, and an unconstrained one us-
ing additional training data. For both tasks, we
created a constrained model based on supervised
learning, relying on additional lexicons and us-
ing the test datasets of SemEval-2013 as develop-
ment data. Evaluation was based on averaged F-
measure, considering averaged F-positive and F-
negative.
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Dataset Subtask A Subtask B
Training
Training data 26,928 9,684
Development data 1,135 1,654
Total training data 28,063 11,338
Dev-test (test SemEval-2013)
Tweets 4,435 3,813
SMS messages 2,334 2,094
Test SemEval-2014
Tweets + SMS messages + 10,681 8,987
blog posts + sarcastic tweets

Table 1: Number of labeled instances contained
by the training, development (test data SemEval-
2013), and SemEval-2014 test sets.

2 System Description

Our main goal was to develop, for each polarity
classification task, a classifier to label a message
or an instance of that message as either positive,
negative, or neutral. We ran several experiments to
identify the most discriminative classifier features.
This section gives an overview of the pipeline we
developed and which features were implemented.

2.1 Linguistic Preprocessing
First, we performed manual cleaning on the
datasets to replace non-UTF-8 characters, and we
tokenized all messages using the Carnegie Mellon
University Twitter Part-of-Speech Tagger (Gimpel
et al., 2011). Subsequently, we Part-of-Speech
tagged all instances using the CMU Twitter Part-
of-Speech Tagger (Gimpel et al., 2011), and per-
formed dependency parsing using a caseless pars-
ing model of the Stanford parser (de Marneffe et
al., 2006). Besides that, we also tagged all named
entities using the Twitter NLP tools (Ritter et al.,
2011) for Named Entity Recognition. As a final
preprocessing step, we decided to combine the la-
bels neutral, objective and neutral-OR-objective,
thus recasting the task as a three-way classifica-
tion task.

2.2 Feature Extraction
We implemented a number of lexical and syntactic
features that represent every phrase (subtask A) or
message (subtask B) within a feature vector:

N-gram features

• Word token n-gram features: a binary value
for every token unigram, bigram, and trigram
found in the training data.

• Character n-gram features: a binary value
for every character trigram, and fourgram

(within word tokens) found in the training
data.

• Normalized n-gram features: n-grams that
consisted of URLs and mentions or @-
replies were replaced by http://someurl and
by @someuser, respectively. We also nor-
malized commonly used abbreviations 1 to
their full written form (e.g. h8→ hate).

Word shape features

• Character flooding: the number of word to-
kens with a character repeated more than two
times (e.g. sooooooo join).

• Punctuation flooding: the number of con-
tiguous sequences of exclamation/question
marks (e.g. GRADUATION?!?!).

• Punctuation of the last token: a binary value
indicating whether the last word token of
a message contains a question/exclamation
mark (e.g. Going to Helsinki tomorrow or on
the day after tomorrow, yay!).

• The number of capitalized words (e.g. SO
EXCITED).

• The number of hashtags (e.g. #win).

Lexicon features: As sentiment lexicons we
consulted existing resources: AFINN (Nielsen,
2011), General Inquirer (Stone et al., 1966),
MPQA (Wilson et al., 2005), NRC Emotion (Mo-
hammad and Turney, 2010; Mohammad and
Yang, 2011), Bing Liu (Hu and Liu, 2004), and
Bounce (Kökciyan et al., 2013) – the latter three
are Twitter-specific. Additionally, we created a list
of emoticons extracted from the SemEval-2014
training data. Based on these resources, the fol-
lowing features were extracted:

• The number of positive, negative, and neutral
lexicon words averaged over text length

• The overall polarity, which is the sum of the
values of identified sentiment words

These features were extracted by 1) looking at all
tokens in the instance, and 2) looking at hash-
tag tokens only (e.g. win from #win). We also
considered negation cues by flipping the polarity

1These were extracted from an existing list of chat abbre-
viations (http://www.chatslang.com/terms/abbreviations).
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sign of a sentiment word if it occurred in a nega-
tion relation (e.g. @ 2Shades maybe 3rd team bro,
he’s not better than trey Burke from Michigan).
Negation relations were identified using the output
of the dependency parser. In the example above,
the positive polarity of the sentiment word better
is flipped into negative since it occurs in a relation
with not.

Syntactic features:

• Part-of-Speech – 25 tags, including Twitter-
specific tags such as # (hashtags), @ (at-
mentions), ~ (retweets), U (URLs or e-mail
addresses), and E (emoticons): binary (tag
occurs in the tweet or not), ternary (tag oc-
curs zero, one, or two or more times), abso-
lute (number of occurrences), and frequency
(frequency of the tag).

• Dependency relations – four binary values for
every dependency relation found in the train-
ing data. The first value indicates the pres-
ence of the lexicalized dependency relations
in the test data. Additionally, as proposed
by (Joshi and Penstein-Rosé, 2009), the de-
pendency relation features are generalized in
three ways: by backing off the head word to
its PoS-tag, by backing off the modifier word
to its PoS-tag, and by backing off both the
head and modifier word.

Named entity features: This feature group con-
sists of four features: binary (tweet contains NEs
or not), absolute (number of NEs), absolute tokens
(number of tokens that are part of an NE), and fre-
quency tokens (frequency of NE tokens).

PMI features: PMI (pointwise mutual informa-
tion) values indicating the association of a word
with positive and negative sentiment. The higher
the PMI value, the stronger the word-sentiment as-
sociation. For each unigram and bigram in the
training data, PMI values were extracted from
the word-sentiment association lexicon created by
NRC Canada (Mohammad et al., 2013). A sec-
ond PMI feature was considered for each unigram
based on the word-sentiment associations found in
the SemEval-2014 training dataset. PMI values
were calculated as follows:

PMI(w) = PMI(w, positive)− PMI(w, negative)
(1)

As the equation shows, the association score of a
word with negative sentiment is subtracted from

the word’s association score with positive senti-
ment.

2.3 Optimizing the Classification Results
The core of our approach consisted in evaluating
the aforementioned features and selecting those
feature groups contributing most to the classifica-
tion results. To this end, we trained an SVM clas-
sifier using the LIBSVM package (Chang and Lin,
2001) and created models for various feature com-
binations. A linear kernel and a cost value of 1
were chosen as parameter settings for all further
experiments after cross-validation on the training
data. Our experimental setup consisted of three
steps: 1) training an SVM on the original train-
ing data provided by the task organizers (no de-
velopment data was used), 2) generating a model,
and 3) applying and evaluating the model on the
development data (Twitter and SMS test data of
SemEval-2013). We started our experiments with
sentiment lexicon and n-gram features only, and
gradually added other feature groups to identify
the most contributive features. Tables 2 and 3 re-
veal the obtained F-scores for each step.

Features Dev Twitter Dev SMS
lexicons 0.6855 0.6402
n-grams 0.8482 0.8229
n-grams + lexicons 0.8628 0.8489
+ normalization n-grams 0.8632 (+ 0.0004) 0.8502 (+ 0.0013)

+ Part-of-Speech 0.8646 (+ 0.0014) 0.8582 (+ 0.0080)

+ negation 0.8650 (+ 0.0004) 0.8654 (+ 0.0072)

+ word shape 0.8649 (- 0.0001) 0.8650 (- 0.0004)

+ named entity 0.8642 (- 0.0007) 0.8660 (+ 0.0010)

+ dependency 0.8642 (=) 0.8660 (=)

+ PMI 0.8610 (- 0.0032) 0.8654 (- 0.0006)

Table 2: F-scores obtained after adding other fea-
tures for the Twitter and SMS development data
(test data SemEval-2013) – subtask A.

Features Dev Twitter Dev SMS
lexicons 0.5342 0.5119
n-grams 0.5896 0.5628
n-grams + lexicons 0.6442 0.6040
+ normalization n-grams 0.6414 (- 0.0028) 0.6084 (+ 0.0044)

+ Part-of-Speech 0.6466 (+ 0.0052) 0.6333 (+ 0.0249)

+ negation 0.6542 (+ 0.0076) 0.6384 (+ 0.0051)

+ word shape 0.6581 (+ 0.0039) 0.6394 (+ 0.0010)

+ named entity 0.6559 (- 0.0022) 0.6399 (+ 0.0005)

+ dependency 0.6467 (- 0.0092) 0.6430 (+ 0.0031)

+ PMI 0.6525 (+ 0.0058) 0.6525 (+ 0.0095)

Table 3: F-scores obtained after adding other fea-
tures for the Twitter and SMS development data
(test data SemEval-2013) – subtask B.

As can be inferred from the tables, F-scores
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SMS2013 Twitter2013 LiveJournal2014 Twitter2014 Twitter2014 Sarcasm
Task A 85.26 (7/27) 86.28 (8/27) 80.44 (13/27) 81.02 (9/27) 70.76 (13/27)
Task B 64.78 (7/50) 65.56 (14/50) 68.56 (20/50) 65.47 (16/50) 47.76 (22/50)

Table 4: F-scores and rankings of our systems across the various data genres for subtask A (Contextual
Polarity Disambiguation) and subtask B (Message Polarity Classification).

were already relatively high (~0.8559 for subtask
A and ~0.6241 for subtask B) for the combined
lexicon and n-gram features (on average 0.8559
for subtask A and 0.6241 for subtask B), which we
therefore consider as a our baseline setup. Con-
sidering the results for both subtasks and data
genres, we conclude that n-grams, sentiment lex-
icons, and PoS-tags were the most contributive
feature groups, whereas named entity and depen-
dency features did not improve the overall classi-
fication performance. However, using all feature
groups (n-grams, lexicons, normalized n-grams,
Part-of-Speech features, negation features, word
shape features, named entity features, dependency
features, and PMI features) improved the classi-
fication results (reaching an averaged F= 0.8632
for subtask A, and F= 0.6525 for subtask B) com-
pared to classification based on lexicon (averaged
F= 0.6629 for subtask A, and F= 0.5231 for sub-
task B) or n-gram features only (averaged F=
0.8356 for subtask A, and F= 0.5762 for subtask
B). Based on these results, we conclude that using
the full feature set for the classification of unseen
data appears to be a promising approach, consid-
ering that it achieves good performance and that it
would not tune the training model to a particular
data genre.

For further optimization of the classification re-
sults, we performed feature selection in the fea-
ture groups by using a genetic algorithm approach
which can explore different areas of the search
space in parallel. In order to do so, we made use
of the Gallop (Genetic Algorithms for Linguistic
Learner Optimization) python package (Desmet
et al., 2013). This enabled us to select the most
contributive features from every feature group: n-
gram features at token and character level, lexi-
con features from General Inquirer, Liu, AFINN,
and Bounce, character flooding and token capital-
ization features, Part-of-Speech features (binary,
ternary, and absolute), named entity features (bi-
nary, absolute tokens, and frequency tokens), and
PMI features based on the NRC lexicon. None of
the dependency relation features were selected.

3 Results

We submitted sentiment labels for the Contextual
Polarity Disambiguation (subtask A) and for the
Message Polarity Classification (subtask B). Our
competition results are reported in Table 4. Rank-
ings for each dataset are added between brack-
ets. The results reveal that our systems achieved
good performance in the polarity classification of
unseen data across the various genres and tasks.
Overall, we achieved our best classification per-
formance on the Twitter2013 test set, obtaining an
F-score of 86.28, while the best performance for
this data genre is an F-score of 90.14. We saw a
drop in performance on the Twitter2014 Sarcasm
test set. This is consistent with most other teams
as sarcastic language is hard to handle in senti-
ment analysis. Considering the rankings, we con-
clude that we performed particularly well on the
SMS test dataset of SemEval-2013 for both sub-
tasks, ranking seventh for this genre. Our systems
ranked ninth among 27 submissions and sixteenth
among 50 submissions for subtasks A and B re-
spectively.

4 Conclusions and Future Work

Using a rich feature set proves to be beneficial for
automatic sentiment analysis on user-generated
content. Feature selection experiments revealed
that features based on n-grams, sentiment lexi-
cons, and PoS-tags were most contributive for
both classification tasks, while dependency fea-
tures did not contribute to overall classification
performance. As future work it will be interesting
to study the impact of normalization of the data on
the classification performance.

Based on a shallow error analysis, we believe
that including additional classification features
may also be promising: modifiers other than nega-
tion cues (diminishers, increasers, modal verbs,
etc.) that affect the polarity intensity, emoticon
flooding, and pre- and suffixes that indicate emo-
tion (un-, dis-, -less, etc.). Additionally, lemma-
tization and hashtag segmentation on the training
data could also improve classification results.
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Abstract

This paper proposes an approach to solve

message- and phrase-level polarity classi-

fication in Twitter, derived from an exist-

ing system designed for Spanish. As a

first step, an ad-hoc preprocessing is per-

formed. We then identify lexical, psycho-

logical and semantic features in order to

capture different dimensions of the human

language which are helpful to detect sen-

timent. These features are used to feed a

supervised classifier after applying an in-

formation gain filter, to discriminate irrel-

evant features. The system is evaluated on

the SemEval 2014 task 9: Sentiment Anal-

ysis in Twitter. Our approach worked com-

petitively both in message- and phrase-

level tasks. The results confirm the robust-

ness of the approach, which performed

well on different domains involving short

informal texts.

1 Introduction

Millions of opinions, conversations or just trivia

are published each day in Twitter by users of dif-

ferent cultures, countries and ages. This provides

an effective way to poll how people praise, com-

plain or discuss about virtually any topic. Compre-

hending and analysing all this information has be-

come a new challenge for organisations and com-

panies, which aim to find out a way to make quick

and more effective decisions for their business. In

particular, identifying the perception of the public

with respect to an event, a service or an entity are

some of their main goals in a short term. In this

respect, sentiment analysis, and more specifically

polarity classification, is playing an important role

This work is licensed under a Creative Commons Attribu-
tion 4.0 International Licence. Page numbers and proceed-
ings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

in order to automatically analyse subjective infor-

mation in texts.

This paper describes our participation at Sem-

Eval 2014 task 9: Sentiment Analysis in Twit-

ter. Specifically, two subtasks were presented:

(A) contextual polarity disambiguation and (B)

message polarity classification. The first sub-

task consists on determining the polarity of words

or phrases extracted from short informal texts,

the scope of extracts being provided by the Se-

mEval organisation. Subtask B focusses on clas-

sifying the content of the whole message. In

both cases, three possible sentiments are consid-

ered: positive, negative and neutral (which in-

volves mixed and non-opinionated instances). Al-

though the training set only contains tweets, the

test set also includes short informal texts from

other domains, in order to measure cross-domain

portability. You can test the model for subtask B

at miopia.grupolys.org.

2 SemEval 2014-Task 9: Sentiment

Analysis in Twitter

Our contribution is a reduced version of a Span-

ish sentiment classification system (Vilares et al.,

2013a; Vilares et al., 2013b) that participated in

TASS 2013 (Villena-Román et al., 2014), achiev-

ing the 5th place on the global sentiment classifi-

cation task and the 1st place on topic classification

on tweets. In this section we describe how we have

ported to English this system originally designed

for Spanish. Tasks A and B are addressed from

the same perspective, which is described below.

2.1 Preprocessing

We implement a naive preprocessing algorithm

which seeks to normalise some of the most com-

mon ungrammatical elements. It is intended for

Twitter, but many of the issues addressed would

also be valid in other domains:
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• Replacement of frequent abbreviations The

list of the most frequent ones was extracted

from the training set, taking the Penn Tree-

bank (Marcus et al., 1993) as our dictionary.

A term is considered ungrammatical if it does

not appear in our dictionary. We then carry

out a manual review to distinguish between

unknown words and abbreviations, providing

a correction in the latter case. For example,

‘c’mon’ becomes ‘come on’ and ‘Sat’ is re-

placed by ‘Saturday’.

• Emoticon normalisation: We employ the

emoticon collection published in (Agarwal et

al., 2011). Each emoticon is replaced with

one of these five labels: strong positive (ESP),

positive (EP), neutral (ENEU), negative (EN)

or strong negative (ESN).

• Laughs : Multiple forms used in social media

to reflect laughs (e.g. ‘hhahahha’, ‘HHEHE-

HEH’) are preprocessed in a homogeneous

way to obtain a pattern of the form ‘hxhx’

where x ∈ {a, e, i, o, u}.
• URL normalisation: External links are re-

placed by the string ‘url’.

• Hashtags (‘#’) and usernames (‘@’): If the

hashtag appears at the end or beginning of

the tweet, we remove the hashtag. Based

on other participant approaches at SemEval

2013 (Nakov et al., 2013), we realized maybe

this is not the best option, although we be-

lieve hashtags will not be useful in most of

cases, since they refer to very specific events.

Otherwise, only the ‘#’ is removed, hypothe-

sising the hashtag is used to emphasise a term

(e.g. ‘Matthew #Mcconaughey has won the

Oscar’).

2.2 Feature Extraction

Our approach only takes into account information

extracted from the text, without considering any

kind of meta-data. Extracted features combine

lexical, psychological and semantic knowledge in

order to build a linguistic model able to analyse

tweets, but also other kinds of messages. These

features can be divided into two types: corpus-

extracted features and lexicon-extracted features.

All of them take the total number of occurrences

of the respective feature as the weighting factor to

then feed the supervised classifier.

2.2.1 Corpus-extracted features

Given a corpus, we use it to extract the following

set of features:

• Word forms: A model based on this type of

features is our baseline. Each single word is

considered as a feature in order to feed the

supervised classifier. This often becomes a

simple and acceptable start point which ob-

tains a decent performance.

• Part-of-speech (PoS) information: some

coarse-grained PoS-tags such as adjective or

adverb are usually good indicators of subjec-

tive texts while some fine-grained PoS tags

such as third person personal pronoun pro-

vide evidence of non-opinionated messages

(Pak and Paroubek, 2010).

2.2.2 Lexicon-extracted features

We also consider information obtained from exter-

nal lexicons in order to capture linguistic informa-

tion that can not be extracted from a training cor-

pus by means of bag-of-words and PoS-tag mod-

els. We rely on two manually-build lexicons:

• Pennebaker et al. (2001) psychometric dictio-

naries. Linguistic Inquiry and Word Count1

(LIWC) is a software which includes a seman-

tic dictionary to measure how people use dif-

ferent kinds of words over a wide number of

texts. It categorises terms into psychometric

properties, which correspond to different di-

mensions of the human language. The dictio-

nary relates terms with psychological prop-

erties (e.g. anger or anxiety), but also with

topics (e.g. family, friends, religion) or even

morphological features (e.g. future time, past

time or exclamations).

• Hu and Liu (2004) opinion lexicon. It is a col-

lection of positive and negative words. Many

of the occurrences are misspelled, since they

often come from web environments.

2.2.3 Syntactic features

We also parsed the tweets using MaltParser (Nivre

et al., 2007) in order to obtain dependency triplets

of the form (wi, arcij, wj), where wi is the head

word wj , the dependent one and arcij the exist-

ing syntactic relation between them. We tried to

incorporate generalised dependency triplets (Joshi

1http://www.liwc.net/
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and Penstein-Rosé, 2009), following an enriched

perspective presented in Vilares et al. (2014). A

generalisation consists on backing off the words

to more abstracted terms. For example, a valid de-

pendency triplet for the phrase ‘awesome villain’

is (villain, modifier, awesome), which could be

generalised into (anger, modifier, assent) by means

of psychometric properties. However, experimen-

tal results over the development corpus using these

features decreased performance with respect to

our best model, probably due to the small size of

the training corpus, since dependency triplets tend

to suffer from sparsity, so a larger training corpus

is needed to exploit them in a proper way (Vilares

et al., 2014).

2.3 Feature Selection

For a machine learning approach, sparsity could

be an issue. In particular, due to the size of the cor-

pus, many of the terms extracted from the training

set only appear a few times in it. This makes it

impossible to properly learn the polarity of many

tokens. Thus, we carry out a filtering step before

feeding our classifier. In particular, we rely on

the information gain (IG) method to then rank the

most relevant features. Information gain measures

the relevance of an attribute with respect to a class.

It takes values between 0 and 1, where a higher

value implies a higher relevance. Table 1 shows

the top five relevant features based on their infor-

mation gain for our best model. The top features

for task A were very similar. Our official runs only

consider features with an IG greater than zero.

IG Feature Category

0.140 positive emotion Pennebaker et al. (2001)
0.137 #positive-words Hu and Liu (2004)
0.126 affect Pennebaker et al. (2001)
0.089 #negative-words Hu and Liu (2004)
0.083 negative emotion Pennebaker et al. (2001)

Table 1: Most relevant features for task B. ‘#’ must

be read this table as ‘the number of’and not as a

hashtag.

2.4 Classifier

We have trained our runs with a SVMLibLINEAR

classifier (Fan et al., 2008) taking the implementa-

tion provided in WEKA (Hall et al., 2009). The

selection was motivated by the acceptable results

that some of the participants in SemEval 2013, e.g.

Becker et al. (2013), obtained using this imple-

mentation. We configured the multi-class support

vector machine by Crammer and Singer (2002) as

the SVMtype. Since the corpus was unbalanced,

we tuned the weights for the classes using the de-

velopment corpus: 1 for the positive class, 2 for

negative and 0.5 for neutral. The rest of parame-

ters were set to default values.

3 Experimental Results

The SemEval 2014 organisation provides a stan-

dard training corpus for both tasks A an B. For task

A, each tweet is marked with a list of the words

and phrases to analyse, and for each one its senti-

ment label is provided. In addition, a development

corpus was released for tuning the system parame-

ters. The training and the development corpus can

be used jointly (constrained runs) to train mod-

els that are then evaluated over the test corpus.2

Some participants used external annotated corpora

(unconstrained runs) to build their models. With

respect to the test corpus, it contains texts from

tweets but also from LiveJournal texts, which we

are abbreviating as LJ, and SMS messages.

Table 2 contains the statistics of the corpora we

used. Sharing data is a violation of Twitter’s terms

of service, so we had to download them. Unfortu-

nately, some of the tweets were no longer available

for several reasons, e.g., user or a tweet does not

exist anymore or the privacy settings of a user have

changed. As a result, the size of our training and

development corpora may be different from those

of other participant’s corpora.

Task Set Positive Negative Neutral

Train 4,917 2,591 385
A Dev 555 365 45

Test 6,354 3,771 556

Train 3,063 1,202 3,935
B Dev 493 290 633

Test 3,506 1,541 3,940

Table 2: SemEval 2014 corpus statistics.

3.1 Evaluation Metrics

F-measure is the official score to measure how sys-

tems behave on each class. In order to rank partic-

ipants, the SemEval 2014 organisation proposed

the averaged F-measure of positive and negative

tweets.

2We followed this angle.
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3.2 Performance on Sets

Tables 3 and 4 show performance on the test set

of different combinations of the proposed features.

Table 5 shows the performance of our run on task

A. The results over the corresponding sets for task

B are illustrated in Table 6. They are significant

lower than in task A. This suggests that when a

message involves more than one of two tokens, a

lexical approach is not enough. Improving perfor-

mance should involve taking into account context

and linguistic phenomena that appear in sentences

to build a model based on the composition of lin-

guistic information.

Model LJ SMS
Twitter Twitter Twitter
2013 2014 Sarcasm

WPLT
82.21 82.32 84.82 81.69 71.19

(no IG)
WPL 83.55 81.04 84.85 80.64 68.79
WPLT* 83.96 81.46 85.63 79.93 71.98
WP 78.53 80.97 80.34 73.35 74.18
P 75.70 78.74 73.58 65.75 71.82
W 61.58 65.45 64.56 59.16 62.93
L 66.04 64.11 62.96 53.81 61.26
T 47.07 51.37 71.82 43.64 49.37

Table 3: Performance on the test set for task A.

The model marked with a *was our official run. W

stands for features obtained from a bag-of-words

approach, L from Hu and Liu (2004), P from Pen-

nebaker et al. (2001) and T for fine-grained PoS-

tags. They can be combined, e.g., a model named

WP use both words and psychometric properties.

Model LJ SMS
Twitter Twitter Twitter
2013 2014 Sarcasm

WPLT* 69.79 60.45 66.92 64.92 42.40
WPL 70.19 61.41 66.71 64.51 45.72
WP 66.84 60.22 65.29 63.90 45.90
WPLT

66.38 57.01 61.96 62.84 43.71
(no IG)
W 65.12 56.00 62.87 62.64 48.75
P 63.42 54.80 60.05 57.66 54.20
T 45.99 35.85 46.53 45.99 48.58
L 57.53 45.14 48.80 44.48 49.14

Table 4: Performance on the test set for task B.

4 Conclusions

This papers describes the participation of the LyS

Research Group (http://www.grupolys.

org) at the SemEval 2014 task 9: Sentiment Anal-

ysis in Twitter, with a system that attained com-

petitive performance both in message and phrase-

Test set Positive Negative Neutral

DEV 86.30 81.60 4.30
TWITTER 2013

88.70 81.90 17.60
(full)

TWITTER 2013
88.81 82.57 20.75

(progress subset)
LJ 84.34 83.56 13.84
SMS 80.31 82.56 7.10
TWITTER 2014 89.02 70.82 4.44
TWITTER SARCASM 85.71 57.63 28.57

Table 5: Performance on different sets for our

model on task A. The model evaluated on the de-

velopment set was only built using the training set.

Test set Positive Negative Neutral

DEV 69.80 60.40 66.70
TWITTER 2013

72.50 64.30 72.30
(full)

TWITTER 2013
71.92 61.92 71.22

(progress subset)
LJ 71.94 67.65 66.23
SMS 63.83 57.06 73.76
TWITTER 2014 74.26 55.58 66.76
TWITTER SARCASM 55.17 29.63 51.61

Table 6: Performance on different sets for our

model on task B.

Test set Task A Task B

LiveJournal 2014 4 / 27 13 / 50
SMS 2013 12 / 27 19 / 50
Twitter 2013 9 / 27 10 / 50
Twitter 2014 11 / 27 18 / 50
Twitter 2014 Sarcasm 10 / 27 33 / 50

Table 7: Position of our submission on each cor-

pus and task, according to results provided by the

organization on April 22, 2014.

level tasks, as can be observed in Table 7. This

system is a reduced version of a sentiment classifi-

cation model for Spanish texts that performed well

in the TASS 2013 (Villena et al., 2013). The offi-

cial results show how our approach works com-

petitively both on tasks A and B without needing

large and automatically-built resources. The ap-

proach is based on a bag-of-words that includes

word-forms and PoS-tags. We also extract psy-

chometric and sentiment information from exter-

nal lexicons. In order to reduce sparsity problems,

we firstly apply an information gain filter to select

only the most relevant features. Experiments on

the development set showed a significant improve-

ment on the same model with respect to skipping

it on subtask B.
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Abstract

We describe UMBC’s systems developed
for the SemEval 2014 tasks on Multi-
lingual Semantic Textual Similarity (Task
10) and Cross-Level Semantic Similarity
(Task 3). Our best submission in the
Multilingual task ranked second in both
English and Spanish subtasks using an
unsupervised approach. Our best sys-
tems for Cross-Level task ranked second
in Paragraph-Sentence and first in both
Sentence-Phrase and Word-Sense subtask.
The system ranked first for the Phrase-
Word subtask but was not included in the
official results due to a late submission.

1 Introduction

We describe the semantic text similarity systems
we developed for two of the SemEval tasks for the
2014 International Workshop on Semantic Evalu-
ation. We developed systems for task 3, Cross-
Level Semantic Similarity (Jurgens et al., 2014),
and task 10, Multilingual Semantic Textual Simi-
larity (Agirre et al., 2014). A key component in
all the systems was an enhanced version of the
word similarity system used in our entry (Han et
al., 2013b) in the 2013 SemEval Semantic Textual
Similarity task.

Our best system in the Multilingual Semantic
Textual Similarity task used an unsupervised ap-
proach and ranked second in both the English and
Spanish subtasks. In the Cross-Level Semantic
Similarity task we developed a number of new al-
gorithms and used new linguistic data resources.
In this task, our best systems ranked second in
the Paragraph-Sentence task, first in the Sentence-
Phrase task and first in the Word-Sense task. The

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence de-
tails:http://creativecommons.org/licenses/by/4.0/

system ranked first for the Phrase-Word task but
was not included in the official results due to a late
submission.

The remainder of the paper proceeds as follows.
Section 2 describes our word similarity model and
it’s wrapper to deal with named entities and out
of vocabulary words. Sections 3 and 4 describe
how we extended the word similarity model for
the specific tasks. Section 5 presents the results
we achieved on these tasks along with instances
where the system failed. Section 6 highlights our
future plans for improving the system.

2 Semantic Word Similarity Model

2.1 LSA Word Similarity Model

Our word similarity model is a revised version of
the one we used in the 2013 *SEM semantic text
similarity task. This was in turn derived from
a system developed for the Graph of Relations
project (UMBC, 2013b). For SemEval, we wanted
a measure that considered a word’s semantics but
not its lexical category, e.g., the verb “marry”
should be semantically similar to the noun “wife”.
An online demonstration of a similar model de-
veloped for the GOR project is available (UMBC,
2013a), but it lacks some of this version’s features.

LSA-based word similarity. LSA Word Simi-
larity relies on the distributional hypothesis that
words occurring in the same context tend to have
similar meanings (Harris, 1968). LSA relies on the
fact that words that are semantically similar (e.g.,
cat and feline or nurse and doctor) are more likely
to occur near one another in text. Thus evidence
for word similarity can be computed from a statis-
tical analysis of a large text corpus.

We extracted raw word co-occurrence statis-
tics from a portion of the 2007 crawl of the Web
corpus from the Stanford WebBase project (Stan-
ford, 2001). We processed the collection to re-
move some undesirable elements (text duplica-
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Word pair ±4 model ±1 model
1 doctor NN, physician NN 0.775 0.726
2 car NN, vehicle NN 0.748 0.802
3 person NN, car NN 0.038 0.024
4 car NN, country NN 0.000 0.016
5 person NN, country NN 0.031 0.069
6 child NN, marry VB 0.098 0.000
7 wife NN, marry VB 0.548 0.274
8 author NN, write VB 0.364 0.128
9 doctor NN, hospital NN 0.473 0.347
10 car NN, driver NN 0.497 0.281

Table 1: Examples from the LSA similarity model.

tions, truncated text, non-English text and strange
characters) and produced a three billion word cor-
pus of high quality English, which is available on-
line (Han and Finin, 2013).

We performed POS tagging and lemmatiza-
tion on the corpus using the Stanford POS tag-
ger (Toutanova et al., 2000). Word/term co-
occurrences were counted in a moving window
of a fixed size that scans the entire corpus. We
generated two co-occurrence models using win-
dow sizes ±1 and ±4 because we observed differ-
ent natures of the models. ±1 window produces
a context similar to the dependency context used
in (Lin, 1998). It provides a more precise con-
text but is only good for comparing words within
the same POS. This is because words of different
POS are typically surrounded by words in differ-
ent syntactic forms. In contrast, a context window
of ±4 words allows us to compute semantic simi-
larity between words with different POS.

Examples from our LSA similarity model are
given in Table 1. Pairs 1 to 6 illustrate that the
measure has a good property of differentiating
similar words from non-similar words. Examples
7 and 8 show that the ±4 model can detect se-
mantically similar words even with different POS
while the ±1 model yields poor results. The pairs
in 9 and 10 show that highly related, but not sub-
stitutable, words may have a strong similarity and
that the ±1 model is better at detecting them.

Our word co-occurrence models were based on
a predefined vocabulary of more than 22,000 com-
mon English words and noun phrases. We also
added to it more than 2,000 verb phrases extracted
from WordNet. The final dimensions of our word
co-occurrence matrices are 29,000× 29,000 when
words are POS tagged. Our vocabulary includes
only open-class words, i.e., nouns, verbs, adjec-

tives and adverbs. There are no proper nouns in
the vocabulary with the only exception of country
names.

Singular Value Decomposition (SVD) has been
found to be effective in improving word similar-
ity measures (Landauer and Dumais, 1997). SVD
is typically applied to a word by document matrix,
yielding the familiar LSA technique. In our case,
we apply it to our word by word matrix (Burgess et
al., 1998). Before performing SVD, we transform
the raw word co-occurrence count fij to its log fre-
quency log(fij +1). We select the 300 largest sin-
gular values and reduce the 29K word vectors to
300 dimensions. The LSA similarity between two
words is defined as the cosine similarity of their
corresponding word vectors after the SVD trans-
formation. See (Han et al., 2013b; Lushan Han,
2014) for examples and more information on the
LSA model.

Statistical word similarity measures have limi-
tations. Related words can have similarity scores
as high as what similar words get, e.g., “doctor”
and “hospital”. Word similarity is typically low
for synonyms that have many word senses since
information about different senses are mashed to-
gether (Han et al., 2013a). To address these issues,
we augment the similarity between two words us-
ing knowledge from WordNet, for example, in-
creasing the score if they are in the same WordNet
synset or if one is a direct or two link hypernym
of the other. See (Han et al., 2013b) for further
details.

2.2 Word Similarity Wrapper
Our word similarity model is restricted to the vo-
cabulary size which only comprises open class
words. For words outside of the vocabulary, we
can only rely on their lexical features and deter-
mine equivalence (which we score as 0 or 1, since
a continuous scale makes little sense in this sce-
nario). An analysis of the previous STS datasets
show that out-of-vocabulary words account for
about 25 − 45% of the total words. Datasets like
MSRpar and headlines lie on the higher end of this
spectrum due to the high volume of proper nouns.

In the previous version, we computed a charac-
ter bigram overlap score given by

characterBigramScore =
|A ∩B|
|A ∪B|

where A and B are the set of bigrams from the first
and second word respectively. We compare this
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against a preset threshold (0.8) to determine equiv-
alence. While this is reasonable for named enti-
ties, it is not the best approach for other classes.

Named Entities. The wrapper is extended to
handle all classes of named entities that are in-
cluded in Stanford CoreNLP (Finkel et al., 2005).
We use heuristic rules to compute the similarity
between two numbers or two dates. To handle
named entity mentions of people, locations and or-
ganizations, we supplement our character bigram
overlap method with the DBpedia Lookup service
(Mendes et al., 2011). For each entity mention, we
select the DBpedia entity with the most inlinks,
which serves as a good estimate of popularity or
significance (Syed et al., 2010). If the two named
entity mentions map to identical DBpedia entities,
we lower our character bigram overlap threshold
to 0.6.

OOV words. As mentioned earlier, when deal-
ing with out-of-vocabulary words, we only have
its lexical features. A straightforward approach is
to simply get more context for the word. Since
our vocabulary is limited, we need to use external
dictionaries to find the word. For our system, we
use Wordnik (Davidson, 2013), which is a compi-
lation of several dictionaries including The Amer-
ican Heritage Dictionary, Wikitionary and Word-
Net. Wordnik provides a REST API to access sev-
eral attributes for a given word such as it’s defini-
tions, examples, related words etc. For out of vo-
cabulary words, we simply retrieve the word pair’s
top definitions and supply it to our existing STS
system (UMBC, 2013a) to compute its similarity.
As a fallback, in case the word is absent even in
Wordnik, we resort to our character bigram over-
lap measure.

3 Multilingual Semantic Text Similarity

3.1 English STS
For the 2014 STS-English subtask we submitted
three runs. They all used a simple term alignment
strategy to compute sentence similarities. The first
run was an unsupervised approach that used the
basic word-similarity model for term alignment.
The next two used a supervised approach to com-
bine the scores from the first run with alignment
scores using the enhanced word-similarity wrap-
per. The two runs differed in their training.

Align and Penalize Approach. The pairingWord
run was produced by the same Align-and-Penalize

system (Han et al., 2013b) that we used in the
2013 STS task with only minor changes. The
biggest change is that we included a small list
of disjoint concepts (Han et al., 2013b) that are
used in the penalization phase, such as {piano, vi-
olin} and {dog, cat}. The disjoint concepts were
manually collected from the MSRvid dataset pro-
vided by the 2012 STS task because we still lack a
reliable general method to automatically produce
them. The list only contains 23 pairs, which can
be downloaded at (dis, 2014).

We also slightly adjusted our stopword list.
We removed a few words that appear in the trial
datasets of 2013 STS task (e.g., frame) but we did
not add any new stopwords for this year’s task. All
the changes are small and we made them only in
the hope that they can slightly improve our system.

Unlike machine learning methods that require
manually selecting an appropriate trained model
for a particular test dataset, our unsupervised
Align-and-Penalize system is applied uniformly
to all six test datasets in 2014 STS task, namely,
deft-forum, deft-news, headlines, images, OnWN
and tweet-news. It achieves the second best rank
among all submitted runs.

Supervised Machine Learning. Our second and
third runs used machine learning approaches sim-
ilar to those we developed for the 2013 STS task
but with significant changes in both pre-processing
and the features extracted.

The most significant pre-processing change was
the use of Stanford coreNLP (Finkel et al., 2005)
tool for tokenization, part-of-speech tagging and
identifying named entity mentions. For the tweet-
news dataset we also removed the hashtag symbol
(‘#’) prior to applying the Stanford tools. We use
only open class words and named entity mentions
and remove all other tokens.

We align tokens between two sentences based
on the updated word similarity wrapper that was
described in Section 2.2. We use information
content from Google word frequencies for word
weights similar to our approach last year. The
alignment process is a many-to-one mapping sim-
ilar to the Align and Penalize approach and two
tokens are only aligned if their similarity is greater
than 0.1. The sentence similarity score is then
computed as the average of the scores of their
aligned tokens. This score, along with the Align
and Penalize approach score, are used as features
to train support vector regression (SVR) models.
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We use an epsilon SVR with a radial basis kernel
function and use a grid search to get the optimal
parameter values for cost, gamma and epsilon. We
use datasets from the previous STS tasks as train-
ing data and the two submitted runs differ in the
choice of their training data.

The first approach, named Hulk, is an attempt
to use a generic model trained on a large data set.
The SVR model uses a total of 3750 sentence pairs
(1500 from MSRvid, 1500 from MSRpar and 750
from headlines) for training. Datasets like SMT
were excluded due to poor quality.

The second approach, named Super Saiyan,
is an attempt at domain specific training. For
OnWN, we used 1361 sentence pairs from previ-
ous OnWN dataset. For Images, we used 1500
sentence pairs from MSRvid dataset. The others
lacked any domain specific training data so we
used a generic training dataset comprising 5111
sentence pairs from MSRvid, MSRpar, headlines
and OnWN datasets.

3.2 Spanish STS
As a base-line for this task we first considered
translating the Spanish sentences to English and
running the same systems explained for the En-
glish Subtask (i.e., pairingWord and Hulk). The
results obtained applying this approach to the pro-
vided training data gave a correlation of 0.777 so,
we selected this approach (with some improve-
ments) for the competition.

Translating the sentences. For the automatic
translation of the sentences from Spanish to En-
glish we used the Google Translate API1, a
free, multilingual machine-translation product by
Google. Google Translate presents very accurate
translations for European languages by using sta-
tistical machine translation (Brown et al., 1990)
where the translations are generated on the basis of
statistical models derived from bilingual text cor-
pora. In fact, Google used as part of this corpora
200 billion words from United Nations documents
that are typically published in all six official UN
languages, including English and Spanish.

In the experiments performed with the trial data
we manually evaluated the quality of the trans-
lations (one of the authors is a native Spanish
speaker). The overall translation was very accu-
rate but some statistical anomalies, incorrect trans-
lations due to the abundance of a specific sense of

1http://translate.google.com

I1: Las costas o costa de un mar, lago o extenso rı́o es la
tierra a lo largo del borde de estos.

T11: Costs or the cost of a sea, lake or wide river is the
land along the edge of these.
T12: Coasts or the coast of a sea, lake or wide river is the
land along the edge of these.
T13: Coasts or the coast of a sea, lake or wide river is the
land along the border of these.
...

Figure 1: Three of the English translations for the
Spanish sentence I1.

a word in the training set, appeared.
On one hand, some homonym words are

wrongly translated. For example, the Spanish sen-
tence “Las costas o costa de un mar [...]” was
translated to “Costs or the cost of a sea [...]”.
The Spanish word costa has two different senses:
“coast” (the shore of a sea or ocean) and “‘cost”
(the property of having material worth). On the
other hand, some words are translated preserving
their semantics but with a slightly different mean-
ing. For example, the Spanish sentence “Un cojı́n
es una funda de tela [...]” was correctly translated
to “A cushion is a fabric cover [...]”. However,
the Spanish sentence “Una almohada es un cojı́n
en forma rectangular [...]” was translated to “A
pillow is a rectangular pad [...]”2.

Dealing with statistical anomalies. The afore-
mentioned problem of statistical machine transla-
tion caused a slightly adverse effect when comput-
ing the similarity of two English (translated from
Spanish) sentences with the systems explained in
Section 3.1. Therefore, we improved the direct
translation approach by taking into account the
different possible translations for each word in a
Spanish sentence. For that, our system used the in-
formation provided by the Google Translate API,
that is, all the possible translations for every word
of the sentence along with a popularity value. For
each Spanish sentence the system generates all its
possible translations by combining the different
possible translations of each word. For example,
Figure 1 shows three of the English sentences gen-
erated for a given Spanish sentence from the trial
data.

As a way of controlling the combinatorial ex-
plosion of this step, especially for long sentences,
we limited the maximum number of generated

2Notice that both Spanish sentences used the term cojı́n
that should be translated as cushion (the Spanish word for
pad is almohadilla).

419



sentences for each Spanish sentence to 20 and
we only selected words with a popularity greater
than 65. We arrived at the popularity threshold
through experimentation on every sentence in the
trial data set. After this filtering, our input for
the “news” and “wikipedia” tests went from 480
and 324 pairs of sentences to 5756 and 1776 pairs,
respectively.

Given a pair of Spanish sentences, I1
and I2, and the set of possible translations
generated by our system for each sentence,
TI1 = {T11, T12, T13, . . . , T1n} and TI2 =
{T21, T22, . . . , T2m}, we compute the similarity
between them by using the following formula:

SimSPA(I1, I2) =

n∑
i=1

m∑
j=1

SimENG(T1i, T2j)

n ∗m

where SimENG(x, y) computes the similarity of
two English sentences using our existing STS sys-
tem (Han et al., 2013b).

For the final competition we submitted three
runs. The first (Pairing in Table 3) used the
pairingWord system with the direct translation of
the Spanish sentences to English. The second
run (PairingAvg in Table 3) used the formula for
SimSPA(x, y) based on SimENG(x, y) with
the pairingWord system. Finally, the third one
(Hulk in Table 3) used the Hulk system with the
direct translation.

4 Cross Level Similarity

4.1 Sentence to Paragraph/Phrase

We used the three systems developed for the En-
glish sentence similarity subtask and described in
Section 3.1 for both the sentence to paragraph and
sentence to phrase subtasks, producing three runs.
The model for Hulk remained the same (trained
on 3750 sentence pairs from MSRvid, MSRpar
and headlines dataset) but the SuperSaiyan sys-
tem, which is the domain specific approach, used
the given train and trial text pairs (about 530) for
the respective subtasks as training to generate task
specific models.

4.2 Phrase to Word

In our initial experiments, we directly computed
the phrase-word pair similarity using our English
STS. This yielded a very low correlation of 0.239
for the training set, primarily due to the absence of
these phrases and words in our vocabulary. To ad-
dress this issue, we used external sources to obtain

more contextual information and extracted several
features.

Dictionary features. We used Wordnik as a dic-
tionary resource and retrieved definitions and us-
age examples for the word. We then used our
English STS system to measure the similarity be-
tween these and the given phrase to extract two
features.

Web search features. These features were based
on the hypothesis that if a word and phrase have
similar meanings, then a web search that combines
the word and phrase should return similar docu-
ments when compared to a web search for each
individually.

We implemented this idea by comparing results
of three search queries: the word alone, the phrase
alone, and the word and phrase together.

Using the Bing Search API (BIN, 2014), we re-
trieved the top five results for each search, indexed
them with Lucene (Hatcher et al., 2004), and ex-
tracted term frequency vectors for each of the three
search result document sets. For the phrase ’spill
the beans’ and word ’confess’, for example, we
built a Lucene index for the set of documents re-
trieved by a Bing search for ’spill the beans’, ’con-
fess’, and ’spill the beans confess’. We calculated
the similarity of pairs of search result sets using
the cosine similarity (1) of their term frequency
vectors.

CosineSimilarity =

n∑
i=1

V 1i × V 2i√
n∑

i=1

(V 1i)2 ×
√

n∑
i=1

(V 2i)2
(1)

We calculated the mean and minimum sim-
ilarity of pairs of results for the phrase and
phrase+word searches. These features were ex-
tracted from the provided training set and used in
conjunction with the dictionary features to train
an SVM regression model to predict similarity
scores.

We observed this method can be problematic
when a word or phrase has multiple meanings.
For example, ’spill the beans’ relates to ’confess-
ing’ but it is also the name of a coffee shop and
a soup shop. A mix of these pages do get re-
turned by Bing and reduces the accuracy of our re-
sults. However, we found that this technique often
strengthens evidence of similarity enough that it
improves our overall accuracy when used in com-
bination with our dictionary features.

420



Dante#n#1: an Italian poet famous for writing the
Divine Comedy that describes a journey through Hell and
purgatory and paradise guided by Virgil and his idealized
Beatrice

writer#n#1: writes books or stories or articles or the like
professionally for pay

generator#n#3: someone who originates or causes or
initiates something, “he was the generator of several
complaints”

author#v#1: be the author of, “She authored this play”

Figure 2: The WordNet sense for Dante#n#1 and
the three author#n senses.

4.3 Word to Sense

For this subtask, we used external resources to re-
trieve more contextual information. For a given
word, we retrieved its synonym set from WordNet
along with their corresponding definitions. We re-
trieved the WordNet definition for the word sense
as well. For example, given a word-sense pair
(author#n, Dante#n#1), we retrieved the synset of
author#n (writer.n.01, generator.n.03, author.v.01)
along with their WordNet definitions and the sense
definition of Dante#n#1. Figure 2 shows the
WordNet data for this example.

By pairing every combination of the word’s
synset and their corresponding definitions with the
sense’s surface form and definition, we created
four features. For each feature, we used our En-
glish STS system to compare their semantic sim-
ilarity and kept the maximum score as feature’s
value.

We found that about 10% of the training
dataset’s words fell outside of WordNet’s vocab-
ulary. Examples of missing words included many
informal or “slang” words like kegger, crackberry
and post-season. To address this, we used Word-
nik to retrieve the word’s top definition and com-
puted its similarity with the sense. This reduced
the out-of-vocabulary words to about 2% for the
training data. Wordnik thus gave us two addi-
tional features: the maximum semantic similarity
score of word-sense using Wordnik’s additional
definitions for all words and for just the out-of-
vocabulary words. We used these features to train
an SVM regression model with the provided train-
ing set to predict similarity scores.

Dataset Pairing Hulk SuperSaiyan

deft-forum 0.4711 (9) 0.4495 (15) 0.4918 (4)

deft-news 0.7628 (8) 0.7850 (1) 0.7712 (3)

headlines 0.7597 (8) 0.7571 (9) 0.7666 (2)

images 0.8013 (7) 0.7896 (10) 0.7676 (18)

OnWN 0.8745 (1) 0.7872 (18) 0.8022 (12)

tweet-news 0.7793 (2) 0.7571 (7) 0.7651 (4)

Weighted Mean 0.7605 (2) 0.7349 (6) 0.7410 (5)

Table 2: Performance of our three systems on the
six English test sets.

Dataset Pairing PairingAvg Hulk

Wikipedia 0.6682 (12) 0.7431 (6) 0.7382 (8)

News 0.7852 (12) 0.8454 (1) 0.8225 (6)

Weighted Mean 0.7380 (13) 0.8042 (2) 0.7885 (5)

Table 3: Performance of our three systems on the
two Spanish test sets.

5 Results

Multilingual Semantic Text Similarity. Table
2 shows the system performance for the English
STS task. Our best performing system ranked
second 3, behind first place by only 0.0005.
It employs an unsupervised approach with no
training data required. The supervised systems
that handled named entity recognition and out-
of-vocabulary words performed slightly better on
datasets in the news domain but still suffered from
noise due to diverse training datasets.

Table 3 shows the performance for the Spanish
subtask. The best run achieved a weighted correla-
tion of 0.804, behind first place by only 0.003. The
Hulk system was similar to the Pairing run and
used only one translation per sentence. The per-
formance boost could be attributed to large num-
ber of named entities in the News and Wikipedia
datasets.

Cross Level Similarity. Table 4 shows our per-
formance in the Cross Level Similarity tasks. The
Paragraph-Sentence and Sentence-Phrase yielded
good results (ranked second and first respectively)
with our English STS system because of sufficient
amount of textual information. The correlation
scores dropped as the granularity level of the text
got finer.

The Phrase-Word run achieved a correlation of
0.457, the highest for the subtask. However, an
incorrect file was submitted prior to the deadline

3An incorrect file for ‘deft-forum’ dataset was submitted.
The correct version had a correlation of 0.4896 instead of
0.4710. This would have placed it at rank 1 overall.
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Wordnik BingSim Score
ID S1 S2 Baseline Definitions Example Sim Avg Min SVM GS Error
Idiomatic-212 spill the beans confess 0 0 0 0.0282 0.1516 0.1266 0.5998 4.0 3.4002
Idiomatic-292 screw the pooch mess up 0 0.04553 0.0176 0.0873 0.4238 0.0687 0.7185 4.0 3.2815
Idiomatic-273 on a shoogly peg insecure 0 0.0793 0 0.0846 0.3115 0.1412 0.8830 4.0 3.1170
Slang-115 wacky tabaccy cannabis 0 0 0 0.0639 0.4960 0.1201 0.5490 4.0 3.4510
Slang-26 pray to the porcelain god vomiting 0 0 0 0.0934 0.5275 0.0999 0.6452 4.0 3.3548
Slang-79 rock and roll commence 0 0.2068 0.0720 0.0467 0.5106 0.0560 0.8820 4.0 3.1180
Newswire-160 exercising rights under canon law lawyer 0.0044 0.6864 0.0046 0.3642 0.4990 0.2402 3.5562 0.5 3.0562

Table 5: Examples where our algorithm performed poorly and the scores for individual features.

Dataset Pairing Hulk SuperSaiyan WordExpand

Para.-Sent. 0.794 (10) 0.826 (4) 0.834 (2)

Sent.-Phrase 0.704 (14) 0.705 (13) 0.777 (1)

Phrase-Word 0.457 (1)

Word-Sense 0.389 (1)

Table 4: Performance of our systems on the four
Cross-Level Subtasks.

Figure 3: Average error with respect to category.

which meant that this was not included in the of-
ficial results. Figure 3 shows the average error
(measured as the average deviation from the gold
standard) across different categories for phrase to
word subtask. Our performance is slightly worse
for slang and idiomatic categories when compared
to others which is due to two reasons: (i) the se-
mantics of idioms is not compositional, reducing
the effectiveness of a distributional similarity mea-
sure and (ii) dictionary-based features often failed
to find definitions and/or examples of idioms. Ta-
ble 5 shows some of the words where our algo-
rithm performed poorly and their scores for indi-
vidual features.

The Word-Sense run ranked first in the sub-
task with a correlation score of 0.389. Table 6
shows some of the word-sense pairs where the
system performed poorly. Our system only used
Wordnik’s top definition which was not always the
right one to use to detect the similarity. For ex-
ample, the first definition of cheese#n is “a solid
food prepared from the pressed curd of milk” but
there is a latter, less prominent one, which is

ID word sense key sense number predicted gold

80 cheese#n moolah%1:21:00:: moolah#n#1 0.78 4

377 bone#n chalk%1:07:00:: chalk#n#2 1.52 4

441 wasteoid#n drug user%1:18:00:: drug user#n#1 0.78 3

Table 6: Examples where our system performed
poorly.

“money”. A second problem is that some words,
like wasteoid#n, were absent even in Wordnik.

Using additional online lexical resources to in-
clude more slangs and idioms, like the Urban Dic-
tionary (Urb, 2014), could address these issues.
However, care must be taken since the quality of
some content is questionable. For example, the
Urban Dictionary’s first definition of “program-
mer” is “An organism capable of converting caf-
feine into code”.

6 Conclusion

We described our submissions to the Multilingual
Semantic Textual Similarity (Task 10) and Cross-
Level Semantic Similarity (Task 3) tasks for the
2014 International Workshop on Semantic Eval-
uation. Our best runs ranked second in both En-
glish and Spanish subtasks for Task 10 while rank-
ing first in Sentence-Phrase, Phrase-Word, Word-
Sense tasks and second in Paragraph-Sentence
subtasks for Task 3. Our success is attributed to
a powerful word similarity model based on LSA
word similarity and WordNet knowledge. We
used new linguistic resources like Wordnik to im-
prove our existing system for the Phrase-Word and
Word-Sense tasks and plan to include other re-
sources like “Urban dictionary” in the future.
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Abstract

This paper describes our participation in
task 7 of SemEval 2014, which focuses
on analysis of clinical text. The task is
divided into two parts: recognizing men-
tions of concepts that belong to the UMLS
(Unified Medical Language System) se-
mantic group disorders, and mapping each
disorder to a unique UMLS CUI (Concept
Unique Identifier), if possible. For identi-
fying and mapping disorders belonging to
the UMLS meta thesaurus, we explore two
tools: Metamap and T-mapper. Addition-
ally, a Named Entity Recognition system,
based on a maximum entropy model, was
implemented to identify other disorders.

1 Introduction

Clinical texts are unstructured data that, when pro-
cessed properly, can be of great value. Extracting
key information from these documents can make
medical notes more suitable for automatic pro-
cessing. It can also help diagnose patients, struc-
ture their medical histories and optimize other
clinical procedures and research.

The task of identifying mentions to medical
concepts in free text and mapping these mentions
to a knowledge base was recently proposed in
ShARe/CLEF eHealth Evaluation Lab 2013, at-
tracting the attention of several research groups
worldwide (Pradhan et al., 2013). The task 7 in
SemEval 2014 (Pradhan et al., 2014) elaborates
in that previous effort focusing on the recognition
and normalization of named entity mentions be-
longing to the UMLS semantic group disorders.

The paper is organized as follows: in section 2
we briefly present the data, section 3 contains the

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
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description of the methods and tools used in our
system. Later, on sections 4 and 5 we provide the
details of the three submitted runs and expose the
official results. Finally, sections 6 and 7 include
discussions on variations that could be done to im-
prove performance and conclusions to be drawn
from our participation in the task.

2 Data Description

The training data for SemEval 2014 Task 7 con-
sists of the ShARe (Shared Annotation Resource)
corpus, which contains clinical notes from MIMIC
II database (Multiparameter Intelligent Monito–
ring in Intensive Care). The data were manually
annotated for disorder mentions, normalized to a
UMLS Concept Unique Identifier when possible,
and marked as CUI-less otherwise.

Four types of reports where found in the cor-
pus: 61 discharge summaries, 54 ECG reports, 42
ECHO reports and 42 radiology reports, for a to-
tal of 199 training documents, each containing se–
veral disorder mentions.

3 Methods Used

3.1 Named-Entity Recognition

Using the Java libraries Apache OpenNLP1 and
Maxent2, a maximum entropy model was im-
plemented for Named Entity Recognition (NER).
Two types of classifiers were built: the first one
using the library’s default configuration, and a se–
cond one including additional features. The de-
fault model includes the following attributes: tar-
get word, two words of context at the left of the
target word, two words of context at the right of
the target word, type of token for target word (cap-
italized word, number, hyphen, commas, etc.), and
type of token for words in the context.

1http://opennlp.apache.org
2http://maxent.sourceforge.net/about.html
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For the enhanced model, we included n-grams
at character level extracted from the target word,
going from two to five characters.

OpenNLP uses the BIO tagging scheme, which
marks each token as either beginning a chunk,
continuing it, or not in a chunk, therefore, this
model cannot identify discontinuous terms. Given
this, we excluded discontinuous term annotations
from the training data, and trained the model with
the resulting corpus.

During the experiments, we also considered
POS (Part of Speech) tags obtained with the
OpenNLP library, POS tags obtained with the
Stanford Java library and the number of charac-
ters in each token. However, we decided not to
include any of these because accuracy decreased
when using them.

3.2 Weirdness Measure

According to preliminary experiments, the cho-
sen enhanced NER method exhibited low preci-
sion, i.e. a high number of false positives. To
deal with this problem we calculated a measure for
the specificity of a candidate named entity with re-
spect to a specialized corpus, this quantity is based
on the weirdness (Ahmad et al., 1999) of the can-
didate words. Having a general corpus Cg and a
specialized corpus Cs, where wg and ws refer to
the number of occurrences of a word w in each
corpus and ts and tg to the total count of words in
each corpus, the weirdness of a word is defined as
follows:

Weirdness(w) = ws
ts

/
wg

tg

Those words that are common to any domain
will very likely have a low weirdness score, while
those with a high weirdness score indicate w is not
used in the general corpus as much as in the spe-
cialized one, meaning it probably corresponds to
specialized vocabulary.

Using around 1000 books from the Guttenberg
Project as the general corpus, and the terms in
UMLS as the specialized corpus, we applied the
weirdness measure to those words that, according
to the NER model, are disorders. By keeping only
those with high weirdness measures, we prevent
our system from tagging words that are not even
medical vocabulary, thus reducing the amount of
false positives.

3.3 Metamap
For identifying and mapping disorders included
in the UMLS meta thesaurus to its corresponding
CUI, we explored two tools. Both of them find
candidates in the document and give the possible
CUIs for each; in both cases, we selected the CUI
that belongs to the UMLS semantic group disor-
ders, as specified in the task description.

The first tool we explored is Metamap. For
processing the documents, we use the following
Metamap features: allow concept gap and word
sense disambiguation.

After processing a document, the results were
filtered, keeping only those tags that were mapped
to a CUI that belongs to one of the following
UMLS semantic types: congenital abnormality,
acquired abnormality, injury or poisoning, patho-
logic function, disease or syndrome, mental or
behavioral dysfunction, cell or molecular dys-
function, experimental model of disease, anato–
mical abnormality, neoplastic process, and signs
or symptoms.

3.4 T-mapper
As an alternative to Metamap we experimented
with T-mapper3, an annotation tool developed at
MindLab4 that works in languages different than
English and with any knowledge source (i.e. not
only UMLS). The method implemented by T-
mapper is inspired by the one in Metamap, with
some modifications. The method works as fol-
lows:

1. Indexing and vocabulary generation: an in-
verted index and other data structures are
built to perform fast lookups over the dictio-
nary and the vocabulary list in Cg and Cs.

2. Sentence detection and tokenization: the in-
put text is divided into sentences and then
each sentence is divided into tokens using a
whitespace as separator.

3. Spelling correction: to deal with noise and
simple morphological variations, each token
that does not match a word within the voca–
bulary is replaced by the most frequent word
among the most similar words found above a
threshold of 0.75. The similarity is computed
using a normalized score based on the Leven-
sthein distance.

3https://github.com/lariverosc/tmapper
4http://mindlaboratory.org/
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4. Candidate generation and scoring: a subset
that contains all the terms that match at least
one of the words in the sentence is gene–
rated, the terms contained in this set are
called candidates. Once this subset is built,
each of the candidate terms is scored using
a simplified version of Metamap’s scoring
function (Aronson, 2001). In comparison, T-
mapper’s function uses only variation, cov-
erage and cohesiveness as criteria, excluding
centrality, since it is language dependant.

5. Candidate selection and disambiguation: the
score computed in the previous step is used
to choose the candidates that will be used as
mappings. Ambiguity can occur because of
two reasons: a tie in the scores or by over-
lapping over the sentence tokens. In the first
case, the Lin’s measure (Lin, 1998) is used
as disambiguation criteria between the can-
didates and the previous detected concepts.
In the second case, the most concrete term is
chosen according to the UMLS hierarchy.

4 System Submissions

The team submitted three runs. The run 0 was
intended as a baseline; run 1 used Metamap for
UMLS concept mapping and run 2 did this using
T-mapper. Both run 1 and run 2 used the enhanced
features for NER and applied the weirdness mea-
sure.

For run 0, the documents were processed with
Metamap and those concepts mapped to a CUI
belonging to one of the desired UMLS seman-
tic types were chosen. Parallel to this, the do–
cument was tagged using the default NER model.
Finally, results were merged, preferring Metamap
mapping outputs in the cases where a concept was
mapped by both tools (in an ideal scenario, all
terms mapped by Metamap would have also been
mapped by the NER model).

Run 1 differs from run 0 in two steps of the pro-
cess: the NER model included the enhanced fea-
tures described previously and its output was fil-
tered, keeping only those concepts whose weird-
ness measure exceeds 0.7. For multiword concepts
the weirdness of each word was aggregated.

Finally, run 2 was equal to run 1, with the di–
fference that T-mapper was used to map concepts
to the UMLS meta thesaurus.

Rank Run Strict P Strict R Strict F
1 best 0.843 0.786 0.813

31 2 0.561 0.534 0.547
32 1 0.578 0.515 0.545
37 0 0.321 0.565 0.409

Table 1: Official results for task A obtained by the
best system and our runs (ranked by exact acc.)

Rank Run Strict Accuracy
1 best 0.741
19 2 0.461
21 0 0.435
24 1 0.411

Table 2: Official results for task B obtained by the
best system and our runs (ranked by exact acc.)

5 Results

For both task A and B, run 2 produced the best
performance among our systems. In Table 1 the re-
sults of the three runs are presented, together with
the information of the system with the best perfor-
mance among all participating teams (labeled as
best). The position in the ranking is from a total
of 43 submitted systems. Table 2 shows analogous
results for Task B, where 37 systems were submit-
ted.

Even though the official ranking is based on the
strict accuracy, which only considers a tag to be
correct if it matches exactly both the first and last
characters, a relaxed accuracy is also provided by
the organizers. This second scoring measure con-
siders a tag to be correct if it has an overlap with
the actual one. Tables 3 and 4 show these results.

In both tables 1 and 3, P stands for Precision, R
for Recall, and F for F-score. The ranking is based
on the F-score.

6 Discussion

The system that gave the best results for both tasks
was the one based on T-mapper. Certain features

Rank Run Relax P Relax R Relax F
1 best 0.916 0.907 0.911
35 2 0.769 0.677 0.720
37 1 0.777 0.654 0.710
40 0 0.439 0.725 0.547

Table 3: Official results for task A obtained by the
best system and our runs (ranked by relaxed acc.)
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Rank Run Relaxed Accuracy
1 best 0.928
11 2 0.863
19 0 0.797
21 1 0.771

Table 4: Official results for task B obtained by the
best system and our runs (ranked by relaxed acc.)

of this tool make this finding particularly inte–
resting: it works for any language and ontology,
and it is considerably faster than Metamap. While
Metamap took 581 minutes to tag 133 documents,
T-mapper only required 96 minutes (133 is the
number of documents in the test set).

One aspect that might have damaged the per-
formance of our system is the fact that, unlike
most of the teams, we did not use the develop-
ment data for training. However, there are still
a number of changes that could be made, which
would very likely improve the accuracy of our sys-
tem. First, the tokenizer used for the NER model
and for T-mapper were too simple. Separation was
done based on blank spaces, therefore slashes, cer-
tain punctuation marks and hyphens might not be
treated properly.

In addition to this, the spell checker used by T-
mapper also needs to be improved. Currently, it
gives a ranked list of options for each word that
should be replaced, and automatically chooses the
first one in the ranking. However, the best match
is often the second or third in the list. Changing
the criteria used to choose the replacement, taking
into account word sense disambiguation, would
enhance the accuracy of T-mapper.

The weirdness measure is also something that
should be reconsidered, since it would be inte–
resting to use a metric that responds better to un-
seen terms. And in case this was still the chosen
measure, other training corpora could work better,
since an ontology might lack words that are cur-
rently used in a medical context but do not have
a CUI, and it also fails to give a notion of which
words are more frequently used than others. It is
not easy, however, to replace UMLS as corpus,
since it is not easy to compete with its size and
richness.

Finally, the OpenNLP NER system does not
recognize discontinuous terms. Therefore, no
CUI-less term with a gap can currently be iden-
tified by the system. For this reason, the NER

method should be changed to one that allows this
type of mentions to be present in texts.

For Task B, it is very interesting to see the di–
fference between the strict and relaxed evaluation
rankings. We go from being in position 19 to being
in position 11. This might be partially explained
by some of the flaws previously mentioned; in par-
ticular, the weak tokenizer and the incapability to
identify CUI-less terms with gaps.

7 Conclusion

We participated with three runs in the Semeval
2014 task for analysis of clinical texts. Even
though the performance of our runs indicates they
still need to be enhanced in order to be com–
petitive in this specific task, the performance of
the run based on T-mapper compared to that of the
ones that use Metamap proves that T-mapper is a
viable alternative for mapping concepts to clinical
terminologies. Moreover, T-mapper should also be
considered for cases in which Metamap cannot be
used: languages other than English and terminolo-
gies other than UMLS.
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Abstract

This paper describes the NILC USP sys-
tem that participated in SemEval-2014
Task 9: Sentiment Analysis in Twitter, a
re-run of the SemEval 2013 task under the
same name. Our system is an improved
version of the system that participated in
the 2013 task. This system adopts a hybrid
classification process that uses three clas-
sification approaches: rule-based, lexicon-
based and machine learning. We sug-
gest a pipeline architecture that extracts
the best characteristics from each classi-
fier. In this work, we want to verify how
this hybrid approach would improve with
better classifiers. The improved system
achieved an F-score of 65.39% in the Twit-
ter message-level subtask for 2013 dataset
(+ 9.08% of improvement) and 63.94% for
2014 dataset.

1 Introduction

Twitter is an important platform of social com-
munication. The analysis of the Twitter messages
(tweets) offers a new possibility to understand so-
cial behavior. Understanding the sentiment con-
tained in such messages showed to be very impor-
tant to understand user behavior and also to as-
sist market analysis (Java et al., 2007; Kwak et al.,
2010).

Sentiment analysis, the area in charge of study-
ing how sentiments and opinions are expressed in
texts, is usually associated with text classification

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
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tasks. Sentiment classifiers are commonly cate-
gorized in two basic approaches: lexicon-based
and machine learning approaches (Taboada et al.,
2011). A lexicon-based classifier uses a lexicon
to provide the polarity, or semantic orientation, of
each word or phrase in the text. A machine learn-
ing classifier uses features (usually the vocabulary
in the texts) obtained from labeled examples to
classify the texts according to their polarity.

In this paper, we present a hybrid system for
sentiment classification in Twitter messages. Our
system combines the lexicon-based and machine
learning approaches, as well as uses simple rules
to aid in the process. Our system participated in
SemEval-2014 Task 9: Sentiment Analysis in Twit-
ter (Rosenthal et al., 2014), a re-run for the Se-
mEval 2013 task under the same name (Nakov et
al., 2013). The task goal was to determine the sen-
timent contained in tweets. The task included two
sub-tasks: a expression-level classification (Task
A) and a message-level classification (Task B).
Our system participated only in Task B, where, for
a given message, it should classify it as positive,
negative, or neutral.

The system presented is an improved version of
the system submitted for Semeval 2013. Our pre-
vious system had demonstrated that a hybrid ap-
proach could achieve good results (F-measure of
56.31%), even if we did not use the state-of-the-
art algorithms for each approach (Balage Filho and
Pardo, 2013). In this way, this work aims to ver-
ify how much this hybrid system could improve in
relation to the previous one by including modifica-
tions on both lexicon-based and machine learning
approaches.
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2 Related work

The analysis of Tweets has gained lots of interest
recently. One evidence is the expressive number
of participants in the SemEval-2013 Task 2: Sen-
timent Analysis in Twitter (Nakov et al., 2013).
There were a total of 149 submissions from 44
teams. The best performing system on twitter
dataset for task B was reported by Mohammad et
al. (2013) with an F-mesaure of 69.02%. Their
system used a machine learning approach and a
very rich feature set. They showed that the best
results were achieved using a built-in positive and
negative lexicon and a bag-of-words as features.

Other important system in Semeval 2013 was
reported by Malandrakis et al. (2013). The authors
presented a hybrid system for twitter sentiment
analysis combining two approaches: a hierarchi-
cal model based on an affective lexicon and a lan-
guage modeling approach. The system achieved
an F-mesaure of 60.14%.

Most work in sentiment analysis uses either ma-
chine learning or lexicon-based techniques. How-
ever, few studies have shown promising results
with the hybrid approach. König and Brill (2006)
proposed a hybrid classifier that uses human rea-
soning over automatically discovered text patterns
to complement machine learning. Prabowo and
Thelwall (2009) evaluated the effectiveness of dif-
ferent classifiers. Their study showed that the use
of multiple classifiers in a hybrid manner could
improve the effectiveness of sentiment analysis.

3 System Architecture

Our system is described as a pipeline solution of
four main processes: normalization, rule-based
classification, lexicon-based classification and ma-
chine learning classification. This is the same ar-
chitecture presented by our system in 2013.

This pipeline architecture works as a back-off
model. In this model, each classifier tries to clas-
sify the tweets by using the underlying approach.
If a certain degree of confidence is achieved, the
classifier will provide the final sentiment class for
the message. Otherwise, the next classifier will
continue the classification task. The last possibil-
ity is the machine learning classifier, responsible
to deliver the class when the previous two could
not achieve the confidence level. We decided to
use this back-off model instead of a voting system,
for example, due to the high precision achieved for
the rule-based and the lexicon-based classifiers.

The aim of this pipeline architecture is to im-
prove the classification process. In Balage Filho
and Pardo (2013), we have shown that this hybrid
classification approach may outperform the indi-
vidual approaches.

In the following subsections, we detail the com-
ponents of our system. In the next section, we ex-
plain how the confidence level was determined.

3.1 Normalization and Rule-based Classifier

The normalization module is responsible for nor-
malizing and tagging the texts. This module per-
forms the following operations:

• Hashtags, urls and mentions are transformed
into codes;

• Emoticons are grouped into representative
categories (such as ’happy’, ’sad’, ’laugh’)
and are converted to particular codes;

• Part-of-speech tagging is performed by using
the Ark-twitter NLP (Owoputi et al., 2013)

The rule-based classifier is designed to provide
rules that better impact the precision than the re-
call. In our 2014 system, we decided to use the
same rule-based classifier from the 2013 system.
The rules in this classifier only verify the pres-
ence of emoticons in the text. Empirically, we
evidenced that the use of emoticons indicates the
actual polarity of the message. In this module,
we consider the number of positive and negative
emoticons found in the text to determine its clas-
sification.

3.2 Lexicon-based Classifier

The lexicon-based classifier is based on the idea
that the polarity of a text can be given by the sum
of the individual polarity values of each word or
phrase present in the text. For this, a sentiment lex-
icon identifies polarity words and assigns polarity
values to them (known as semantic orientations).

In the 2013 system, we had used SentiStrength
lexicon (Thelwall et al., 2010). In 2014, we
improved our lexicon-based classifier by using
a larger sentiment lexicon. We used the senti-
ment lexicon provided by Opinion-Lexicon (Hu
and Liu, 2004) and a list of sentiment hashtags
provided by the NRC Hashtag Sentiment Lexicon
(Mohammad et al., 2013). For dealing with nega-
tion, we used a handcrafted list of negative words.
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In our algorithm, the semantic orientations of
each individual word in the text are added up.
In this approach, the algorithm searches for each
word in the lexicon and only the words that were
found are returned. We associate the value +1 to
the positive words, and -1 to the negative words.
If a polarity word is negated, its value is inverted.
This lexicon-based classifier assumes the signal of
the final score as the sentiment class (positive or
negative) and the score zero as neutral.

3.3 Machine Learning Classifier
The machine learning classifier uses labeled ex-
amples to learn how to classify new instances.
The features used for this 2014 system were com-
pletely changed from 2013 system. We inspired
our machine learning module in the work reported
by Mohammad et al. (2013). The features used by
the classifier are:

1. unigrams, bigrams and trigrams

2. the presence of negation

3. the presence of three or more characters in
the words

4. the sequence of three or more punctuation
marks

5. the number of words with all letters in upper-
case

6. the total number of each tag present in the
text

7. the number of positive words computed by
the lexicon-based method

8. the number of negative words computed by
the lexicon-based method

We use a Linear Kernel SVM classifier provided
by the python sckit-learn library with C=0.0051.

4 Hybrid Approach and Tuning

The organization from SemEval-2014 Task 9: Sen-
timent Analysis in Twitter provided four datasets
for the task: a training dataset (TrainSet) with
9675 messages directly retrieved from Twitter; a
development dataset (DevSet), with 1654 mes-
sages; the testing dataset from 2013 run, which
was not used; and the testing dataset for 2014

1Available at http://scikit-learn.org/

with 8987 messages. The 2014 testing dataset was
composed of 5 different sources:

• Twitter2013: Twitter test data from 2013 run

• SMS2013: SMS test data from 2013 run

• Twitter2014: 2000 tweets

• LiveJournal2014: 2000 sentences from Live-
Journal blogs

• Twitter2014Sarcasm: 100 tweets that contain
sarcasm

As we said in the previous section, our system is
a pipeline of classifiers where each classifier may
assign a sentiment class if it achieves a particu-
lar confidence threshold score. This confidence
score is a fixed value set for each system in or-
der to have a decision boundary. This decision
was made by inspecting the results obtained for the
development set. Tables 1 and 2 shows how the
rule-based and lexicon-based classifiers perform
for the development dataset in terms of score. The
score obtained by the rule-based classifier consists
of the difference between the number of positive
emoticons and the number of negative emoticons
found in the messages. The score obtained by the
lexicon-based classifier represents the total seman-
tic orientation obtained by the algorithm by adding
up the semantic orientation for their lexicon.

Inspecting Table 1, for the best threshold, we
adjusted the rule-based classifier boundary to de-
cide when the score is different from zero. For
values greater than zero, the classifier will assign
the positive class and, for values below zero, the
classifier will assign the negative class. For values
equal to zero, the classifier will call the lexicon-
based classifier.

Table 1: Correlation between the rule-based clas-
sifier scores and the gold standard classes in the
DevSet

Rule-based Gold Standard Class
classifier score Negative Neutral Positive

-1 22 3 3
0 311 709 495
1 7 26 73
2 0 0 2

3 to 6 0 1 2

Inspecting Table 2, for the best threshold, we
adjusted the lexicon-based classifier to assign the
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positive class when the total score is greater than
1 and negative class when the total score is below
-2. For any other values, the classifier will call the
machine learning classifier.

Table 2: Correlation between the lexicon-based
classifier score and the gold standard classes in the
devset

Lexicon-based Gold Standard Class
classifier scores Negative Neutral Positive

-7 to -4 2 0 0
-3 10 4 0
-2 48 18 7
-1 111 99 35
0 108 432 178
1 48 143 210
2 11 39 104

3 to 5 3 4 47

As the machine learning classifier is responsible
for the final stage, we did not have to decide any
threshold for this classifier. However, we empiri-
cally identified a bias toward the positive class (the
negative class was barely chosen). In order to cor-
rect this problem, we setup the machine learning
classifier to decide for the negative class whenever
the SVM score for this class is bigger than -0.4.
Next section shows the results achieved for the Se-
meval test dataset.

5 Results

Table 3 shows the results obtained by each individ-
ual classifier and by the hybrid classifier for the
Twitter2014 messages in the testset. In the task,
the systems were evaluated with the average F-
score obtained for positive and negative classes.

Table 3: Average F-score (positive and negative)
obtained by each classifier and the hybrid ap-
proach for the Twitter2014 testset

Classifier Twitter2014 Testset
Rule-based 14.03
Lexicon-Based 47.55
Machine Learning 63.36
Hybrid Approach 63.94

Table 4 shows the improvement of the system
over the 2013 run. Unlike last year, we notice that
the performance of this hybrid system is very close
to the performance of the machine-learning.

Table 4: Comparison of the average F-score (pos-
itive and negative) obtained by each classifier and
the hybrid approach for the Twitter2013 testset for
2013 and 2014 versions

Classifier 2013 system 2014 system
Rule-based 14.37 13.31
Lexicon-Based 44.87 46.80
Machine Learning 49.99 63.75
Hybrid Approach 56.31 65.39

Table 5 shows the scores for each source in the
testset. Last column shows our system rank among
the 50 systems that participated in the competition.
For the entire testing dataset, our algorithm had
503 (5%) examples classified by the rule-based
classifier, 3204 (36%) by the lexicon-based classi-
fier and 5280 (59%) by the machine learning clas-
sifier.

6 Conclusion

We described our improved hybrid classification
system used for Semeval-2014 Task 9: Sentiment
Analysis in Twitter. This work showed that this
hybrid classifier can be improved as its modules
are too. However, we noticed that, improving the
lexicon and machine learning modules, the overall
score tends towards the machine learning score.

The source code produced for the experiment is
available at https://github.com/pedrobalage.
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Abstract

This paper details the system NILC USP
that participated in the Semeval 2014: As-
pect Based Sentiment Analysis task. This
system uses a Conditional Random Field
(CRF) algorithm for extracting the aspects
mentioned in the text. Our work added se-
mantic labels into a basic feature set for
measuring the efficiency of those for as-
pect extraction. We used the semantic
roles and the highest verb frame as fea-
tures for the machine learning. Overall,
our results demonstrated that the system
could not improve with the use of this se-
mantic information, but its precision was
increased.

1 Introduction

Sentiment analysis, or opinion mining, has gained
lots of attention lately. The importance of this
field of study is linked with the grown of informa-
tion in the internet and the commercial attention it
brought.

According to Liu et al. (2010), there are two
kinds of information available in the internet: facts
and opinions. Facts are objective statements about
entities and events in the world. Opinions are sub-
jective statements that reflect people’s sentiments
or perceptions about the entities and events. Ac-
cording to Liu, by that time, there was a lot of at-
tention on the processing of facts but little work
had been done on the processing of opinions.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

Three levels of analysis for sentiment analysis
are known (Liu, 2012): document level, sentence
level and aspect level. The aspect-based sentiment
analysis is the name of the research topic that aims
to extract the sentiments about the aspects present
in the text.

This work presents a system evaluated in the
SemEval Task4: Aspect Based Sentiment Analy-
sis shared task (Pontiki et al., 2014). Our system
participated only in subtask 1: Aspect Term Ex-
traction. In this subtask, given a text, the system
should extract all aspects that are present. There
were two different domains for this task: restau-
rants and laptops.

The goal of our system was to verify how se-
mantic labels used in machine learning classifica-
tion would improve the aspect extraction task. For
this goal, we used two kinds of semantic labels:
the semantic roles (Palmer et al., 2010) and the se-
mantic frames (Baker et al., 1998).

Liu et al. (2012) categorizes the works for as-
pect extraction in four types, regarding the ap-
proach they follow, using: frequent terms, infre-
quent terms, machine learning, and topic model-
ing. This work uses a machine learning approach
that consists in training a sequential labeling algo-
rithm for aspect detection and extraction.

In what follows, we present some related work
in Section 2. Section 3 and 4 introduce our system
and report the achieved results. Some conclusions
are presented in Section 5.

2 Related work

Jin and Hovy (2009) reported one the first works
using sequential labeling for aspect extraction. In
this work, the authors used a Lexicalized Hidden
Markov Model to learn patterns to extract aspects
and opinions. Jakob and Gurevych (2010) trained
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a Conditional Random Field for aspect extraction.
In this work, the authors report the results for a sin-
gle domain and a cross domain experiment. They
show that even in other domains the method could
be good.

Kim and Hovy (2006) explored the semantic
structure of a sentence, anchored to an opinion
bearing verb or adjective. Their method uses se-
mantic role labeling as an intermediate step to la-
bel an opinion holder and topic using data from
FrameNet.

Houen (2011) presented a system for opinion
mining with semantic analysis. The author ex-
plores the use of the semantic frame-based ana-
lyzer FrameNet (Baker et al., 1998) for modeling
features in a machine learning approach. The au-
thor found that the FrameNet information was not
helpful in this classifier.

3 System Description

Our system uses a sequential labeling algorithm.
In our work, we use the Conditional Random Field
(Lafferty et al., 2001) algorithm provided by the
CRF++ tool1.

For training the sequential labeling algorithm,
we give as input features for each word in the cor-
pus. The algorithm will then learn how to classify
those words. In our approach, the possible classes
are: True, representing an aspect word; and False,
representing the remaining words.

The goal of our system was to evaluate the per-
formance of the semantic labels for the task. In
order to model our system, we built a feature set
consisting of 6 features.

1. the word

2. the part-of-speech

3. the chunk

4. the named-entity category

5. the semantic role label (SRL)

6. the most generic frame in FrameNet

The use of the first four features is consistent
with the best approaches in aspect-based senti-
ment analysis. The last two features are the ones
we are testing in our work.

In order to extract the features, we used two im-
portant tools: the Senna (Collobert et al., 2011), a

1Available at http://crfpp.googlecode.com/

semantic role labeling system, and the ARK SE-
MAFOR, a Semantic Analyzer of Frame Repre-
sentations (Das et al., 2010).

The Senna system uses a deep learning neural
network (Collobert, 2011) to provide several pre-
dictions for natural language processing. The sys-
tem output is represented in the CONLL format,
the same used in CRF++.

Our first 5 features were directly provided by
the Senna output. In these features, we decided to
keep the IOBE information since the initial exper-
iments showed the results were better with it than
without.

Our fifth feature, the semantic role label, was
retrieved from Senna as well. In the corresponding
paper, they reported Senna could achieve a F1 of
75% for the SRL task.

The example below shows how the features
were represented. In this example, we are only
showing four features: the word, the part-of-
speech, the chunk and the SRL. The classes are
in the last column.

WORD POS CHUNK SRL IS_ASPECT?
Great JJ B-NP B-A0 False
laptop NN E-NP E-A0 False
that WDT S-NP S-R-A0 False
offers VBZ S-VP S-V False
many JJ B-NP B-A1 False
great JJ I-NP I-A1 False
features NNS E-NP E-A1 True
! . O - False

The last feature was retrieved by ARK SE-
MAFOR tool. ARK SEMAFOR uses a probabilis-
tic frame-semantic parsing using the FrameNet re-
source. The ARK SEMAFOR output is the anal-
ysis of the frames present in the text for a given
verb. As our feature set has only word related fea-
tures, we decided to use the most upper level struc-
ture in the frame. In case of multiple verbs in the
sentence, we used the structure for the verb that is
closest to the word of interest.

The following example shows how the frames
were added into the training model. We limit to
show only the word, frame and the class. For train-
ing, we used the full training set with the six fea-
tures plus the class.

WORD FRAME IS_ASPECT?
I Shopping False
shopped Shopping False
around Relational_quantity False
before Relational_quantity False
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buying Relational_quantity False
. O False

The organization from SemEval-2014 Task 4:
Aspect Based Sentiment Analysis provided two
domains for evaluation: restaurants and laptops.
For each domain, the organization provided three
datasets: a trainset, a devset and a testset.

We executed our algorithm with C pa-
rameter equal to 4.0. The experiment
code is fully available at the weblink
https://github.com/pedrobalage/

4 Results

Tables 1 and 2 show our system results for the
restaurants and laptops domains respectively. In
these tables, the results are discriminated by the
feature sets that were used. The reader may see
that a “+ Frame” system, for example, stands for
all the features discriminated above (Word, POS,
Chunk, NR, SRL) plus the Frame feature. The last
line shows the results scored by our system in the
SemEval shared task with all the features. We also
show the results for the baseline system provided
by the shared task (Pontiki et al., 2014).

Table 1: Results for restaurants domain
System Precision Recall F1-mesaure
Baseline 52.54 42.76 47.15
Word + POS 83.76 68.69 75.48
+ Chunk 83.38 68.16 75.01
+ NE 83.45 68.07 74.98
+ SRL 82.79 67.46 74.34
+ Frame 87.72 34.03 49.04

Table 2: Results for laptops domain
System Precision Recall F1-mesaure
Baseline 44.31 29.81 35.64
Word + POS 80.87 39.44 53.03
+ Chunk 78.83 39.29 52.44
+ NE 79.93 39.60 52.96
+ SRL 78.22 38.99 52.04
+ Frame 83.62 14.83 25.19

Comparing with the baseline, we may noticed
that our submitted system (+Frame) outperformed
the baseline for the restaurants domain but it did
not outperformed the baseline for the laptops do-
main (considering F1 mesaure).

When we look in detail for the inclusion of fea-
tures in our feature set, we may notice that, at ev-

ery new feature, the precision goes up, but the re-
call goes down. We believe this is due to the be-
haviour of the conditional random field algorithm
for compensating for a sparser feature set.

In general, the semantic labels (SRL and Frame)
could not improve the results. However, if we
are interested only on precision, these features are
helpful. This may be the case in scenarios where a
lot of information is available, as in the web, and
we want to be sure about the retrieved informa-
tion. Certainly, there is a conflict between preci-
sion and computational complexity, since the se-
mantic features are more expensive to be achieved
(in relation to the usual simpler features that may
be used).

Despite of that, we judge to be necessary to con-
duct more experiments in order to better evaluate
the impact of semantic labels in the aspect extrac-
tion task.

5 Conclusion

We presented an aspect extraction system built on
a conditional random field algorithm. We used
a rich feature set with the semantic roles and
the FrameNet upper frames for each word. We
have showed that the semantic labels may help to
achieve a more precise classifier, but it did not help
to improve the overall F-measure of the system.

Regarding the shared task, our system achieved
the second best precision value among the com-
peting systems, but the lowest recall value. Future
work should investigate ways of also improving
recall without penalty for the achieved precision.
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Abstract
Reviews depict sentiments of customers
towards various aspects of a product or
service. Some of these aspects can be
grouped into coarser aspect categories.
SemEval-2014 had a shared task (Task 4)
on aspect-level sentiment analysis, with
over 30 teams participated. In this pa-
per, we describe our submissions, which
stood first in detecting aspect categories,
first in detecting sentiment towards aspect
categories, third in detecting aspect terms,
and first and second in detecting senti-
ment towards aspect terms in the laptop
and restaurant domains, respectively.

1 Introduction

Automatically identifying sentiment expressed in
text has a number of applications, including track-
ing sentiment towards products, movies, politi-
cians, etc.; improving customer relation models;
and detecting happiness and well-being. In many
applications, it is important to associate sentiment
with a particular entity or an aspect of an entity.
For example, in reviews, customers might express
different sentiment towards various aspects of a
product or service they have availed. Consider:

The lasagna was great, but the service
was a bit slow.

The review is for a restaurant, and we can gather
from it that the customer has a positive sentiment
towards the lasagna they serve, but a negative sen-
timent towards the service.

The SemEval-2014 Task 4 (Aspect Based Sen-
timent Analysis) is a shared task where given a
customer review, automatic systems are to deter-
mine aspect terms, aspect categories, and senti-
ment towards these aspect terms and categories.
An aspect term is defined to be an explicit men-
tion of a feature or component of the target prod-
uct or service. The example sentence above has

Restaurants Laptops
Term T-Sent. Cat. C-Sent. Term T-Sent.

3 2 1 1 3 1

Table 1: Rank obtained by NRC-Canada in vari-
ous subtasks of SemEval-2014 Task 4.

the aspect term lasagna. Similar aspect terms can
be grouped into aspect categories. For example,
lasagna and other food items can be grouped into
the aspect category of ‘food’. In Task 4, customer
reviews are provided for two domains: restaurants
and laptops. A fixed set of five aspect categories
is defined for the restaurant domain: food, ser-
vice, price, ambiance, and anecdotes. Automatic
systems are to determine if any of those aspect
categories are described in a review. The exam-
ple sentence above describes the aspect categories
of food (positive sentiment) and service (negative
sentiment). For the laptop reviews, there is no as-
pect category detection subtask. Further details of
the task and data can be found in the task descrip-
tion paper (Pontiki et al., 2014).

We present an in-house sequence tagger to de-
tect aspect terms and supervised classifiers to de-
tect aspect categories, sentiment towards aspect
terms, and sentiment towards aspect categories. A
summary of the ranks obtained by our submissions
to the shared task is provided in Table 1.

2 Lexical Resources

2.1 Unlabeled Reviews Corpora

Apart from the training data provided for Task 4,
we compiled large corpora of reviews for restau-
rants and laptops that were not labeled for aspect
terms, aspect categories, or sentiment. We gen-
erated lexicons from these corpora and used them
as a source of additional features in our machine
learning systems.
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Yelp restaurant reviews corpus: The Yelp
Phoenix Academic Dataset1 contains customer re-
views posted on the Yelp website. The businesses
for which the reviews are posted are classified into
over 500 categories. Further, many of the busi-
nesses are assigned multiple business categories.
We identified all food-related business categories
(58 categories) that were grouped along with the
category ‘restaurant’ and extracted all customer
reviews for these categories. We will refer to this
corpus of 183,935 reviews as the Yelp restaurant
reviews corpus.

Amazon laptop reviews corpus: McAuley and
Leskovec (2013) collected reviews posted on
Amazon.com from June 1995 to March 2013. A
subset of this corpus is marked as reviews for elec-
tronic products. We extracted from this subset all
reviews that mention either laptop or notebook.
We will refer to this collection of 124,712 reviews
as the Amazon laptop reviews corpus.

Both the Yelp and the Amazon reviews have one
to five star ratings associated with each review. We
treated the one- and two-star reviews as negative
reviews, and the four- and five-star reviews as pos-
itive reviews.

2.2 Lexicons
Sentiment Lexicons: From the Yelp restaurant
reviews corpus, we automatically created an in-
domain sentiment lexicon for restaurants. Follow-
ing Turney and Littman (2003) and Mohammad
et al. (2013), we calculated a sentiment score for
each term w in the corpus:

score (w) = PMI (w , pos)−PMI (w ,neg) (1)

where pos denotes positive reviews and neg de-
notes negative reviews. PMI stands for pointwise
mutual information:

PMI (w , pos) = log2
freq (w , pos) ∗N

freq (w) ∗ freq (pos)
(2)

where freq (w, pos) is the number of times a term
w occurs in positive reviews, freq (w) is the to-
tal frequency of term w in the corpus, freq (pos)
is the total number of tokens in positive reviews,
and N is the total number of tokens in the cor-
pus. PMI (w ,neg) was calculated in a similar
way. Since PMI is known to be a poor estima-
tor of association for low-frequency events, we ig-
nored terms that occurred less than five times in
each (positive and negative) groups of reviews.

1http://www.yelp.com/dataset_challenge

A positive sentiment score indicates a greater
overall association with positive sentiment,
whereas a negative score indicates a greater asso-
ciation with negative sentiment. The magnitude is
indicative of the degree of association.

Negation words (e.g., not, never) can signifi-
cantly affect the sentiment of an expression (Zhu
et al., 2014). Therefore, when generating the sen-
timent lexicons we distinguished terms appearing
in negated contexts (defined as text spans between
a negation word and a punctuation mark) and af-
firmative (non-negated) contexts. The sentiment
scores were then calculated separately for the two
types of contexts. For example, the term good in
affirmative contexts has a sentiment score of 1.2
whereas the same term in negated contexts has a
score of -1.4. We built two lexicons, Yelp Restau-
rant Sentiment AffLex and Yelp Restaurant Senti-
ment NegLex, as described in (Kiritchenko et al.,
2014).

Similarly, we generated in-domain sentiment
lexicons from the Amazon laptop reviews corpus.

In addition, we employed existing out-of-
domain sentiment lexicons: (1) large-coverage au-
tomatic tweet sentiment lexicons, Hashtag Sen-
timent lexicons and Sentiment140 lexicons (Kir-
itchenko et al., 2014), and (2) three manually cre-
ated sentiment lexicons, NRC Emotion Lexicon
(Mohammad and Turney, 2010), Bing Liu’s Lex-
icon (Hu and Liu, 2004), and the MPQA Subjec-
tivity Lexicon (Wilson et al., 2005).

Yelp Restaurant Word–Aspect Association
Lexicon: The Yelp restaurant reviews corpus was
also used to generate a lexicon of terms associated
with the aspect categories of food, price, service,
ambiance, and anecdotes. Each sentence of the
corpus was labeled with zero, one, or more of the
five aspect categories by our aspect category clas-
sification system (described in Section 5). Then,
for each term w and each category c an associa-
tion score was calculated as follows:

score (w , c) = PMI (w , c)− PMI (w ,¬c) (3)

2.3 Word Clusters

Word clusters can provide an alternative represen-
tation of text, significantly reducing the sparsity
of the token space. Using Brown clustering algo-
rithm (Brown et al., 1992), we generated 1,000
word clusters from the Yelp restaurant reviews
corpus. Additionally, we used publicly available
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word clusters generated from 56 million English-
language tweets (Owoputi et al., 2013).

3 Subtask 1: Aspect Term Extraction

The objective of this subtask is to detect aspect
terms in sentences. We approached this problem
using in-house entity-recognition software, very
similar to the system used by de Bruijn et al.
(2011) to detect medical concepts. First, sen-
tences were tokenized to split away punctuation,
and then the token sequence was tagged using a
semi-Markov tagger (Sarawagi and Cohen, 2004).
The tagger had two possible tags: O for outside,
and T for aspect term, where an aspect term could
tag a phrase of up to 5 consecutive tokens. The
tagger was trained using the structured Passive-
Aggressive (PA) algorithm with a maximum step-
size of C = 1 (Crammer et al., 2006).

Our features can be divided into two categories:
emission and transition features. Emission fea-
tures couple the tag sequence y to the input w.
Most of these work on the token level, and con-
join features of each token with the tag covering
that token. If a token is the first or last token cov-
ered by a tag, then we produce a second copy of
each of its features to indicate its special position.
Let wi be the token being tagged; its token fea-
ture templates are: token-identity within a win-
dow (wi−2 . . . wi+2), lower-cased token-identity
within a window (lc(wi−2) . . . lc(wi+2)), and pre-
fixes and suffixes of wi (up to 3 characters in
length). There are only two phrase-level emission
feature templates: the cased and uncased identity
of the entire phrase covered by a tag, which al-
low the system to memorize complete terms such
as, “getting a table” or “fish and chips.” Transi-
tion features couple tags with tags. Let the cur-
rent tag be yj . Its transition feature templates are
short n-grams of tag identities: yj ; yj , yj−1; and
yj , yj−1, yj−2.

During development, we experimented with the
training algorithm, trying both PA and the simpler
structured perceptron (Collins, 2002). We also
added the lowercased back-off features. In Ta-
ble 2, we re-test these design decisions on the test
set, revealing that lower-cased back-off features
made a strong contribution, while PA training was
perhaps not as important. Our complete system
achieved an F1-score of 80.19 on the restaurant
domain and 68.57 on the laptop domain, ranking
third among 24 teams in both.

Restaurants
System P R F1
NRC-Canada (All) 84.41 76.37 80.19
All − lower-casing 83.68 75.49 79.37
All − PA + percep 83.37 76.45 79.76

Laptops
System P R F1
NRC-Canada (All) 78.77 60.70 68.57
All − lower-casing 78.11 60.55 68.22
All − PA + percep 77.76 61.47 68.66

Table 2: Test set ablation experiments for Sub-
task 1: Aspect Term Detection.

4 Subtask 2: Aspect Term Polarity

In this subtask, the goal is to detect sentiment ex-
pressed towards a given aspect term. For example,
in sentence “The asian salad is barely eatable.” the
aspect term asian salad is referred to with negative
sentiment. There were defined four categories of
sentiment: positive, negative, neutral, or conflict.
The conflict category is assigned to cases where
an aspect term is mentioned with both positive and
negative sentiment.

To address this multi-class classification prob-
lem, we trained a linear SVM classifier using
the LibSVM software (Chang and Lin, 2011).
Sentences were first tokenized and parsed with
the Stanford CoreNLP toolkits2 to obtain part-of-
speech (POS) tags and (collapsed) typed depen-
dency parse trees (de Marneffe et al., 2006). Then,
features were extracted from (1) the target term it-
self; (2) its surface context, i.e., a window of n
words surrounding the term; (3) the parse context,
i.e., the nodes in the parse tree that are connected
to the target term by at most three edges.

Surface features: (1) unigrams (single words)
and bigrams (2-word sequences) extracted from a
term and its surface context; (2) context-target bi-
grams (i.e., bigrams formed by a word from the
surface context and a word from the term itself).

Lexicon features: (1) the number of posi-
tive/negative tokens; (2) the sum of the tokens’
sentiment scores; (3) the maximal sentiment score.
The lexicon features were calculated for each
manually and automatically created sentiment lex-
icons described in Section 2.2.

Parse features: (1) word- and POS-ngrams in

2http://nlp.stanford.edu/software/corenlp.shtml
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Laptops Rest.
System Acc. Acc.
NRC-Canada (All) 70.49 80.16
All − sentiment lexicons 63.61 77.13

All − Yelp lexicons 68.65 77.85
All − Amazon lex. 68.13 80.11
All − manual lexicons 67.43 78.66
All − tweet lexicons 69.11 78.57

All − parse features 69.42 78.40

Table 3: Test set ablation experiments for Sub-
task 2: Aspect Term Polarity.

the parse context; (2) context-target bigrams, i.e.,
bigrams composed of a word from the parse con-
text and a word from the term; (3) all paths that
start or end with the root of the target terms. The
idea behind the use of the parse features is that
sometimes an aspect term is separated from its
modifying sentiment phrase and the surface con-
text is insufficient or even misleading for detect-
ing sentiment expressed towards the aspect. For
example, in sentence “The food, though different
from what we had last time, is actually great” the
word great is much closer to the word food in the
parse tree than in the surface form. Furthermore,
the features derived from the parse context can
help resolve local syntactic ambiguity (e.g., the
word bad in the phrase “a bad sushi lover” modi-
fies lover and not sushi).

Table 3 presents the results of our official sub-
mission on the test sets for the laptop and restau-
rant domains. On the laptop dataset, our system
achieved the accuracy of 70.49 and was ranked
first among 32 submissions from 29 teams. From
the ablation experiments we see that the most sig-
nificant gains come from the use of the sentiment
lexicons; without the lexicon features the perfor-
mance of the system drops by 6.88 percentage
points. Observe that the features derived from
the out-of-domain Yelp Restaurant Sentiment lex-
icon are very helpful on the laptop domain. The
parse features proved to be useful as well; they
contribute 1.07 percentage points to the final per-
formance. On the restaurant data, our system ob-
tained the accuracy of 80.16 and was ranked sec-
ond among 36 submissions from 29 teams.

5 Subtask 3: Aspect Category Detection

The objective of this subtask is to detect aspect
categories discussed in a given sentence. There

Restaurants
System P R F1
NRC-Canada (All) 91.04 86.24 88.58
All − lex. resources 86.53 78.34 82.23

All −W–A lexicon 88.47 80.10 84.08
All − word clusters 90.84 86.15 88.43

All − post-processing 91.47 84.78 88.00

Table 4: Test set ablation experiments for Sub-
task 3: Aspect Category Detection. ‘W–A lexicon’
stands for Yelp Restaurant Word–Aspect Associa-
tion Lexicon.

are 5 pre-defined categories for the restaurant do-
main: food, price, service, ambience, and anec-
dotes/miscellaneous. Each sentence can be la-
beled with one or more categories from the pre-
defined set. No aspect categories were defined for
the laptop domain.

We addressed the subtask as a multi-class multi-
label text classification problem. Five binary one-
vs-all Support Vector Machine (SVM) classifiers
were built, one for each category. The parameter C
was optimized through cross-validation separately
for each classifier. Sentences were tokenized
and stemmed with Porter stemmer (Porter, 1980).
Then, the following sets of features were gener-
ated for each sentence: ngrams, stemmed ngrams,
character ngrams, non-contiguous ngrams, word
cluster ngrams, and lexicon features. For the lex-
icon features, we used the Yelp Restaurant Word–
Aspect Association Lexicon and calculated the cu-
mulative scores of all terms appeared in the sen-
tence for each aspect category. Separate scores
were calculated for unigram and bigram entries.
Sentences with no category assigned by any of the
five classifiers went through the post-processing
step. For each such sentence, a category c with the
maximal posterior probability P (c|d) was identi-
fied and the sentence was labeled with the category
c if P (c|d) ≥ 0.4.

Table 4 presents the results on the restaurant test
set. Our system obtained the F1-score of 88.58
and was ranked first among 21 submissions from
18 teams. Among the lexical resources (lexicons
and word clusters) employed in the system, the
Word–Aspect Association Lexicon provided the
most gains: an increase in F1-score of 4.5 points.
The post-processing step also proved to be benefi-
cial: the recall improved by 1.46 points increasing
the overall F1-score by 0.58 points.
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6 Subtask 4: Aspect Category Polarity

In the Aspect Category Polarity subtask, the goal
is to detect the sentiment expressed towards a
given aspect category in a given sentence. For
each input pair (sentence, aspect category), the
output is a single sentiment label: positive, neg-
ative, neutral, or conflict.

We trained one multi-class SVM classifier
(Crammer and Singer, 2002) for all aspect cate-
gories. The feature set was extended to incorpo-
rate the information about a given aspect category
c using a domain adaptation technique (Daumé III,
2007) as follows: each feature f had two copies,
f general (for all the aspect categories) and f c
(for the specific category of the instance). For ex-
ample, for the input pair (“The bread is top notch
as well.”, ‘food’) two copies of the unigram top
would be used: top general and top food . With
this setup the classifier can take advantage of the
whole training dataset to learn common sentiment
features (e.g., the word good is associated with
positive sentiment for all aspect categories). At the
same time, aspect-specific sentiment features can
be learned from the training instances pertaining
to a specific aspect category (e.g., the word deli-
cious is associated with positive sentiment for the
category ‘food’).

Sentences were tokenized and part-of-speech
tagged with CMU Twitter NLP tool (Gimpel et al.,
2011). Then, each sentence was represented as a
feature vector with the following groups of fea-
tures: ngrams, character ngrams, non-contiguous
ngrams, POS tags, cluster ngrams, and lexicon
features. The lexicon features were calculated as
described in Section 4.

A sentence can refer to more than one aspect
category with different sentiment. For example,
in the sentence “The pizza was delicious, but the
waiter was rude.”, food is described with posi-
tive sentiment while service with negative. If the
words delicious and rude occur in the training set,
the classifier can learn that delicious usually refers
to food (with positive sentiment) and rude to ser-
vice (with negative sentiment). If these terms do
not appear in the training set, their polarities can
still be inferred from sentiment lexicons. How-
ever, sentiment lexicons do not distinguish among
aspect categories and would treat both words, de-
licious and rude, as equally applicable to both cat-
egories, ‘food’ and ‘service’. To (partially) over-
come this problem, we applied the Yelp Restau-

Restaurants
System Accuracy
NRC-Canada (All) 82.93
All − lexical resources 74.15

All − lexicons 75.32
All − Yelp lexicons 79.22
All − manual lexicons 82.44
All − tweet lexicons 84.10

All − word clusters 82.93
All − aspect term features 82.54

Table 5: Test set ablation experiments for Sub-
task 4: Aspect Category Polarity.

rant Word–Aspect Association Lexicon to collect
all the terms having a high or moderate associ-
ation with the given aspect category (e.g., pizza,
delicious for the category ‘food’ and waiter, rude
for the category ‘service’). Then, the feature set
described above was augmented with the same
groups of features generated just for the terms as-
sociated with the given category. We call these
features aspect term features.

Table 5 presents the results on the test set for
the restaurant domain. Our system achieved the
accuracy of 82.93 and was ranked first among 23
submissions from 20 teams. The ablation exper-
iments demonstrate the significant impact of the
lexical resources employed in the system: 8.78
percentage point gain in accuracy. The major ad-
vantage comes from the sentiment lexicons, and
specifically from the in-domain Yelp Restaurant
Sentiment lexicons. The out-of-domain tweet sen-
timent lexicons did not prove useful on this sub-
task. Also, word clusters did not offer additional
benefits on top of those provided by the lexicons.
The use of aspect term features resulted in gains
of 0.39.

7 Conclusion

The paper describes supervised machine-learning
approaches to detect aspect terms and aspect cat-
egories and to detect sentiment expressed towards
aspect terms and aspect categories in customer re-
views. Apart from common surface-form features
such as ngrams, our approaches benefit from the
use of existing and newly created lexical resources
such as word–aspect association lexicons and sen-
timent lexicons. Our submissions stood first on 3
out of 4 subtasks, and within the top 3 best results
on all 6 task-domain evaluations.
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Abstract

This paper describes state-of-the-art statis-
tical systems for automatic sentiment anal-
ysis of tweets. In a Semeval-2014 shared
task (Task 9), our submissions obtained
highest scores in the term-level sentiment
classification subtask on both the 2013 and
2014 tweets test sets. In the message-level
sentiment classification task, our submis-
sions obtained highest scores on the Live-
Journal blog posts test set, sarcastic tweets
test set, and the 2013 SMS test set. These
systems build on our SemEval-2013 senti-
ment analysis systems (Mohammad et al.,
2013) which ranked first in both the term-
and message-level subtasks in 2013. Key
improvements over the 2013 systems are
in the handling of negation. We create
separate tweet-specific sentiment lexicons
for terms in affirmative contexts and in
negated contexts.

1 Introduction

Automatically detecting sentiment of tweets (and
other microblog posts) has attracted extensive
interest from both the academia and industry.
The Conference on Semantic Evaluation Exercises
(SemEval) organizes a shared task on the senti-
ment analysis of tweets with two subtasks. In the
message-level task, the participating systems are
to identify whether a tweet as a whole expresses
positive, negative, or neutral sentiment. In the
term-level task, the objective is to determine the
sentiment of a marked target term (a single word
or a multi-word expression) within the tweet. Our
submissions stood first in both subtasks in 2013.
This paper describes improvements over that sys-

Evaluation Set Term-level Task Message-level Task
Twt14 1 4
Twt13 1 2
Sarc14 3 1
LvJn14 2 1
SMS13 2 1

Table 1: Overall rank of NRC-Canada sentiment
analysis models in Semeval-2014 Task 9 under the
constrained condition. The rows are five evalua-
tion datasets and the columns are the two subtasks.

tem and the subsequent submissions to the 2014
shared task (Rosenthal et al., 2014).

The training data for the SemEval-2014 shared
task is same as that of SemEval-2013 (about
10,000 tweets). The 2014 test set has five sub-
categories: a tweet set provided newly in 2014
(Twt14), the tweet set used for testing in the 2013
shared task (Twt13), a set of tweets that are sarcas-
tic (Sarc14), a set of sentences from the blogging
website LiveJournal (LvJn14), and the set of SMS
messages used for testing in the 2013 shared task
(SMS13). Instances from these categories were in-
terspersed in the provided test set. The partici-
pants were not told about the source of the indi-
vidual messages. The objective was to determine
how well a system trained on tweets generalizes to
texts from other domains.

Our submissions to SemEval-2014 Task 9,
ranked first in five out of the ten subtask–dataset
combinations. In the other evaluation sets as well,
our submissions performed competitively. The
results are summarized in Table 1. As we will
show, automatically generated tweet-specific lexi-
cons were especially helpful in all subtask–dataset
combinations. The results also show that even
though our models are trained only on tweets, they
generalize well to data from other domains.
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Our systems are based on supervised SVMs and
a number of surface-form, semantic, and senti-
ment features. The major improvement in our
2014 system over the 2013 system is in the way it
handles negation. Morante and Sporleder (2012)
define negation to be “a grammatical category that
allows the changing of the truth value of a propo-
sition”. Negation is often expressed through the
use of negative signals or negators, words such as
isnt and never, and it can significantly affect the
sentiment of its scope. We create separate tweet-
specific sentiment lexicons for terms in affirmative
contexts and in negated contexts. That is, we au-
tomatically determine the average sentiment of a
term when occurring in an affirmative context, and
separately the average sentiment of a term when
occurring in a negated context.

2 Our Systems

Our SemEval-2014 systems are based on our
SemEval-2013 systems (Mohammad et al., 2013).
For completeness, we briefly revisit our previ-
ous approach, which uses support vector machine
(SVM) as the classification algorithm and lever-
ages the following features.
Lexicon features These features are generated by
using three manually constructed sentiment lexi-
cons and two automatically constructed lexicons.
The manually constructed lexicons include the
NRC Emotion Lexicon (Mohammad and Turney,
2010; Mohammad and Yang, 2011), the MPQA
Lexicon (Wilson et al., 2005), and the Bing Liu
Lexicon (Hu and Liu, 2004). The two automati-
cally constructed lexicons, the Hashtag Sentiment
Lexicon and the Sentiment140 Lexicon, were cre-
ated specifically for tweets (Mohammad et al.,
2013).

The sentiment score of each term (e.g., a word
or bigram) in the automatically constructed lexi-
cons is computed by measuring the PMI (point-
wise mutual information) between the term and
the positive or negative category of tweets using
the formula:

SenScore (w) = PMI(w, pos)− PMI(w, neg)
(1)

where w is a term in the lexicons. PMI(w, pos)
is the PMI score between w and the positive class,
and PMI(w, neg) is the PMI score between w
and the negative class. Therefore, a positive Sen-
Score (w) suggests a stronger association of word

w with positive sentiment and vice versa. The
magnitude indicates the strength of association.
Note that the sentiment class of the tweets used
to construct the lexicons was automatically iden-
tified either from hashtags or from emoticons as
described in (Mohammad et al., 2013).

With these lexicons available, the following fea-
tures were extracted for a text span. Here a text
span can be a target term, its context, or an en-
tire tweet, depending on the task. The lexicon
features include: (1) the number of sentiment to-
kens in a text span; sentiment tokens are word
tokens whose sentiment scores are not zero in a
lexicon; (2) the total sentiment score of the text
span:

∑
w∈textSpan SenScore (w); (3) the maxi-

mal score: maxw∈textSpanSenScore (w); (4) the
total positive and negative sentiment scores of the
text span; (5) the sentiment score of the last token
in the text span. Note that all these features are
generated, when applicable, by using each of the
sentiment lexicons mentioned above.
Ngrams We employed two types of ngram fea-
tures: word ngrams and character ngrams. The
former reflect the presence or absence of contigu-
ous or non-contiguous sequences of words, and
the latter are sequences of prefix/suffix characters
in each word. These features are same as in our
last year’s submission.
Negation The number of negated contexts. Our
definition of a negated context follows Pang et al.
(2002), which will be described in more details be-
low in Section 2.1.
POS The number of occurrences of each part-
of-speech tag. We tokenized and part-of-speech
tagged the tweets with the Carnegie Mellon Uni-
versity (CMU) Twitter NLP tool (Gimpel et al.,
2011).
Cluster features The CMU POS-tagging tool pro-
vides the token clusters produced with the Brown
clustering algorithm from 56 million English-
language tweets. These 1,000 clusters serve as an
alternative representation of tweet content, reduc-
ing the sparsity of the token space.
Encodings The encoding features are derived
from hashtags, punctuation marks, emoticons,
elongated words, and uppercased words.

For the term-level task, all the above features
are extracted for target terms and their context,
where a context is a window of words surround-
ing a target term. For the message-level task, the
features are extracted from the whole tweet.
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In the term-level task, we used the LIB-
SVM (Chang and Lin, 2011) tool with the follow-
ing parameters: -t 0 -b 1 -m 1000. The total num-
ber of features is about 115,000. In the message-
level task, we used an in-house implementation of
SVM with a linear kernel. The parameter C was
set to 0.005. The total number of features was
about 1.5 million.

2.1 Improving Lexicons and Negation
Models

An important advantage of our SemEval-2013
systems comes from the use of the two high-
coverage tweet-specific sentiment lexicons. In
the SemEval-2014 submissions, we improve these
lexicons by incorporating negation modeling into
the lexicon generation process.

2.1.1 Improving Sentiment Lexicons
A word in a negated context has a different eval-
uative nature than the same word in an affirma-
tive (non-negated) context. We have proposed a
lexicon-based approach (Kiritchenko et al., 2014)
to determining the sentiment of words in these two
situations by automatically creating separate senti-
ment lexicons for the affirmative and negated con-
texts. In this way, we do not need to employ any
explicit assumptions to model negation.

To achieve this, a tweet corpus is split into two
parts: Affirmative Context Corpus and Negated
Context Corpus. Following the work of Pang et al.
(2002), we define a negated context as a segment
of a tweet that starts with a negation word (e.g., no,
shouldn’t) and ends with one of the punctuation
marks: ‘,’, ‘.’, ‘:’, ‘;’, ‘!’, ‘?’. The list of negation
words was adopted from Christopher Potts’ senti-
ment tutorial.1 Thus, part of a tweet that is marked
as negated is included into the negated context cor-
pus while the rest of the tweet becomes part of the
affirmative context corpus. The sentiment label
for the tweet is kept unchanged in both corpora.
Then, we generate an affirmative context lexicon
from the affirmative context corpus and a negated
context lexicon from the negated context corpus
using the technique described in (Kiritchenko et
al., 2014).

Furthermore, we refined the method of con-
structing the negated context lexicons by split-
ting a negated context into two parts: the imme-
diate context consisting of a single token that di-
rectly follows a negation word, and the distant

1http://sentiment.christopherpotts.net/lingstruc.html

context consisting of the rest of the tokens in the
negated context. This has two benefits. Intu-
itively, negation affects words directly following
the negation words more strongly than more dis-
tant words. Second, immediate-context scores are
less noisy. Our simple negation scope identifica-
tion algorithm can at times fail and include parts
of a tweet that are not actually negated (e.g., if a
punctuation mark is missing). Overall, a sentiment
word can have up to three scores, one for affirma-
tive context, one for immediate negated context,
and one for distant negated context.

We reconstructed the Hashtag Sentiment Lexi-
con and the Sentiment140 Lexicon with this ap-
proach and used them in our SemEval-2014 sys-
tems.

2.1.2 Discriminating Negation Words
Different negation words, e.g., never and didn’t,
can have different effects on sentiment (Zhu et al.,
2014; Taboada et al., 2011). In our SemEval-2014
submission, we discriminate negation words in the
term-level models. For example, the word accept-
able appearing in a sentence this is never accept-
able is marked as acceptable beNever, while in
the sentence this is not acceptable, it is marked
as acceptable beNot. In this way, different nega-
tors (e.g., be not and be never) are treated differ-
ently. Note that we do not differentiate the tense
and person of auxiliaries in order to reduce sparse-
ness (e.g., was not and am not are treated in the
same way). This new representation is used to ex-
tract ngrams and lexicon-based features.

3 Results

Overall performance The evaluation metric used
in the competition is the macro-averaged F-
measure calculated over the positive and negative
categories. Table 2 presents the overall perfor-
mance of our models. NRC13 and NRC14 are
the systems we submitted to SemEval-2013 and
SemEval-2014, respectively. The integers in the
brackets are our official ranks in SemEval-2014
under the constrained condition.

In the term-level task, our submission ranked
first on the two Tweet datasets among 14 teams.
The results show that we achieved significant im-
provements over our last year’s submission: the F-
score improves from 85.19 to 86.63 on the Twt14
data and from 89.10 to 90.14 on the Twt13 data.
More specifically, on the Twt14 data, the approach
described in Section 2.1.1 improved our F-score
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Term-level Message-level
NRC13 NRC14 NRC13 NRC14

Twt14 85.19 86.63(1) 68.88 69.85(4)
Twt13 89.10 90.14(1) 69.02 70.75(2)
Sarc14 78.16 77.13(3) 47.64 58.16(1)
LvJn14 84.96 85.49(2) 74.01 74.84(1)
SMS13 88.34 88.03(2) 68.34 70.28(1)

Table 2: Overall performance of the NRC-Canada
sentiment analysis systems.

from 85.19 to 86.37, and discriminating nega-
tion words (discussed in Section 2.1.2) further im-
proved the F-score from 86.37 to 86.63.

Our system ranked second on the LvJn14 and
SMS13 dataset. Note that the term-level system
that ranked first on LvJn14 performed worse than
our system on SMS13 and the system that ranked
first on SMS13 showed worse results than ours on
LvJn14, indicating that our term-level models in
general have good generalizability on these two
out-of-domain datasets.

On the message-level task, again the NRC14
system showed significant improvements over the
last year’s system on all five datasets. It achieved
the second best result on the Twt13 data and the
fourth result on the Twt14 data among 42 teams.
It was also the best system to predict sentiment in
sarcastic tweets (Sarc14). Furthermore, the system
proved to generalize well to other types of short
informal texts; it placed first on the two out-of-
domain datasets: SMS13 and LvJn14. We observe
a major improvement of our message-level model
on Sarc14 over our last year’s model, but as the
size of Sarc14 is small (86 tweets), more data and
analysis would be desirable to help better under-
stand this phenomenon.
Contribution of features Table 3 presents the re-
sults of ablation experiments on all five test sets for
the term-level task. The features derived from the
manual and automatic lexicons proved to be useful
on four datasets. The only exception is the Sarc14
data where removing lexicon features results in no
performance improvement. Considering that this
test set is very small (only about 100 test terms),
further investigation would be desirable if a larger
dataset becomes available. Also, in sarcasm the
real sentiment of a text span may be different from
its literal sentiment. In such a situation, a system
that correctly recognizes the literal sentiment may
actually make mistakes in capturing the real sen-
timent. The last two rows in Table 3 show the re-
sults obtained when the features are extracted only

from the target (and not from its context) and when
they are extracted only from the context of the tar-
get (and not from the target itself). Observe that
even though the context may influence the polar-
ity of the target, using target features alone is sub-
stantially more useful than using context features
alone. Nonetheless, adding context features im-
proves the F-scores in general.

On the message-level task (Table 4), the fea-
tures derived from the sentiment lexicons and, in
particular, from our large-coverage tweet-specific
lexicons turned out to be the most influential. The
use of the lexicons provided consistent gains of 9–
11 percentage points not only on tweet datasets,
but also on out-of-domain SMS and LiveJournal
data. Note that removing the features derived from
the manual lexicons as well as removing the ngram
features improves the performance on the Twt14
dataset. However, this effect is not observed on
the Twt13 and the out-of-domain test sets. The
possible explanation of this phenomenon is minor
overfitting on the tweet data.

4 Conclusions

We presented supervised statistical systems for
message-level and term-level sentiment analysis
of tweets. They incorporate many surface-form,
semantic, and sentiment features. Among sub-
missions from over 40 teams in the Semeval-
2014 shared task “Sentiment Analysis in Twit-
ter”, our submissions ranked first in five out of
the ten subtask-dataset combinations. The sin-
gle most useful set of features are those obtained
from automatically generated tweet-specific lexi-
cons. We obtained significant improvements over
our previous system (which ranked first in the
2013 shared task) notably by estimating the senti-
ment of words in affirmative and negated contexts
separately. Also, since different negation words
impact sentiment differently, we modeled different
negation words separately in our term-level sys-
tem. This too led to an improvement in F-score.
The results on different kinds of evaluation sets
show that even though our systems are trained only
on tweets, they generalize well to text from other
domains such as blog posts and SMS messages.
Many of the resources we created and used are
made freely available.2

2www.purl.com/net/sentimentoftweets
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Experiment Twt14 Twt13 Sarc14 LvJn14 SMS13
all features 86.63 90.14 77.13 85.49 88.03

all - lexicons 81.98 86.25 80.74 80.00 83.91
all - manu. lex. 86.08 89.25 75.32 84.13 87.69
all - auto. lex. 86.05 88.32 80.38 83.96 86.18

all - ngrams 83.31 86.67 72.95 81.58 82.41
all - target 72.93 74.19 63.09 72.21 69.34
all - context 84.40 88.83 77.22 82.99 87.97

Table 3: Term-level Task: The macro-averaged F-scores obtained on the 5 test sets with one of the feature
groups removed.

Experiment Twt14 Twt13 Sarc14 LvJn14 SMS13
all features 69.85 70.75 58.16 74.84 70.28

all - lexicons 60.59 60.04 47.17 65.80 60.56
all - manu. lex. 71.84 69.84 53.34 73.41 66.60
all - auto. lex. 63.40 65.08 47.57 71.76 66.94

all - ngrams 70.02 67.90 44.58 74.43 68.45

Table 4: Message-level Task: The macro-averaged F-scores obtained on the 5 test sets with one of the
feature groups removed.
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Abstract

The paper describes the approaches taken
by the NTNU team to the SemEval 2014
Semantic Textual Similarity shared task.
The solutions combine measures based
on lexical soft cardinality and character
n-gram feature representations with lexi-
cal distance metrics from TakeLab’s base-
line system. The final NTNU system is
based on bagged support vector machine
regression over the datasets from previous
shared tasks and shows highly competi-
tive performance, being the best system on
three of the datasets and third best overall
(on weighted mean over all six datasets).

1 Introduction

The Semantic Textual Similarity (STS) shared task
aims at providing a unified framework for evaluat-
ing textual semantic similarity, ranging from ex-
act semantic equivalence to completely unrelated
texts. This is represented by the prediction of
a similarity score between two sentences, drawn
from a particular category of text, which ranges
from 0 (different topics) to 5 (exactly equivalent)
through six grades of semantic similarity (Agirre
et al., 2013). This paper describes the NTNU
submission to the SemEval 2014 STS shared task
(Task 10). The approach is based on the lexical
and distributional features of the baseline Take-
Lab system from the 2012 shared task (Šarić et al.,
2012), but improves on it in three ways: by adding
two new categories of features and by using a bag-
ging regression model to predict similarity scores.

The new feature categories added are based on
soft cardinality and character n-grams, described

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence de-
tails:http://creativecommons.org/licenses/by/4.0/

in Section 2. The parameters of the two cate-
gories are optimised over several corpora and the
features are combined through support vector re-
gression (Section 3) to create the actual systems
(Section 4). As Section 5 shows, the new mea-
sures give the baseline system a substantial boost,
leading to very competitive results in the shared
task evaluation.

2 Feature Generation Methods

The methods used for creating new features utilise
soft cardinality and character n-grams. Soft cardi-
nality (Jimenez et al., 2010) was used successfully
for the STS task in previous SemEval editions
(Jimenez et al., 2012a; Jimenez et al., 2013a).
The NTNU systems utilise an ensemble of such 18
measures, based only on surface text information,
which were extracted using soft cardinality with
different similarity functions, as further described
in Section 2.1.

Section 2.2 then introduces the similarity mea-
sures based on character n-gram feature represen-
tations, which proved themselves as the strongest
features in the STS 2013 task (Marsi et al., 2013).
The measures used here replace character n-gram
features with cluster frequencies or vector val-
ues based on the n-gram collocational structure
learned in an unsupervised manner from text data.
A variety of n-gram feature representations were
trained on subsets of Wikipedia and the best per-
forming ones were used for the new measures,
which are based on cosine similarity between the
document vectors derived from each sentence in a
given pair.

2.1 Soft Cardinality Measures

Soft cardinality resembles classical set cardinality
as it is a method for counting the number of ele-
ments in a set, but differs from it in that similarities
among elements are being considered for the “soft
counting”. The soft cardinality of a set of words
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A = {a1, a2, .., a|A|} (a sentence) is defined by:

|A|sim =
|A|∑
i=1

wai∑|A|
j=1 sim(ai, aj)p

(1)

Where p is a parameter that controls the cardinal-
ity’s softness (p’s default value is 1) and wai are
weights for each word, obtained through inverse
document frequency (idf ) weighting. sim(ai, aj)
is a similarity function that compares two words
ai and aj using the symmetrized Tversky’s index
(Tversky, 1977; Jimenez et al., 2013a) represent-
ing them as sets of 3-grams of characters. That
is, ai = {ai,1, ai,2, ..., ai,|ai|} where ai,n is the nth

character trigram in the word ai in A. Thus, the
proposed word-to-word similarity is given by:

sim(ai, aj)=
|c|

β(α|amin|+(1−α)|amax|)+|c| (2)
|c| = |ai ∩ aj |+ biassim

|amin| = min {|ai \ aj |, |aj \ ai|}
|amax| = max {|ai \ aj |, |aj \ ai|}

The sim function is equivalent to the Dice’s co-
efficient if the three parameters are given their de-
fault values, namely α = 0.5, β = 1 and bias = 0.

The soft cardinalities of any pair of sentencesA,
B andA∪B can be obtained using Eq. 1. The soft
cardinality of the intersection is approximated by
|A∩B|sim = |A|sim+|B|sim−|A∪B|sim. These
four basic soft cardinalities are algebraically re-
combined to produce an extended set of 18 fea-
tures as shown in Table 1. The feature STSsim is a
parameterized similarity function built by reusing
at word level the symmetrized Tversky’s index
(Eq. 2), whose parameters are tuned from training
data (as further described in Subsection 3.2).

Although this method is based purely on string
matching, the soft cardinality has been shown to
be a very strong baseline for semantic textual com-
parison. The word-to-word similarity sim in Eq. 1
could be replaced by other similarity functions
based on semantic networks or any distributional
representation making this method able to capture
more complex semantic relations among words.

2.2 Sublexical Feature Representations

We have created a set of similarity measures based
on induced representations of character n-grams.
The measures are based on similarity between

STSsim (|A|−|A∩B|)/|A|
|A| (|A|−|A∩B|)/|A∪B|
|B| |B|/|A∪B|
|A ∩B| (|B|−|A∩B|)/|B|
|A ∪B| (|B|−|A∩B|)/|A∪B|

|A| − |A ∩B| |A∩B|/|A|
|B| − |A ∩B| |A∩B|/|B|
|A ∪B| − |A ∩B| |A∩B|/|A∪B|
|A|/|A∪B| (|A∪B|−|A∩B|)/|A∩B|

NB: in this table only, | ∗ | is short for | ∗ |sim

Table 1: Soft cardinality features.

document vectors, here the centroid of the individ-
ual term vector representations, which are trained
on character n-grams rather than full words. The
vector representations are induced in an unsuper-
vised manner from large unannotated corpora us-
ing word clustering, topic learning and word rep-
resentation learning methods.

In this paper, three different methods have
been used for creating the character n-gram fea-
ture representations: Brown Clusters (Brown et
al., 1992), Latent Semantic Indexing (LSI) topics
(Deerwester et al., 1990), and log linear skip-gram
models (Mikolov et al., 2013). The Brown clusters
were trained using the implementation by Liang
(2005), while the LSI topic vectors and log linear
skip-gram representations were trained using the
Gensim topic modelling framework (Řehůřek and
Sojka, 2010). In addition, tf-idf (Term-Frequency
Inverse Document Frequency) weighting was used
when training LSI topic models. We used a cosine
distance measure between document vectors con-
sisting of the centroid of the term representation
vectors. For Brown clusters, the normalized term
frequency vectors were used with the cluster IDs
instead of the terms themselves. For LSI topic rep-
resentations, the tf-idf weighted topic mixture for
each term was used as the term representation. For
the log linear skip-grams, the word representations
were extracted from the model weight matrix.

3 Feature and Parameter Optimisation

The extracted features and the parameters for the
two methods described in the previous section
were optimised over several sets of training data.
As no training data was explicitly provided for the
STS evaluation campaign this year, we used dif-
ferent training sets from past campaigns and from
Wikipedia for the new test sets.
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Test set Training set

deft-forum
MSRvid 2012 train and test +
OnWN 2012 and 2013 test

deft-news MSRvid 2012 train + test
headlines headlines 2013 test
images MSRvid 2012 train + test
OnWN OnWN 2012 and 2013 test

tweet-news
SMTeuroparl 2012 test +
SMTnews 2012 test

Table 2: Training-test set pairs.

3.1 Training Data and Pre-processing

The training-test sets pairs used for optimising the
parameters of the soft cardinality methods were
selected from the STS 2012 and STS 2013 task,
as shown in Table 2. The character n-gram repre-
sentation vectors were trained in an unsupervised
manner on two subsets of Wikipedia consisting,
respectively, of the first 12 million words (108

characters, hence referred to as Wiki8) and of 125
million words (109 characters; Wiki9).

First, however, the training data had to be pre-
processed. Thus, before extracting the idf weights
and the soft cardinality features, all the texts
shown in Table 2 were passed through the follow-
ing four pre-processing steps:

(i) tokenization and stop-word removal (pro-
vided by NLTK, Bird et al. (2009)),1

(ii) conversion to lowercase characters,

(iii) punctuation and special character removal
(e.g., “.”, “;”, “$”, “&”), and

(iv) Porter stemming.

Character n-grams including whitespace were
generated from the Wikipedia texts, which in con-
trast only were pre-processed in a 3-step chain:

(i) removal of punctuation and extra whites-
pace,

(ii) replacing numbers with their single digit
word (‘one’, ‘two’, etc.), and

(iii) lowercasing all text.

1http://www.nltk.org/

Data α β bias p α′ β′ bias ′

deft-forum 1.01 -1.01 0.24 0.93 -2.71 0.42 1.63

deft-news 3.36 -0.64 1.37 0.44 2.36 0.72 0.02

headlines 0.36 -0.29 4.17 0.85 -4.50 0.43 0.19

images 1.12 -1.11 0.93 0.64 -0.98 0.50 0.11

OnWN 0.53 -0.53 1.01 1.00 -4.89 0.52 0.46

tweet-news 0.13 0.14 2.80 0.01 2.66 1.74 0.45

Table 3: Optimal parameters used for each dataset.

3.2 Soft Cardinality Parameter Optimisation
The first feature in Table 1, STSsim, was used to
optimise the four parameters α, β, bias, and p in
the following way. First, we built a text similarity
function reusing Eq. 2 for comparing two sets of
words (instead of two sets of character 3-grams)
and replacing the classic cardinality |∗| by the soft
cardinality | ∗ |sim from Eq. 1. This text similarity
function adds three parameters (α′, β′, and bias ′)
to the initial four parameter set (α, β, bias, and p).

Second, these seven parameters were set to their
default values and the scores obtained from this
function for each pair of sentences were compared
to the gold standards in the training data using
Pearson’s correlation. The parameter search space
was then explored iteratively using hill-climbing
until reaching optimal Pearson’s correlation. The
criterion for assignment of training-test set pairs
was by closeness of average character length. The
optimal training parameters are shown in Table 3.

3.3 Parameters for N-gram Feature Training
The character n-gram feature representation vec-
tors were trained while varying the parameters of
n-gram size, cluster size, and term frequency cut-
offs for all models. For the log linear skip-gram
models, our intuition is that a larger skip-gram
context is needed than the 5 or 10 wide skip-grams
used to train word-based representations due to the
smaller term vocabulary and dependency between
adjacent n-grams, so instead we trained models us-
ing skip-gram widths of 25 or 50 terms. Term fre-
quency cut-offs were set to limit the model size,
but also potentially serve as a regularization on
the resulting measure. In detail, the following sub-
lexical representation measures are used:

• Log linear skip-gram representations of char-
acter 3- and 4-grams of size 1000 and 2000,
respectively. Trained on the Wiki8 corpus us-
ing a skip gram window of size 25 and 50,
and frequency cut-off of 5.
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• Brown clusters with size 1024 of character 4-
grams using a frequency cut-off of 20.

• Brown clusters of character 3-, 4- and 5-
grams with cluster sizes of resp. 1024, 2048
and 1024. The representations are trained on
the Wiki9 corpus with successively increas-
ing frequency cut-offs of 20, 320 and 1200.

• LSI topic vectors based on character 4-grams
of size 2000. Trained on the Wiki8 corpus
using a frequency cut-off of 5.

• LSI topic vectors based on character 4-grams
of size 1000. Trained on the Wiki9 corpus
using a frequency cut-off of 80.

3.4 Similarity Score Regression
The final sentence pair similarity score is predicted
by a Support Vector Regression (SVR) model with
a Radial Basis (RBF) kernel (Vapnik et al., 1997).
The model is trained on all the test data for the
2013 STS shared task combined with all the trial
and test data of the 2012 STS shared task.

The combined dataset hence consists of about
7,500 sentence pairs from nine different text cat-
egories: five sets from the annotated data sup-
plied to STS 2012, based on Microsoft Research
Paraphrase and Video description corpora (MSR-
par and MSvid), statistical machine translation
system output (SMTeuroparl and SMTnews), and
sense mappings between OntoNotes and WordNet
(OnWN); and four sets from the STS 2013 test
data: headlines (news headlines), SMT, OnWN,
and FNWM (mappings of sense definitions from
FrameNet and WordNet).

The SVR model was trained as a bagged classi-
fier, that is, for each run, 100 regression models
were trained with 80% of the samples and fea-
tures of the original training set drawn with re-
placement. The outputs of all models were then
averaged into a final prediction. This bagged train-
ing procedure adds extra regularization, which can
reduce the instability of prediction accuracy be-
tween different test data categories.

The prediction pipeline was implemented with
the Scikit-learn software framework (Pedregosa et
al., 2011), and the SVR models were trained with
the implementation’s default parameters: cost
penalty (C) 1.0, margin (ε) 0.1, and RBF precision
(γ) 1/|featurecount|.

We were unable to improve the performance
over these defaults by cross validation parameter

search unless the models were trained for specific
text categories. Consequently no parameter opti-
mization was performed during training of the fi-
nal systems.

4 Submitted Systems

The three submitted systems consist of one us-
ing only the soft cardinality features described in
Section 3.2 (NTNU-run1), one system using a
baseline set of lexical measures and WordNet aug-
mented similarity in addition to the new sublexical
representation measures (NTNU-run2), and one
(NTNU-run3) which combines the output from
the other two systems by taking the mean of the
two sets of predictions. NTNU-run3 thus repre-
sents a combination of the measures and methods
introduced by NTNU-run1 and NTNU-run2.

In addition to the sublexical feature measures
described in Section 3.3, NTNU-run2 uses the fol-
lowing baseline features adapted from the Take-
Lab 2012 system submission (Šarić et al., 2012).

• Simple lexical features: Relative document
length differences, number overlap, case
overlap, and stock symbol named entity
recognition.

• Lemma and word n-gram overlap of orders 1-
3, frequency weighted lemma and word over-
lap, and WordNet augmented overlap.

• Cosine similarity between the summed word
representation vectors from each sentence us-
ing LSI models based on large corpora with
or without frequency weighting.

The specific measures used in the submitted
systems were found by training the regression
model on the STS 2012 shared task data and eval-
uating on the STS 2013 test data. We used a step-
wise forward feature selection method by compar-
ing mean (but unweighted) correlation on the four
test categories in order to identify the subset of
measures to include in the final system.

The system composes a feature set of similar-
ity scores from these 20 baseline measures and the
nine sublexical representation measures, and uses
these to train a bagged SVM regressor as described
in Section 3.4 in order to predict the final semantic
similarity score for new sentence pairs.
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NTNU-run1 NTNU-run2 NTNU-run3 Best
Dataset r rank r rank r rank r

deft-forum 0.4369 16 0.5084 2 0.5305 1 0.5305
deft-news 0.7138 14 0.7656 6 0.7813 2 0.7850
headlines 0.7219 17 0.7525 13 0.7837 1 0.7837
images 0.8000 9 0.8129 4 0.8343 1 0.8343
OnWN 0.8348 7 0.7767 20 0.8502 4 0.8745
tweet-news 0.4109 33 0.7921 1 0.6755 13 0.7921
mean 0.6531 20 0.7347 4 0.7426 2 0.7429
weighted mean 0.6631 21 0.7491 4 0.7549 3 0.7610

Table 4: Final evaluation results for the submitted systems.

5 Results and Discussion

The final evaluation results for the three submit-
ted systems are shown in Table 4, where the right-
most column (‘Best’) for comparison displays the
performance figures obtained by any of the 38 sys-
tems on each dataset.

The systems using sublexical representation
based measures show competitive performance,
ranking third and fourth among the submitted sys-
tems with a weighted mean correlation of ∼0.75.
They also produced the best result in four out of
the six text categories in the evaluation dataset,
with NTNU-run3 being the #1 system on deft-
forum, headlines and images, #2 on deft-news, and
#4 on OnWN. It would thus have been the clear
winner if it had not been for its sub-par perfor-
mance on the tweet-news dataset, which on the
other hand is the category NTNU-run2 was the
best of all systems on.

The system based solely on soft cardinality fea-
tures, NTNU-run1, displays more modest perfor-
mance ranking at 21st place (of the in total 38 sub-
mitted systems) with ∼0.66 correlation. This is a
bit surprising, since this method for obtaining fea-
tures from pairs of texts was used successfully in
other SemEval tasks such as cross-lingual textual
entailment (Jimenez et al., 2012b) and student re-
sponse analysis (Jimenez et al., 2013b). Similarly,
Croce et al. (2012) used soft cardinality represent-

ing text as a bag of dependencies (syntactic soft
cardinality) obtaining the best results in the typed-
similarity task (Croce et al., 2013).

From our results it can be noted that for most
categories the sublexical representation measures
show strong performance in NTNU-run2, with a
significantly better result for the combined sys-
tem NTNU-run3. This indicates that while the soft
cardinality features are weaker predictors overall,
they are complimentary to the sublexical and lex-
ical features of NTNU-run2. It is also indicative
that this is not the case for the tweet-news cate-
gory, where the text is more “free form” and less
normative, so it would be expected that sublexical
approaches should have stronger performance.
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Abstract

In this paper, we describe the OPI system
participating in the Semeval-2014 task 3
Cross-Level Semantic Similarity. Our ap-
proach is knowledge-poor, there is no ex-
ploitation of any structured knowledge re-
sources as Wikipedia, WordNet or Babel-
Net. The method is also fully unsuper-
vised, the training set is only used in order
to tune the system. System measures the
semantic similarity of texts using corpus-
based measures of termsets similarity.

1 Introduction

The task Cross-Level Semantic Similarity of
SemEval-2014 aims at an evaluation for seman-
tic similarity across different sizes of text (lexi-
cal levels). Unlike prior SemEval tasks on textual
similarity that have focused on comparing similar-
sized texts, the mentioned task evaluates the case
where larger text must be compared to smaller
text, namely there are covered four semantic sim-
ilarity comparisons: paragraph to sentence, sen-
tence to phrase, phrase to word and word to sense.

We present the method for measuring the se-
mantic similarity of texts using a corpus-based
measure of termsets (set of words) similarity. We
start from preprocessing texts, identifying bound-
ary values, computing termsets similarities and de-
rive from them the final score, which is normal-
ized.

The input of the task consists of two text seg-
ments of different level. We want to determine
a score indicating their semantic similarity of the
smaller item to the larger item. Similarity is scored
from 0 to 4, when 0 means no semantic intersec-

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

tion, 4 means that two items have very similar
meanings.

2 Related Work

There are lots of papers about measuring the
similarity between documents and single words.
Document-level similarity works are based on
Vector Space Models (Salton and Lesk, 1971;
Salton and McGill, 1983). A significant effort has
also been put into measuring similarity at the word
level, namely by approaches that use distributional
semantics (Turney and Pantel, 2010).

Related work can be classified into four ma-
jor categories: vector-based document mod-
els methods, corpus-based methods, knowledge-
based methods and hybrid methods (Islam and
Inkpen, 2008).

Vector-based document models represent docu-
ment as a vector of words and the similarity eval-
uation is based on the number of words that oc-
cur in both texts. Lexical similarity methods have
problems with different words sharing common
sense. Next approaches, such as corpus-based and
knowledge-based methods, overcome the above
issues.

Corpus based methods apply scores provided by
Pointwise Mutual Information (PMI) and Latent
Semantic Analysis (LSA).

The Pointwise Mutual Information (PMI) (Tur-
ney, 2001) between two words wi and wj is:

PMI(wi, wj) = log2
p(wi, wj)

p(wi)p(wj)

The Latent Semantic Analysis (LSA) (Landauer
and Dumais, 1997; Landauer et al., 2007) is a
mathematical method for modelling of the mean-
ing of words and contexts by analysis of represen-
tative corpora. It models the meaning of words and
contexts by projecting them into a vector space of
reduced dimensionality, which is built up by ap-
plying singular value decomposition (SVD).
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Knowledge based methods apply information
from semantic networks as WordNet. They ex-
ploit the structure of WordNet to compare con-
cepts. Leacock and Chodorow (1998) proposed
metric based on the length of the shortest path be-
tween two concepts. Lesk (1986) defined sim-
ilarity between concepts as the intersection be-
tween the corresponding glosses. Budanitsky and
Hirst (2006) conducted the research on various
WordNet-based measures. Standard thesaurus-
based measures of word pair similarity are based
only on a single path between concepts. By con-
trast Hughes and Ramage (2009) used a seman-
tic representation of texts from random walks on
WordNet.

Hybrid methods use both corpus-based mea-
sures and knowledge-based measures of word se-
mantic similarity to determine the text similarity
(Islam and Inkpen, 2008). Mihalcea and Corley
(2006) suggested a combined method by exploit-
ing corpus based measures and knowledge-based
measures of words semantic similarity. Another
hybrid method was proposed by Li et al. (2006)
that combines semantic and syntactic information.

The methods presented above are working at
fixed level of textual granularity (documents,
phrases, or words). Pilehvar et al. (2013) proposed
a unified approach to semantic similarity that oper-
ates at multiple levels. The method builds a com-
mon probabilistic representation over word senses
in order to compare different types of linguistic
data. Any lexical item is represented as a distri-
bution over a set of word senses (obtained from
WordNet), named as item’s semantic signature.

3 Our Approach

Our system is fully unsupervised and knowledge-
poor. It exploits Wikipedia as a raw corpus for
words co-occurrence estimation. The proposed
method is not using any kind of textual alignment
(e.g. exploiting PoS tagging or WordNet con-
cepts).

The method consists of four steps: prepro-
cessing, identifying boundary values, termset-to-
termset similarity computation, text-to-text sim-
ilarity phase, results normalization. The results
from the text-to-text similarity phase are very of-
ten beyond the range 0-4, therefore we must nor-
malize them. We evaluated two normalization
approaches: linear normalization and non-linear
one. The non-linear normalization is based on

built clusters (referring to integer values from 0 to
4), which are created using training data set. This
step will be described in details in the section 3.5.

3.1 Preprocessing
In the first step the compared texts are retrieved,
and then processed into the contexts. Context is
the preprocessed original text represented as a bag
of words. Texts are processed using a dictionary
of proper names, name entities recognizers, PoS-
taggers, providing as a result the required contexts.
Contexts contain nouns, adjectives, adverbs and
proper names. The output of this stage is a pair
of contexts passed to the next phase.

3.2 Identifying Boundary Values
This phase is introduced in order to fast detect
texts, which are unrelated (0 score) or very sim-
ilar (4 score). Unrelated ones are identified bas-
ing on the lack of any co-occurrences between
words from compared texts. It means that any
pair of words from compared contexts do not ap-
pear together in any Wikipedia paragraph. The
very similar texts are identified in two steps. At
first we check if all words from the shorter texts
are contained in the longer one. If the first check
is not fulfilled we compute: (c1,2) as the num-
ber of Wikipedia paragraphs that contain all of
words from both contexts in the nearest neigh-
borhood (20-words window), (c1) and (c2) as the
numbers of Wikipedia paragraphs that contain
contexts within 20-words window. If the ratio
c1,2/max(c1, c2) is higher than 50% then the ana-
lyzed pair of texts refers to the same concept (very
similar ones). Having two texts represented by
contexts we use the proximity Lucene1 query in
order to estimate the number of Wikipedia para-
graphs, which contain the words from contexts
within the 20-words window.

3.3 Termset-to-termset Similarity
Termset-to-termset similarity (t2tSim) is defined
by measure similar to PMI. Given a dictionary D
and two termsets (set of words) Wi ⊆ D and
Wj ⊆ D then the measure is expressed by the for-
mula:

t2tSim(Wi, Wj) =
c(Wi, Wj)

min(c(Wi), c(Wj))

Here, c(X1, .., Xn) is a number of Wikipedia para-
graphs that contain all terms covered by termsets

1http://lucene.apache.org/core/

455



X1, .., Xn. Two input termsets are semantically
close if the similarity measure t2tSim is higher
than the user-defined threshold (e.g. 10%). Com-
paring to the previous step we use the minimum
operator in the formula’s denominator in order to
take into account even one directed relevant asso-
ciation. It was proved experimentally that the pro-
posed measure leads to better results than the PMI
measure using NEAR query (co-occurrence within
a 10-words window). Specifically, the following
formula is used to collect the PMI value between
termsets using the Wikipedia as a background cor-
pus:

PMI(Wi, Wj) = log2
c(Wi, Wj) ∗WikiSize

c(Wi) ∗ c(Wj)

In the performed experiments we approximated
the value of WikiSize to 30 millions (number of
paragraphs of English articles in Wikipedia). In
table 1 we present results of Spearman correla-
tion reported by the System using different mea-
sures PMI and t2tSim. The second measure is
slightly better therefore it was chosen as the final
one. These correlations were computed after lin-
ear normalization of the output measures.

Level Measure Spearman
correlation

word2sense PMI 19
word2sense t2tSim 19
phrase2word PMI 29
phrase2word t2tSim 29
sentence2phrase PMI 45
sentence2phrase t2tSim 47
paragraph2sentence PMI 48
paragraph2sentence t2tSim 49

Table 1: Comparison of PMI and t2tSim mea-
sures in the semantic similarity task using Spear-
man correlation (percentages).

3.4 Text-to-text Similarity
Given two input texts we compute the termset-to-
termset similarities in order to derive the final se-
mantic score. We attempt to model the semantic
similarity of texts as a function of the semantic
similarities of the component termsets. We do this
by combining metrics of termset-to-termset simi-
larities and weights into a formula that is a poten-
tially good indicator of semantic similarity of the
two input texts. Weights (wm1 > wm2 > wm3)

are experimentally set with linear scalable values
wm1 = 4, wm2 = 2, wm3 = 1 respectively. The
pseudo-code of this phase is in Algorithm 1.

Algorithm 1 Text-to-text similarity
Input: cs, cl are contexts representing shorter and

longer texts respectively; wm1, wm2, wm3 as
weights for different scopes of similarity com-
parison;

Output: m as a similarity measure
m = 0
m = m + t2tSim(cs, cl) ∗ wm1

for term ti ∈ cl do
m = m + t2tSim(cs, {ti}) ∗ wm2

end for
for term tj ∈ cs do

m = m + t2tSim(cl, {tj}) ∗ wm2

end for
for term ti ∈ cs do

for term tj ∈ cl do
m = m + t2tSim({ti}, {tj}) ∗ wm3

end for
end for
return m

3.5 Results Normalization
The crucial part of the method is a process of nor-
malization obtained measures into the range (0,4).
The values 0 and 4 are covered by the step de-
scribed in the section 3.2. We need to normalize
values from the text-to-text similarity phase. This
step can be done in two ways: linear normaliza-
tion and non-linear one. The first one is a ca-
sual transformation defined as dividing elements
by theirs maximum and scaling to 4. The sec-
ond one is based on clustering training set. In
other words, using training set we induce rules
how reported text-to-text similarity values should
be transformed into the range (0,4). We imple-
mented hierarchical agglomerative clustering al-
gorithm (with average linkage)2 in order to clus-
ter similarity measures into five distinct groups.
Sorted centroids of the above created groups are
labeled with values 0 to 4 respectively. For each
new similarity measure (obtained in the testing
phase) we measure the distance to the closest clus-
ter’s centroids. The final value is derived linearly

2Hierarchical Agglomerative Clustering treats initially
each instance as a singleton cluster and then successively
agglomerate pairs of clusters using the average distance be-
tween cluster’s elements until the user defined number of
clusters persist.
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from the distance to the centroids (i.e. if the value
is in the middle between centroids referring to 1
and 2, we assign as a final value 1.5). In the test-
ing step we use the non-linear normalization, the
evaluations on training set show that clustering
based approach provides marginal improvement
against linear normalization (about 1% according
to Spearman rank, 4-8% according to Pearson cor-
relation).

4 Results

In Task 3, systems were evaluated both within
one of four comparison types and also across all
comparison types. The system outputs and gold
standard ratings are compared in two ways, us-
ing Pearson correlation and Spearman’s rank cor-
relation (rho). Pearson correlation tests the degree
of similarity between the system’s similarity rat-
ings and the gold standard ratings. Spearman’s
rho tests the degree of similarity between the rank-
ings of the items according to similarity. Ranks
were computed by summing the correlation val-
ues across all four levels of comparisons. The sum
of the Pearson correlations is used for the official
rank of Task 3. However, the organizers provide
a second ranking using the sum of the Spearman
correlations.

Level System Pearson/
Spearman

word2sense OPI 15.2/13.1
word2sense SimCompass 35.6/34.4
word2sense Baseline 10.9/13.0
phrase2word OPI 21.3/18.8
phrase2word SimCompass 41.5/42.4
phrase2word Baseline 16.5/16.2
sentence2phrase OPI 43.3/42.4
sentence2phrase SimCompass 74.2/72.8
sentence2phrase Baseline 56.2/62.6

Table 2: Results for Pearson and Spearman corre-
lation (percentages) scored by OPI System, Sim-
Compass (the best performing one) and the Base-
line one.

We submitted only one run in three compari-
son types. We avoided the paragraph-to-sentence
comparison. Evaluations on training set show that
our method reports values below the baseline in
both types: paragraph-to-sentence and sentence-
to-phrase. In the testing phase we decided to per-
form only sentence-to-phrase comparison because

it reports better values than paragraph-to-sentence
according to Pearson correlation, which is used for
the official rank.

The best results our algorithm scores in the cat-
egory phrase-to-word. In this comparison type
it was ranked at 12th position among 21 partic-
ipating systems. In the word-to-sense it was at
14th position among 20 systems. The word-to-
sense comparison is converted into the task sim-
ilar to phrase-to-word by using glosses of target
senses. Each key of WordNet sense is replaced
with its gloss. It is the only situation when we
use the external knowledge resources, but it is
not a part of the algorithm. The last comparison
(sentence-to-phrase) was our worst, because we
did not beat the baseline, as we did in the previous
categories. In the sentence-to-phrase comparison
word alignment or syntax parsing seems to be very
important, in our case none of them was applied.
The main conclusion is that comparison of larger
text units can not be based on bag of words ap-
proaches, where order of words is not important.
Let us recall that our method is knowledge-poor,
what leads to difficulties in evaluating it against
knowledge-rich ones (using sense inventories e.g.
WordNet). Generally, we scored better results us-
ing Pearson correlation than Spearman’s one.

5 Conclusions

We presents our cross-level semantic similarity
method, which is knowledge-poor (not using any
kind of structured information from resources like
machine-readable dictionaries, thesaurus, or on-
tologies) and fully unsupervised (there is no learn-
ing phase leading to models enable to catego-
rize compared texts). The method exploits only
Wikipedia as a raw corpora in order to estimate
frequencies of co-occurrences. We were aimed
to verify how good results can be achieved us-
ing only corpus-based approach and not includ-
ing algorithms that have embedded deep language
knowledge. The system scores best in the phrase-
to-word (12th rank) and word-to-sense (14th rank)
types of comparison with regard to Pearson cor-
relation, while performing a little worse with the
Spearman’s correlation. The worst results were
reported in the sentence-to-phrase category, which
brings us the conclusion that larger text units de-
mand word alignment, syntax parsing and more
sophisticated text-to-text similarity models.
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Abstract

Using the SemEval-2014 Task 8 data, we
profile the syntactic tree parsing tech-
niques for semantic graph parsing. In par-
ticular, we implement different transition-
based and graph-based models, as well as
a parser ensembler, and evaluate their ef-
fectiveness for semantic dependency pars-
ing. Evaluation gauges how successful
data-driven dependency graph parsing can
be by applying existing techniques.

1 Introduction

Bi-lexical dependency representation is quite pow-
erful and popular to encode syntactic or semantic
information, and parsing techniques under the de-
pendency formalism have been well studied and
advanced in the last decade. The major focus is
limited to tree structures, which fortunately corre-
spond to many computationally good properties.
On the other hand, some leading linguistic theo-
ries argue that more general graphs are needed to
encode a wide variety of deep syntactic and se-
mantic phenomena, e.g. topicalization, relative
clauses, etc. However, algorithms for statistical
graph spanning have not been well explored be-
fore, and therefore it is not very clear how good
data-driven parsing techniques developed for tree
parsing can be for graph generating.

Following several well-established syntactic
theories, SemEval-2014 task 8 (Oepen et al.,
2014) proposes using graphs to represent seman-
tics. Considering that semantic dependency pars-
ing is a quite new topic and there is little previ-
ous work, we think it worth appropriately profil-
ing successful tree parsing techniques for graph
parsing. To this end, we build a hybrid system

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

that combines several important data-driven pars-
ing techniques and evaluate their impact with the
given data. In particular, we implement different
transition-based and graph-based models, as well
as a parser ensembler.

Our experiments highlight the following facts:

• Graph-based models are more effective than
transition-based models.

• Parser ensemble is very useful to boost the
parsing accuracy.

2 Architecture

We explore two kinds of basic models: One is
transition-based, and the other is tree approxima-
tion. Transition-based models are widely used for
dependency tree parsing, and they can be adapted
to graph parsing (Sagae and Tsujii, 2008; Titov
et al., 2009). Here we implement 5 transition-
based models for dependency graph parsing, each
of which is based on different transition system.

The motivation of developing tree approxima-
tion models is to apply existing graph-based tree
parsers to generate graphs. At the training time,
we convert the dependency graphs from the train-
ing data into dependency trees, and train second-
order arc-factored models1. At the test phase, we
parse sentences using this tree parser, and convert
the output trees back into semantic graphs. We
think tree approximation can appropriately evalu-
ate the possible effectiveness of graph-based mod-
els for graph spanning.

Finally, we integrate the outputs of different
models with a simple voter to boost the perfor-
mance. The motivation of using system combi-
nation and the choice of voting is mainly due to
the experiments presented by (Surdeanu and Man-
ning, 2010). When we obtain all the outputs of

1The mate parser (code.google.com/p/
mate-tools/) is used.
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these models, we combine them into a final result,
which is better than any of them. For combination,
we explore various systems for this task, since em-
pirically we know that variety leads to better per-
formance.

3 Transition-Based Models

Transition-based models are usually used for de-
pendency tree parsing. For this task, we exploit it
for dependency graph parsing.

A transition system S contains a set C of con-
figurations and a set T of transitions. A configu-
ration c ∈ C generally contains a stack σ of nodes,
a buffer β of nodes, and a set A of arcs. The ele-
ments in A is in the form (x, l, y), which denotes
a arc from x to y labeled l. A transition t ∈ T can
be applied to a configuration and turn it into a new
one by adding new arcs or manipulating elements
of the stack or the buffer. A statistical transition-
based parser leverages a classifier to approximate
an oracle that is able to generate target graphs by
transforming the initial configuration cs(x) into a
terminal configuration ct ∈ Ct.

An oracle of a given graph on sentence x is a
sequence of transitions which transform the initial
configuration to the terminal configuration the arc
set Act of which is the set of the arcs of the graph.

3.1 Our Transition Systems
We implemented 5 different transition systems for
graph parsing. Here we describe two of them
in detail, one is the Titov system proposed in
(Titov et al., 2009), and the other is our Naive
system. The configurations of the two systems
each contain a stack σ, a buffer β, and a set A of
arcs, denoted by 〈σ, β,A〉. The initial configura-
tion of a sentence x = w1w2 · · ·wn is cs(x) =
〈[0], [1, 2, · · · , n], {}〉, and the terminal configu-
ration set Ct is the set of all configurations with
empty buffer. These two transition systems are
shown in 1.

The transitions of the Titov system are:

• LEFT-ARCl adds an arc from the front of the
buffer to the top of the stack, labeled l, into
A.

• RIGHT-ARCl adds an arc from the top of the
stack to the front of the buffer, labeled l, into
A.

• SHIFT removes the front of the buffer and
push it onto the stack;

• POP pops the top of the stack.

• SWAP swaps the top two elements of the
stack.

This system uses a transition SWAP to change the
node order in the stack, thus allowing some cross-
ing arcs to be built.

The transitions of the Naive system are similar
to the Titov system’s, except that we can directly
manipulate all the nodes in the stack instead of just
the top two. In this case, the transition SWAP is not
needed.

The Titov system can cover a great proportion,
though not all, of graphs in this task. For more
discussion, see (Titov et al., 2009). The Naive
system, by comparison, covers all graphs. That
is to say, with this system, we can find an oracle
for any dependency graph on a sentence x. Other
transition systems we build are also designed for
dependency graph parsing, and they can cover de-
pendency graphs without self loop as well.

3.2 Statistical Disambiguation
First of all, we derive oracle transition sequences
for every sentence, and train Passive-Aggressive
models (Crammer et al., 2006) to predict next tran-
sition given a configuration. When it comes to
parsing, we start with the initial configuration, pre-
dicting next transition and updating the configura-
tion with the transition iteratively. And finally we
will get a terminal configuration, we then stop and
output the arcs of the graph contained in the final
configuration.

We extracted rich feature for we utilize a set
of rich features for disambiguation, referencing to
Zhang and Nivre (2011). We examine the several
tops of the stack and the one or more fronts of the
buffer, and combine the lemmas and POS tags of
them in many ways as the features. Additionally,
we also derive features from partial parses such as
heads and dependents of these nodes.

3.3 Sentence Reversal
Reversing the order the words of a given sentence
is a simple way to yield heterogeneous parsing
models, thus improving parsing accuracy of the
model ensemble (Sagae, 2007). In our experi-
ments, one transition system produces two mod-
els, one trained on the normal corpus, and the other
on the corpus of reversed sentences. Therefore we
can get 10 parse of a sentence based on 5 transition
systems.
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LEFT-ARCl (σ|i, j|β,A)⇒ (σ|i, j|β,A ∪ {(j, l, i)})
RIGHT-ARCl (σ|i, j|β,A)⇒ (σ|i, j|β,A ∪ {(i, l, j)})
SHIFT (σ, j|β,A)⇒ (σ|j, β,A)
POP (σ|i, β, A)⇒ (σ, β,A)
SWAP (σ|i|j, β,A)⇒ (σ|j|i, β, A)

Titov System
LEFT-ARCk

l (σ|ik| . . . |i2|i1, j|β,A)⇒ (σ|ik| . . . |i2|i1, j|β,A ∪ {(j, l, ik)})
RIGHT-ARCk

l (σ|ik| . . . |i2|i1, j|β,A)⇒ (σ|ik| . . . |i2|i1, j|β,A ∪ {(ik, l, j)})
SHIFT (σ, j|β,A)⇒ (σ|j, β,A)
POPk (σ|ik|ik−1| . . . |i2|i1, β, A)⇒ (σ|ik−1| . . . |i2|i1, β, A)

Naive System

Figure 1: Two of our transition systems.

4 Tree Approximation Models

Parsing based on graph spanning is quite challeng-
ing since computational properties of the seman-
tic graphs given by the shared task are less ex-
plored and thus still unknown. On the other hand,
finding the best higher-order spanning for general
graph is NP complete, and therefore it is not easy,
if not impossible, to implement arc-factored mod-
els with exact inference. In our work, we use a
practical idea to indirectly profile the graph-based
parsing techniques for dependency graph parsing.
Inspired by the PCFG approximation idea (Fowler
and Penn, 2010; Zhang and Krieger, 2011) for
deep parsing, we study tree approximation ap-
proaches for graph spanning.

This tree approximation technique can be ap-
plied to both transition-based and graph-based
parsers. However, since transition systems that
can directly handle build graphs have been devel-
oped, we only use this technique to evaluate the
possible effectiveness of graph-based models for
semantic parsing.

4.1 Graph-to-Tree Transformation

In particular, we develop different methods to con-
vert a semantic graph into a tree, and use edge
labels to encode dependency relations as well as
structural information which helps to transform a
converted tree back to its original graph. By the
graph-to-tree transformation, we can train a tree
parser with a graph-annotated corpus, and utilize
the corresponding tree-to-graph transformation to
generate target graphs from the outputs of the tree
parser. Given that the tree-to-graph transformation
is quite trivial, we only describe the graph-to-tree
transformation approach.

We use graph traversal algorithms to convert a

directed graph to a directed tree. The transforma-
tion implies that we may lose, add or modify some
dependency relations in order to make the graph a
tree.

4.2 Auxiliary Labels

In the transformed trees, we use auxiliary labels to
carry out information of the original graphs. To
encode multiple edges to one, we keep the origi-
nal label on the directed edge but may add other
edges’ information. On the other hand, through-
out most transformations, some edges must be re-
versed to make a tree, so we need a symbol to in-
dicate a edge on the tree is reversed during trans-
formation. The auxiliary labels are listed below:

• Label with following ∼R: The symbol ∼R
means this directed edge is reversed from the
original directed graph.

• Separator: Semicolon separates two encoded
original edges.

• [N ] followed by label: The symbol [N ] (N
is an integer) represents the head of the edge.
The dependent is the current one, but the head
is the dependent’s N -th ancestor where 1st
ancestor is its father and 2nd ancestor is its
father’s father.

See Figure 2 for example.

4.3 Traversal Strategies

Given directed graph (V,E), the task is to traverse
all edges on the graph and decide how to change
the labels or not contain the edge on the output.
We use 3 strategies for traversal. Here we use
x →g y to denote the edge on graph, and x →t y
the edge on tree.
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Mrs Ward was relieved

noun ARG1 verb ARG1 verb ARG2

adj ARG1

root

Mrs Ward was relieved

noun ARG1∼R verb ARG1 verb ARG2

root

Mrs Ward was relieved

noun ARG1∼R verb ARG2

adj ARG1;[2]verb ARG1

root

Figure 2: One dependency graph and two possible
dependency trees after converting.

Depth-first-search We try graph traversal by
depth-first-search starting from the root on the di-
rected graph ignoring the direction of edges. Dur-
ing the traversal, we add edges to the directed tree
with (perhaps new) labels. We traverse the graph
recursively. Suppose the depth-first-search is run-
ning at the node x and the nodes set A which have
been searched. And suppose we find node y is
linked to x on the graph (x →g y or y →g x).
If y /∈ A, we add the directed edge x →t y to the
tree immediately. In the case of y →g x, we add
∼R to the edge label. If y ∈ A, then y must be one
of the ancestors of x. In this case, we add this in-
formation to the label of the existing edge z →t x.
Since the distance between two nodes x and y is
sufficient to indicate the node y, we use the dis-
tance to represent the head or dependent of this
directed edge and add the label and the distance to
the label of z →t x. It is clear that the auxiliary
label [N ] can be used for multiple edge encoding.
Under this strategy, all edges can be encoded on
the tree.

Breadth-first-search An alternative traversal
strategy is based on breadth-first-search starting
from the root. This search ignores the direction
of edge too. We regard the search tree as the de-
pendency tree. During the breadth-first-search, if
(x, l, y) exists but node y has been searched, we
just ignore the edge. Under this strategy, we may
lose some edges.

Iterative expanding This strategy is based on
depth-first-search but slightly different. The strat-
egy only searches through the forward edges on

the directed graph at first. When there is no for-
ward edge to expend, a traversed node linked to
some nodes that are not traversed must be the de-
pendent of them. Then we choose an edge and add
it (reversed) to the tree and continue to expand the
tree. Also, we ignore the edges that does not sat-
isfy the tree constraint. We call this strategy iter-
ative expanding. When we need to expand output
tree, we need to design a strategy to decide which
edge to be add. The measure to decide which node
should be expanded first is its possible location on
the tree and the number of nodes it can search dur-
ing depth-first-search. Intuitively, we want the re-
versed edges to be as few as possible. For this
purpose, this strategy is practical but not necessar-
ily the best. Like the Breadth-first-search strategy,
this strategy may also cause edge loss.

4.4 Forest-to-Tree
After a primary searching process, if there is still
edge x →g y that has not been searched yet, we
start a new search procedure from x or y. Even-
tually, we obtain a forest rather than a tree. To
combine disconnected trees in this forest to the fi-
nal dependency tree, we use edges with label None
to link them. Let the node setW be the set of roots
of the trees in the forest, which are not connected
to original graph root. The mission is to assign a
node v /∈ W for each w ∈ W . If we assign vi for
wi, we add the edge vi → wi labeled by None to
the final dependency tree. We try 3 strategies in
this step:

• For each w ∈ W we look for the first node
v /∈W on the left of w.

• For each w ∈ W we look for the first node
v /∈W on the right of w.

• By defining the distance between two nodes
as how many words are there between the two
words, we can select the nearest node. If the
distances of more than one node are equal,
we choose v randomly.

We also tried to link all of the nodes in W di-
rectly to the root, but it does not work well.

5 Model Ensemble

We have 19 heterogeneous basic models (10
transition-based models, 9 tree approximation
models), and use a simple voter to combine their
outputs.
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Algorithm DM PAS PCEDT
DFS 0 0 0
BFS 0.0117 0.0320 0.0328
FEF 0.0127 0.0380 0.0328

Table 1: Edge loss of transformation algorithms.

For each pair of words of a sentence, we count
the number of the models that give positive pre-
dictions. If the number is greater than a threshold,
we put this arc to the final graph, and label the arc
with the most common label of what the models
give.

Furthermore, we find that the performance of
the tree approximation models is better than the
transition based models, and therefore we take
weights of individual models too. Instead of just
counting, we sum the weights of the models that
give positive predictions. The tree approximation
models are assigned higher weights.

6 Experiments

There are 3 subtasks in the task, namely DM, PAS,
and PCEDT. For subtask DM, we finally obtained
19 models, just as stated in previous sections.
For subtask PAS and PCEDT, only 17 models are
trained due to the tight schedule.

The tree approximation algorithms may cause
some edge loss, and the statistics are shown in Ta-
ble 1. We can see that DFS does not cause edge
loss, but edge losses of other two algorithm are
not negligible. This may result in a lower recall
and higher precision, but we can tune the final re-
sults during model ensemble. Edge loss in subtask
DM is less than those in subtask PAS and PCEDT.

We present the performance of several repre-
sentative models in Table 2. We can see that the
tree approximation models performs better than
the transition-based models, which highlights the
effective of arc-factored models for semantic de-
pendency parsing. For model ensemble, besides
the accuracy of each single model, it is also im-
portant that the models to be ensembled are very
different. As shown in Table 2, the evaluation be-
tween some of our models indicates that our mod-
els do vary a lot.

Following the suggestion of the task organizers,
we use section 20 of the train data as the devel-
opment set. With the help of development set,
we tune the parameters of the models and ensem-

Models DM PAS PCEDT
Titov 0.8468 0.8754 0.6978
Titovr 0.8535 0.8928 0.7063
Naive 0.8481 - -
DFSn 0.8692 0.9034 0.7370
DFSl 0.8692 0.9015 0.7246
BFSn 0.8686 0.8818 0.7247

Titov vs. Titovr 0.8607 0.8831 0.7613
Titov vs. Naive 0.9245 - -
Titov vs. DFSn 0.8590 0.8865 0.7650
DFSn vs. DFSl 0.9273 0.9579 0.8688
DFSn vs. BFSn 0.9226 0.9169 0.8367

Table 2: Evaluation between some of our models.
Labeled f-score on test set is shown. Titovr stands
for reversed Titov, DFSn for DFS+nearest, DFSl

for DFS+left, and BFSn for BFS+nearest. The up-
per part gives the performance, and the lower part
gives the agreement between systems.

Format LP LR LF LM
DM 0.9027 0.8854 0.8940 0.2982
PAS 0.9344 0.9069 0.9204 0.3872

PCEDT 0.7875 0.7396 0.7628 0.1120

Table 3: Final results of the ensembled model.

bling. We set the weight of each transition-based
model 1, and tree approximation model 2 in run
1, 3 in run 2. The threshold is set to a half of the
total weight. The final results given by the orga-
nizers are shown in Table 3. Compared to Table 2
demonstrates the effectiveness of parser ensemble.

7 Conclusion

Data-driven dependency parsing techniques have
been greatly advanced during the parst decade.
Two dominant approaches, i.e. transition-based
and graph-based methods, have been well stud-
ied. In addition, parser ensemble has been shown
very effective to take advantages to combine the
strengthes of heterogeneous base parsers. In this
work, we propose different models to profile the
three techniques for semantic dependency pars-
ing. The experimental results suggest several di-
rections for future study.
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Abstract

We present the Potsdam systems that par-
ticipated in the semantic dependency pars-
ing shared task of SemEval 2014. They
are based on linguistically motivated bidi-
rectional transformations between graphs
and trees and on utilization of syntactic de-
pendency parsing. They were entered in
both the closed track and the open track
of the challenge, recording a peak average
labeled F1 score of 78.60.

1 Introduction

In the semantic dependency parsing (SDP) task of
SemEval 2014, the meaning of a sentence is repre-
sented in terms of binary head-argument relations
between the lexical units – bi-lexical dependencies
(Oepen et al., 2014). Since words can be seman-
tic dependents of multiple other words, this frame-
work results in graph representations of sentence
meaning. For the SDP task, three such annotation
layers are provided on top of the WSJ text of the
Penn Treebank (PTB) (Marcus et al., 1993):

– DM: the reduction of DeepBank HPSG anno-
tation (Flickinger et al., 2012) into bi-lexical
dependencies following (Oepen and Lønning,
2006; Ivanova et al., 2012),

– PAS: the predicate-argument structures derived
from the training set of the Enju HPSG parser
(Miyao et al., 2004) and

– PCEDT: a subset of the tectogrammatical anno-
tation layer from the English side of the Prague
Czech-English Dependency Treebank (Cinková
et al., 2009).

The three annotation schemes provide three di-
rected graph representations for each PTB sen-

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
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//creativecommons.org/licenses/by/4.0/

tence, with word forms as nodes and labeled de-
pendency relations as edges pointing from func-
tors to arguments. The SDP-annotated PTB text is
split into training (sections 00–19), development
(sec. 20) and testing sets (sec. 21). This in turn
makes the SDP parsing task a problem of data-
driven graph parsing, in which systems are to be
trained for producing dependency graph represen-
tations of sentences respecting the three underly-
ing schemes.

While a number of theoretical and preliminary
contributions to data-driven graph parsing exist
(Sagae and Tsujii, 2008; Das et al., 2010; Jones
et al., 2013; Chiang et al., 2013; Henderson et
al., 2013), our goal here is to investigate the sim-
plest approach that can achieve competitive per-
formance. Our starting point is the observation
that the SDP graphs are relatively tree-like. On it,
we build a system for data-driven graph parsing by
(1) transforming dependency graphs into depen-
dency trees in preprocessing, (2) training and us-
ing syntactic dependency parsers over these trees
and (3) transforming their output back into graphs
in postprocessing. This way, we inherit the accu-
racy and speed of syntactic dependency parsers.
The secondary benefit is insight into the struc-
ture of the semantic representations, as graph-tree
transformations can make the phenomena that re-
quire non-tree-like structures more explicit.

2 Data and Systems

We present the basic statistics for the SDP train-
ing sets in Table 1. The graphs contain no cycles,
i.e., all SDP meaning representations are directed
acyclic graphs (DAGs). DM and PAS are auto-
matically derived from HPSG annotations, while
PCEDT is based on manual tectogrammatical an-
notation. This is reflected in more than half of the
PCEDT graphs being disjoint sets of dependency
trees, i.e., forests. The number of forests in DM
and PAS is negligible, on the other hand. The edge
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Feature DM PAS PCEDT

Sentences 32,389 32,389 32,389
Tokens 742,736 742,736 742,736

Edge labels 52 43 71
Cyclic graphs 0 0 0

Forests 810 418 18,527
Treewidth (undirected) 1.30 1.71 1.45

Tree labels
LOCAL 79 77 124

DFS 79 81 133

Table 1: Basic statistics for the training sets.

label set of PCEDT is also substantially larger than
the label sets of DM and PAS.

2.1 Baseline

A directed acyclic graph is a dependency tree in
the sense of (Nivre, 2006) if any two nodes are
connected by exactly one simple path. In other
words, a DAG is a dependency tree if there are
no disconnected (singleton) nodes and if there are
no node reentrancies, i.e., all nodes have an in-
degree of 1. We calculate the average treewidth
of SDP graphs by converting them to undirected
graphs and applying the algorithm of (Gogate and
Dechter, 2004). As we show in Table 1, the
treewidth is low for all three representations. The
low treewidth indicates that, even if the SDP se-
mantic representations are graphs and not trees,
these graphs are very tree-like and, as such, easily
transformed into trees as there are not many edges
that would require deletion. Thus, one could per-
form a lossy graph-to-tree conversion by (a) de-
tecting singleton nodes and attaching them triv-
ially and (b) detecting reentrant nodes and deleting
all but one incoming edge.

The official SDP baseline system1 (Oepen et al.,
2014) is based precisely on this principle: single-
tons are attached to their right neighbors, only the
edges to the closest predicates are kept for reen-
trant nodes, with a preference for leftward predi-
cates in ties, and all remaining nodes with an in-
degree of 0 are attached to the root. Two dummy
labels are introduced in the process: root for at-
tachments to root and null for the remaining new
attachments. The baseline is thus limited by the
lossy approach to graph-to-tree reductions and the
lack of linguistic motivation for these particular re-
duction operations. Here, we aim at introducing

1http://alt.qcri.org/semeval2014/
task8/index.php?id=evaluation

Figure 1: Distributions of node indegrees for (a)
all nodes and (b) source nodes of edges participat-
ing in reentrancies.

Figure 2: Distributions of parts of speech for reen-
trancy source nodes with zero indegree. Ten most
frequent parts of speech are displayed.

less lossy and more linguistically motivated reduc-
tions.

2.2 Local Edge Flipping

Furthermore, inspecting the distribution of node
indegrees in the SDP data in Figure 1, we make
two important observations: (1) from its left his-
togram, that most of the nodes in all three annota-
tions have an indegree of 0 or 1, and (2) from its
right histogram, that most source nodes of edges
causing reentrancies themselves have an indegree
of 0. Figure 2 deepens this observation by provid-
ing a part-of-speech distribution of source nodes
in reentrancies. It shows that the edges in DM
and PAS are systematically pointed from modi-
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System DM PAS PCEDT

BASELINE 66.19 57.66 90.70
LOCAL 89.93 88.73 91.86

DFS 95.52 93.98 92.85

Table 2: Upper bound LF scores on the develop-
ment set for LOCAL and DFS conversion compared
to the baseline. This score indicates the quality of
graph-tree transformation as no parsing is done.

Dataset P R F1

DM 73.30 62.99 67.76
PAS 76.03 72.12 74.02

PCEDT 79.40 78.52 78.96

Table 3: Top node detection accuracy with CRFs
on the development set for the three annotations.
Precision (P), recall (R) and the F1 scores relate to
marking tokens with the binary top node flag.

fiers to modifiees, while coordinating conjunctions
in PCEDT introduce the coordinated nodes. We
conclude that edges in reentrancies, for which the
source nodes have zero indegree, could be flipped
by changing places of their source and target nodes
and encoding the switch in the edge labels by ap-
pending the suffix flipped to the existing labels.

This is the basis for our first system: LOCAL.
In it, we locally flip all edges in reentrancies for
which the source node has zero indegree and run
the BASELINE conversion on the resulting graphs.
We apply this conversion on the training data, use
the converted training sets to train syntactic de-
pendency parsers (Bohnet, 2010) and utilize the
parsing models on the development and test data.
The parsing outputs are converted back to graphs
by simply re-flipping all the edges denoted as
flipped.

2.3 Depth-first Edge Flipping

Our second system, DFS, is based on depth-first
search graph traversal and edge flipping. In it, we
create a undirected copy of the input graph and
connect all nodes with zero indegree to the root us-
ing dummy edges. We do a depth-first traversal of
this graph, starting from the root, while perform-
ing edge lookup in the original DAG. For each DFS

edge traversal in the undirected copy, we check if
the direction of this edge in the original DAG is
identical or reversed to the traversal direction. If
it is identical, we keep the existing edge. If we
traverse the edge against its original direction, we

DM PAS PCEDT

closed LAS UAS LAS UAS LAS UAS
LOCAL 79.09 81.35 81.93 83.79 81.16 89.60

DFS 82.02 83.74 87.06 87.93 79.94 88.04
open

LOCAL 80.86 82.73 85.16 86.18 82.04 90.79
DFS 84.23 85.77 88.42 89.26 80.82 89.02

Table 4: Syntactic dependency parsing accuracy
of our systems before the tree-to-graph transfor-
mations, given as a set of labeled (LAS) and un-
labeled (UAS) attachment scores. The scores are
given for the development set.

reverse it. Finally, we delete the dummy edges and
convert the resulting graph to a dependency tree by
running the baseline, to connect the singletons to
their neighbors, and to attach predicates with zero
indegree and sentence-final nodes to the root.

We illustrate our graph-to-tree transformations
LOCAL and DFS on a gold standard graph from the
training data in Figure 3. It shows how DFS man-
ages to preserve more edges than LOCAL by per-
forming traversal flipping, while LOCAL flips only
the edges that have source nodes with zero inde-
gree. On the other hand, DFS performs more flip-
ping operations than LOCAL, but as Table 1 shows,
this does not result in substantial increase of the
label sets.

2.4 Parsing and Top Node Detection

The same syntactic parser and top node detector
are used in both LOCAL and DFS. Both systems
ran in the closed SDP track, with no additional
features for learning, and in the open track, where
they used the SDP companion data, i.e., the out-
puts of a syntactic dependency parser (Bohnet and
Nivre, 2012) and phrase-based parser (Petrov et
al., 2006) as additional features. Our choice of
parser was based on the high non-projectivity of
the resulting trees, while parsers of (Bohnet and
Nivre, 2012; Bohnet et al., 2013) could also be
used, among others. We use the parser out of
the box, i.e., without any parameter tuning or ad-
ditional features other than what was previously
listed for the open track.

Top node detection is implemented separately,
by training a sequence labeling model (Lafferty
et al., 2001; Kudo, 2005) on tokens and part-of-
speech tags from the training sets. Its accuracy
is given in Table 3. We use only the tokens and
parts of speech as features for these models, and
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Figure 3: Illustration of graph-to-tree transformations of a gold standard graph for LOCAL and DFS. Edge
labels are omitted. The sentence (PAS, #20415005): Who that winner will be is highly uncertain.

we design our feature set by adapting the chunking
template from the CRF++ toolkit documentation.2

We note that this model can be improved by, e.g.,
adding the open track companion features to the
feature set, but they were not used in the experi-
ments we present here.3

Our graph-to-tree conversions expand the label
sets by appending the edge flip flag. The sizes of
the new label sets are given in Table 1 in compar-
ison to the original ones. The increase in size is
expected to affect the parsing accuracy. The pars-
ing accuracies on the development sets are given
in Table 4. The scores correlate with the label
set sizes, with a notable difference between the la-
beled (LAS) and unlabeled (UAS) attachment score
for PCEDT. The LOCAL approach tends to out-
perform DFS for PCEDT, while DFS parsers also
significantly outperform LOCAL for DM and PAS.
The open track parsers tend to perform a little bet-
ter as they make use of the additional features.

In Table 2, we measure the theoretical maxi-
mum accuracy for parsers based on our two con-
versions in comparison with the baseline. There,
we run BASELINE, LOCAL and DFS on the devel-
opment set and convert the trees back to graphs
right away, i.e., without the parsing step, so as
to observe the dissipation of the conversion. The
scores show that LOCAL and DFS outperform
BASELINE by a large margin, while the maximum
accuracy for DFS is larger than the one for LOCAL,
1 point for PCEDT and around 5 points for DM
and PAS. This is due to DFS performing non-local
edge flipping, thus preserving more edges. The
parsing scores from Table 4 and the maximum ac-
curacy from Table 2 show that our systems are not

2http://crfpp.googlecode.com/svn/
trunk/doc/index.html

3The recall would increase by 15 points, amounting to a
10 point increase in F1 for top node detection in DM.

closed open

dev LF UF LF UF
LOCAL 76.70 82.01 77.87 83.19

DFS 78.49 83.78 80.03 85.31
test

LOCAL 75.94 81.58 76.79 82.52
DFS 77.34 82.99 78.60 84.32

Table 5: Overall accuracy for our LOCAL and DFS

systems, i.e., averaged labeled and unlabeled F1

scores over the three annotations.

as lossy in graph-tree conversions as the baseline,
while they pay the price in the number of new la-
bels in actual parsing and, subsequently, in the ac-
curacy of the dependency parsers. Thus, LAS and
UAS for the baseline are 1-2 points higher than the
scores in Table 4 for DM and PCEDT, while our
scores are 3-4 points higher for PAS.

3 Results and Discussion

As in the official SDP scoring, we express the
results in terms of labeled and unlabeled preci-
sion (LP, UP) and recall (LR, UR), their harmonic
means, the F1 scores (LF, UF), and sentence-level
exact matches (LM, UM). The official SDP scorer
reports on two variants of these scores: the one
taking into account the virtual edges to top nodes
and the one excluding those edges. The former is
less relaxed as it requires the top nodes to be pre-
dicted, and this is the only one we use in this re-
port. We note that for our systems, the scores with-
out the virtual edges are approximately 2 points
higher for all the metrics.

The overall scores are given in Table 5. There,
we provide the labeled and unlabeled F1 scores on
the development and test data in the closed and
open track, averaged for all three annotations. The
open track systems consistently score approxi-
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closed track DM PAS PCEDT

LP LR LF LM LP LR LF LM LP LR LF LM
LOCAL 83.39 72.88 77.78 4.53 88.18 74.00 80.47 2.00 72.25 67.10 69.58 6.38

DFS 79.36 79.34 79.35 9.05 88.15 81.60 84.75 7.72 69.68 66.25 67.92 5.86
–4.03 +6.46 +1.57 +4.52 –0.03 +7.60 +4.28 +5.72 –2.57 –0.85 –1.66 –0.52
UP UR UF UM UP UR UF UM UP UR UF UM

LOCAL 85.47 74.70 79.72 5.04 89.70 75.28 81.86 2.23 86.36 80.21 83.17 19.44
DFS 81.56 81.54 81.55 10.31 89.62 82.96 86.16 7.86 83.37 79.27 81.27 17.51

–3.91 +6.84 +1.83 +5.27 –0.08 +7.69 +4.30 +5.63 –3.00 –0.94 –1.91 –1.93

open track DM PAS PCEDT

LP LR LF LM LP LR LF LM LP LR LF LM
LOCAL 84.54 73.80 78.80 4.53 89.72 75.08 81.75 2.00 72.52 67.33 69.83 6.08

DFS 81.32 80.91 81.11 10.46 89.41 82.61 85.88 8.46 70.35 67.33 68.80 5.79
–3.22 +7.11 +2.31 +5.93 –0.31 +7.53 +4.13 +6.46 –2.17 +0.00 –1.03 –0.29
UP UR UF UM UP UR UF UM UP UR UF UM

LOCAL 86.43 75.45 80.57 5.49 90.99 76.14 82.91 2.30 87.32 81.07 84.08 19.73
DFS 83.37 82.95 83.16 11.94 90.78 83.87 87.19 8.75 84.46 80.83 82.60 18.47

–3.06 +7.50 +2.59 +6.45 –0.22 +7.73 +4.28 +6.45 –2.86 –0.24 –1.48 –1.26

Table 6: Breakdown of the scores for our LOCAL and DFS systems on the test sets. We provide labeled
and unlabeled precision (LP, UP), recall (LR, UR), F1 scores (LF, UF) and exact matches (LM, UM) for
all three annotations in both the closed and the open evaluation track.

mately 1 point higher than their closed track coun-
terparts, apparently taking advantage of the ad-
ditional features available in training and testing.
The DFS system is 2 points better than LOCAL in
all scenarios, owing to the higher maximum cover-
age of the original graphs in the conversions. The
large label sets amount to a difference of approxi-
mately 6 points between the labeled and unlabeled
accuracies in favor of the latter attachment.

Table 6 is a breakdown of the scores in Table 5
across the three annotations and the two tracks.
Here, we pair the F1 scores with the correspond-
ing precision and recall scores. We also explicitly
denote the differences in scores between LOCAL

and DFS. For DM and PAS, the score patterns
are very similar: due to the larger label set and
less regular edge flipping, DFS has a 3-4 points
lower precision than LOCAL, while its recall is 6-8
points higher, amounting to the overall improve-
ment of approximately 4 points F1. In contrast, on
the PCEDT data, LOCAL outperforms DFS by ap-
proximately 1.5 points. We note that the label sets
for PCEDT are much larger than for DM and PAS
and that the favorable reentrancies in PCEDT are
much less frequent to begin with (see Table 1, Ta-
ble 2 and Figure 2). At 14 points F1, the discrep-
ancy between the labeled and unlabeled scores is
much higher for PCEDT than for DM and PAS,
for which we observe a 1-2 point difference.

The exact match scores (LM, UM) favor DFS

over LOCAL by approximately 5 points for DM
and PAS, while LOCAL is better than DFS for
PCEDT by 1-2 points. In absolute terms, the PAS
scores are higher than those for DM and PAS in
both our systems. This difference between the
token-level and the sentence-level scores stems
from the properties of our graph-tree transforma-
tions as, e.g., certain edges in undirected cycles
could not be addressed by our edge inversions.

At approximately 81, 86 and 70 points F1 for
DM, PAS and PCEDT, in this contribution we
have shown that focusing on graph-tree transfor-
mations for the utilization of a syntactic depen-
dency parser lets us achieve good overall perfor-
mance in the semantic dependency parsing task. In
the future, we will further investigate what trans-
formations are appropriate for different styles of
graph-based semantic representations, and what
we can learn from this both for improving SDP
parser accuracy and for making linguistically mo-
tivated design choices for graph-based seman-
tic representations. Furthermore, we will extend
our system to cover inherently non-tree-like struc-
tures, such as those induced by control verbs.
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André F. T. Martins∗† Mariana S. C. Almeida∗†
∗Priberam Labs, Alameda D. Afonso Henriques, 41, 2o, 1000-123 Lisboa, Portugal

†Instituto de Telecomunicações, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
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Abstract

This paper presents our contribution to
the SemEval-2014 shared task on Broad-
Coverage Semantic Dependency Parsing.
We employ a feature-rich linear model, in-
cluding scores for first and second-order
dependencies (arcs, siblings, grandparents
and co-parents). Decoding is performed in
a global manner by solving a linear relax-
ation with alternating directions dual de-
composition (AD3). Our system achieved
the top score in the open challenge, and the
second highest score in the closed track.

1 Introduction

The last decade saw a considerable progress in sta-
tistical modeling for dependency syntactic pars-
ing (Kübler et al., 2009). Models that incorporate
rich global features are typically more accurate,
even if pruning is necessary or decoding needs to
be approximate (McDonald et al., 2006; Koo and
Collins, 2010; Bohnet and Nivre, 2012; Martins et
al., 2009, 2013). This paper applies the same ratio-
nale to semantic dependency parsing, in which
the output variable is a semantic graph, rather
than a syntactic tree. We extend a recently pro-
posed dependency parser, TurboParser (Martins et
al., 2010, 2013), to be able to perform semantic
parsing using any of the three formalisms consid-
ered in this shared task (DM, PAS, and PCEDT).
The result is TurboSemanticParser, which we re-
lease as open-source software.1

We describe here a second order model for se-
mantic parsing (§2). We follow prior work in se-
mantic role labeling (Toutanova et al., 2005; Jo-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1http://labs.priberam.com/Resources/
TurboSemanticParser

Figure 1: Example of a semantic graph in the DM

formalism (sentence #22006003). We treat top
nodes as a special semantic role TOP whose predi-
cate is a dummy root symbol.

hansson and Nugues, 2008; Das et al., 2012; Flani-
gan et al., 2014), by adding constraints and model-
ing interactions among arguments within the same
frame; however, we go beyond such sibling in-
teractions to consider more complex grandpar-
ent and co-parent structures, effectively correlat-
ing different predicates. We formulate parsing as
a global optimization problem and solve a relax-
ation through AD3, a fast dual decomposition al-
gorithm in which several simple local subprob-
lems are solved iteratively (§3). Through a rich
set of features (§4), we arrive at top accuracies at
parsing speeds around 1,000 tokens per second, as
described in the experimental section (§5).

2 A Second Order Model for Parsing

Figure 1 depicts a sentence and its semantic graph.
We cast semantic parsing as a structured predic-
tion problem. Let x be a sentence and Y(x) the
set of possible dependency graphs. We assume
each candidate graph y ∈ Y(x) can be repre-
sented as a set of substructures (called parts) in
an underlying set S (e.g., predicates, arcs, pairs
of adjacent arcs). We design a score function f
which decomposes as a sum over these substruc-
tures, f(x, y) :=

∑
s∈S fs(x, ys). We parametrize

this function using a weight vector w, and write
each atomic function as fs(x, ys) := w·φs(x, ys),
where φs(x, ys) is a vector of local features. The
decoding problem consists in obtaining the best-
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Algorithm 1 Decoding in an Arc-Factored Model
1: input: Predicate scores σP (p), arc scores σA(p → a),

labeled arc scores σLA(p
r→ a).

2: Initialize semantic graph G← ∅
3: for p = 0 to L do
4: Initialize σ ← σP (p), frame A(p)← ∅
5: for a = 1 to L do
6: Set r′ ← arg maxr σLA(p

r→ a)

7: if σA(p→ a) + σLA(p
r′→ a) > 0 then

8: A(p)← A(p) ∪ {〈p, a, r′〉}
9: σ ← σ + σA(p→ a) + σLA(p

r′→ a)
10: end if
11: end for
12: if σ > 0 then set G← G ∪ {〈p,A(p)〉}
13: end for
14: output: semantic graph G.

scored semantic graph ŷ given a sentence x:

ŷ = arg max
y∈Y(x)

f(x, y). (1)

Our choice of parts is given in Figure 2. The sec-
ond order parts are inspired by prior work in syn-
tactic parsing, modeling interactions for pairs of
(unlabeled) dependency arcs, such as grandpar-
ents (Carreras, 2007) and siblings (Smith and Eis-
ner, 2008; Martins et al., 2009). The main novelty
is co-parent parts, which, to the best of our knowl-
edge, were never considered before, as they only
make sense when multiple parents are allowed.

If all parts were basic, decoding could be done
independently for each predicate p, as illustrated
in Algorithm 1. The total runtime, for a sentence
with L words, is O(L2|R|), where R is the set
of semantic roles. Adding consecutive siblings
still permits independent decoding for each pred-
icate, but dynamic programming is necessary to
decode the best argument frame, increasing the
runtime to O(L3|R|). The addition of consec-
utive co-parents, grandparents, and arbitrary sib-
lings and co-parents breaks this independency and
sets a demand for approximate decoding. Even
without second-order parts, the inclusion of hard
constraints (such as requiring some roles to be
unique, see §3) also makes the problem harder.2

Rather than looking for a model in which exact
decoding is tractable, which could be even more
stringent for parsing semantic graphs than for de-
pendency trees, we embrace approximate decod-
ing strategies. Namely, our approach is based on

2Albeit the dynamic program could still incorporate con-
straints for unique roles (by appending a bit-string to the state
to mark semantic roles that have been filled), runtime be-
comes exponential in the number of unique roles, only being
feasible when this number is small.

Figure 2: Parts considered in this paper. The
top row illustrate the basic parts, representing the
event that a word is a predicate, or the existence of
an arc between a predicate and an argument, even-
tually labeled with a semantic role. Our second-
order model looks at some pairs of arcs: arcs bear-
ing a grandparent relationship, arguments of the
same predicate, predicates sharing the same argu-
ment, and consecutive versions of these two.

dual decomposition, a class of optimization tech-
niques that tackle the dual of combinatorial prob-
lems in a modular and extensible manner (Ko-
modakis et al., 2007; Rush et al., 2010). We em-
ploy alternating directions dual decomposition
(AD3; Martins et al., 2011). Like the subgradi-
ent algorithm of Rush et al. (2010), AD3 splits
the original problem into local subproblems, and
seeks an agreement on the overlapping variables.
The difference is that the AD3 subproblems have
an additional quadratic term to accelerate con-
sensus, achieving a faster convergence rate both
in theory and in practice (Martins et al., 2012,
2013). For several factors (such as logic factors
representing AND, OR and XOR constraints, bud-
get constraints, and binary pairwise factors), these
quadratic subproblems can be solved efficiently.
For dense or structured factors, the quadratic sub-
problems can be solved as a sequence of local
Viterbi decoding steps, via an active set method
(Martins, 2014); this local decoding operation is
the same that needs to be performed in the subgra-
dient algorithm. We describe these subproblems
in detail in the next section.

3 Solving the Subproblems

Predicate and Arc-Factored Parts. We capture
all the basic parts with a single component. As
stated in §2, local decoding in this component has
a runtime of O(L2|R|), by using Algorithm 1.

Unique Roles. We assume some roles are
unique, i.e., they can occur at most once for the
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same predicate.3 To cope with unique roles, we
add hard constraints of the kind∑

a I(p r→ a ∈ y) ≤ 1, ∀p,∀r ∈ Runiq, (2)

where Runiq is the set of unique roles. This set is
obtained from the training data by looking at the
roles that never occur multiple times in the gold
argument frames.4 The constraint above corre-
sponds to a ATMOSTONE factor, which is built-in
in AD3 and can be decoded in linear time (ren-
dering the runtime O(L2|Runiq|) when aggregat-
ing all such factors). These have also been used
by Das et al. (2012) in frame-semantic parsing.

Grandparents, Arbitrary Siblings and Co-
parents. The second-order parts in the middle
row of Figure 2 all involve the simultaneous inclu-
sion of a pair of arcs, without further dependency
on the remaining arcs. We handle each of these
parts using a simple pairwise factor (called PAIR

in the AD3 toolkit). The total runtime to locally
decode these factors is O(L3).

Predicate Automata. To handle consecutive
siblings, we adapt the simple head automaton
model (Alshawi, 1996; Smith and Eisner, 2008;
Koo et al., 2010) to semantic parsing. We in-
troduce one automaton for each predicate p and
attachment direction (left or right). We describe
right-side predicate automata; their left-side coun-
terparts are analogous. Let 〈a0, a1, . . . , ak+1〉 be
the sequence of right modifiers of p, with a0 =
START and ak+1 = END. Then, we have the fol-
lowing component capturing consecutive siblings:

f CSIB
p,→ (p→ a1, . . . , p→ ak) =∑k+1

j=1 σCSIB(p, aj−1, aj). (3)

Maximizing f CSIB
p,→ via dynamic programming has

a cost of O(L2), yielding O(L3) total runtime.

Argument Automata. For consecutive co-
parents, we introduce another automaton which is
analogous to the predicate automaton, but where
arrows are reversed. Let 〈p0, p1, . . . , pk+1〉 be
the sequence of right predicates that take a as
argument (the left-side case is analagous), with
p0 = START and pk+1 = END. We define:

f CCP
a,←(a← p1, . . . , a← pk) =∑k+1

j=1 σCCP(a, pj−1, pj). (4)
3Such roles have been called “deterministic” by Flanigan

et al. (2014).
4For PAS, all 43 roles were found unique; for DM, this

number is 40 out of 52, and for PCEDT only 3 out of 69.

The total runtime is also O(L3).

4 Features

We define binary features for each part represented
in Figure 2. Most of the features are taken from
TurboParser (Martins et al., 2013), while others
are inspired by the semantic parser of Johansson
and Nugues (2008). Those features marked with †

require information from the dependency syntactic
parser, and are only used in the open track.5

Predicate Features. Our predicate features are:

• PREDWORD, PREDLEMMA, PREDPOS. Lexi-
cal form, lemma, and POS tag of the predicate.

• PREDREL.† Syntactic dependency relation be-
tween the predicate and its head.

• PREDHEADWORD/POS.† Form and POS tag
of the predicate syntactic head, conjoined with
the predicate word and POS tag.

• PREDMODWORD/POS/REL.† Form, POS tag,
and dependency relation of the predicate syn-
tactic dependents, conjoined with the predicate
word and POS tag.

Arc Features. All features above, plus the fol-
lowing (conjoined with arc direction and label):

• ARGWORD, ARGLEMMA, ARGPOS. The lex-
ical form, lemma, and POS tag of the argument.

• ARGREL.† Syntactic dependency relation be-
tween the argument and its head.

• LEFTWORD/POS,† RIGHTWORD/POS.†

Form/POS tag of the leftmost/rightmost de-
pendent of the argument, conjoined with the
predicate word and POS tag.

• LEFTSIBWORD/POS,† RIGHTSIBWORD/POS.†

Form/POS tag of the left/right sibling of the
argument, conjoined with the predicate tag.

• PREDCONTEXTWORD, PREDCONTEXTPOS,
PREDCONTEXTLEMMA. Word, POS, and
lemma on the left and right context of the pred-
icate (context size is 2).

• PREDCONTEXTPOSBIGRAM/TRIGRAM. Bi-
gram and trigram of POS tags on the left and
right side of the predicate.

• PREDVOICE.† Predicate voice: active, passive,
or none. Determined from the syntactic depen-
dency tree as in Johansson and Nugues (2008).
5For the open track, the only external information used by

our system were the provided automatic dependency trees.
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• PREDWORDARGWORD, PREDWORDARG-
POS, PREDPOSARGWORD, PREDPOSARG-
POS. Predicate word/tag conjoined with
argument word/tag.

• PREDARGPOSCONTEXT. Several features
conjoining the POS of words surrounding the
predicate and argument (similar to the contex-
tual features in McDonald et al. (2005)).

• EXACTARCLENGTH, BINNEDARCLENGTH.
Exact and binned arc length (distance between
predicate and argument), conjoined with the
predicate and argument POS tags.

• POSINBETWEEN, WORDINBETWEEN. POS
and forms between the predicate and argument,
conjoined with their own POS tags and forms.

• RELPATH,† POSPATH.† Path in the syntactic
dependency tree between the predicate and the
argument. The path is formed either by depen-
dency relations or by POS tags.

Second Order Features. These involve a pred-
icate, an argument, and a “companion word”
(which can be a second argument, in the case of
siblings, a second predicate, for co-parents, or the
argument of another argument, for grandparents).
In all cases, features are of the following kind:

• POSTRIPLET. POS tags of the predicate, the
argument, and the companion word.

• UNILEXICAL. One word form (for the predi-
cate/argument/companion) and two POS tags.

• BILEXICAL. One POS tag (for the predi-
cate/argument/companion) and two word forms.

• PAIRWISE. Backed-off pair features for the
companion word form/POS tag and the word
form/POS of the predicate/argument.

5 Experimental Results

All models were trained by running 10 epochs of
max-loss MIRA with C = 0.01 (Crammer et al.,
2006). The cost function takes into account mis-
matches between predicted and gold dependen-
cies, with a cost cP on labeled arcs incorrectly
predicted (false positives) and a cost cR on gold
labeled arcs that were missed (false negatives).
These values were set through cross-validation in
the dev set, yielding cP = 0.4 and cR = 0.6 in all
runs, except for the DM and PCEDT datasets in the
closed track, for which cP = 0.3 and cR = 0.7.

To speed up decoding, we discard arcs whose
posterior probability is below 10−4, according to a
probabilistic unlabeled first-order pruner. Table 1
shows a significant reduction of the search space
with a very small drop in recall.

Table 2 shows our final results in the test set,
for a model trained in the train and development
partitions. Our system achieved the best score in
the open track (an LF score of 86.27%, averaged
over DM, PAS, and PCEDT), and the second best in
the closed track, after the Peking team. Overall,
we observe that the precision and recall in PCEDT

are far below the other two formalisms, but this
difference is much smaller when looking at unla-
beled scores. Comparing the results in the closed
and open tracks, we observe a consistent improve-
ment in the three formalisms of around 1% in F1

from using syntactic information. While this con-
firms previous findings that syntactic features are
important in semantic role labeling (Toutanova et
al., 2005; Johansson and Nugues, 2008), these im-
provements are less striking than expected. We
conjecture this is due to the fact that our model in
the closed track already incorporates a variety of
contextual features which are nearly as informa-
tive as those extracted from the dependency trees.

Finally, to assess the importance of the second
order features, Table 3 reports experiments in the
dev-set that progressively add several groups of
features, along with runtimes. We can see that
siblings, co-parents, and grandparents all provide
valuable information that improves the final scores
(with the exception of the PCEDT labeled scores,
where the difference is negligible). This comes
at only a small cost in terms of runtime, which is
around 1,000 tokens per second for the full mod-
els.

UR # UA/tok LR # LA/tok
DM 99.33 3.5 (13.4%) 99.22 34.4 (2.5%)
PAS 99.53 3.3 (12.5%) 99.49 20.8 (1.9%)
PCEDT 99.03 2.1 (8.2%) 98.77 54.5 (3.0%)

Table 1: Pruner statistics in the dev-set, for the
open track. Shown are oracle recall scores, consid-
ering both unlabeled (UR) and labeled arcs (LR);
and the averaged number of unlabeled and la-
beled arcs per token that remained after the prun-
ing stage (# UA/tok and # LA/tok). In brackets,
we show the fraction of unlabeled/labeled arcs that
survived the pruning.
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UP UR UF LP LR LF
DM, closed 90.14 88.65 89.39 88.82 87.35 88.08
PAS, closed 93.18 91.12 92.14 91.95 89.92 90.93
PCEDT, closed 90.21 85.51 87.80 78.80 74.70 76.70
average, closed – – 89.77 – – 85.24
DM, open 91.41 89.26 90.32 90.23 88.11 89.16
PAS, open 93.62 92.01 92.81 92.56 90.97 91.76
PCEDT, open 91.58 86.61 89.03 80.14 75.79 77.90
average, open – – 90.72 – – 86.27

Table 2: Submitted results for the closed and open
tracks. For comparison, the best-performing sys-
tem in the closed track (Peking) obtained averaged
UF and LF scores of 91.03% and 85.91%, respec-
tively.

UF LF Tok/sec
DM, arc-factored 89.90 88.96 1,681
DM, arc-factored, pruned 89.85 88.90 2,642

+siblings 90.34 89.34 1,838
+co-parents 90.80 89.76 1,073
+grandparent (full) 90.95 89.90 955

PAS, arc-factored 92.34 91.40 1,927
PAS, arc-factored, pruned 92.35 91.40 2,914

+siblings 92.45 91.45 2,106
+co-parents 92.71 91.71 1,104
+grandparent (full) 92.87 91.87 1,043

PCEDT, arc-factored 87.90 79.90 1,558
PCEDT, arc-factored, pruned 87.74 79.83 2,906

+siblings 88.46 79.98 2,066
+co-parents 90.17 79.90 1,531
+grandparent (full) 90.18 80.03 1,371

Table 3: Results in the dev-set for the open track,
progressively adding several groups of features,
until the full model is obtained. We report un-
labeled/labeled F1 and parsing speeds in tokens
per second. Our speeds include the time necessary
for pruning, evaluating features, and decoding, as
measured on a Intel Core i7 processor @3.4 GHz.

6 Conclusions

We have described a system for broad-coverage
semantic dependency parsing. Our system, which
is inspired by prior work in syntactic parsing, im-
plements a linear model with second-order fea-
tures, being able to model interactions between
siblings, grandparents and co-parents. We have
shown empirically that second-order features have
an impact in the final scores. Approximate de-
coding was performed via alternating directions
dual decomposition (AD3), yielding fast runtimes
of around 1,000 tokens per second.
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Abstract

We refined the performance of Co-
coa/Peaberry, a linguistically moti-
vated system, on extracting disease en-
tities from clinical notes in the train-
ing and development sets for Task 7.
Entities were identified in noun chunks
by use of dictionaries, and events (‘The
left atrium is dilated’) through our own
parser and predicate-argument struc-
tures. We also developed a mod-
ule to map the extracted entities to
the SNOMED subset of UMLS. The
module is based on direct matching
against UMLS entries through regu-
lar expressions derived from a small
set of morphological transformations,
along with priority rules when multi-
ple UMLS entries were matched. The
performance on training and develop-
ment sets was 81.0% and 83.3% respec-
tively (Task A), and the UMLS match-
ing scores were respectively 75.3% and
78.2% (Task B). However, the perfor-
mance against the test set was low
by comparison, 72.0% for Task A and
63.9% for Task B, even while the pure
UMLS mapping score was reasonably
high (relaxed score in Task B = 91.2%).
We speculate that our moderate perfor-
mance on the test set derives primarily
from chunking/parsing errors.

1 Introduction

The increasing use of electronic health records,
both for satisfying mandatory requirements as

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and
proceedings footer are added by the organisers. Licence
details: http://creativecommons.org/licenses/by/
4.0/

well as for administrative reasons, has cre-
ated a need for systems to automatically tag
and normalize disease/sign/symptom men-
tions. Statistically significant correlations
extracted from automated analysis of large
databases of clinical records are felt to be use-
ful in detecting phenotype-genotype correla-
tions (reviewed in Kohane (2011)), phenotype-
phenotype correlations (Roque et al., 2011) as
well as in continuous monitoring of events such
as adverse reactions and even early detection
of outbreaks of epidemics/infectious diseases
(Botsis et al., 2013; Collier, 2012). In this
context, Task 7 of SemEval 2014, which is
a continuation of the ShARe/CLEF eHealth
2013 task (Pradhan et al., 2013), provides a
testbed to evaluate systems that automatically
tag and normalize mentions of diseases, signs
and symptoms in clinical records, which in-
clude discharge summaries and echo, radiology
and ECG reports.

Our system consists of (i) Cocoa, a chunk-
based entity tagger and (ii) Peaberry, a parser,
followed by a module for predicate-argument
structure. We have tested the system in a va-
riety of tasks, such as detecting and normal-
izing mentions of chemicals, proteins/genes,
diseases and action terms in the BioCreative
13 Chemdner and CTD tasks (Ramanan and
Senthil Nathan, 2013a; Ramanan and Senthil
Nathan, 2013b), as well as in detecting cel-
lular and pathological events in the BioNLP
cancer genetics task (Ramanan and Senthil
Nathan, 2013c); we also participated in the
eHealth 2013 task (Ramanan et al., 2013d).
Throughout, we have retained a common core
platform for simultaneous detection of a mul-
tiplicity of entity types as well as for chunk-
ing and parsing; we restrict task-specific op-
timization primarily to post-processing mod-
ules. While this strategy may not be optimal
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for any individual task, we feel that it is neces-
sary for multi-document spanning tasks such
as literature-based discovery (Swanson, 1988),
where connections are established across a va-
riety of scales, e.g. from molecular events
to patho-physiological phenotypes. Moreover,
these linkages need to be made across a mul-
tiplicity of documents from various sources,
which encompass a linguistic range from com-
plex syntactical utterances in biomedical pub-
lications to free-form phrase-centered clinical
notes.

We refined performance against the pro-
vided training and development sets, with
reasonable performance in Task A (relaxed
f = 0.94, strict f = 0.81 − 0.83, strict recall
0.80 − 0.82). A module to match text from
gold-annotated exact spans to UMLS codes
also achieved reasonable performance for Task
B (relaxed accuracy = 0.94−96). However, the
results against from the test set were quite low
for Task A, (relaxed f = 0.87, strict f = 0.72,
strict recall = 0.70) as well as for Task B
(strict f = 0.64). Comparatively, the module
for UMLS normalization fared better (relaxed
f = 0.91 in Task B). We speculate that the
test set contains entities that are rare in the
training/development sets which were chun-
ked incorrectly, and also that the parse errors
in the test set arose from syntactic structures
missing in the training sets. It is possible that
a post-processing statistical module trained on
a combination of gold annotations as well as
linguistic output may be needed for improv-
ing the performance of our system on clinical
notes.

2 System description

The basic structure of the entity-tagging
system is unchanged from that used in
Share/CLEF eHealth 13 (Pradhan et al.,
2013) and BioNLP-ST 13. In summary, the
system comprises of a sentence splitter, fol-
lowed by a TBL-based POS tagger and chun-
ker, entity tagging at the single-token level,
a module to handle multi-word entities, a
noun phrase coordination module, a depen-
dency parser (Ramanan and Senthil Nathan,
2013c), and finally a semantic module to tag
disease-related events.

The generic system has dictionaries and

morphological rules for detecting diseases and
body parts. However, there are many exten-
sions needed for clinical notes, which (i) make
extensive use of common words and phrases
for describing symptoms, which requires word
sense disambiguation, (ii) use unusual phrases
for signs and symptoms and (iii) are full of
undefined acronyms. We isolated such special-
ization to disease-related entities within noun
phrases in clinical documents inside a subrou-
tine in the multi-word tagger module. These
were identified by a frequency-based analysis
of words and phrases in the training and de-
velopment corpora. Thus, a few ambiguous
words and phrases such as ’crackles’, ’com-
plaints’, ’mass effect’ and ’focal consolidation’
were tagged as disease markers regardless of
context. Generally, however, even common
clinical words such as ‘redness’ and ‘swelling’
were tagged only in the presence of neighbor-
ing context words. The appearance of major
body parts such as ‘Abdomen’, ‘Neck, ‘Ex-
tremities’ at the beginning of a line followed
by a colon or a hyphen was taken as a dis-
course reference marker for the rest of the line
to tag acronyms such as ‘NT/ND’ and dan-
gling adjectives such as ‘soft’ and ‘warm’. Very
common acronyms (≈ 100) both for anatomi-
cal parts (‘LUQ’) and diseases (‘DMII’) were
also tagged inside the specialized subroutine,
as were common abbreviations (‘regurg’ for re-
gurgitation) and words with common spelling
errors. Finally, some event/process words
which we found to almost always represent
clinical conditions in the training text were
tagged as disease markers. Examples are ‘as-
piration’, agitation’ and ‘confusion’.

We also extended our generic event pro-
cessing module with a task-specific routine
to take into account descriptions of (mostly)
signs/symptoms specific to clinical documents.
These fall into several categories: (i) abnor-
mal changes in body parts or organ systems,
such as ‘The left atrium was moderately en-
larged’, ‘Nose is bloody’ and ’redistribution of
pulmonary blood flow’ (ii) symptoms such as
’The patient was unable to walk’, ’His speech
was slurred’, ’He had difficulty breathing’ and
’alteration of consciousness’ (iii) changes in pa-
rameters marked by phrases/clauses such as
’elevation of troponin’, ‘QR interval was pro-
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longed’ and ’decreased blood sugar’. Certain
environmental conditions such as ‘exposure to
asbestos’ were also handled. Finally, events
with a default animate theme were tagged
regardless of their actual arguments to han-
dle sentences/phrases where our syntax mod-
ule failed to extract the correct theme or the
theme is to be inferred from the discourse; the
≈ 40 words in this set included verbs such
as ‘vomit’, ‘shivering’, ‘lethargic’, ‘violent’ and
‘somnolent’.

The above treatment served to demar-
cate spans for diseases that overlap with
the gold annotations. The system merges
words/phrases denoting a body part with ad-
joining words that denote diseases, and also
merges words denoting severity into the dis-
ease span, since our system design strategy
was to generate the longest contiguous span
that can refer to a disease. However, the pri-
mary score in the shared task are with re-
spect to exact matches with the gold anno-
tations. We therefore wrote a small post-
processing module to omit words in an approx-
imate match that refer to severity (‘acute’) as
well as to excise phrases dealing with intra-
organ parts or their location (such as ‘lobes’
or ‘left/right’) - such words/phrases are usu-
ally omitted from the UMLS descriptions of
diseases to which the gold annotations hew
closely. Also, we noticed that certain words
such as ‘wounds’ and ’lesions’ do not embed
an anatomical entity within their description
in the gold annotations. Yet another point is
that, while parameters are marked up as in-
dicative of a symptom only when they take on
abnormal values (‘elevated LDL’), the direc-
tion of change is almost always omitted from
the gold annotations. Descriptors of the pa-
tient (‘He’) are also excised. Altogether, we
constructed about 40 rules to trim the approx-
imate span into one more conformant to the
exact form in the gold annotations.

Task B requires mapping diseases phrases
into the SNOMED subset of UMLS as spec-
ified in the task description. We proceeded
on the assumption that the exact (gold)
entity spans were constructed by annota-
tors to closely map into the UMLS descrip-
tions. Accordingly, we used the text as
defined by the gold spans and attempted

to map them directly into the UMLS def-
initions after some preprocessing steps that
constructed a regular expression: (a) com-
mon spelling errors were corrected (b) body
part and disease acronyms were expanded
(c) common variants were added as alter-
nates i.e. ‘tumou?rs?’ were expanded into
‘(tumou?r|neoplasm|carcinoma)s?’ (d) adjec-
tival and nominal variants were added e.g.
both ‘atrium’ and ‘atrial’ were converted into
‘(atri)(al?|um)’, and more generally, adjec-
tival endings were generalized, for example,
the ending ‘ic’ was converted into ‘(i[ac]|ism)’.
(e) singular and plural forms were converted
into choices e.g. ‘artery’ was rendered as
‘arter(y|ies)’.

Altogether, we have ≈ 120 rules for vari-
ant morphological forms, covering adjectives,
nouns and number. The resulting regular ex-
pression was directly matched (using ‘grep’)
against UMLS text entries. Generally, sev-
eral matches were found. Matches against the
defining entry (the first one) were prioritized,
otherwise the entry with the largest CUID was
taken. Finally, we noted that some UMLS
CUID’s were preferred to others; for exam-
ple, ‘C0007115 - Malignant neoplasm of thy-
roid’ is preferred to ‘C0549473 - Thyroid car-
cinoma’. The preferred choices were inferred
from gold annotation frequencies, and corre-
spond to ≈ 100 remapping rules.

3 Results and Discussion

With a few minor changes to the system used
in the Share/CLEF 2013, we obtained a re-
laxed f-measure in Task A of 0.88 in the
training and development sets. Thereafter
we alternately refined performance in Task A
against the provided training set using the
development set as a testbed, or vice versa.
As described in the last section, these re-
finements took the form of adding context-
sensitive rules for disease-related words and
phrases in order of their frequencies in the
training/development sets. While we could
thereby improve performance against both
training and development sets (relaxed f =
0.94), we noticed that improvements in the
performance against the training set did not
correlate with better performance against the
development set and vice versa, probably im-
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plying that 6% or more of the entities are
unique to each set, or that we were unable to
catch similarities. A similar orthogonal situa-
tion resulted in our attempt to improve perfor-
mance against exact matches on the training
and development sets, strict f = 0.81 − 0.83,
strict recall 0.80 − 0.82. The observation of
orthogonal entity sets in different datasets for
about 6% of entities is seemingly validated in
the test set, where the results showed a re-
laxed f = 0.87, which is quite close to the
baseline performance (0.88 in the Share/CLEF
2013 task); the highest scoring system had re-
laxed f = 0.91 by comparison. We speculate
that our insistence on contextual clues for en-
tity tagging is another cause for low relaxed
performance on the test set.

Performance of the system for exact
matches on the test set (strict f = 0.72)
suffered greatly in comparison to the train-
ing/development sets. This could be partly
ascribed to the 7% lower performance on the
relaxed f-score (i.e. we missed many entities
altogether) from 0.94 in training/development
sets to 0.87 in the test set. Even account-
ing for this, there is an additional perfor-
mance drop of about 3−4% in exact match on
the test set compared to training/development
sets. One implication is that that our rule-
base method for pruning approximate matches
to exact spans is probably sub-optimal, and
should be supplemented or replaced by a sta-
tistical algorithm. As noted earlier, gold anno-
tations are probably made by annotators with
respect to UMLS definitions, and have some
degree of arbitrariness associated with them
depending on the granularity of the UMLS def-
inition e.g. in the choice of whether to remove
or retain a body location in the gold span.
Given the size of the UMLS definition set, a
statistical approach is probably likely to do
better than a rule-based system in the task of
reducing approximate matches to exact spans.

The poor performance in Task A (strict
recall = 0.70) directly impinges on our low
‘strict’ score in Task B (= 0.64); this score is
simply a product of the strict recall in Task A
and the accuracy of mapping to UMLS, where
the latter score is given by the Task B ‘relaxed’
score (= 0.91). An interesting feature is the
mapping accuracy for our system on the test

set suffered a relatively small drop when com-
pared to the mapping accuracies on the train-
ing and development sets, which were 0.94 and
0.96 respectively. We interpret this reasonably
high figure for the mapping score (the best
among the top 10+ teams in Task B) as vali-
dation of our hypothesis that gold annotations
are made with respect to UMLS definitions,
which also strengthens the case (made above)
for the need to incorporate a (semi-)statistical
approach for pruning overlap matches to exact
matches in our system.

Clinical documents are terse and full of
phrasal observations and incomplete sen-
tences, often with missing punctuation. We
have adapted a linguistically based system
to detect disease-related entities and events
with moderate performance; our observation
on the training/development sets is that most
errors arise from parsing/ chunking errors
on grammatically incomplete phrases. The
second task, namely mapping disease-related
entities/events to SNOMED/UMLS, requires
tagged entity spans to correspond closely to
UMLS definitions; system performance in this
regard can probably be usefully supplemented
by statistical approaches. Given proper entity
spans, a small set of morphological transfor-
mations gives high performance in mapping
to UMLS ID’s. We speculate that a chunk-
annotated corpus of clinical records may help
in improving performance for linguistically de-
rived systems.
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Abstract
We use a Combinatory Categorial Gram-
mar (CCG) parser with a structured per-
ceptron learner to address Shared Task 6
of SemEval-2014, Supervised Semantic
Parsing of Robotic Spatial Commands.
Our system reaches an accuracy of 79%
ignoring spatial context and 87% using
the spatial planner, showing that CCG can
successfully be applied to the task.

1 Introduction

When interpreting utterances, humans use world
knowledge whereas most semantic parsers to date
rely purely on linguistic clues. Shared Task 6 in
the SemEval 2014 campaign for semantic evalua-
tion aims to integrate reasoning about microworlds
with semantic parsing. In this task, a system
is given an instruction for a robot and has to
produce an executable semantic representation in
Robot Control Language (Dukes, 2013a, RCL).
The Robot Commands Treebank (Dukes, 2013b)
is used for training and evaluation. We partici-
pated in this shared task with a system rooted in
Combinatory Categorial Grammar (CCG). In par-
ticular, we were interested in finding out whether
existing techniques for automatically deriving cat-
egorial grammars with semantics could be moved
easily to the new domain of robot commands
and integrated with the provided spatial reasoning
component. In this paper we outline our method
and present the results for this shared task. 1

2 Extracting a CCG from RCL

CCGs (Steedman, 2001) use a small set of atomic
constituent categories such as S (sentence), NP

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1Our code is available at http://www.let.rug.
nl/evang/RoBox.zip

(noun phrase) or PP (prepositional phrase). Con-
stituents that take other constituents as arguments
have complex categories describing their combi-
natory potential. For example, an intransitive En-
glish verb has category S\NP , meaning that it
forms a sentence by combining with an NP to its
left. Similarly, modifiers also have complex cate-
gories. For example, a pre-sentential adverb might
have category S/S because it combines with a
sentence to its right to form a modified sentence.
The combinatory rules that license these exam-
ple combinations are called backward application
and forward application. They and other combi-
natory rules also allow for constituents to be asso-
ciated with semantic expressions, and specify how
to form a combined semantic expression for the
derived larger constituent.

In this section, we describe a process that takes
an RCL corpus as input and produces a set of CCG
lexical entries, i.e. natural-language words paired
with categories and semantic expressions. The
goal is for these lexical entries to produce the cor-
rect semantics under CCG combinatory rules also
for unseen robotic commands.

2.1 Transforming the Trees

RCL expressions are rooted ordered trees whose
nodes are labeled with tags. We will write them in
the form (t:h) where t is the root tag and h is the
sequence of subtrees of the root’s children. Leaves
are abbreviated as just their tags. In each training
example, each pre-terminal (parent of a leaf) can
be aligned to one or more words in the correspond-
ing natural language expression. An example is
shown in Figure 1. Since the alignments to words
are not crossing, we can interpret the RCL tree as
a phrase structure tree for the sentence and use the
algorithm of (Hockenmaier and Steedman, 2007)
to translate it to CCG. We extend the algorithm
with a semantic step that makes sure the deriva-
tions would produce the original RCL expressions.
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(event :(action :move)(entity :(color :green)(type :prism))(destination :(spatial -relation :(relation :
within)(entity :(indicator :back)(indicator :left)(type :corner))))

event

action:h

move

move the

entity:c

color:a

green

green

type:h

prism

pyramid

destination:c

spatial-relation:h

relation:h

within

in the

entity:c

indicator:a

back

bottom

indicator:a

left

left

type:h

corner

corner
event

event/destination

(event/destination)/entity:
(event : (action : move))

move the

entity

entity/entity:
(color : green)

green

entity:
(entity : (type : prism))

pyramid

destination

spatial-relation

spatial-relation/entity:
(spatial-relation : (relation : within))

in the

entity

entity/entity:
(indicator : back)

bottom

entity

entity/entity:
(indicator : left)

left

entity
(entity : (type : corner))

corner

Figure 1: Top: an RCL expression. Middle: its representation as a tree diagram. Internal nodes are
annotated with constituent types. Pre-terminals are aligned to words in a corresponding natural-language
expression. Bottom: result of the CCG transformation.

The procedure is as follows:

1. Determine constituent types. We treat
action , relation and type constituents as heads,
entitys and destinations as complements (i.e.
arguments) and cardinals, colors, indicators,
measures and spatial -relations as adjuncts (i.e.
modifiers). For sequence nodes that have multiple
event children, we treat the first as head and the
rest as adjuncts. A corresponding constituent type
label h, a or c is added to the label of each internal
node (cf. Figure 1, middle).

2. Assign lexical semantics. To the label of
each pre-terminal, add an RCL expression which
is a copy of a connected subgraph of the tree itself
(without the constituent type labels). For a-type
and c-type pre-terminals, the subgraph includes
only the pre-terminal and its daughter. For h-type
pre-terminals the parent is also included, as well
as any subtrees with root tag id or reference-id
the parent may have.To illustrate, the label of
the action:h node in our example becomes ac-
tion:h:(event : (action : move)), and color:a be-
comes color:a:(color :green). The leaves are now
no longer needed, so we remove them.

3. Add sequence nodes. If the root is tagged
sequence, add an additional node tagged sequence
between each child and the root.

4. Binarize the tree. Each local tree with
more than two daughters is binarized by insert-
ing dummy nodes, provisionally labeled C : h
where C is the tag of the parent. Left adjuncts
(such as the first indicator in Figure 1) are split
off first, followed by right adjuncts (such as the
destination in Figure 1), left complements and
right complements.

5. Assign CCG categories. Starting from the
root, the tag of each node is replaced by a CCG
category. For simplicity, we directly use RCL tags
as atomic categories rather than mapping them to
standard CCG categories:

The root gets its tag (event or sequence) as cat-
egory.

c-type nodes get their tag as category. Their sib-
ling gets category P/T if it is on the left and P\T
if it is on the right, where T is the tag of the c-
type node and P is the category of the parent. For
example, the destination node in Figure 1 gets
destination as category, and its left sibling there-
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fore gets event/destination because the parent’s
category is event .

a-type nodes such as the two indicators in Fig-
ure 1 get category P/P if they are on the left
of their sibling and P\P if they are on its right,
where P is the category of their parent. The sib-
ling gets category P .

Nodes without siblings get their tag as category.
Constituent type labels are dropped. The result

for our example is shown at the bottom of Figure 1.

2.2 The Lexicon

For each leaf in the transformed corpus that is
aligned to one or more words, a lexical item is ex-
tracted containing the words, category and RCL.
For single-word items, we also add part-of-speech
tags, obtained using the C&C POS tagger (Curran
and Clark, 2003), to reduce overgeneration. Ex-
amples of lexical items are:

• 〈block/NN〉 ` entity : (entity : (type :
(block))〉

• 〈on, top, of〉 ` spatial-relation/entity :
(spatial -relation : (relation : above))

2.3 Combinatory Rules

Given the extracted lexical items, the corpus
derivations are licensed by standard CCG rules
(Steedman, 2001), using a modified semantics that
keeps things simple and ensures that the semantics
of (most) intermediate constituents are themselves
RCL subexpressions, which is important for inter-
facing with the spatial planner during parsing. The
most important two rules are forward and back-
ward application:

(X/Y ):f Y :g ⇒ X :FAPP(X/Y, f, g) (>)
Y :g (X\Y ):f ⇒ X :BAPP(X\Y, g, f) (<)

where FAPP and BAPP are defined as follows:

FAPP(X/Y,a, (t:h)) = (t:ah) if X = Y

FAPP(C, (t:h), c) = (t:hc) otherwise

BAPP(X\Y, (t:h),a) = (t:ha) if X = Y

BAPP(C, c, (t:h)) = (t:ch) otherwise

In words, the semantics of the adjunct or comple-
ment is added as a subtree under the root of the
semantics of the head.

We also use a restricted form of the CCG rule
forward composition to form chains of entity ad-
juncts:

(entity/entity):a (entity/entity):b
⇒ (entity/entity):ab (>B)

This is motivated by our use of the spatial plan-
ner. Without forward composition, we would, e.g.,
not be able to build a constituent with the seman-
tics (entity : (color : green)(color : red)(type :
cube-group)) in the context of a stack consisting
of green and red cubes, but no stack consisting
exclusively of red cubes – the planner would fil-
ter out the intermediate constituent with semantics
(entity :(color :red)(type :cube-group)).

Finally, we use type-changing rules, which
is standard practice in CCG parsing (Clark and
Curran, 2007; Zettlemoyer and Collins, 2007).
They are automatically extracted from the training
data. Some of them account for unary productions
within RCL expressions by introducing an addi-
tional internal node, such as the destination node
in Figure 1. For example:

sp-relation:h⇒
destination:(destination :h) (∗1)

Others account for RCL leaves that are not linked
to any words. For example, the RCL expression
for the command take the light blue prism from the
blue cube renders the from-phrase as an adjunct
to the prism node: (spatial -relation : (relation :
above)(entity :(color :blue)(type :cube))), where
above is not linked. Rules like the following deal
with this by not only introducing an internal node,
but also a branch leading to the unlinked leaf:

entity:h⇒ entity/entity:
(sp-relation :(relation :above)h) (∗2)

2.4 Anaphora
Anaphora are marked in RCL entity expressions
by the subexpression (id : 1) for antecedent en-
tities and (reference-id : 1) for anaphoric enti-
ties. The latter have the special type reference,
in which case they are typically linked to the word
it, or type-reference, in which case they are typi-
cally linked to the word one, as in the yellow one.
More than one anaphoric relation in a command,
and thus, other IDs than 1, are possible, but ex-
tremely rare. We do not explicitly try to resolve
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anaphora, but merely generate versions both with
and without the id subexpression for each entity
lexical item seen in training as an antecedent. We
then rely on the parser and spatial planner to find a
parse with the correct item marked as antecedent.
If the spatial planner rejects a subexpression be-
cause it contains an unknown reference ID, we ac-
cept it anyway because the expression can later
combine with another one that contains the an-
tecedent. However, at the level of complete parses,
those containing a reference-id expression but no
id expression – or vice versa – are rejected. As a
heuristic, we also reject parses where reference-id
precedes id because we found this to be a notice-
able source of errors, and no cataphora in the train-
ing data.

3 Training and Decoding

Following (Zettlemoyer and Collins, 2007), we
use a CKY CCG parser in combination with sim-
ple perceptron updates: iterate over the training
corpus T times, for each sentence producing all
parses. Each parse is characterized by a num-
ber of features and scored using a global weight
vector. The weight vector is updated by sub-
tracting the feature vector of the highest-scoring
parse and adding the feature vector of the highest-
scoring correct parse. No update is performed if
the highest-scoring parse is correct, or no correct
parse was found. Since for the present task the
training data already induces a lexicon, we treat
the lexicon as fixed and perform no lexical update.
We parallelize training using iterative parameter
mixing (McDonald et al., 2010) with 12 shards.

3.1 Semantically Empty and Unknown
Words

The parser initially considers each contiguous sub-
sequence of words in the sentence and adds all
matching lexical items to the chart. In order to
allow for words that are not linked to the seman-
tics, we simply add two additional lexical items
to the chart for each word w in the sentence:
〈w〉 ` X/X : nil and 〈w〉 ` X\X : nil where
X is a variable that can be bound to any category
during rule application. We modify the combina-
tory rules above to require that at least one of the
input items has non-nil semantics and to use that
as output semantics if the other is nil .

In decoding, the parser also has to deal with
words not seen in training. For one, there are the

nil items, so it is possible to treat the unknown
words as semantically empty. In addition, we look
at other single-word lexical items with the same
POS tag and generate corresponding lexical items
for the unknown word on the fly, hoping that fea-
tures and the spatial planner will guide the parser
to the right choice. To limit the search space, this
is currently only done for nouns since we found
the greatest lexical variance to occur with them.

3.2 Features
Each chart edge is characterized by the following
local features:

• each lexical item w ` c:s used.

• each instance of a combinatory rule used, e.g.
>.

• 〈p, c, s〉 for each lexical item used where p
is the POS tag (or empty for multiwords).
This allows to learn correlations between cat-
egory/semantics pairs and particular parts of
speech, primarily for unknown words.

• each instance of a type-changing rule used,
together with the semantic head word of the
constituent it roots, e.g. 〈∗1, in〉. This helps
to learn not to use type-changing rules where
they don’t make sense. E.g. the word
squares often heads entity descriptions that
type-change into measure phrases but the
word cube doesn’t.

• the root tag of the semantics of each con-
stituent, together with the word to its immedi-
ate left, e.g. 〈destination, from〉. This exam-
ple feature is indicative of typical erroneous
parses where spatial adjuncts corresponding
to from-phrases are misparsed as destination
complements. The word from provides a
strong clue against such a parse but would be
ignored without such a feature because it is
not aligned to any RCL node.

• the root tag of the semantics of each con-
stituent, together with the first word in it, e.g.
〈spatial -relation, above〉.

3.3 The Spatial Planner
The spatial planner provided together with the
treebank provides access to the context in which
each command is to be interpreted, consisting of
a current arrangement of bodies on a board and in
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the gripper of the robot being instructed. It can tell
us for some RCL subexpressions, chiefly entity
descriptions, whether they “make sense” given
the context. For example, if the parser builds an
edge with semantics (entity : (type :cube)(color :
red)) but there is no red cube anywhere on the
board, we can immediately reject the edge (pro-
vided no negations or hypothetical descriptions
are used, which is the case for the commands
in this task) and thereby avoid errors and reduce
the search space. The planner also helps resolve
attachment ambiguities early: in the command
put the prism on the cube, a constituent with se-
mantics (entity : (type :prism)(spatial -relation :
(relation :above)(entity :(type :cube)))) is a pos-
sible but incorrect parse. If we are lucky enough
that no prism is actually sitting on a cube in the
microworld, the planner will weed it out.

We have not yet explored making the fullest
possible use of the spatial planner for checking the
validity of event or sequence expressions, which
would involve simulating changing the state of the
world as a sequence of event instructions is car-
ried out. Currently we only filter out initial event
instructions with action drop for scenes in which
there is nothing initially in the robot’s gripper to
be dropped. RCL requires the action move here
instead, a distinction which is often not made in
the natural language commands.

4 Experiments and Results

We carried out two experiments, one using the spa-
tial planner and one not using it. In each case, we
trained on training examples shorter than 16 words
to speed up training and evaluated on the full test
set. In both training and decoding, a beam search
strategy keeps only the 60 highest-scoring edges
per chart cell. The weights of non-nil lexical items
were initialized to 1, those of nil items to 0.5, all
other feature weights to 0. The number of training
epochs T was set to 3. These values were chosen
experimentally using 80% of the training data and
another 10% for testing.

Of the 909 test sentences, 720 (79.21%) were
parsed exactly correctly when not using the plan-
ner, and 789 (86.80%) when using it, making third
place among the six participating systems. The
result shows that standard CCG-based techniques
for semantic parsing can be successfully applied to
the domain of robotic spatial commands and profit
from the integration of a spatial planner.

A preliminary analysis suggests most errors are
related to pronoun ellipsis, the ambiguous word
one, anaphora or attachment ambiguity. We be-
lieve some further careful feature engineering and
extended use of the spatial planner could go a great
length to improve accuracy further.
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Abstract

We use referential translation machines
(RTMs) for predicting the semantic simi-
larity of text. RTMs are a computational
model for identifying the translation acts
between any two data sets with respect
to interpretants selected in the same do-
main, which are effective when making
monolingual and bilingual similarity judg-
ments. RTMs judge the quality or the se-
mantic similarity of text by using retrieved
relevant training data as interpretants for
reaching shared semantics. We derive fea-
tures measuring the closeness of the test
sentences to the training data via inter-
pretants, the difficulty of translating them,
and the presence of the acts of transla-
tion, which may ubiquitously be observed
in communication. RTMs provide a lan-
guage independent approach to all simi-
larity tasks and achieve top performance
when predicting monolingual cross-level
semantic similarity (Task 3) and good re-
sults in semantic relatedness and entail-
ment (Task 1) and multilingual semantic
textual similarity (STS) (Task 10). RTMs
remove the need to access any task or do-
main specific information or resource.

1 Semantic Similarity Judgments

We introduce a fully automated judge for seman-
tic similarity that performs well in three seman-
tic similarity tasks at SemEval-2014, Semantic
Evaluation Exercises - International Workshop on
Semantic Evaluation (Nakov and Zesch, 2014).
RTMs provide a language independent solution for
the semantic textual similarity (STS) task (Task
10) (Agirre et al., 2014), achieve top perfor-
mance when predicting monolingual cross-level
semantic similarity (Task 3) (Jurgens et al., 2014),

and achieve good results in the semantic related-
ness and entailment task (Task 1) (Marelli et al.,
2014a).

Referential translation machine (Section 2) is
a computational model for identifying the acts of
translation for translating between any given two
data sets with respect to a reference corpus se-
lected in the same domain. An RTM model is
based on the selection of interpretants, training
data close to both the training set and the test set,
which allow shared semantics by providing con-
text for similarity judgments. In semiotics, an in-
terpretant I interprets the signs used to refer to the
real objects (Biçici, 2008). Each RTM model is
a data translation and translation prediction model
between the instances in the training set and the
test set and translation acts are indicators of the
data transformation and translation. RTMs present
an accurate and language independent solution for
making semantic similarity judgments.

We describe the tasks we participated below.
Section 2 describes the RTM model and the fea-
tures used. Section 3 presents the training and test
results we obtain on the three tasks we competed
and the last section concludes.

Task 1 Evaluation of Compositional Distribu-
tional Semantic Models on Full Sentences
through Semantic Relatedness and Entail-
ment (SRE) (Marelli et al., 2014a):

Given two sentences, produce a related-
ness score indicating the extent to which
the sentences express a related meaning: a
number in the range [1, 5].

We model the problem as a translation perfor-
mance prediction task where one possible inter-
pretation is obtained by translating S1 (the source
to translate, S) to S2 (the target translation, T).
Since linguistic processing can reveal deeper sim-
ilarity relationships, we also look at the translation
task at different granularities of information: plain
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text (R for regular) and after lemmatization (L).
We lowercase all text.
Task 3 Cross-Level Semantic Similarity

(CLSS) (Jurgens et al., 2014):

Given two text from different levels, pro-
duce a semantic similarity rating: a num-
ber in the range [0, 4].

CLSS task targets semantic similarity compar-
isons between text having different levels of gran-
ularity and we address the following level cross-
ings: paragraph to sentence, sentence to phrase,
and phrase to word. We model the problem as
a translation performance prediction task among
text from different levels.
Task 10 Multilingual Semantic Textual Similarity

(MSTS) (Agirre et al., 2014)

Given two sentences S1 and S2 in the same
language, quantify the degree of similar-
ity: a number in the range [0, 5].

MSTS task addresses the problem in English
and Spanish (score range is [0, 4]). We model the
problem as a translation performance prediction
task between S1 and S2.

2 Referential Translation Machine
(RTM)

Referential translation machines provide a compu-
tational model for quality and semantic similarity
judgments in monolingual and bilingual settings
using retrieval of relevant training data (Biçici,
2011; Biçici and Yuret, 2014) as interpretants for
reaching shared semantics (Biçici, 2008). RTMs
are a language independent approach and achieve
top performance when predicting the quality of
translations (Biçici, 2013; Biçici and Way, 2014)
and when predicting monolingual cross-level se-
mantic similarity (Jurgens et al., 2014), and good
performance when evaluating the semantic relat-
edness of sentences and their entailment (Marelli
et al., 2014a), as an automated student answer
grader (Biçici and van Genabith, 2013b), and
when judging the semantic similarity of sen-
tences (Biçici and van Genabith, 2013a; Agirre et
al., 2014). We improve the RTM models by:

• using a parameterized, fast implementation
of FDA, FDA5, and our Parallel FDA5 in-
stance selection model (Biçici et al., 2014),

• better modeling of the language in which

Algorithm 1: Referential Translation Machine
Input: Training set train, test set test,

corpus C, and learning model M .
Data: Features of train and test, Ftrain

and Ftest.
Output: Predictions of similarity scores on

the test q̂.
1 FDA5(train,test, C)→ I
2 MTPP(I,train)→ Ftrain
3 MTPP(I,test)→ Ftest
4 learn(M,Ftrain)→M
5 predict(M,Ftest)→ q̂

similarity judgments are made with improved
optimization and selection of the LM data,

• using a general domain corpus to select inter-
pretants from,

• increased feature set for also modeling the
structural properties of sentences,

• extended learning models.

We use the Parallel FDA5 (Feature Decay Algo-
rithms) instance selection model for selecting the
interpretants (Biçici et al., 2014; Biçici and Yuret,
2014) this year, which allows efficient parameteri-
zation, optimization, and implementation of FDA,
and build an MTPP model (Section 2.1). We view
that acts of translation are ubiquitously used dur-
ing communication:

Every act of communication is an act of
translation (Bliss, 2012).

Translation need not be between different lan-
guages and paraphrasing or communication also
contain acts of translation. When creating sen-
tences, we use our background knowledge and
translate information content according to the cur-
rent context.

The inputs to the RTM algorithm Algorithm 1
are a training set train, a test set test, some
corpus C, preferably in the same domain as the
training and test sets, and a learning model. Step 1
selects the interpretants, I, relevant to both the
training and test data. Steps 2 and 3 use I to map
train and test to a new space where similari-
ties between translation acts can be derived more
easily. Step 4 trains a learning model M over the
training features, Ftrain, and Step 5 obtains the
predictions. Figure 1 depicts the RTM.
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Figure 1: RTM depiction.

Our encouraging results in the semantic simi-
larity tasks increase our understanding of the acts
of translation we ubiquitously use when commu-
nicating and how they can be used to predict the
semantic similarity of text. RTM and MTPP mod-
els are not data or language specific and their mod-
eling power and good performance are applicable
in different domains and tasks. RTM expands the
applicability of MTPP by making it feasible when
making monolingual quality and similarity judg-
ments and it enhances the computational scalabil-
ity by building models over smaller and more rel-
evant set of interpretants.

2.1 The Machine Translation Performance
Predictor (MTPP)

MTPP (Biçici et al., 2013) is a state-of-the-art
and top performing machine translation perfor-
mance predictor, which uses machine learning
models over features measuring how well the test
set matches the training set to predict the quality
of a translation without using a reference trans-
lation. MTPP measures the coverage of individ-
ual test sentence features found in the training set
and derives indicators of the closeness of test sen-
tences to the available training data, the difficulty
of translating the sentence, and the presence of
acts of translation for data transformation.

2.2 MTPP Features for Translation Acts

MTPP feature functions use statistics involving
the training set and the test sentences to deter-
mine their closeness. Since they are language
independent, MTPP allows quality estimation to
be performed extrinsically. MTPP uses n-gram

features defined over text or common cover link
(CCL) (Seginer, 2007) structures as the basic units
of information over which similarity calculations
are made. Unsupervised parsing with CCL ex-
tracts links from base words to head words, rep-
resenting the grammatical information instantiated
in the training and test data.

We extend the MTPP model we used last
year (Biçici, 2013) in its learning module and the
features included. Categories for the features (S
for source, T for target) used are listed below
where the number of features are given in brackets
for S and T, {#S, #T}, and the detailed descriptions
for some of the features are presented in (Biçici et
al., 2013). The number of features for each task
differs since we perform an initial feature selection
step on the tree structural features (Section 2.3).
The number of features are in the range 337−437.
• Coverage {56, 54}: Measures the degree to

which the test features are found in the train-
ing set for both S ({56}) and T ({54}).
• Perplexity {45, 45}: Measures the fluency of

the sentences according to language models
(LM). We use both forward ({30}) and back-
ward ({15}) LM features for S and T.
• TreeF {0, 10-110}: 10 base features and up

to 100 selected features of T among parse tree
structures (Section 2.3).
• Retrieval Closeness {16, 12}: Measures the

degree to which sentences close to the test set
are found in the selected training set, I, using
FDA (Biçici and Yuret, 2011a) and BLEU,
F1 (Biçici, 2011), dice, and tf-idf cosine sim-
ilarity metrics.
• IBM2 Alignment Features {0, 22}: Calcu-

lates the sum of the entropy of the dis-
tribution of alignment probabilities for S
(
∑

s∈S −p log p for p = p(t|s) where s and
t are tokens) and T, their average for S and
T, the number of entries with p ≥ 0.2 and
p ≥ 0.01, the entropy of the word align-
ment between S and T and its average, and
word alignment log probability and its value
in terms of bits per word. We also com-
pute word alignment percentage as in (Ca-
margo de Souza et al., 2013) and potential
BLEU, F1, WER, PER scores for S and T.
• IBM1 Translation Probability {4, 12}: Cal-

culates the translation probability of test
sentences using the selected training set,
I (Brown et al., 1993).
• Feature Vector Similarity {8, 8}: Calculates

similarities between vector representations.
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CCL
numB depthB avg depthB R/L avg R/L
24.0 9.0 0.375 2.1429 3.401

2

1 1

1

1 13

1

1 2

1

1 8

1

2 10

1

3 1

1

3 4

1

5 1

1

7 15

Table 1: Tree features for a parsing output by CCL (immediate non-terminals replaced with NP).

• Entropy {2, 8}: Calculates the distributional
similarity of test sentences to the training set
over top N retrieved sentences (Biçici et al.,
2013).
• Length {6, 3}: Calculates the number of

words and characters for S and T and their
average token lengths and their ratios.
• Diversity {3, 3}: Measures the diver-

sity of co-occurring features in the training
set (Biçici et al., 2013).
• Synthetic Translation Performance {3, 3}:

Calculates translation scores achievable ac-
cording to the n-gram coverage.
• Character n-grams {5}: Calculates cosine

between character n-grams (for n=2,3,4,5,6)
obtained for S and T (Bär et al., 2012).
• Minimum Bayes Retrieval Risk {0, 4}: Cal-

culates the translation probability for the
translation having the minimum Bayes risk
among the retrieved training instances.
• Sentence Translation Performance {0, 3}:

Calculates translation scores obtained ac-
cording to q(T, R) using BLEU (Papineni
et al., 2002), NIST (Doddington, 2002), or
F1 (Biçici and Yuret, 2011b) for q.
• LIX {1, 1}: Calculates the LIX readability

score (Wikipedia, 2013; Björnsson, 1968) for
S and T. 1

2.3 Bracketing Tree Structural Features
We use the parse tree outputs obtained by CCL
to derive features based on the bracketing struc-
ture. We derive 5 statistics based on the geometric
properties of the parse trees: number of brackets
used (numB), depth (depthB), average depth (avg

1LIX= A
B

+ C 100
A

, where A is the number of words, C is
words longer than 6 characters, B is words that start or end
with any of “.”, “:”, “!”, “?” similar to (Hagström, 2012).

depthB), number of brackets on the right branches
over the number of brackets on the left (R/L) 2, av-
erage right to left branching over all internal tree
nodes (avg R/L). The ratio of the number of right
to left branches shows the degree to which the sen-
tence is right branching or not. Additionally, we
capture the different types of branching present
in a given parse tree identified by the number of
nodes in each of its children.

Table 1 depicts the parsing output obtained by
CCL for the following sentence from WSJ23 3:

Many fund managers argue that now ’s the time
to buy .

We use Tregex (Levy and Andrew, 2006) for vi-
sualizing the output parse trees presented on the
left. The bracketing structure statistics and fea-
tures are given on the right hand side. The root
node of each tree structural feature represents the
number of times that feature is present in the pars-
ing output of a document.

3 SemEval-14 Results

We develop individual RTM models for each task
and subtask that we participate at SemEval-2014
with the RTM-DCU team name. The interpre-
tants are selected from the LM corpora distributed
by the translation task of WMT14 (Bojar et al.,
2014) and the LM corpora provided by LDC for
English (Parker et al., 2011) and Spanish (Ângelo
Mendonça, 2011) 4. We use the Stanford POS tag-
ger (Toutanova et al., 2003) to obtain the lemma-
tized corpora for the SRE task. For each RTM

2For nodes with uneven number of children, the nodes in
the odd child contribute to the right branches.

3Wall Street Journal (WSJ) corpus section 23, distributed
with Penn Treebank version 3 (Marcus et al., 1993).

4English Gigaword 5th, Spanish Gigaword 3rd edition.

490



model, we extract the features both on the train-
ing set and the test set. The number of instances
we select for the interpretants in each task is given
in Table 2.

Task Setting Train LM
Task 1, SRE English 770 10770
Task 3, CLSS Par2S 302 2802
Task 3, CLSS S2Phrase 202 2702
Task 3, CLSS Phrase2W 102 2602
Task 10, MSTS English 504 8002
Task 10, MSTS English OnWN 504 8004
Task 10, MSTS Spanish 502 8002

Table 2: Number of sentences in I (in thousands)
selected for each task.

We use ridge regression (RR), support vector
regression (SVR) with RBF (radial basis func-
tions) kernel (Smola and Schölkopf, 2004), and
extremely randomized trees (TREE) (Geurts et al.,
2006) as the learning models. TREE is an en-
semble learning method over randomized decision
trees. These models learn a regression function
using the features to estimate a numerical target
value. We also use these learning models after
a feature subset selection with recursive feature
elimination (RFE) (Guyon et al., 2002) or a di-
mensionality reduction and mapping step using
partial least squares (PLS) (Specia et al., 2009),
both of which are described in (Biçici et al., 2013).
We optimize the learning parameters, the num-
ber of features to select, the number of dimen-
sions used for PLS, and the parameters for paral-
lel FDA5. More detailed descriptions of the opti-
mization processes are given in (Biçici et al., 2013;
Biçici et al., 2014). We optimize the learning pa-
rameters by selecting ε close to the standard devi-
ation of the noise in the training set (Biçici, 2013)
since the optimal value for ε is shown to have
linear dependence to the noise level for different
noise models (Smola et al., 1998). At testing time,
the predictions are bounded to obtain scores in the
corresponding ranges. We obtain the confidence
scores using support vector classification (SVC).

3.1 Task 1: Semantic Relatedness and
Entailment

MSTS contains sentence pairs from the SICK
(Sentences Involving Compositional Knowledge)
data set (Marelli et al., 2014b), which contain sen-
tence pairs that contain rich lexical, syntactic and
semantic phenomena. Official evaluation metric

in SRE is the Pearson’s correlation score, which
is used to select the top systems on the training
set. SRE task allows the submission of 5 entries.
We present the performance of the top 5 individ-
ual RTM models on the training set in Table 3.
ACC is entailment accuracy, rP is Pearson’s corre-
lation, rS is Spearman’s correlation, MSE is mean
squared error, MAE is mean absolute error, and
RAE is relative absolute error. L uses the lem-
matized corpora and R uses the true-cased corpora
corresponding to regular. R+L correspond to the
perspective using the features from both R and L,
which doubles the number of features. We com-
pute the entailment by SVC.

Data Model ACC rP rS MSE MAE RAE
L SVR 67.52 .7372 .6918 .6946 .5511 .6856
L PLS-SVR 67.04 .7539 .6927 .6763 .5369 .668
R+L PLS-SVR 66.76 .75 .6879 .6815 .539 .6705
R+L SVR 66.66 .7295 .6814 .7027 .5591 .6956
L PLS-RR 66.56 .7247 .6765 .7054 .5687 .7075

Table 3: SRE training results of the top 5 RTM
systems selected.

SRE challenge results on the test set are given
in Table 4. The setting R using PLS-SVR learning
becomes the 8th out of 17 submissions when pre-
dicting the semantic relatedness and 17th out of 18
submissions when predicting the entailment.

Data Model ACC rP rS RMSE MAE RAE
R PLS-SVR 67.20 .7639 .6877 .655 .5246 .6645
R+L PLS-SVR 67.65 .7688 .6918 .6492 .5194 .658
L SVR 67.65 .7559 .6887 .664 .531 .6726
R+L SVR 67.44 .7625 .6899 .6555 .5251 .6651
R PLS-SVR 66.61 .7570 .6683 .6637 .5324 .6744

Table 4: RTM-DCU test results on the SRE task.

Model rP RMSE MAE RAE
Par2S TREE 0.8013 0.8345 0.6277 0.5083
Par2S PLS-TREE 0.7737 0.8824 0.673 0.5449
Par2S SVR 0.7718 0.8863 0.6791 0.5499
S2Phrase TREE 0.6756 0.9887 0.7746 0.6665
S2Phrase PLS-TREE 0.6119 1.0616 0.8582 0.7384
S2Phrase SVR 0.6059 1.0662 0.8668 0.7458
Phrase2W TREE 0.201 1.3275 1.1353 0.9706
Phrase2W RR 0.1255 1.3463 1.1594 0.9912
Phrase2W SVR 0.0847 1.3548 1.1663 0.9972

Table 5: CLSS training results of the top 3 RTM
systems for each subtask. Levels correspond to
paragraph to sentence (Par2S), sentence to phrase
(S2Phrase), and phrase to word (Phrase2W).
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3.2 Task 3: Cross-Level Semantic Similarity

CLSS contains sentence pairs from different gen-
res including text from newswire, travel, reviews,
metaphoric text, community question answering
sites, idiomatic text, descriptions, lexicographic
text, and search. Official evaluation metric in
CLSS is the sum of the Pearson’s correlation
scores for different levels 5. CLSS task allows the
submission of 3 entries per subtask. We present
the performance of the top 3 individual RTM mod-
els on the training set in Table 5. RMSE is the root
mean squared error. As the compared text size de-
crease, the performance decrease since it can be-
come harder and more ambiguous to find the simi-
larity using less context. RTM-DCU results on the
CLSS challenge test set are provided in Table 6.

Model rP RMSE MAE RAE
Par2S TREE .8445 .7417 .5622 .4579
Par2S PLS-TREE .7847 .853 .6456 .5258
Par2S SVR .7858 .8428 .6539 .5325
S2Phrase TREE .75 .8827 .7053 .6255
S2Phrase PLS-TREE .6979 .9491 .7781 .69
S2Phrase SVR .6631 .9835 .7992 .7088
Phrase2W TREE .3053 1.3351 1.14 .9488
Phrase2W RR .2207 1.3644 1.1574 .9633
Phrase2W SVR .1712 1.3792 1.1792 .9815

Table 6: RTM-DCU test results on CLSS for the
top 3 RTM systems for each subtask.

Table 7 lists the results along with their ranks
for rP and rS , Spearman’s correlation, out of
CHECK submissions. The baseline in Table 7
is normalized longest common substring (LCS)
scaled in the range [0, 4]. Top individual rank row
lists the ranks in each subtask. We present the re-
sults for both our official and late (about 1 day)
submissions including word to sense (W2S) re-
sults 6. RTM-DCU is able to obtain the top result
in Par2S in the CLSS task.

3.3 Task 10: Multilingual Semantic Textual
Similarity

MSTS contains sentence pairs from different do-
mains: sense definitions from semantic lexical re-
sources such as OnWN (from OntoNotes (Prad-
han et al., 2007) and WordNet (Miller, 1995)) and
FNWN (from FrameNet (Baker et al., 1998) and
WordNet), news headlines, image descriptions,
news title tweet comments, deft forum and news,

5Giving advantage to participants submitting to all levels.
6W2S results for the late submission is obtained from the

LCS baseline to calculate the ranks.

rP Par2S S2Phrase Phrase2W W2S Rank
LCS 0.527 0.562 0.165 0.109 25

Official
0.780 0.677 0.208 14
0.747 0.588 0.164 19
0.786 0.666 0.171 18

Late
0.845 0.750 0.305 0.109 6
0.785 0.698 0.221 0.109 13
0.786 0.663 0.171 0.109 17

Top Rank 1 5 3
rS Par2S S2Phrase Phrase2W W2S Rank
LCS 0.527 0.562 0.165 0.13 23

Official
0.780 0.677 0.208 17
0.747 0.588 0.164 22
0.786 0.666 0.171 18

Late
0.829 0.734 0.295 0.13 8
0.778 0.687 0.219 0.13 15
0.778 0.667 0.166 0.13 16

Top Rank 1 5 5

Table 7: RTM-DCU test results on CLSS.

paraphrases. Official evaluation metric in MSTS
is the Pearson’s correlation score.

MSTS task provides 7622 training instances
and 3750 test instances. For the OnWN domain,
1316 training instances are available and therefore,
we build a separate RTM model for this domain.
Separate modeling of the OnWN dataset results
with higher confidence scores on the test instances
than we would obtain using the overall model to
predict. MSTS task allows the submission of 3 en-
tries per subtask. We present the performance of
the top 3 individual RTM models on the training
set in Table 8.

Lang Model rP RMSE MAE RAE

E
ng

lis
h

TREE 0.6931 1.0627 0.8058 0.6649
PLS-TREE 0.6875 1.0753 0.8038 0.6632
PLS-SVR 0.6884 1.0698 0.8157 0.6730

O
nW

N TREE 0.8094 0.9295 0.694 0.5245
PLS-TREE 0.7953 0.9604 0.7203 0.5444
PLS-SVR 0.7888 0.9779 0.7234 0.5468

Sp
an

is
h TREE 0.6513 0.7341 0.5904 0.7508

PLS-TREE 0.4157 0.9007 0.7108 0.9039
PLS-SVR 0.4239 1.1427 0.8293 1.0545

Table 8: MSTS training results on the English, En-
glish OnWN, and Spanish tasks.

RTM results on the MSTS challenge test set are
provided in Table 9 along with the RTM results in
STS 2013 (Biçici and van Genabith, 2013a). Ta-
ble 10 and Table 11 lists the official results on En-
glish and Spanish tasks with rankings calculated
according to weighted rP , which weights accord-
ing to the number of instances in each domain.
RTM-DCU is able to become 10th in the OnWN
domain and 19th overall out of 38 submissions in
MSTS English and 18th out of 22 submissions in
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Model rP RMSE MAE RAE
E

ng
lis

h

deft-forum
TREE .4341 1.4306 1.1609 1.0908
PLS-TREE .3965 1.4115 1.1472 1.078
PLS-SVR .3078 1.6277 1.3482 1.2669

deft-news
TREE .6974 1.1469 .9032 .8716
PLS-TREE .6811 1.1229 .8769 .8462
PLS-SVR .5562 1.2803 .9835 .9491

headlines
TREE .6199 1.1495 .9254 .7845
PLS-TREE .6125 1.1552 .9314 .7896
PLS-SVR .6301 1.1041 .8807 .7467

images
TREE .6995 1.2034 .9499 .7395
PLS-TREE .6656 1.2298 .9692 .7545
PLS-SVR .6474 1.4406 1.1057 .8607

OnWN
TREE .8058 1.3122 1.0028 .5585
PLS-TREE .7992 1.2997 .9815 .5467
PLS-SVR .8004 1.2913 .9449 .5263

tweet-news
TREE .6882 .9869 .831 .8093
PLS-TREE .6691 1.0101 .8433 .8213
PLS-SVR .5531 1.0633 .8653 .8427

Sp
an

is
h News

TREE .7 1.5185 1.351 1.4141
PLS-TREE .6253 1.6523 1.4464 1.514
PLS-SVR .6411 1.554 1.3196 1.3813

Wikipedia
TREE .4216 1.5433 1.298 1.3579
PLS-TREE .3689 1.6655 1.4015 1.4662
PLS-SVR .4242 1.5998 1.3141 1.3748

ST
S

20
13

E
ng

lis
h

headlines
L+S SVR .6552 1.5649 1.2763 1.0231
L+P+S SVR .651 1.4845 1.1984 .9607
L+P+S SVR TL .6385 1.4878 1.2008 .9626

OnWN
L+S SVR .6943 1.7065 1.3545 .8255
L+P+S SVR .6971 1.6737 1.333 .8124
L+P+S SVR TL .6755 1.7124 1.3598 .8287

SMT
L+S SVR .3005 .8833 .6886 1.6132
L+P+S SVR .2861 .8810 .6821 1.598
L+P+S SVR TL .3098 .8635 .6547 1.5339

FNWN
L+S SVR .2016 1.2957 1.0604 1.2633
L+P+S SVR .118 1.4369 1.1866 1.4136
L+P+S SVR TL .1823 1.3245 1.0962 1.3059

Table 9: RTM-DCU test results on MSTS for the
top 3 RTM systems for each subtask as well as
RTM results in STS 2013 (Biçici and van Gen-
abith, 2013a).

MSTS Spanish. The performance difference be-
tween MSTS English and MSTS Spanish may be
due to the fewer training data available for the
MSTS Spanish task, which may be decreasing the
performance of our supervised learning approach.

3.4 RTMs Across Tasks and Years

We compare the difficulty of tasks according to the
RAE levels achieved. RAE measures the error rel-
ative to the error when predicting the actual mean.
A high RAE is an indicator that the task is hard.
In Table 12, we list the RAE obtained for differ-
ent tasks and subtasks, also listing RTM results in
STS 2013 (Biçici and van Genabith, 2013a) and
RTM results (Biçici and Way, 2014) on the quality
estimation task (QET) (Bojar et al., 2014) where
post-editing effort (PEE), human-targeted transla-

Model Wikipedia News Weighted rP Rank
TREE 0.4216 0.7000 0.5878 18
PLS-TREE 0.3689 0.6253 0.5219 20
PLS-SVR 0.4242 0.6411 0.5537 19

Table 11: RTM-DCU test results on MSTS Span-
ish task. Rankings are calculated according to the
weighted Pearson’s correlation.

tion edit rate (HTER), or post-editing time (PET)
of translations are predicted.

The best results are obtained for the CLSS
Par2S subtask, which may be due to the larger
contextual information that paragraphs can pro-
vide for the RTM models. For the SRE task, we
can only reduce the error with respect to knowing
and predicting the mean by about 35%. Prediction
of bilingual similarity as in quality estimation of
translation can be expected to be harder and RTMs
achieve state-of-the-art performance in this task as
well (Biçici and Way, 2014).

4 Conclusion

Referential translation machines provide a clean
and intuitive computational model for automati-
cally measuring semantic similarity by measur-
ing the acts of translation involved and achieve to
be the top on some semantic similarity tasks at
SemEval-2014. RTMs make quality and seman-
tic similarity judgments possible based on the re-
trieval of relevant training data as interpretants for
reaching shared semantics.
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Model deft-forum deft-news headlines images OnWN tweet-news Weighted rP Rank
TREE .4341 .6974 .6199 .6995 .8058 .6882 .6706 20
PLS-TREE .3965 .6811 .6125 .6656 .7992 .6691 .6513 23
PLS-SVR .3078 .5562 .6301 .6475 .8004 .5531 .6076 27
Top Rank 17 16 25 26 16 13

W
ith

C
on

f. TREE .4181 .6846 .6216 .6981 .8331 .6870 .6729 19
PLS-TREE .3831 .6739 .6094 .6629 .8260 .6691 .6534 23
PLS-SVR .2731 .5526 .6330 .6441 .8246 .5683 .6110 26
Top Rank 18 18 23 27 10 14

Table 10: RTM-DCU test results with ranks on MSTS English task.

Task Subtask Domain Model RAE

SRE English SICK

R PLS-SVR .6645
R+L PLS-SVR .6580
L SVR .6726
R+L SVR .6651
R PLS-SVR .6744

CLSS
Par2S

Mixed
TREE .4579

S2Phrase TREE .6255
Phrase2W TREE .9488

MSTS
English

deft-forum PLS-TREE 1.078
deft-news PLS-TREE .8462
headlines PLS-SVR .7467
images TREE .7395
OnWN PLS-SVR .5263
tweet-news TREE .8093

Spanish News PLS-SVR 1.3813
Wikipedia TREE 1.3579

STS 2013 English

headlines L+P+S SVR .9607
OnWN L+P+S SVR .8124
SMT L+P+S SVR TL 1.5339
FNWN L+S SVR 1.2633

QET PEE

Spanish-English Europarl FS-RR .9000
Spanish-English Europarl PLS-RR .9409
English-German Europarl PLS-TREE .8883
English-German Europarl TREE .8602
English-Spanish Europarl TREE 1.0983
English-Spanish Europarl PLS-TREE 1.0794
German-English Europarl RR .8204
German-English Euruparl PLS-RR .8437

QET HTER English-Spanish Europarl SVR .8532
English-Spanish Europarl TREE .8931

QET PET English-Spanish Europarl SVR .7223
English-Spanish Europarl RR .7536

Table 12: Best RTM-DCU RAE test results for different tasks and subtasks as well as STS 2013 re-
sults (Biçici and van Genabith, 2013a) and results from quality estimation task of translation (Bojar et
al., 2014; Biçici and Way, 2014).
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José Guilherme Camargo de Souza, Christian Buck,
Marco Turchi, and Matteo Negri. 2013. FBK-
UEdin participation to the WMT13 quality estima-
tion shared task. In Proc. of the Eighth Workshop
on Statistical Machine Translation, pages 352–358,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proc. of the second interna-
tional conference on Human Language Technology
Research, pages 138–145, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine Learn-
ing, 63(1):3–42.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and
Vladimir Vapnik. 2002. Gene selection for cancer
classification using support vector machines. Ma-
chine Learning, 46(1-3):389–422.

Kenth Hagström. 2012. Swedish readabil-
ity calculator. https://github.com/keha76/Swedish-
Readability-Calculator.

David Jurgens, Mohammad Taher Pilehvar, and
Roberto Navigli. 2014. SemEval-2014 Task 3:
Cross-level semantic similarity. In Proc. of the
8th International Workshop on Semantic Evaluation
(SemEval-2014), Dublin, Ireland, August.

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: tools for querying and manipulating tree
data structures. In Proc. of the fifth international
conference on Language Resources and Evaluation.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: the penn treebank. Comput.
Linguist., 19(2):313–330, June.

495



Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014a. SemEval-2014 Task 1: Evaluation
of compositional distributional semantic models on
full sentences through semantic relatedness and tex-
tual entailment. In Proc. of the 8th International
Workshop on Semantic Evaluation (SemEval-2014),
Dublin, Ireland, August.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014b. A sick cure for the evaluation of
compositional distributional semantic models. In
Proc. of LREC 2014, Reykjavik, Iceland.

George A. Miller. 1995. WordNet: A lexical
database for English. Communications of the ACM,
38(11):39–41, November.

Preslav Nakov and Torsten Zesch, editors. 2014.
Proc. of SemEval-2014 Semantic Evaluation Exer-
cises - International Workshop on Semantic Evalua-
tion. Dublin, Ireland, 23-24 August.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: a method for auto-
matic evaluation of machine translation. In Proc.
of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA, July.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword fifth edi-
tion, Linguistic Data Consortium.

Sameer S. Pradhan, Eduard H. Hovy, Mitchell P.
Marcus, Martha Palmer, Lance A. Ramshaw, and
Ralph M. Weischedel. 2007. Ontonotes: a unified
relational semantic representation. Int. J. Semantic
Computing, 1(4):405–419.

Yoav Seginer. 2007. Learning Syntactic Structure.
Ph.D. thesis, Universiteit van Amsterdam.

Alex J. Smola and Bernhard Schölkopf. 2004. A tu-
torial on support vector regression. Statistics and
Computing, 14(3):199–222, August.

A. J. Smola, N. Murata, B. Schölkopf, and K.-R.
Müller. 1998. Asymptotically optimal choice of ε-
loss for support vector machines. In L. Niklasson,
M. Boden, and T. Ziemke, editors, Proc. of the Inter-
national Conference on Artificial Neural Networks,
Perspectives in Neural Computing, pages 105–110,
Berlin. Springer.

Lucia Specia, Nicola Cancedda, Marc Dymetman,
Marco Turchi, and Nello Cristianini. 2009. Estimat-
ing the sentence-level quality of machine translation
systems. In Proc. of the 13th Annual Conference of
the European Association for Machine Translation
(EAMT), pages 28–35, Barcelona, May. EAMT.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.

In Proc. of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1, NAACL ’03, pages 173–180, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Wikipedia. 2013. LIX. http://en.wikipedia.org/
wiki/LIX.

David Graff Denise DiPersio Ângelo Mendonça,
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Abstract

This paper describes the enhancements
made to our GU-MLT-LT system (Günther
and Furrer, 2013) for the SemEval-2014
re-run of the SemEval-2013 shared task on
sentiment analysis in Twitter. The changes
include the usage of a Twitter-specific to-
kenizer, additional features and sentiment
lexica, feature weighting and random sub-
space learning. The improvements result
in an increase of 4.18 F-measure points on
this year’s Twitter test set, ranking 3rd.

1 Introduction

Automatic analysis of sentiment expressed in text
is an active research area in natural language pro-
cessing with obvious commercial interest. In the
simplest formulation of the problem, sentiment
analysis is framed as a categorization problem
over documents, where the set of categories is
typically a set of polarity values, such as posi-
tive, neutral, and negative. Many approaches to
document-level sentiment classification have been
proposed. For an overview see e.g. Liu (2012).

Text in social media and in particular microblog
messages are a challenging text genre for senti-
ment classification, as they introduce additional
problems such as short text length, spelling vari-
ation, special tokens, topic variation, language
style and multilingual content. Following Pang et
al. (2002), most sentiment analysis systems have
been based on standard text categorization tech-
niques, e.g. training a classifier using some sort of
bag-of-words feature representation. This is also
true for sentiment analysis of microblogs. Among

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

the first to work specifically with Twitter1 data
were Go et al. (2009), who use emoticons as labels
for the messages. Similarly, Davidov et al. (2010),
Pak and Paroubek (2010), and Kouloumpis et al.
(2011) use this method of distant supervision to
overcome the data acquisition barrier. Barbosa
and Feng (2010) make use of three different senti-
ment detection websites to label messages and use
mostly non-lexical features to improve the robust-
ness of their classifier. Bermingham and Smeaton
(2010) investigate the impact of the shortness of
Tweets on sentiment analysis and Speriosu et al.
(2011) propagate information from seed labels
along a linked structure that includes Twitter’s
follower graph. There has also been work on
lexicon-based approaches to sentiment analysis of
microblogs, such as O’Connor et al. (2010), Thel-
wall et al. (2010) and Zhang et al. (2011). For a
detailed discussion see Günther (2013).

In 2013, the International Workshop on Se-
mantic Evaluation (SemEval) organized a shared
task on sentiment analysis in Twitter (Nakov et
al., 2013) to enable a better comparison of dif-
ferent approaches for sentiment analysis of mi-
croblogs. The shared task consisted of two sub-
tasks: one on recognizing contextual polarity of
a given subjective expression (Task A), and one
on document-level sentiment classification (Task
B). For both tasks, the training sets consisted of
manually labeled Twitter messages, while the test
sets consisted of a Twitter part and an SMS part
in order to test domain sensitivity. Among the
best performing systems were Mohammad et al.
(2013), Günther and Furrer (2013) and Becker et
al. (2013), who all train linear models on a vari-
ety of task-specific features. In this year the cor-
pus resources were used for a re-run of the shared
task (Rosenthal et al., 2014), introducing two new
Twitter test sets, as well as LiveJournal data.

1A popular microblogging service on the internet, its mes-
sages are commonly referred to as “Tweets.”
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2 System Desciption

This section describes the details of our sentiment
analysis system, focusing on the differences to our
last year’s implementation. This year we only par-
ticipated in the subtask on whole message polarity
classification (Subtask B).

2.1 Preprocessing

For tokenization of the messages we use the
tokenizer of Owoputi et al. (2013)’s Twitter
NLP Tools2, which include a tokenizer and part-
of-speech tagger optimized for the usage with
Tweets. The tokenizer contains a regular expres-
sion grammar for recognizing emoticons, which is
an especially valuable property in the context of
sentiment analysis due to the high emotional ex-
pressiveness of emoticons.

It is well known that the way word tokens are
represented may have a significant impact on the
performance of a lexical classifier. This is par-
ticularly true in natural language processing of
social media, where we run into the problem of
spelling variation causing extreme lexical sparsity.
To deal with this issue we normalize the tokens
with the following technique: First, all tokens are
converted to lowercase and the hashtag sign (#) is
removed if present. If the token is not present in
an English word list or any of the used sentiment
lexica (see below), we remove all directly repeated
letters after the first repetition (e.g. greeeeaaat→
greeaat). If the resulting token is still not present
in any of the lexical resources, we allow no direct
repetition of letters at all. While this might lead
to lexical collisions in some cases (e.g. goooodd
→ goodd → god), it is an easy and efficient way
to remove some lexical sparsity. While generating
all possible combinations of deletions and check-
ing the resulting tokens against a lexical resource
is another option, a correct disambiguation of the
intended word would require a method making use
of context knowledge (e.g. goooodd→ good, vs.
goooodd→ god).

2.2 Features

We use the following set of features as input to our
supervised classifier:

• The normalized tokens as unigrams and bi-
grams, where stopword and punctuation to-
kens are excluded from bigrams

2http://www.ark.cs.cmu.edu/TweetNLP

• The word stems of the normalized tokens,
reducing inflected forms of a word to a com-
mon form. The stems were computed using
the Porter stemmer algorithm (Porter, 1980)

• The IDs of the token’s word clusters.
The clusters were generated by performing
Brown clustering (Brown et al., 1992) on
56,345,753 Tweets by Owoputi et al. (2013)
and are available online.2

• The presence of a hashtag or URL in the mes-
sage (one feature each)

• The presence of a question mark token in the
message

• We use the opinion lexicon by Bing Liu (Hu
and Liu, 2004), the MPQA subjectivity lex-
icon (Wiebe et al., 2005) and the Twitrratr
wordlist, which all provide a list of positive
and negative words, to compute a prior polar-
ity of the message. For each of the three sen-
timent lexica two features capture whether
the majority of the tokens in the message
were in the positive or negative sentiment list.
The same is done for hashtags using the NRC
hashtag sentiment lexicon (Mohammad et al.,
2013).

• We apply special handling to features in a
negation context. A token is considered as
negated if it occurs after a negation word (up
to the next punctuation). All token, stem and
word cluster features are marked with a nega-
tion prefix. Additionally, the polarity for to-
ken in a negation context is inverted when
computing the prior lexicon polarity.

• We use the part-of-speech tags computed by
the part-of-speech tagger of the Twitter NLP
tools by Owoputi et al. (2013) to exclude
certain tokens. Assuming they do not carry
any helpful sentiment information, no fea-
tures are computed for token recognized as
name (tag ˆ) or user mention (tag @).

• We also employ feature weighting to give
more importance to certain features and indi-
cation of emphasis by the author. Normally,
all features described above receive weight 1
if they are present and weight 0 if they are ab-
sent. For each of the following cases we add
+1 to the weight of a token’s unigram, stem
and word cluster features:
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– The original (not normalized) token is
all uppercase

– The original token has more than three
adjacent repetitions of one letter

– The token is an adjective or emoticon
(according to its part-of-speech tag)

Furthermore, the score of each token is di-
vided in half, if the token occurs in a ques-
tion context. A token is considered to be in
a question context, if it occurs before a ques-
tion mark (up to the next punctuation).

2.3 Machine Learning Methods
All training was done using the open-source ma-
chine learning toolkit scikit-learn3 (Pedregosa et
al., 2011). Just as in our last year’s system
we trained linear one-versus-all classifiers us-
ing stochastic gradient descent optimization with
hinge loss and elastic net regularization.4 For fur-
ther details see Günther and Furrer (2013). The
number of iterations was set to 1000 for the final
model and 100 for the experiments.

It is widely observed that training on a lot of
lexical features can lead to brittle NLP systems,
that are easily overfit to particular domains. In so-
cial media messages the brittleness is particularly
acute due to the wide variation in vocabulary and
style. While this problem can be eased by using
corpus-induced word representations such as the
previously introduced word cluster features, it can
also be addressed from a learning point of view.
Brittleness can be caused by the problem that very
strong features (e.g. emoticons) drown out the ef-
fect of other useful features.

The method of random subspace learning
(Søgaard and Johannsen, 2012) seeks to handle
this problem by forcing learning algorithms to pro-
duce models with more redundancy. It does this
by randomly corrupting training instances during
learning, so if some useful feature is correlated
with a strong feature, the learning algorithm has
a better chance to assign it a nonzero weight. We
implemented random subspace learning by train-
ing the classifier on a concatenation of 25 cor-
rupted copies of the training set. In a corrupted
copy, each feature was randomly disabled with a
probability of 0.2. Just as for the classifier, the hy-
perparameters were optimized empirically.

3Version 0.13.1, http://scikit-learn.org.
4SGDClassifier(penalty=’elasticnet’,

alpha=0.001, l1 ratio=0.85, n iter=1000,
class weight=’auto’)

3 Experiments

For the experiments and the training of the final
model we used the joined training and develop-
ment sets of subtask B. We were able to retrieve
10368 Tweets, of which we merged all samples
labeled as objective into the neutral class. This re-
sulted in a training set of 3855 positive, 4889 neu-
tral and 1624 negative tweets. The results of the
experiments were obtained by performing 10-fold
cross-validation, predicting positive, negative and
neutral class. Just as in the evaluation of the shared
task the results are reported as average F-measure
(F1) between positive and negative class.

To be able to evaluate the contribution of the
different features groups to the final model we per-
form an ablation study. By disabling one feature
group at the time one can easily compare the per-
formance of the model without a certain feature to
the model using the complete feature set. In Ta-
ble 1 we present the results for the feature groups
bigrams (2gr), stems (stem), word clusters (wc),
sentiment lexica (lex), negation (neg), excluding
names and user mentions (excl), feature weighting
(wei) and random subspace learning (rssl).

Negative Positive Avg.
Prec Rec Prec Rec F1

ALL 54.80 71.67 76.70 75.41 69.08
-2gr -0.55 -0.49 -0.35 +0.20 -0.31
-stem -1.47 -1.72 -0.49 -0.03 -0.92
-wc -1.45 -1.60 -0.40 -1.66 -1.29
-lex -1.73 -5.11 +1.06 -2.75 -1.99
-neg -1.90 -3.14 -1.30 +0.36 -1.43
-excl +0.31 -0.99 +0.59 +0.08 +0.08
-wei -1.57 +0.43 -0.84 -0.34 -0.73
-rssl +2.04 -4.37 +1.38 -2.88 -0.67

Table 1: Feature ablation study

Looking at Table 1, we can see that removing
the sentiment lexica features causes the biggest
drop in performance. This is especially true for
the recall of the negative class, which is underrep-
resented in the training data and can thus profit the
most from prior domain knowledge. When com-
paring to the features of our last year’s system, it
becomes clear that the used sentiment lexica can
provide a much bigger gain in performance than
the previously used SentiWordNet. Even though
they are outperformed by the sentiment lexica, the
word cluster features still provide an additional in-
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GU-MLT-LT (2013) RTRGO (2014)
F1 pos/neg F1 3-class Accuracy F1 pos/neg F1 3-class Accuracy

Twitter2013 65.42 68.13 70.42 69.10 70.92 72.54
Twitter2014 65.77 66.59 69.40 69.95 69.99 72.53
SMS2013 62.65 66.93 69.09 67.51 72.15 75.54
LiveJournal2014 68.97 68.42 68.39 72.20 72.29 72.33
Twitter2014Sarcasm 54.11 56.91 58.14 47.09 49.34 51.16

Table 2: Final results of our submissions on the different test sets (Subtask B)

crease in performance and can, in contrast to sen-
timent lexica, be learned in a completely unsu-
pervised manner. Negation handling is an impor-
tant feature to boost the precision of the classifier,
while using random subspace learning increases
the recall of the classes, which indicates that the
technique indeed leads to more redundant models.

Another interesting question in sentiment anal-
ysis is, how machine learning methods com-
pare to simple methods only relying on sentiment
wordlists and how much training data is needed
to outperform them. Figure 1 shows the results
of a training size experiment, in which we tested
classifiers, trained on different portions of a train-
ing set, on the same test set (10-fold cross val-
idated). The two horizontal lines indicate the
performance of two simple classifiers, using the
Twitrratr wordlist (359 entries, labeled TRR) or
Bing Liu opinion lexicon (6789 entries, labeled
LIU) with a simple majority-vote strategy (choos-
ing the neutral class in case of no hits or no ma-
jority and including a polarity switch for token in
a negation context). The baseline of the machine
learning classifiers is a logistic regression
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Figure 1: Training size experiment

classifier using only uni- and bigram features and
negation handling (labeled BOW). To this baseline
we add either the lexicon features for the Bing Liu
opinion lexicon and the Twitrratr wordlist (labeled
+LEX) or all other features described in section
2.2 excluding lexicon features (labeled +REST).
Looking at the results, we can see that a simple
bag of words classifier needs about 250 samples
of each class to outperform the TRR list and about
700 samples of each class to outperform the LIU
lexicon on the common test set. Adding the fea-
tures that can be obtained without having senti-
ment lexica available (+REST) reduces the needed
training samples about half. It is worth noting that
from a training set size of 1250 samples per class
the +REST-classifier is able to match the results of
the classifier combining bag of words and lexicon
features (+LEX).

4 Results and Conclusion

The results of our system are presented in Table 2,
where the bold column marks the results relevant
to our submission to this year’s shared task. We
also give results for our last year’s system. Be-
side the average F-measure between positive and
negative class, on which the shared task is evalu-
ated, we also provide the results of both systems as
average F-measure over all three classes and accu-
racy to create possibilities for better comparison
to other research. In this paper we showed sev-
eral ways to improve a machine learning classifier
for the use of sentiment analysis in Twitter. Com-
pared to our last year’s system we were able to
increase the performance about several F-measure
points on all non-sarcastic datasets.
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Abstract

This paper describes the details of our
system submitted to the SemEval-2014
shared task about aspect-based sentiment
analysis on review texts. We participated
in subtask 2 (prediction of the polarity
of aspect terms) and 4 (prediction of the
polarity of aspect categories). Our ap-
proach to determine the sentiment of as-
pect terms and categories is based on lin-
guistic preprocessing, including a com-
positional analysis and a verb resource,
task-specific feature engineering and su-
pervised machine learning techniques. We
used a Logistic Regression classifier to
make predictions, which were ranked
above-average in the shared task.

1 Introduction

Aspect-based sentiment analysis refers to the
problem of predicting the polarity of an explicit
or implicit mention of a target in a sentence or
text. The SemEval-2014 shared task required sen-
timent analysis of laptop and restaurant reviews
on sentence level and comprised four subtasks
(Pontiki et al., 2014). The organizers created and
shared manually labelled domain-specific training
and test data sets. Two of the four subtasks dealt
with determining the sentiment of a given aspect
term (explicitly mentioned) or aspect category (ex-
plicitly or implicitly mentioned) in a sentence.
The subtasks we participated in do not include the
recognition of aspects. Given the sentence “The
sushi rolls were perfect, but overall it was too ex-
pensive.”, “sushi rolls” is an aspect term, and the
corresponding aspect categories are “food” and

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

“price”. The correct predictions would be the fol-
lowing:

• Subtask 2 (aspect terms): {sushi rolls Ý pos-
itive}

• Subtask 4 (aspect categories): {food Ý posi-
tive, price Ý negative}

To solve these tasks, we introduce a Logis-
tic Regression Model for target-specific sentiment
analysis. Features are derived from a fine-grained
polarity lexicon, a verb resource specifying expec-
tations and effects of the verbs functional roles,
and a compositional analysis. In our experiments
on the restaurant and laptop reviews data for the
SemEval-2014 shared task, we found that im-
provements over the baseline are possible for all
classes except “conflict”.

2 Related Work

We focus on the question whether fine-grained lin-
guistic sentiment analysis improves target-specific
polarity classification. Existing approaches to
aspect-based sentiment detection have focused on
different aspects of this task, e.g. the identifi-
cation of targets and their components (Popescu
and Etzioni, 2005) and sentence-level composition
(Moilanen and Pulman, 2007). Ding et al. (2008)
and Hu and Liu (2004) produced lexicon-based
approaches, which perform quite well in a large
number of domains, and Blair-Goldensohn et al.
(2008) combined lexicon-based methods and su-
pervised learning. Jiang et al. (2011) used a depen-
dency parser to generate a set of aspect dependent
features for classification. For our system we built
a sentiment composition resembling the one of
Läubli et al. (2012), which was developed for Ger-
man. Moreover, our verb resource has some simi-
larity with the one of Neviarouskaya et al. (2009):
both rely on verb classes and utilize verb-specific
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behavior. However, only we specify the individ-
ual verb’s (default) perspective on each role (and
are, thus, able to count polar propagations). See
also Reschke and Anand (2011), who describe in
detail how polar (verb) complements combine to
verb frame polarity (again without recording and
using role perspectives as we do).

3 System Description

In this section we present the details of our senti-
ment analysis system. We used the same prepro-
cessing and learning algorithm for both subtasks
(2 & 4). Only the feature extraction was expanded
in subtask 4 for determining the polarities of as-
pect categories (see section 3.3). The data sets
consisted of restaurant and laptop reviews, which
comprise about 3’000 manually classified target-
specific sentences for each domain.

3.1 Sentiment Composition
The fundamental steps of our sentiment analysis
system are parsing the sentences, rule-based sen-
timent analysis using a polarity lexicon and a verb
resource, feature extraction and training a machine
learning algorithm. In this section we will de-
scribe the composition of the lexicon as well as the
structure of the sentiment composition pipeline.

Category Example
POS strong “awesome”
POS weak “adequate”
NEG strong “catastrophe”
NEG weak “demotivated”
POS active “generous”
POS passive “noteworthy”
NEG active “rebellion”
NEG passive “orphaned”

Table 1: Additional categories in our fine-grained
polarity lexicon

The same polarity lexicon was used for both
domains. After mapping the polarities from the
lexicon to the words and multi-word expressions,
we calculated the polarity of nominal (NPs) and
prepositional phrases (PPs) by means of lexical
marking and the syntactic analysis of a depen-
dency parser (Choi and Palmer, 2011). We did not
implement any rules for neutral phrases, all words
and phrases not marked as positive or negative are
considered as neutral. In general, the polarities are
propagated bottom-up to their respective heads of

the NPs/PPs in composition with the subordinates.
Shifters and negation words are also taken into ac-
count. The parser output is converted into a con-
straint grammar (CG) format for the subsequent
analysis of words and phrases. To conduct this
composition of polarity for the phrases we imple-
mented a CG with the vislcg3 tools (VISL-group,
2013). The next stage of our sentiment detection
is the verb resource, which was also implemented
with the vislcg3 tools and will be explained in the
next section.

3.2 Verb-based Sentiment Analysis
In order to combine the composition of the po-
lar phrases with verb information, we encoded the
impact of the verbs on polarity using three di-
mensions: effects, expectations and verb polarity.
While effects should be understood as the outcome
instantiated through the verb, expectations can be
understood as anticipated polarities induced by the
verb. Effects and expectations are assigned to sub-
jects or objects, not to the verb itself. A positive
or negative verb effect propagates from the verb to
a subject or object if the latter receives the polar-
ity of the verb. For a verb expectation, the subject
or object is expected to be polar and thus receives
a polarity even if the sentiment composition re-
sulted neutral (see examples below). The verb po-
larity as such is the evaluation of the whole verbal
phrase. Moreover, we process predicative and pas-
sive verbs, adapting the effects and expectations to
the syntactic structure.

Since these effects and expectations match di-
rectly to the subject and objects of a sentence,
they are of great use detecting the polarity of as-
pect terms (which are predominantly subjects or
objects). We present the following examples ex-
tracted from the training data to illustrate three di-
mensions annotated by the verb analysis:

• Example of a positive effect on the direct ob-
ject of a sentence induced by the verb: “I
love (verb POS) the operating system and the
preloaded software (POS EFF).”

• Example for a negative expectation on a
prepositional object induced by the verb:
“[...] the guy, who constantly com-
plains (verb NEG) about the noise level
(NEG EXP).”

• Example of positive predicative effects
with an auxiliary, non-polar verb: “Ser-
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vice (POS predicative) is (verb PRED) great,
takeout (POS predicative) is (verb PRED)
good too.”

Furthermore, we make a distinction between the
different prepositions a verb can invoke and the
succeeding semantic changes. For example, the
verb “to die” can be annotated in three different
manners, depending on the prepositional object:

1. “My phone died (verb NEG).”

2. “Their pizza (POS EFF) is to die (verb POS)
for.”

3. “He died (verb NEG) of cancer
(NEG EXP).”

To summarize, in addition to verb polarity, we
introduce effects and expectations to verb frames,
which are determined through the syntactic pattern
found, the bottom-up calculated phrase polarities
and the meaning of the verb itself. We manually
categorized approx. 300 of the most frequent pos-
itive and negative English verbs and their respec-
tive verb frames.

Laptop reviews
Feature Occurrences in %
Verbs effects 367 12.05
Verb expectations 6 0.02
Predicatives 298 9.78
Polar verbs 530 17.39

Restaurant reviews
Feature Occurrences in %
Verbs effects 246 8.09
Verb expectations 12 0.04
Predicatives 378 12.43
Polar verbs 521 17.13

Table 2: Occurrences and percentage of sentences
of annotated polar verb features in the training data
of the shared task

In table 2, we illustrate the relevance of the lin-
guistic features of this verb resource by showing in
how many sentences of the training set these anno-
tations appear. Since we merely annotated the verb
frames of the most frequent English verbs, it is
conceivable that this resource may have a consid-
erably greater effect if more domain-specific verbs
are modelled.

After this final sentiment composition step, all
derived polarity chunks are converted into a set of
features for machine learning algorithms.

3.3 Feature Extraction

In a first step of our system, the sentences are
parsed, phrase polarities are calculated and verb
effects and expectations are assigned. Subse-
quently, a feature extractor, which extracts and ag-
gregates polar information, operates on the out-
put. The Simple Logistic Regression classifier
from weka Hall et al. (2009) is then trained on
these features.

We developed a feature extraction pipeline that
retrieves information about various polarity levels
in words, syntactic functions and phrases of the
sentences in the data set. In order to use our senti-
ment composition approach for machine learning,
we extract three different sets of features, result-
ing in a total of 32 features for subtask 2 and 39
features for subtask 4.

In short, the feature sets are constructed as fol-
lows:

• Lexicon-based features: These features com-
prise simple frequency counts of positive and
negative words in the sentences and binary
features showing whether any positive or
negative, strong or active tokens are present
at all. Furthermore, these features not only
include absolute counts but also token ratios.

• Composition-based features: This feature set
describes the information found in nomi-
nal, prepositional and verbal phrases, such
as the number of positive/negative phrase
heads or predicative verb effects found. It
is also possible to distinguish between fea-
tures which represent frequency counts and
features which represent polarity ratios.

• Target-specific features: This set includes
features from the previous two sets in con-
nection with the aspect terms, e.g. whether
the aspect term has a verb expectation or
whether the aspect term is the head of a neg-
ative/positive phrase, the subject or direct ob-
ject, etc. In this set we also include accu-
mulative features that represent the complete
amount of polar information in connection
with an aspect term.

• (only for subtask 4) Category-specific fea-
tures: These features are based on a co-
occurrence analysis of the most frequent
words used in each category. That is to
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say, we calculated the frequencies of all po-
lar nouns, verbs and adjectives that appear in
sentences of the same category in order to
find category-specific words which have an
influence on the polarity. This set includes
features such as the number of category-
specific words occurring in the sentence, etc.

For the classification of the aspect terms and
categories of the sentences into the four classes
(positive, negative, neutral and conflict), we
trained a Simple Logistic Regression classifier on
the features described above. We also explored
other machine learning algorithms such as SVMs
and artificial neural networks, however, the Logis-
tic Regression proved to yield the best results.

4 Results & Discussion

In this section we present and discuss the results
of our system in the SemEval 2014 shared task.
The results of our submission for subtasks 2 and 4,
compared to the majority baselines, can be found
in table 3. Our system performs significantly bet-
ter on restaurant reviews than on laptop reviews,
probably due to the fact that our polarity lexi-
con comprises more restaurant-specific vocabu-
lary than computer-specific vocabulary.

Subtask Data Baseline Acc.
(2) Laptops 47.06 58.30
(2) Restaurants 57.8 70.98
(4) Restaurants 59.84 73.10

Table 3: Shared-Task results for subtask 2 (aspect
term polarity) and subtask 4 (aspect category po-
larity)

In both subtasks, calculating the polarity of the
aspect terms and the aspect categories, the class
positive scores better than the three other classes.
In all data sets and all subtasks positive was the
majority class of the four-partite classification:
42% in the aspect terms of the laptop reviews, 59%
in the aspect terms and aspect categories of the
laptop reviews equally (measured in the training
data). Thus, it is not surprising that the most fre-
quent error of our system is to categorize neutral
aspect terms and categories as positive.

We do not achieve any improvements for the
class conflict. The latter is very hard to detect, not
only because this class is difficult to define but also
because of the lack of training data given for this

class. This could not be improved even though
we included lexical features to address this par-
ticular class, for example, Boolean features show-
ing whether an adversative conjunction is present
in the sentence or whether the count of positive
chunks equals the count of negative chunks in the
same sentence. These features are in line with
the theory that aspects are considered controver-
sial if positive and negative occurrences are bal-
anced and no polarity clearly prevails. Further-
more, the conflictive facet of a sentence is fre-
quently not represented in the words (e.g. “It has
no camera, but I can always buy and install one
easy.”; camera = conflict). Thus, it becomes chal-
lenging to generate features for this class conflict
with a lexicon-based approach.

Furthermore, since our verb resource was newly
implemented, there are still many verbs (espe-
cially domain-specific verbs) which will have to
be modelled in addition to the most frequent En-
glish verbs included in the analysis by now. An-
other limitation of our current system is the fact
that verb negation is not yet implemented: We
process negation occurring in noun phrases (e.g.
“a not so tasty chicken curry”), but not when the
negation word relates to the verb (e.g. “we didn’t
complain”).

In summary, our aspect-based sentiment anal-
ysis pipeline takes into consideration many lin-
guistic characteristics relevant for detecting opin-
ion, and still provides the possibility to expand our
compositional resources.

5 Conclusion

Given the above-average results obtained in the
shared task system ranking, we conclude that the
method for aspect-based sentiment analysis in re-
view texts presented in this paper yields competi-
tive results. We showed that the performance for
this task can be improved by using linguistically
motivated features for all classes except conflict.

We presented a supervised aspect-based senti-
ment analysis system to detect target-specific po-
larity with features derived from a fine-grained po-
larity lexicon, a verb resource and compositional
analysis based on a dependency parser. Our results
have shown that deeper linguistic analysis can pos-
itively influence the detection of target-specific
polarities on sentence level in review texts.
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Abstract

The SAIL-GRS system is based on a
widely used approach originating from in-
formation retrieval and document index-
ing, the TF -IDF measure. In this im-
plementation for spoken dialogue system
grammar induction, rule constituent fre-
quency and inverse rule frequency mea-
sures are used for estimating lexical and
semantic similarity of candidate grammar
rules to a seed set of rule pattern instances.
The performance of the system is evalu-
ated for the English language in three dif-
ferent domains, travel, tourism and finance
and in the travel domain, for Greek. The
simplicity of our approach makes it quite
easy and fast to implement irrespective of
language and domain. The results show
that the SAIL-GRS system performs quite
well in all three domains and in both lan-
guages.

1 Introduction

Spoken dialogue systems typically rely on gram-
mars which define the semantic frames and re-
spective fillers in dialogue scenarios (Chen et al.,
2013). Such systems are tailored for specific
domains for which the respective grammars are
mostly manually developed (Ward, 1990; Seneff,
1992). In order to address this issue, numerous
current approaches attempt to infer these grammar
rules automatically (Pargellis et al., 2001; Meng
and Siu, 2002; Yoshino et al., 2011; Chen et al.,
2013).

The acquisition of grammar rules for spoken
language systems is defined as a task comprising
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4.0 International Licence. Page numbers and proceedings
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of two subtasks (Meng and Siu, 2002; Iosif and
Potamianos, 2007), the acquisition of:

(i) Low-level rules These are rules defining
domain-specific entities, such as names of lo-
cations, hotels, airports, e.g. CountryName:
“USA”, Date: “July 15th, 2014”, CardType:
“VISA” and other common domain multi-word ex-
pressions, e.g. DoYouKnowQ: “do you know”.

(ii) High-level rules These are larger,
frame-like rule patterns which contain as
semantic slot fillers multi-word entities
identified by low-level rules. For exam-
ple: DirectionsQ: “<DoYouKnowQ>
<where> the <MuseumName> is lo-
cated”, ExpressionCardProblem: “my
<CardType> has expired”.

The shared task of Grammar Induction for Spo-
ken Dialogue Systems, where our system partic-
ipated, focused on the induction of high-level
grammar rules and in particular on the identifica-
tion and semantic classification of new rule pat-
terns based on their semantic similarity to known
rule instances.

Within this research framework, the work de-
scribed in this paper proposes a methodology for
estimating rule semantic similarity using a varia-
tion of the well-known measure of TF -IDF as
rule constituent frequency vs. inverse rule fre-
quency, henceforth CF -IRF .

In the remainder of this paper, we start in Sec-
tion 2 by a detailed description of our system. Sub-
sequently, in Section 3, we present the datasets
used and the evaluation process, and in Section 4
we discuss our results. We conclude in Section 5
with a summary of our observations and directions
for future work.

2 System Description

The SAIL-GRS system is based on a widely used
approach in information retrieval and document
indexing, the TF -IDF measure. TF -IDF is
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an approach that has found numerous applications
in information management applications, such as
document keyword extraction, (e.g., Dillon and
Gray (1983)), document clustering, summarisa-
tion, (e.g., Gong and Liu (2001)), event cluster-
ing, (e.g., De Smet and Moens (2013)). In dia-
logue systems, TF -IDF has been used, among
other applications, for discovering local coher-
ence (Gandhe and Traum, 2007) and for acquir-
ing predicate-argument rule fragments in an open
domain, information extraction-based spoken dia-
logue system (Yoshino et al., 2011). In their ap-
proach, Yoshino et al. (2011) use the TF -IDF
measure to determine the importance of a given
word for a given domain or topic, so as to select
the most salient predicate-argument structure rule
patterns from their corpus.

In our implementation for spoken dialogue
system grammar induction, rule constituent fre-
quency (CF ) and inverse rule frequency (IRF )
measures are used for estimating lexical and se-
mantic similarity of candidate grammar rules to a
seed set of rule pattern instances. As illustrated in
Table 1, the SAIL-GRS algorithm has two main
steps, the training stage and the rule induction
stage.

Input: known rule pattern instances
Output: new candidate rule patterns
Training stage:
1. Known rule instance parsing
2. Rule constituent extraction (uni-/bigrams)
3. Rule constituent frequency count (CF )
4. Inverse rule frequency count (IRF )
5. CF -IRF rule instance vector creation
Rule induction stage:
1. Unknown text fragment parsing
2. Unigram & bigram extraction
3. Uni-/bigram CF -IRF value lookup
4. Creation of CF -IRF vector for

unknown text fragment
5. Estimation of cosine similarity of

unknown fragment to rule instances
6. New candidate rule selection & rule

semantic category classification using
maximum cosine similarity

Table 1: The SAIL-GRS system algorithm.

In the first, the Training stage, known rule in-
stances are parsed and, for each rule semantic cat-
egory, the respective high-level rule pattern in-

stances are acquired. These patterns are subse-
quently split into unigram and bigram constituents
and the respective constituent frequencies and in-
verse rule frequencies are estimated. Finally, for
each rule category, a vector representation is cre-
ated for the respective rule pattern instance, based
on the CF -IRF value of its unigram and bigram
constituents.

In the second step, the Rule induction stage, the
unknown text fragments are parsed and split into
unigrams and bigrams. Subsequently, we lookup
the known rule instance unigram and bigram rep-
resentations for potential lexical matches to these
new unigrams and bigrams. If these are found,
then the new n-grams acquire the respective CF -
IRF values found in the training instances and the
respective CF -IRF vector for the unknown text
fragments is created. Finally, we estimate the co-
sine similarity of this unknown text vector to each
known rule vector. The unknown text fragments
that are most similar to a given rule category are
selected as candidate rule patterns and are classi-
fied in the known rule semantic category. An un-
known text fragment that is selected as candidate
rule pattern is assigned only to one, the most sim-
ilar, rule category.

3 Experimental Setup

The overall objective in spoken dialogue system
grammar induction is the fast and efficient devel-
opment and portability of grammar resources. In
the Grammar Induction for Spoken Dialogue Sys-
tems task, this challenge was addressed by pro-
viding datasets in three different domains, travel,
tourism and finance, and by attempting to cover
more than one language for the travel domain,
namely English and Greek.

As illustrated in Table 2, the travel domain data
for the two languages are comparable, with 32 and
35 number of known rule categories, for English
and Greek, comprising of 982 and 956 high-level
rule pattern instances respectively. The smallest
dataset is the finance dataset, with 9 rule categories
and 136 rule pattern instances, while the tourism
dataset has a relatively low number of rule cate-
gories comprising of the highest number of rule
pattern instances. Interestingly, as indicated in the
column depicting the percent of unknown n-grams
in the test-set, i.e. the unigrams and the bigrams
without a CF -IRF value in the training data, the
tourism domain test-set appears also to be the one
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with the greatest overlap with the training data,
with a mere 0.72% and 4.84% of unknown uni-
grams and bigrams respectively.

For the evaluation, the system performance is
estimated in terms of precision (P ), recall (R) and
F -score measures, for the correct classification of
an unknown text fragment to a given rule cate-
gory cluster of pattern instances. In addition to
these measures, the weighted average of the per
rule scores is computed as follows:

Pw =
∑N−1

i=1 Pici∑N−1
i=1 ci

, Rw =
∑N−1

i=1 Rini∑N−1
i=1 ni

(1)

Fw =
2 · Pw ·Rw

Pw + Rw
(2)

where N − 1 is the total number of rule cate-
gories, Pi and Ri are the per rule i scores for preci-
sion and recall, ci the unknown patterns correctly
assigned to rule i, and ni the total number of cor-
rect rule instance patterns for rule i indicated in
the ground truth data.

4 Results

The results of the SAIL-GRS system outperform
the Baseline in all dataset categories, except the
Tourism domain, as illustrated in Table 3. In this
domain, both systems present the highest scores
compared to the other domains. The high results
in the travel domain are probably due to the high
data overlap between the train and the test data, as
discussed in the previous section and illustrated in
Table 2. However, this domain was also the one
with the highest average number of rule instances
per rule category, compared to the other domains,
thus presenting an additional challenge in the cor-
rect classification of unknown rule fragments.

We observe that the overall higher F measures
of the SAIL-GRS system in the travel and fi-
nance domains are due to higher precision scores,
whereas Baseline system displays higher recall but
lower precision scores and lower F-measure in
these domains.

The overall lowest scores for both systems are
reached in the Travel domain for Greek, which
is also the dataset with the lowest overlap with
the training data. However, the performance of
the SAIL-GRS system does not deteriorate to the
same extent as the Baseline, the precision of which
falls to a mere 0.16-0.17, compared to 0.49-0.46
for the SAIL-GRS system.

5 Conclusion

In this work, we have presented the SAIL-GRS
system used for the Grammar Induction for Spo-
ken Dialogue Systems task. Our approach uses
a fairly simple, language independent method for
measuring lexical and semantic similarity of rule
pattern instances. Our rule constituent frequency
vs. inverse rule frequency measure, CF -IRF is a
modification the TF -IDF measure for estimating
rule similarity in the induction process of new rule
instances.

The performance of our system in rule induc-
tion and rule pattern semantic classification was
tested in three different domains, travel, tourism
and finance in four datasets, three for English
and an additional dataset for the travel domain
in Greek. SAIL-GRS outperforms the Baseline
in all datasets, except the travel domain for En-
glish. Moreover, our results showed that our sys-
tem achieved an overall better score in precision
and respective F-measure, in the travel and finance
domains, even when applied to a language other
than English. Finally, in cases of a larger percent-
age of unknown data in the test set, as in the Greek
travel dataset, the smooth degradation of SAIL-
GRS results compared to the Baseline indicates
the robustness of our method.

A limitation of our system in its current version
lies in the requirement for absolute lexical match
with unknown rule unigrams and bigrams. Fu-
ture extensions of the system could include rule
constituent expansion using synonyms, variants or
semantically or lexically similar words, so as to
improve recall and the overall F-measure perfor-
mance.

References
Yun-Nung Chen, William Yang Wang, and Alexan-

der I. Rudnicky. 2013. Unsupervised induction and
filling of semantic slots for spoken dialogue systems
using frame-semantic parsing. In Proceedings of the
2013 IEEE Workshop on Automatic Speech Recogni-
tion and Understanding, pages 120–125.

Wim De Smet and Marie-Francine Moens. 2013. Rep-
resentations for multi-document event clustering.
Data Mining and Knowledge Discovery, 26(3):533–
558.

Martin Dillon and Ann S. Gray. 1983. FASIT: A
fully automatic syntactically based indexing system.
Journal of the American Society for Information Sci-
ence, 34(2):99–108.

510



High-Level Rule Rule Patterns # Test-set: Unknown n-grams %
Domain Categories #

Training-set Test-set Unigrams Bigrams
Travel EN 32 982 284 5.13% 20.71%
Travel GR 35 956 324 17.26% 33.09%
Tourism EN 24 1004 285 0.72% 4.84%
Finance EN 9 136 37 12.35% 36.74%

Table 2: Characteristics of training and test datasets.
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Travel EN 0.57 0.54 0.66 0.62 0.61 0.58 0.38 0.40 0.67 0.69 0.48 0.51
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Table 3: Evaluation results for SAIL-GRS system compared to the baseline in all four datasets in terms
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Abstract

This paper describes our submission to Se-
mEval2014 Task 9: Sentiment Analysis in
Twitter. Our model is primarily a lexi-
con based one, augmented by some pre-
processing, including detection of Multi-
Word Expressions, negation propagation
and hashtag expansion and by the use of
pairwise semantic similarity at the tweet
level. Feature extraction is repeated for
sub-strings and contrasting sub-string fea-
tures are used to better capture complex
phenomena like sarcasm. The resulting
supervised system, using a Naive Bayes
model, achieved high performance in clas-
sifying entire tweets, ranking 7th on the
main set and 2nd when applied to sarcastic
tweets.

1 Introduction

The analysis of the emotional content of text is
relevant to numerous natural language process-
ing (NLP), web and multi-modal dialogue appli-
cations. In recent years the increased popularity
of social media and increased availability of rele-
vant data has led to a focus of scientific efforts on
the emotion expressed through social media, with
Twitter being the most common subject.

Sentiment analysis in Twitter is usually per-
formed by combining techniques used for related
tasks, like word-level (Esuli and Sebastiani, 2006;
Strapparava and Valitutti, 2004) and sentence-
level (Turney and Littman, 2002; Turney and
Littman, 2003) emotion extraction. Twitter how-
ever does present specific challenges: the breadth
of possible content is virtually unlimited, the writ-
ing style is informal, the use of orthography and

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

grammar can be “unconventional” and there are
unique artifacts like hashtags. Computation sys-
tems, like those submitted to SemEval 2013 task
2 (Nakov et al., 2013) mostly use bag-of-words
models with specific features added to model emo-
tion indicators like hashtags and emoticons (Davi-
dov et al., 2010).

This paper describes our submissions to Se-
mEval 2014 task 9 (Rosenthal et al., 2014), which
deals with sentiment analysis in twitter. The sys-
tem is an expansion of our submission to the same
task in 2013 (Malandrakis et al., 2013a), which
used only token rating statistics as features. We
expanded the system by using multiple lexica and
more statistics, added steps to the pre-processing
stage (including negation and multi-word expres-
sion handling), incorporated pairwise tweet-level
semantic similarities as features and finally per-
formed feature extraction on substrings and used
the partial features as indicators of irony, sarcasm
or humor.

2 Model Description

2.1 Preprocessing

POS-tagging / Tokenization was performed
using the ARK NLP tweeter tagger (Owoputi et
al., 2013), a Twitter-specific tagger.
Negations were detected using the list from
Christopher Potts’ tutorial. All tokens up to the
next punctuation were marked as negated.
Hashtag expansion into word strings was per-
formed using a combination of a word insertion
Finite State Machine and a language model. A
normalized perplexity threshold was used to
detect if the output was a “proper” English string
and expansion was not performed if it was not.
Multi-word Expressions (MWEs) were detected
using the MIT jMWE library (Kulkarni and
Finlayson, 2011). MWEs are non-compositional
expressions (Sag et al., 2002), which should be
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handled as a single token instead of attempting to
reconstruct their meaning from their parts.

2.2 Lexicon-based features
The core of the system was formed by the lexicon-
based features. We used a total of four lexica and
some derivatives.

2.2.1 Third party lexica
We used three third party affective lexica.
SentiWordNet (Esuli and Sebastiani, 2006) pro-
vides continuous positive, negative and neutral rat-
ings for each sense of every word in WordNet.
We created two versions of SentiWordNet: one
where ratings are averaged over all senses of a
word (e.g., one ratings for “good”) and one where
ratings are averaged over lexeme-pos pairs (e.g.,
one rating for the adjective “good” and one for the
noun “good”).
NRC Hashtag (Mohammad et al., 2013) Senti-
ment Lexicon provides continuous polarity ratings
for tokens, generated from a collection of tweets
that had a positive or a negative word hashtag.
Sentiment140 (Mohammad et al., 2013) Lexi-
con provides continuous polarity ratings for to-
kens, generated from the sentiment140 corpus of
1.6 million tweets, with emoticons used as posi-
tive and negative labels.

2.2.2 Emotiword: expansion and adaptation
To create our own lexicon we used an automated
algorithm of affective lexicon expansion based on
the one presented in (Malandrakis et al., 2011;
Malandrakis et al., 2013b), which in turn is an ex-
pansion of (Turney and Littman, 2002).

We assume that the continuous (in [−1, 1]) va-
lence, arousal and dominance ratings of any term
tj can be represented as a linear combination of
its semantic similarities dij to a set of seed words
wi and the known affective ratings of these words
v(wi), as follows:

v̂(tj) = a0 +
N∑

i=1

ai v(wi) dij , (1)

where ai is the weight corresponding to seed word
wi (that is estimated as described next). For the
purposes of this work, dij is the cosine similarity
between context vectors computed over a corpus
of 116 million web snippets (up to 1000 for each
word in the Aspell spellchecker) collected using
the Yahoo! search engine.

Given the starting, manually annotated, lexi-
con Affective Norms for English Words (Bradley
and Lang, 1999) we selected 600 out of the 1034
words contained in it to serve as seed words and
all 1034 words to act as the training set and used
Least Squares Estimation to estimate the weights
ai. Seed word selection was performed by a sim-
ple heuristic: we want seed words to have extreme
affective ratings (high absolute value) and the set
to be close to balanced (sum of seed ratings equal
to zero). The equation learned was used to gener-
ate ratings for any new terms.

The lexicon created by this method is task-
independent, since both the starting lexicon and
the raw text corpus are task-independent. To cre-
ate task-specific lexica we used corpus filtering on
the 116 million sentences to select ones that match
our domain, using either a normalized perplex-
ity threshold (using a maximum likelihood trigram
model created from the training set tweets) or a
combination of pragmatic constraints (keywords
with high mutual information with the task) and
perplexity threshold (Malandrakis et al., 2014).
Then we re-calculated semantic similarities on the
filtered corpora. In total we created three lexica: a
task-independent (base) version and two adapted
versions (filtered by perplexity alone and filtered
by combining pragmatics and perplexity), all con-
taining valence, arousal and dominance token rat-
ings.

2.2.3 Statistics extraction
The lexica provide up to 17 ratings for each to-
ken. To extract tweet-level features we used sim-
ple statistics and selection criteria. First, all token
unigrams and bigrams contained in a tweet were
collected. Some of these n-grams were selected
based on a criterion: POS tags, whether a token is
(part of) a MWE, is negated or was expanded from
a hashtag. The criteria were applied separately
to token unigrams and token bigrams (POS tags
only applied to unigrams). Then ratings statistics
were extracted from the selected n-grams: length
(cardinality), min, max, max amplitude, sum, av-
erage, range (max minus min), standard deviation
and variance. We also created normalized versions
by dividing by the same statistics calculated over
all tokens, e.g., the maximum of adjectives over
the maximum of all unigrams. The results of this
process are features like “maximum of Emotiword
valence over unigram adjectives” and “average of
SentiWordNet objectivity among MWE bigrams”.
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2.3 Tweet-level similarity ratings

Our lexicon was formed under the assumption
that semantic similarity implies affective similar-
ity, which should apply to larger lexical units like
entire tweets. To estimate semantic similarity
scores between tweets we used the publicly avail-
able TakeLab semantic similarity toolkit (Šarić et
al., 2012) which is based on a submission to Se-
mEval 2012 task 6 (Agirre et al., 2012). We used
the data of SemEval 2012 task 6 to train three
semantic similarity models corresponding to the
three datasets of that task, plus an overall model.
Using these models we created four similarity rat-
ings between each tweet of interest and each tweet
in the training set. These similarity ratings were
used as features of the final model.

2.4 Character features

Capitalization features are frequencies and rela-
tive frequencies at the word and letter level, ex-
tracted from all words that either start with a capi-
tal letter, have a capital letter in them (but the first
letter is non-capital) or are in all capital letters.
Punctuation features are frequencies, relative fre-
quencies and punctuation unigrams.
Character repetition features are frequencies,
relative frequencies and longest string statistics of
words containing a repetition of the same letter.
Emoticon features are frequencies, relative fre-
quencies, and emoticon unigrams.

2.5 Contrast features

Cognitive Dissonance is an important phe-
nomenon associated with complex linguistic cases
like sarcasm, irony and humor (Reyes et al., 2012).
To estimate it we used a simple approach, inspired
by one-liner joke detection: we assumed that the
final few tokens of each tweet (the “suffix”) con-
trast the rest of the tweet (the “prefix”) and created
split versions of the tweet where the last N tokens
are the suffix and all other tokens are the prefix,
for N = 2 and N = 3. We repeated the fea-
ture extraction process for all features mentioned
above (except for the semantic similarity features)
for the prefix and suffix, nearly tripling the total
number of features.

2.6 Feature selection and Training

The extraction process lead to tens of thousands
of candidate features, so we performed forward
stepwise feature selection using a correlation crite-

Table 1: Performance and rank achieved by our
submission for all datasets of subtasks A and B.

task dataset avg. F1 rank

A

LJ2014 70.62 16
SMS2013 74.46 16
TW2013 78.47 14
TW2014 76.89 13
TW2014SC 65.56 15

B

LJ2014 69.34 15
SMS2013 56.98 24
TW2013 66.80 10
TW2014 67.77 7
TW2014SC 57.26 2

rion (Hall, 1999) and used the resulting set of 222
features to train a model. The model chosen is a
Naive Bayes tree, a tree with Naive Bayes clas-
sifiers on each leaf. The motivation comes from
considering this a two stage problem: subjectivity
detection and polarity classification, making a hi-
erarchical model a natural choice. The feature se-
lection and model training/classification was con-
ducted using Weka (Witten and Frank, 2000).

Table 2: Selected features for subtask B.
Features number
Lexicon-derived 178

By lexicon
Ewrd / S140 / SWNet / NRC 71 / 53 / 33 / 21

By POS tag
all (ignore tag) 103
adj / verb / proper noun 25 / 11 / 11
other tags 28

By function
avg / min / sum / max 45 / 40 / 38 / 26
other functions 29

Semantic similarity 29
Punctuation 7
Emoticon 5
Other features 3

Contrast 72
prefix / suffix 54 / 18

3 Results

We took part in subtasks A and B of SemEval
2014 task 9, submitting constrained runs trained
with the data the task organizers provided. Sub-
task B was the priority and the subtask A model
was created as an afterthought: it only uses the
lexicon-based and morphology features for the tar-
get string and the entire tweet as features of an NB
Tree.

The overall performance of our submission
on all datasets (LiveJournal, SMS, Twitter 2013,
Twitter 2014 and Twitter 2014 Sarcasm) can be
seen in Table 1. The subtask A system performed
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Table 3: Performance on all data sets of subtask B after removing 1 set of features. Performance differ-
ence with the complete system listed if greater than 1%.

Features removed LJ2014 SMS2013 TW2013 TW2014 TW2014SC
avg. F1 diff avg. F1 diff avg. F1 diff avg. F1 diff avg. F1 diff

None (Submitted) 69.3 57.0 66.8 67.8 57.3
Lexicon-derived 43.6 -25.8 38.2 -18.8 49.5 -17.4 51.5 -16.3 43.5 -13.8

Emotiword 67.5 -1.9 56.4 63.5 -3.3 66.1 -1.7 54.8 -2.5
Base 68.4 56.3 65.0 -1.9 66.4 -1.4 59.6 2.3
Adapted 69.3 57.4 66.7 67.5 50.8 -6.5

Sentiment140 68.1 -1.3 54.5 -2.5 64.4 -2.4 64.2 -3.6 45.4 -11.9
NRC Tag 70.6 1.3 58.5 1.6 66.3 66.0 -1.7 55.3 -2.0
SentiWordNet 68.7 56.0 66.2 68.1 52.7 -4.6

per Lexeme 69.3 56.7 66.1 68.0 52.7 -4.5
per Lexeme-POS 68.8 57.1 66.7 67.4 55.0 -2.2

Semantic Similarity 69.0 58.2 1.2 64.9 -2.0 65.5 -2.2 52.2 -5.0
Punctuation 69.7 57.4 66.6 67.1 53.9 -3.4
Emoticon 69.3 57.0 66.8 67.8 57.3
Contrast 69.2 57.5 66.7 67.0 51.9 -5.4

Prefix 69.5 57.2 66.8 67.2 47.4 -9.9
Suffix 68.6 57.2 66.5 67.9 56.3

badly, ranking near the bottom (among 20 submis-
sions) on all datasets, a result perhaps expected
given the limited attention we gave to the model.
The subtask B system did very well on the three
Twitter datasets, ranking near the top (among 42
teams) on all three sets and placing second on the
sarcastic tweets set, but did notably worse on the
two non-Twitter sets.

A compact list of the features selected by the
subtask B system can be seen in Table 2. The ma-
jority of features (178 of 222) are lexicon-based,
29 are semantic similarities to known tweets and
the rest are mainly punctuation and emoticon fea-
tures. The lexicon-based features mostly come
from Emotiword, though that is probably because
Emotiword contains a rating for every unigram
and bigram in the tweets, unlike the other lexica.
The most important part-of-speech tags are adjec-
tives and verbs, as expected, with proper nouns
being also highly important, presumably as indi-
cators of attribution. Still, most features are cal-
culated over all tokens (including stop words). Fi-
nally it is worth noting the 72 contrast features se-
lected.

We also conducted a set of experiments using
partial feature sets: each time we use all features
minus one set, then apply feature selection and
classification. The results are presented in Ta-
ble 3. As expected, the lexicon-based features are
the most important ones by a wide margin though
the relative usefulness of the lexica changes de-
pending on the dataset: the twitter-specific NRC
lexicon actually hurts performance on non-tweets,

while the task-independent Emotiword hurts per-
formance on the sarcastic tweets set. Overall
though using all is the optimal choice. Among the
other features only semantic similarity provides a
relatively consistent improvement.

A lot of features provide very little benefit on
most sets, but virtually everything is important for
the sarcasm set. Lexica, particularly the twitter
specific ones like Sentiment 140 and the adapted
version of Emotiword make a big difference, per-
haps indicating some domain-specific aspects of
sarcasm expression (though such assumptions are
shaky at best due to the small size of the test
set). The contrast features perform their intended
function well, providing a large performance boost
when dealing with sarcastic tweets and perhaps
explaining our high ranking on that dataset.

Overall the subtask B system performed very
well and the semantic similarity features and con-
trast features provide potential for further growth.

4 Conclusions

We presented a system of twitter sentiment anal-
ysis combining lexicon-based features with se-
mantic similarity and contrast features. The sys-
tem proved very successful, achieving high ranks
among all competing systems in the tasks of senti-
ment analysis of generic and sarcastic tweets.

Future work will focus on the semantic similar-
ity and contrast features by attempting more accu-
rately estimate semantic similarity and using some
more systematic way of identifying the “contrast-
ing” text areas.
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Abstract

We describe the submission of the SAP
Research & Innovation team to the Se-
mEval 2014 Task 4: Aspect-Based Senti-
ment Analysis (ABSA). Our system fol-
lows a constrained and supervised ap-
proach for aspect term extraction, catego-
rization and sentiment classification of on-
line reviews and the details are included in
this paper.

1 Introduction

The increasing popularity of the internet as a
source of information, and e-commerce as a way
of life, has led to a major surge in the number of
reviews that can be found online, for a wide range
of products and services. Consequently, more and
more consumers have taken to consulting these on-
line reviews as part of their pre-purchase research
before deciding on availing services from a local
business or investing in a product from a particu-
lar brand. This calls for innovative techniques for
the sentiment analysis of online reviews so as to
generate accurate and relevant recommendations.

Sentiment analysis has been extensively studied
and applied in different domains. Predicting the
sentiment polarity (positive, negative, neutral) of
user opinions by mining user reviews (Hu and Liu,
2004; Liu, 2012; Pang and Lee, 2008; Liu, 2010)
has been of high commercial and research interest.
In these studies, sentiment analysis is often con-
ducted at one of the three levels: document level,
sentence level or attribute level.

Through the SemEval 2014 Task 4 on Aspect
Based Sentiment Analysis (Pontiki et al., 2014),
we explore sentiment analysis at the aspect level.

∗ The work was done during an internship at SAP.
This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

The task consists of four subtasks: in subtask 1 as-
pect term extraction, participants need to identify
the aspect terms present in a sentence and return
a list containing all distinct aspect terms, in sub-
task 2 aspect term polarity, participants were to
determine the polarity of each aspect term in a sen-
tence, in subtask 3 aspect category detection, par-
ticipants had to identify the aspect categories dis-
cussed in a given sentence, and in subtask 4 aspect
category polarity, participants were to determine
the polarity of each aspect category. The polarity
classification subtasks consider sentiment analysis
to be a three-way classification problem between
positive, negative and neutral sentiment. On the
other hand, the aspect category detection subtask
is a multi-label classification problem where one
sentence can be labelled with more than one as-
pect category.

In this paper, we describe the submission of the
SAP-RI team to the SemEval 2014 Task 4. We
make use of supervised techniques to extract the
aspects of interest (Jakob and Gurevych, 2010),
categorize them (Lu et al., 2011) and predict the
sentiment of customer online reviews on Laptops
and Restaurants. We developed a constrained sys-
tem for aspect-based sentiment analysis of these
online reviews. The system is constrained in the
sense that we only use the training data that was
provided by the challenge organizers and no other
external data sources. Our system performed rea-
sonably well, especially with a F1 score of 75.61%
for the aspect category polarity subtask, 79.04%
F1 score on the aspect category detection task and
66.61% F1 score on the aspect term extraction
task.

2 Subtask 1: Aspect Term Extraction

Given a review with annotated entities in the train-
ing set, the task was to extract the aspect terms for
reviews in the test set. For this subtask, training,
development and testing were conducted for both
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the laptop and the restaurant domain.

2.1 Features

Each review was represented as a feature vector
made up of the following features:

• Word N-grams: all unigrams, bigrams and
trigrams from the review text

• Casing: presence or absence of capital case/
title case words

• POS tags: POS tags of a word and its neigh-
bours

• Parse dependencies and relations: parse
dependency relations of the aspects, i.e.,
presence/absence of adjectives and adverbs in
the dependency parse tree

• Punctuation Marks: presence/absence of
punctuation marks, such as ?, !

2.2 Method

We approach the task by casting it as a sequence
tagging task where each token in a candidate sen-
tence is labelled as either Beginning, Inside or
Outside (BIO). We then employ conditional ran-
dom fields (CRF), which is a discriminative, prob-
abilistic model for sequence data with state-of-the-
art performance (Lafferty et al., 2001). A linear-
chain CRF tries to estimate the conditional prob-
ability of a label sequence y given the observed
features x, where each label yt is conditioned on
the previous label yt−1. In our case, we use BIO
CoNLL-style tags (Sang and De Meulder, 2003).

During development, we split the training data
in the ratio of 60:20:20 as training, development
(dev) and testing (dev-test). We train the CRF
model on the training set of the data, perform
feature selection based on the dev set, and test
the resulting model on the dev-test. In all ex-
periments, we use the CRF++1 implementation
of conditional random fields with the parameter
c=4.0. This value was chosen based on manual
observation. We perform a feature ablation study
and the results are reported in Table 1. Features
listed in section 2.1 were those that were retained
for the final run.

1code.google.com/p/crfpp/

3 Subtask 2: Aspect Term Polarity
Estimation

For this subtask, the training, development and
testing was done using reviews on laptops and
restaurants. Given the aspect terms in a sentence,
the task was to predict their sentiment polarities.

3.1 Features

For each review, we used the following features:

• Word N-grams: all lowercased unigrams,
bigrams and trigrams from the review text

• Polarity of neighbouring adjectives: ex-
tracted word sentiment from SentiWordNet
lexicon (Baccianella et al., 2010)

• Neighbouring POS tags: the POS tags of up
to neighbouring 3 words

• Parse dependencies and relations: parse
dependency relations of the aspects, i.e.,
presence/absence of adjectives and adverbs in
the dependency parse tree

3.2 Method

For each aspect term of a sentence, the afore-
mentioned features were extracted. For exam-
ple, for the term Sushi in the sentence Sushi
was delicious., the following feature vector is
constructed, {aspect: ’sushi’, advmod:’null’,
amod:’delicious’, uni sushi: 1, uni was: 1,
uni delicious, uni the: 0, .. }.

We then treat the aspect sentiment polarity es-
timation as a multi-class classification task where
each instance would be labelled as either positive,
negative or neutral. For the classification task, we
experimented with Naive Bayes and Support Vec-
tor Machines (SVM) – both linear and RBF ker-
nels – and it was observed that linear SVM per-
formed best. Hence, we use linear SVM for the
classification task. Table 2 summarizes the results
obtained from our experiments for various feature
combinations. The classifiers used are implemen-
tations from scikit-learn2, which is also used for
the remaining tasks.

4 Subtask3: Aspect Category Detection

Given a review with annotated entities or aspect
terms, the task was to predict the aspect categories.

2scikit-learn.org/stable/
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Features Precision Recall F1-Score
N-grams, POS tags 0.7655 0.4283 0.5496
N-grams, Parse relations, POS tags 0.8192 0.6641 0.7336
N-Grams, Parse relations, POS tags, casing 0.8101 0.6641 0.7299
N-grams, Parse relations, POS tags, ! 0.8116 0.6641 0.7305
N-grams, Parse relations, POS tags,!, ? 0.8123 0.6672 0.7326

Table 1: Training-phase experimental results for Subtask 1 on Restaurant reviews.

Features Laptops Restaurants
Neighbouring words, 2,3 POS grams, bigrams, trigrams, Sentiment,1,2 ngram lower 0.4196 0.5997
Parse Relations, 2,3 POS grams, bigrams, trigrams, Sentiment, 1,2 ngram lower 0.5869 0.6375
Parse Relations, Neighbouring words, bigram, trigrams, Sentiment, 1,2 ngram lower 0.5848 0.6380
Parse Relations, 2,3 POS grams, Neighbouring words, Sentiment, 1,2 ngram lower 0.5890 0.6240
Parse Relations, 2,3 POS grams , Neighbouring words, bigram, trigrams, 1,2 ngram lower 0.5626 0.6239
Parse Relations, 2,3 POS grams , Neighbouring words, bigram, trigrams, Sentiment 0.5922 0.6409

Table 2: Training-phase experimental results (Accuracy) for Subtask 2.

As one sentence in a review could belong to mul-
tiple aspect categories, we model the task as a
multi-label classification problem, i.e., given an
instance, predict all labels that the instance fits to.

4.1 Features

We experimented with different features, for ex-
ample unigrams, dependency tree relations, bi-
grams, POS tags and sentiment of the words (Sen-
tiWordNet), but using just the unigrams alone hap-
pened to yield the best result. The feature vector
was merely a bag-of-words vector indicating the
presence or absence of a word in an instance.

4.2 Method

The training instances were divided into 5 sets
based on the aspect categories and thereby, we
treated the multi-label classification task as 5 dif-
ferent binary classification tasks. Hence, we used
an ensemble of binary classifiers for the multi-
label classification. An SVM model was trained
using one classifier per class to distinguish it from
all other classes. For the binary classification
tasks, directly estimating a linear separating func-
tion (such as linear SVM) gave better results, as
shown in Table 3. Finally, the results of the 5 bi-
nary classifiers were combined to label the test in-
stance.

The category Miscellaneous was observed to
have the lowest accuracy, probably due to the fact
that miscellaneous captures all those aspects terms
that do not have a clearly defined category.

5 Subtask4 Aspect Category Polarity
Detection

For each review with pre-labelled aspect cate-
gories, the task was to produce a model which
predicts the sentiment polarity of each aspect cat-
egory.

5.1 Features
The training data contains reviews with the po-
larity for the corresponding aspect category. The
models performed best on using just unigram and
bigram features.

5.2 Method
The training instances were split into 5 sets based
on the aspect categories. We make use of the sen-
timent polarity classifier, as described in section
3.2, thereby, training one sentiment polarity classi-
fier for each aspect category. Table 4 indicates the
performance of different classifiers for this task,
using features as discussed in section 5.1.

6 Results

Table 5 gives an overview of the performance of
our system in this year’s task based on the offi-
cial scores from the organizers. We see that our
system performs relatively well for subtasks 1, 3
and 4, while for subtask 2 the F1 scores are be-
hind the best system by about 12%. As observed,
a sentence could have more than one aspect and
each of these aspects could have different polar-
ities expressed. Including features that preserve
the context of the aspect could probably improve
the performance in the subtask 2. In most cases,
a simple set of features was enough to result in a
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Restaurants Category Naive Bayes AdaBoost LinearSVC
Food 0.7130 0.8000 0.8470
Service 0.6064 0.9137 0.8997
Miscellaneous 0.6710 0.7490 0.7890
Ambience 0.6770 0.9063 0.8940
Price 0.7608 0.8548 0.9590

Table 3: Training-phase experimental results (F1 score) for Subtask 3.

Restaurants Category Naive Bayes AdaBoost LinearSVC
Food 0.7136 0.6711 0.7417

Service 0.6733 0.5244 0.6688
Miscellaneous 0.4756 0.3170 0.4756

Ambience 0.6574 0.7232 0.6885
Price 0.7477 0.7752 0.6651

Table 4: Training-phase experimental results (F1 score) for Subtask 4.

high F1 score, for example, in subtask 3 a bag-of-
words feature set proved to yield a relatively high
F1 score. In general, for the classification tasks,
we observe that the linear SVM performs best.

Subtask Dataset Best score Our score Rank
1 Laptops 74.55 66.61 8/27
1 Restaurants 84.01 77.88 12/29
2 Laptops 70.48 58.56 18/32
2 Restaurants 80.95 69.92 22/36
3 Restaurants 88.57 79.04 7/21
4 Restaurants 82.92 75.61 5/25

Table 5: Results (F1 score and ranking) for the
Semeval-2014 test set.

7 Conclusion

In this paper, we have described the submission of
the SAP-RI team to the SemEval 2014 Task 4. We
model the classification tasks using linear SVM
and the term extraction task using CRF in order
to develop an aspect-based sentiment analysis sys-
tem that performs reasonably well.
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Abstract

We describe the submission of the SAP
Research & Innovation team to the Se-
mEval 2014 Task 9: Sentiment Analy-
sis in Twitter. We challenged ourselves
to develop a competitive sentiment anal-
ysis system within a very limited time
frame. Our submission was developed
in less than two days and achieved an
F1 score of 77.26% for contextual polar-
ity disambiguation and 55.47% for mes-
sage polarity classification, which shows
that rapid prototyping of sentiment anal-
ysis systems with reasonable accuracy is
possible.

1 Introduction

Microblogging platforms and social networks
have become increasingly popular for expressing
opinions on a wide range of topics, hence mak-
ing them valuable and ever-growing logs of pub-
lic sentiment. This has motivated the development
of automatic natural language processing (NLP)
methods to analyse the sentiment expressed in
these short, informal messages (Liu, 2012; Pang
and Lee, 2008).

In particular, the study of sentiment and opin-
ions in messages from the Twitter microblogging
platform has attracted a lot of interest (Jansen et
al., 2009; Pak and Paroubek, 2010; Barbosa and
Feng, 2010; O’Connor et al., 2010; Bifet et al.,
2011). However, comparative evaluations of senti-
ment analysis of Twitter messages have previously
been hindered by the lack of a large benchmark
data set. The goal of the SemEval 2013 task 2:
Sentiment Analysis in Twitter (Nakov et al., 2013)

∗ The work was done during an internship at SAP.
This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

and this year’s continuation in the SemEval 2014
task 9: Sentiment Analysis in Twitter (Rosenthal
et al., 2014) is to close this gap by hosting a shared
task competition which provided a large corpus of
Twitter messages which are annotated with sen-
timent polarity labels. The task consists of two
subtasks: in subtask A contextual polarity disam-
biguation, participants need to predict the polarity
of a given word or phrase in the context of a tweet
message, in subtask B message polarity classifica-
tion, participants need to predict the dominating
sentiment of the complete message. Both tasks
consider sentiment analysis to be a three-way clas-
sification problem between positive, negative, and
neutral sentiment.

In this paper, we describe the submission of the
SAP-RI team to the SemEval 2014 task 9. We
challenged ourselves to develop a competitive sen-
timent analysis system within a very limited time
frame. The complete system was implemented
within only two days. Our system is based on
supervised classification with support vector ma-
chines with lexical and dictionary-based features.
Our system achieved an F1 score of 77.26% for
contextual polarity disambiguation and 55.47%
for message polarity classification. Although our
scores are about 10-20% behind the top-scoring
systems, we show that it is possible to develop
sentiment analysis systems via rapid prototyping
with reasonable accuracy in a very short amount
of time.

2 Methods

Our system is based on supervised classification
with support vector machines and a variety of lex-
ical and dictionary-based features. From the be-
ginning, we decided to restrict ourselves to super-
vised classification and to focus on the constrained
system setting. Experiments with more data or
semi-supervised learning would have required ad-
ditional time and the results of last year’s task
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did not show any convincing improvements using
from additional unconstrained data (Nakov et al.,
2013). We cast sentiment analysis as a multi-class
classification problem with three classes: positive,
negative, and neutral. For the features, we tried to
re-implement most of the features from the NRC-
Canada system (Mohammad et al., 2013) which
was the best performing system in last year’s task.
We describe the features in the following sections.

2.1 Task A : Features
For the contextual polarity disambiguation task,
we extract features from the target phrase itself
and from a surrounding word window of four
words before and after the target phrase. To handle
negation, we append the suffix -neg to all words
in a negated context. A negated context includes
any word in the target phrase or context that is fol-
lowing a negation word 1 up to the next following
punctuation symbol.

• Word N-grams: all lowercased unigrams
and bigrams from the target phrase and the
context. We extract the lowercased full string
of the target phrase as an additional feature.

• Character N-grams: lowercased character
bigram and trigram prefixes and suffixes from
all words in the target phrase and the context.

• Elongations: binary feature that indicates the
presence of one or more words in the target
phrase or context that have a letter repeated
for 3 for more times e.g., coool.

• Emoticons: two binary features that indicate
the presence of positive or negative emoti-
cons in the target phrase or the context, re-
spectively. Two additional binary features
indicate the presence of positive or negative
emoticons at the end of the target phrase or
context2.

• Punctuation: three count features for the
number of tokens that consist only of excla-
mation marks, only of questions marks, or
a mix of exclamation marks and questions
marks, in the target phrase and context, re-
ceptively.

1http://sentiment.christopherpotts.
net/lingstruc.html

2positive emoticons: :-), :), :B, :-B, :3, =), <3, :D, :-D,
=D, :’), :d, ;), :}, :], :P, :-P, :-p, :p. negative emoticons: :-(,
:/, :{, :[, -.-, - -, :O, :o, :(́, :x, :X, v.v, ;(

• Casing: two binary features that indicate the
presence of at least one all upper-case word
and at least one title-cased word in the target
phrase or context, respectively.

• Stop words: a binary feature that indicates if
all the words in the target phrase or context
are stop words. If so, an additional feature
indicates the number of stop words: 1, 2, 3,
or more stop words.

• Length: the number of tokens in the target
phrase and the context, plus a binary feature
that indicates the presence of any word with
more than three characters.

• Position: three binary features that indicate
whether a target phrase is at the beginning, in
the middle, or at the end of the tweet.

• Hashtags: all hashtags in the target phrase
or the context. To handle hashtags which are
formed by concatenating words, e.g., #ihate-
mondays, we additionally split hashtags us-
ing a simple dictionary-based approach and
add each token of the segmented hashtag as
an additional features.

• Twitter user: binary feature that indicates
whether the context or the target phrase con-
tain a mention of a Twitter user.

• URL: binary feature that indicates whether
the context or the target phrase contains a
URL.

• Brown cluster: the word cluster index for
each word in the context. Cluster indexes are
obtained from the Brown word clusters of the
ARK Twitter tagger (Owoputi et al., 2013).

• Sentiment lexicons: we add the follow-
ing sentiment dictionary features for the tar-
get phrase and the context for four differ-
ent sentiment lexicons (NRC sentiment lex-
icon, NRC Hashtag lexicon (Mohammad et
al., 2013), MPQA sentiment lexicon (Wilson
et al., 2005), and Bing Liu lexicon (Hu and
Liu, 2004)):

– the count of words with positive senti-
ment score.

– the sum of the sentiment scores for all
words.
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– the maximum non-negative sentiment
score for any word.

– the sentiment score of the last word with
positive sentiment score.

We extract these features for both the target
phrase and the context. For words that are
marked as negated, the sign of the sentiment
scores flipped. The MPQA lexicons requires
part of speech information. We use the ARK
Twitter part-of-speech tagger (Owoputi et al.,
2013) to tag the input with part of speech
tags.

2.2 Task B : Features
For the message polarity task, we extract features
from the entire tweet message. The features are
similar to the features for phrase polarity disam-
biguation. As before we handle negation by ap-
pending the suffix -neg to all words that appear in
a negated context.

• Word N-grams: all lowercased N-grams for
N=1, . . . , 4 from the message. We also in-
clude ”skipgrams” for each N-gram by re-
placing each token in the N-gram with a as-
terisk place holder, e.g., the cat → * cat,
the *.

• Character N-grams: lowercased charac-
ter level N-grams for N=3, . . . , 5 for all the
words in the message. Character N-grams do
not cross word boundaries.

• Elongations: count of words in the message
which have a letter repeated for 3 for more
times.

• Emoticons: similar to the contextual polarity
disambiguation task: two binary features for
presence of positive or negative emoticons in
the message and two binary features indicate
the presence of positive or negative emoti-
cons at the end of the message.

• Punctuation: similar to the contextual polar-
ity disambiguation task: three count features
for the number of tokens that consist only of
exclamation marks, only of questions marks,
or a mix of exclamation marks and questions
marks.

• Hashtags: all hashtags in the message. We
do not split concatonated hashtags.

# Tokens # Tweets
Subtask A
Training (SemEval 2014 train) 160,992 7,884
Development (SemEval 2013 test) 76,409 3,710
Subtask B
Training (SemEval 2014 train) 139,128 7,112
Development (SemEval 2013 test) 47,052 2,405

Table 1: Overview of the data sets.

• Casing: the count of all upper-case words in
the message.

• Brown cluster: similar to the contextual po-
larity disambiguation task: the cluster index
for each word in the message.

3 Experiment and Results

In this section, we report experimental result for
our method. We used the scikit-learn Python ma-
chine learning library (Pedregosa et al., 2011) to
implement the feature extraction pipeline and the
support vector machine classifier. We use a linear
kernel for the support vector machine and fixed the
SVM hyper-parameter C to 1.0. We found that
scikit-learn allowed us to implement the system
faster and resulted in much more compact code
than other machine learning tools we have worked
with in the past.

We used the official training set provided for the
SemEval 2014 task to train our system and evalu-
ated on the test set of the SemEval 2013 task which
served as development data for this year’s task 3.
Tweets in the training data that were not available
any more through the Twitter API were removed
from the training set. An overview of the data sets
is shown in Table 1. For the evaluation, we com-
pute precision, recall and F1 measure for the pos-
itive, negative, and neutral sentiment tweets. Fol-
lowing the official evaluation metric, the overall
precision, recall, and F1 measure of the system is
the average of the precision, recall, and F1 mea-
sures for positive and negative sentiment, respec-
tively.

Here, we report a feature ablation study: we
omitted each individual feature category from the
complete feature set to determine its influence on
the overall performance. Table 2 summarizes the
results for subtask A and B. Surprisingly many of
the features do not result in a reduction of the F1

score when removed, or even increase the score,
3We also did some experiments with a 60:40 training/test

split of the SemEval 2014 training data which showed com-
parable results
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Features Positive Negative Neutral Overall
Subtask A P R F1 P R F1 P R F1 P R F1

All features 0.86 0.87 0.86 0.78 0.78 0.78 0.23 0.13 0.17 0.82 0.83 0.82
w/o Word N-grams 0.84 0.82 0.83 0.71 0.74 0.72 0.14 0.16 0.15 0.77 0.78 0.78
w/o character N-grams 0.85 0.89 0.87 0.80 0.78 0.79 0.27 0.12 0.17 0.82 0.83 0.83
w/o elongation 0.86 0.87 0.86 0.78 0.78 0.78 0.23 0.13 0.17 0.81 0.82 0.81
w/o emoticons 0.85 0.87 0.86 0.78 0.78 0.78 0.24 0.14 0.18 0.82 0.83 0.82
w/o punctuation 0.86 0.87 0.86 0.78 0.78 0.78 0.23 0.13 0.17 0.81 0.83 0.82
w/o casing 0.86 0.87 0.87 0.78 0.78 0.78 0.23 0.13 0.17 0.82 0.83 0.82
w/o stop words 0.86 0.87 0.86 0.78 0.79 0.78 0.24 0.15 0.18 0.82 0.83 0.82
w/o length 0.86 0.87 0.86 0.78 0.78 0.78 0.23 0.14 0.17 0.82 0.83 0.82
w/o position 0.86 0.87 0.86 0.77 0.78 0.78 0.24 0.13 0.17 0.81 0.83 0.82
w/o hashtags 0.86 0.87 0.87 0.78 0.78 0.78 0.24 0.14 0.18 0.82 0.83 0.82
w/o twitter user 0.86 0.87 0.86 0.78 0.78 0.78 0.23 0.13 0.17 0.82 0.83 0.82
w/o URL 0.86 0.87 0.86 0.78 0.78 0.78 0.23 0.13 0.17 0.81 0.82 0.81
w/o Brown cluster 0.86 0.88 0.87 0.78 0.80 0.79 0.25 0.13 0.17 0.82 0.84 0.83
w/o Sentiment lexicon 0.81 0.84 0.82 0.70 0.68 0.69 0.16 0.09 0.11 0.75 0.76 0.76
Subtask B
All features 0.81 0.54 0.65 0.66 0.34 0.44 0.59 0.89 0.71 0.74 0.44 0.54
w/o word N-grams 0.73 0.59 0.65 0.52 0.46 0.49 0.61 0.75 0.67 0.62 0.52 0.57
w/o character N-grams 0.80 0.49 0.61 0.65 0.23 0.34 0.56 0.90 0.69 0.72 0.36 0.48
w/o elongation 0.81 0.54 0.65 0.66 0.34 0.44 0.59 0.89 0.71 0.74 0.44 0.55
w/o emoticons 0.82 0.54 0.65 0.66 0.33 0.44 0.59 0.89 0.72 0.74 0.44 0.55
w/o punctuation 0.81 0.54 0.65 0.66 0.34 0.45 0.59 0.89 0.71 0.74 0.44 0.55
w/o casing 0.81 0.54 0.65 0.66 0.33 0.44 0.59 0.89 0.71 0.74 0.44 0.55
w/o hashtags 0.82 0.54 0.65 0.65 0.33 0.44 0.59 0.89 0.71 0.74 0.44 0.54
w/o Brown cluster 0.81 0.54 0.65 0.65 0.33 0.44 0.59 0.89 0.71 0.73 0.43 0.54

Table 2: Experimental Results for feature ablation study. Each row shows the precision, recall, and F1

score for the positive, negative, and neutral class and the overall precision, recall, and F1 score after
removing the particular feature from the features set.

although not significantly. The most effective fea-
tures are word N-grams and the sentiment lexi-
cons. It is interesting that the performance for the
neutral class is very low for subtask A and high
for subtask B. We can also see that for subtask B,
our system clearly has a problem with recall for
the positive and negative sentiment.

For the performance of our system in the Se-
mEval 2014 shared task, we report the official
overall F1 scores of our system as released by the
organizers on the official test set in Table 3. The
scores were reported separately for different test
sets: the SemEval 2013 Twitter test set, a new Se-
mEval 2014 Twitter test set, a new test set from
LiveJournal blogs, the SMS test set from the NUS
SMS corpus (Chen and Kan, 2012), and a new
test set of sarcastic tweets. We also include the F1

score of the best participating system for each test
set and the rank of our system among all partic-
ipating systems. The results of our system were
fairly robust across different domains, with the
exception of messages containing sarcasm which
shows understanding sarcasm requires a deeper
and more subtle understanding of the text that is
not captured well in a simple linear model.

Dataset Best score Our score Rank
Subtask A

LiveJournal 2014 85.61 77.68 18 / 27
SMS 2013 89.31 80.26 13 / 27
Twitter 2013 90.14 80.32 17 / 27
Twitter 2014 86.63 77.26 15 / 27
Twitter 2014 Sarcasm 82.75 70.64 14 / 27

Subtask B
LiveJournal 2014 74.84 57.86 33 / 42
SMS 2013 70.28 49.00 34 / 42
Twitter 2013 72.12 50.18 37 / 42
Twitter 2014 70.96 55.47 32 / 42
Twitter 2014 Sarcasm 58.16 48.64 15 / 42

Table 3: Official results for Semeval 2014 test set.
Reported scores are overall F1 scores.

4 Conclusion

In this paper, we have described the submission of
the SAP-RI team to the SemEval 2014 task 9. We
showed that is possible to develop sentiment anal-
ysis systems via rapid prototyping with reasonable
accuracy within a couple of days.

Acknowledgement

The research is partially funded by the Economic
Development Board and the National Research
Foundation of Singapore.

525



References
Luciano Barbosa and Junlan Feng. 2010. Robust sen-

timent detection on Twitter from biased and noisy
data. In Proceedings of the 23rd International Con-
ference on Computational Linguistics, pages 36–44.

Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer,
and Ricard Gavalda. 2011. Detecting sentiment
change in Twitter streaming data. Journal of Ma-
chine LearningResearch - Proceedings Track, 17:5–
11.

Tao Chen and Min-Yen Kan. 2012. Creating a live,
public short message service corpus: the NUS SMS
corpus. Language Resources and Evaluation, pages
1–37.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 168–177.

Bernhard J. Jansen, Mimi Zhang, Kate Sobel, and Ab-
dur Chowdury. 2009. Twitter power: Tweets as
electronic word of mouth. J. Am. Soc Inf. Sci. Tech-
nol., 60(11):2169–2188.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis Lectures on Human Language Tech-
nologies, 5(1):1–167.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the state-of-
the-art in sentiment analysis of Tweets. In Proceed-
ings of the 7th International Workshop on Semantic
Evaluation, pages 321–327.

Preslav Nakov, Zornitsa Kozareva, Alan Ritter, Sara
Rosenthal, Veselin Stoyanov, and Theresa Wilson.
2013. Semeval-2013 task 2: Sentiment analysis
in Twitter. In Proceedings of the 7th International
Workshop on Semantic Evaluation, pages 312–320.

Brendan O’Connor, Routledge Bryan R. Balasubra-
manyan, Ramnath, and Noah A. Smith. 2010. From
Tweets to polls: Linking text sentiment to public
opinion time series. In Proceedings of the Fourth In-
ternational Conference on Weblogs and Social Me-
dia (ICWSM ’10), pages 122–129.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 380–390.

Alexander Pak and Patrick Paroubek. 2010. Twitter
based system: Using Twitter to disambiguating sen-
timent ambiguous adjectives. In Proceedings of the
8th International Workshop on Semantic Evaluation,
pages 436–439.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.
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Abstract

This paper describes our SeemGo sys-
tem for the task of Aspect Based Sen-
timent Analysis in SemEval-2014. The
subtask of aspect term extraction is cast
as a sequence labeling problem modeled
with Conditional Random Fields that ob-
tains the F-score of 0.683 for Laptops and
0.791 for Restaurants by exploiting both
word-based features and context features.
The other three subtasks are solved by the
Maximum Entropy model, with the occur-
rence counts of unigram and bigram words
of each sentence as features. The sub-
task of aspect category detection obtains
the best result when applying the Boosting
method on the Maximum Entropy model,
with the precision of 0.869 for Restau-
rants. The Maximum Entropy model also
shows good performance in the subtasks
of both aspect term and aspect category
polarity classification.

1 Introduction

In this paper, we present the SeemGo system de-
veloped for the task of Aspect Based Sentiment
Analysis in SemEval-2014. The task consists of
four subtasks: (1) aspect term extraction (iden-
tify particular aspects of a given entity, e.g., lap-
top, restaurant, etc.); (2) aspect category detection
(detect the category of a given sentence, e.g., food,
service for a restaurant, etc.), (3) aspect term po-
larity, and (4) aspect category polarity. The po-
larity of each aspect term or aspect category in-
cludes positive, negative, neutral or conflict (i.e.,
both positive and negative).

This work is licenced under a Creative Commons Attribu-
tion 4.0 International License. Page numbers and proceed-
ings footer are added by the organizers. License details:
http://creativecommons.org/licenses/by/4.0/

In the SeemGo system, the subtask of aspect
term extraction is implemented with the CRF
model that shows good performance by integrat-
ing both word-based features and context features.
The other subtasks of aspect category detection,
aspect term/category polarity classification are all
developed with the MaxEnt model with the occur-
rence counts of unigram and bigram words of each
sentence as features. Experimental results show
that MaxEnt obtains good performance in all the
three subtasks. For the subtask of aspect cate-
gory detection, MaxEnt obtains even better perfor-
mance when combined with the Boosting method.

The rest of this paper is organized as fol-
lows: Section 2 discusses related work; Section 3
presents the architecture and the underlying mod-
els of the SeemGo system as well as the experi-
mental results. We summarize the paper and pro-
pose future work in Section 4.

2 Related Work

The subtask of aspect term extraction is quite
similar with Noun Phrase Chunking (NPC) (Sha
and Pereira, 2003) and Named Entity Recognition
(NER) (Finkel et al., 2005). NPC recognizes noun
phrases from sentences, while NER extracts a set
of entities such as Person, Place, and Organiza-
tion. Both NPC and NER are sequential learn-
ing problems and they are typically modelled by
sequence models such as Hidden Markov Model
(HMM) and CRF (Finkel et al., 2005).

For the task of aspect term extraction, some re-
lated papers also model it with sequence models.
Jin et al. (2009) proposed an HMM-based frame-
work to extract product entities and associated
opinion orientations by integrating linguistic fea-
tures such as part-of-speech tag, lexical patterns
and surrounding words/phrases. Choi et al. (2005)
proposed a hybrid approach using both CRF and
extraction patterns to identify sources of opinions
in text. Jakob and Gurevych (2010) described a
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CRF-based approach for the opinion target extrac-
tion problem in both single- and cross-domain set-
tings. Shariaty and Moghaddam (2011) used CRF
for the task of identifying aspects, aspect usages
and opinions in review sentences by making use
of labeled dataset on aspects, opinions as well as
background words in the sentences.

The task of aspect category detection is essen-
tially a text classification problem, for which many
techniques exist. Joachims (1998) explored the
use of Support Vector Machines (SVM) for text
categorization and obtained good performance
due to their ability to generalize well in high-
dimensional feature spaces. Nigam et al. (1999)
proposed the MaxEnt model for document clas-
sification by estimating the conditional distribu-
tion of the class variable give the document, and
showed that MaxEnt is significantly better that
Naive Bayes on some datasets.

For polarity classification, Pang et al. (2002)
conducted experiments on movie reviews and
showed that standard machine learning techniques
(e.g., Naive Bayes, SVM and MaxEnt) outperform
human-produced baselines.

3 The SeemGo System

We use the CRF model (Lafferty et al., 2001) for
the subtask of aspect term extraction, and adopt
the MaxEnt model for the other three subtasks
with the vectors of word count as features. Each
entry in the vector represents the occurrence count
of each unigram or bigram words in the sentence.
Figure 1 shows the architecture and the MaxEnt
and CRF models of the SeemGo system. The la-
bel is denoted in lowercase (e.g. y for sentiment),
while word count, label sequence and word se-
quence are vectors, denoted in bold lowercase (e.g.
y for label sequence). We developed the SeemGo
system in Java based on the MALLET Toolkit
(McCallum, 2002) for MaxEnt and the Stanford
CRFClassifier(Finkel et al., 2005) for CRF.

3.1 Background

3.1.1 Maximum Entropy Classifier

The MaxEnt model defines the conditional distri-
bution of the class (y) given an observation vector
x as the exponential form in Formula 1:

P(y|x) =
1

Z(x)
exp

(
K∑

k=1

θkfk(x, y)

)
(1)

…… 

𝐱1 word count  

𝑦1 label MaxEnt 
P(𝑦|𝐱) 

𝑦 label 

x word count 

Train Predict 𝐱𝑁 word count 

𝑦𝑁  label 

Transform 

(a) MaxEnt model for label classification  

I’ve been to several places 
for Dim Sum and this has 

got to be the WORST. 

Test sentence: 

Training 
Set 

…… 

𝐱1 word sequence 

𝐲1 label sequence CRF 
P(𝐲|x) 

𝐲 label sequence 

𝐱 word sequence 

Train Predict 𝐱𝑁 word sequence 

𝐲𝑁 label sequence 

Transform 

(b) CRF model for sequence labeling  

I’ve been to several places 
for Dim Sum and this has 

got to be the WORST. 

Test sentence: 

Training 
Set 

Figure 1: The Architecture, the MaxEnt and CRF
Models of the SeemGo System.

where θk is a weight parameter to be estimated for
the corresponding feature function fk(x, y), and
Z(x) is a normalizing factor over all classes to en-
sure a proper probability. K is the total number of
feature functions.

3.1.2 Conditional Random Fields
CRF is an extension to the MaxEnt model for han-
dling sequence data. The linear-chain CRF is a
special case of CRF that obeys the Markov prop-
erty between its neighbouring labels. Following
McCallum and Li (2003), Formula 2 defines the
linear-chain CRF: y = {yt}Tt=1, x = {xt}Tt=1 are
label sequence and observation sequence respec-
tively, and there are K arbitrary feature functions
{fk}1≤k≤K and the corresponding weight param-
eters {θk}1≤k≤K . Z(x) is a normalizing factor
over all label sequences.

P (y|x) =
1

Z(x)
exp

(
T∑

t=1

K∑
k=1

θkfk(yt, yt−1,x, t)

)
(2)

In the labeling phase, the Viterbi decoding algo-
rithm is applied to find the best label sequence y∗
for the observation sequence x.

3.2 Subtask 1: Aspect Term Extraction
The datasets (Laptops and Restaurants) are pro-
vided in XML format, with each sentence and its
annotations consisting of a training instance. For
each instance, SeemGo first transform the sen-
tence into a word sequence x, and converts the cor-
responding annotations into the label sequence y.
SeemGo then learns a CRF model P (y|x) based
on the N the training instances {(xn,yn)}Nn=1.
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3.2.1 IOB Labeling
Since an aspect term can contain multiple words
(e.g., hard disk), we define the label B-TERM
for the beginning of an aspect term, the label I-
TERM for the subsequent inside words or end
word of an aspect term and the label O for all other
words. This definition follows the Inside, Out-
side, Beginning (IOB) labeling scheme (Ramshaw
and Marcus, 1999). The subtask 1 can be viewed
as a sequence labeling problem by labeling each
word either as B-TERM, I-TERM or O. Figure
2 shows two example sentences labeled with the
IOB2 scheme 1.

The hard disk is very noisy. 

O B-TERM I-TERM O O O 

I liked the service and  the staff. 

O O O B-TERM O O B-TERM 

Figure 2: Example Sentences with IOB2 Labels.

3.2.2 Features for the CRF Model
In CRF, features typically refer to feature func-
tions {fk}, which can be arbitrary functions. In
text applications, CRF features are typically bi-
nary (Sutton and McCallum, 2012). As an exam-
ple for “virus protection”, a binary feature func-
tion may have value 1 if and only if the label for
“virus” is B-TERM and the current word “protec-
tion” has the suffix of “tion”, and otherwise 0.
Similar to the features used in Finkel et al. (2005)
for the NER task, Table 1 summarizes the features
for the aspect term extraction task. We call the fea-
tures derived from the current word word-based
features such as wid, wcharacter, and the features
from the surrounding words and the previous label
the contex features (context).

We consider the sentence “I’ve been to several
places for Dim Sum and this has got to be the
WORST.” as an example to explain why we choose
these features: (a) word-based features: the word
“Sum” is located in the middle of the sentence,
with the first character capitalized. (b) context fea-
tures: the previous word “Dim” is also capitalized
in the first character and the label of “Dim” is as-
sumed to be “B-TERM”. By combining the word-
based features and the context features, the Viterbi
decoding algorithm will then label “Sum” as “I-
TERM” with high degree of confidence, which is

1With IOB2, every aspect term begins with the B label.

a part of the multi-word term “Dim Sum”, instead
of a mathematical function in some other context.

Table 1: Features for the CRF Model.

Feature Description
wid word identity

wcharacter

whether the word characters are capital-
ized, hyphenated, numeric, e.g., built-in
camera, BIOS, Dim Sum, Windows 7

wlocation word index in the word sequence x

wngram

n-gram character sequences of each
word with maximum length of 6, includ-
ing prefixes and suffixes, e.g., “tion” in
specification, navigation

context
current wordwt, its neighbouring words
(wt−2,...,wt+2) and previous label yt−1

wpos part-of-speech tag of each word

3.2.3 Experimental Results
We trained the CRF model with different fea-
ture set on the training set provided by the Se-
mEval2014 organizers, and reported the experi-
mental results on the testing set by the evaluation
tool eval.jar. The detailed experimental results are
listed in Table 2. The basic feature set consists of
wid,wcharacter andwlocation. The results from one
of the best systems on each dataset are also listed,
marked with the star (*).

Table 2: Experimental Results on Different Fea-
ture Set for Aspect Term Extraction.

Feature Set Precision Recall F-score

Lap

basic
0.780

(263/337)
0.402

(263/654) 0.531

basic+ wngram
0.781

(375/480)
0.573

(375/654)
0.661

(+0.13)

basic+ wcontext
0.827

(296/358)
0.453

(296/654)
0.585

(+0.054)
basic+wngram+
context

0.830
(380/458)

0.581
(380/654)

0.683
(+0.152)

basic+wngram+
context+ wpos

0.837
(365/436)

0.558
(365/654)

0.670
(-0.013)

IHS RD Belarus* 0.848 0.665 0.746

Res

basic
0.862

(692/803)
0.610

(692/1134) 0.715

basic+ wngram
0.838

(804/959)
0.709

(804/1134)
0.768

(+0.053)

basic+ wcontext
0.856

(704/822)
0.621

(704/1134)
0.720

(+0.05)
basic+wngram+
context

0.865
(827/956)

0.729
(827/1134)

0.791
(+0.076)

basic+wngram+
context+ wpos

0.870
(806/926)

0.711
(806/1134)

0.783
(-0.08)

XRCE* 0.909 0.818 0.840

We have the following observations:

(1) Compared with using only the basic features,
adding the feature of wn−gram contributes the
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greatest performance improvement, with the
absolute increase of F-score by 13% for Lap-
tops and 5.3% for Restaurants; while adding
the wcontext feature improves the F-score by
around 5% for both datasets.

(2) Combining the word-based features (basic
and wngram) and the context-based features
(wcontext) lead to the best performance for
both datasets in terms of recall and F-score.

(3) The POS tags lead to a decrease in both re-
call and F-score, with the absolute decrease
of F-score by 1.3% for Laptops and 8% for
Restaurants. The same observation is also re-
ported by Tkachenko and Simanovsky (2012)
for NER.

3.3 Subtask 3: Aspect Category Detection
We encode each sentence as a feature vector x
with each entry representing occurrence count of
each unigram word and bigram words (i.e., word
count). All words are lowercased, while keeping
the stopwords as most sentences in the datasets are
short. Using the provided training set, We trained
a MaxEnt classifier (ME) P (y|x) with a Gaussian
prior variance of 20 to prevent overfitting.

We also tried the Bagging (Breiman, 1996) on
MaxEnt (BaggingME) and the Boosting (Freund
and Schapire, 1996) on MaxEnt (BoostME). Table
3 shows the experimental results on the provided
testing set. It shows that the Boosting method on
MaxEnt improves both precision and recall as well
as the F-score by 1.1%. The best evaluation result
is by the NRC-Canada team.

Table 3: Performance of Different Classifiers for
Aspect Category Detection.

Classifier Precision Recall F-score

ME 0.858
(686/800)

0.669
(686/1025) 0.752

BagME 0.843
(674/800)

0.658
(674/1025) 0.739

BoostME 0.869
(695/800)

0.678
(695/1025) 0.762

Best* 0.910 0.862 0.886

3.4 Subtask 2 & 4: Aspect Term & Category
Polarity Classification

Similar to subtask-3, we also used MaxEnt for the
subtasks of 2 and 4, with word count as features.
For category polarity classification, we count the
words from both the sentence and the category

name. For example, we count the sentence “The
Dim Sum is delicious.” and its category “Food”
as features. This improves performance compared
with counting the sentence only.

Table 4 shows the accuracy of each classifier for
the subtasks of 2 and 4 on Laptops and Restau-
rants, including the best results from NRC-Canada
(a) and DCU (b). In both datasets, the distributions
of aspect term/category polarities are very imbal-
anced with very few sentences on conflict but with
most sentences on positive or negative. This leads
to very low classification performance for the con-
flict class, with the F-score less than 0.2. In this
case, the Boosting method does not necessarily
improve the performance.

Table 4: Accuracy of Different Classifiers for As-
pect Term & Category Polarity Classification.

Classifier Term Category
Laptops Restaurants (Restaurants)

ME 0.648
(424/654)

0.729
(827/1134)

0.752
(771/1025)

BagME 0.635
(415/654)

0.732
(830/1134)

0.752
(771/1025)

BoostME 0.642
(420/654)

0.730
(828/1134)

0.747
(766/1025)

Best* 0.705 (a,b)
(461/654)

0.810 (b)
(918/1134)

0.829 (a)
(850/1025)

3.5 Evaluation Ranks

Table 5 shows the official ranks (and the new ranks
in braces of the revised version after evaluation) of
the SeemGo system on the two datasets. The eval-
uation metrics are Precision, Recall and F-score
for the subtasks of 1 and 3, and Accuracy (Acc)
for the subtasks of 2 and 4.

Table 5: Ranks of SeemGo on the Constrained
Run (Using only the Provided Datasets).

Subtask Precision Recall F-score Acc

Lap 1 4 12 (8) 8 (4) -
2 - - - 12 (6)

Res

1 3 11 (7) 5 -
2 - - - 8 (6)
3 3 (2) 12 8 (7) -
4 - - - 4

4 Conclusions

This paper presents the architecture, the CRF
and MaxEnt models of our SeemGo system for
the task of Aspect Based Sentiment Analysis in
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SemEval-2014. For the subtask of aspect term ex-
traction, CRF is trained with both the word-based
features and the context features. For the other
three subtasks, MaxEnt is trained with the fea-
tures of the occurrence counts of unigram and bi-
gram words in the sentence. The subtask of aspect
category detection obtains the best performance
when applying the Boosting method on MaxEnt.
MaxEnt also shows good average accuracy for po-
larity classification, but obtains low performance
for the conflict class due to very few training sen-
tences.This leaves us the future work to improve
classification performance for imbalanced datasets
(He and Garcia, 2009).
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Abstract

Being able to quantify the semantic similar-
ity between two texts is important for many
practical applications. SemantiKLUE com-
bines unsupervised and supervised tech-
niques into a robust system for measuring
semantic similarity. At the core of the sys-
tem is a word-to-word alignment of two
texts using a maximum weight matching
algorithm. The system participated in three
SemEval-2014 shared tasks and the com-
petitive results are evidence for its usability
in that broad field of application.

1 Introduction

Semantic similarity measures the semantic equiv-
alence between two texts ranging from total dif-
ference to complete semantic equivalence and is
usually encoded as a number in a closed interval,
e. g. [0,5]. Here is an example for interpreting the
numeric similarity scores taken from Agirre et al.
(2013, 33):

0. The two sentences are on different topics.
1. The two sentences are not equivalent, but are

on the same topic.
2. The two sentences are not equivalent, but

share some details.
3. The two sentences are roughly equivalent, but

some important information differs/missing.
4. The two sentences are mostly equivalent, but

some unimportant details differ.
5. The two sentences are completely equivalent,

as they mean the same thing.

Systems capable of reliably predicting the semantic
similarity between two texts can be beneficial for a

This work is licensed under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

broad range of NLP applications, e. g. paraphrasing,
MT evaluation, information extraction, question
answering and summarization.

A general system for semantic similarity aiming
at being applicable in such a broad scope has to
be able to adapt to the use case at hand, because
different use cases might, for example, require dif-
ferent similarity scales: For one application, two
texts dealing roughly with the same topic should
get a high similarity score, whereas for another ap-
plication being able to distinguish between subtle
differences in meaning might be important. The
three SemEval-2014 shared tasks focussing on se-
mantic similarity (cf. Sections 3, 4 and 5 for more
detailed task descriptions) provide a rich testbed
for such a general system, as the individual tasks
and subtasks have slightly different objectives.

In the remainder of this paper, we describe
SemantiKLUE, a general system for measuring se-
mantic similarity between texts that we built based
on our experience from participating in the *SEM
2013 shared task on “Semantic Textual Similarity”
(Greiner et al., 2013).

2 System Description

SemantiKLUE operates in two stages. In the first,
unsupervised stage, a number of similarity mea-
sures are computed. Those measures are the same
for all tasks and range from simple heuristics to dis-
tributional approaches to resource-heavy methods
based on WordNet and dependency structures. The
idea is to have a variety of similarity measures that
can capture small differences in meaning as well
as broad thematical similarities. In the second, su-
pervised stage, all similarity measures obtained in
this way are passed to a support vector regression
learner that is trained on the available gold standard
data in order to obtain a final semantic similarity
score. This way, the proper similarity scale for a
given task can be learned. The few remaining out-
liers in the predictions for new text pairs are cut
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off to fit the interval required by the task definition
([0,4] or [0,5]).

Our submissions for the individual tasks were
created using incomplete versions from different
developmental stages of the system. In the follow-
ing sections we describe the current version of the
complete system for which we also report compa-
rable results for all tasks (cf. Sections 3– 5).

The whole system is implemented in Python.

2.1 Preprocessing
We use Stanford CoreNLP1 for part-of-speech tag-
ging, lemmatizing and parsing the input texts. We
utilize the CCprocessed variant of the Stanford De-
pendencies (collapsed dependencies with propaga-
tion of conjunct dependencies; de Marneffe and
Manning (2008, 13–15)) to create a graph represen-
tation of the texts using the NetworkX2 (Hagberg
et al., 2008) module. All the similarity measures
described below are computed on the basis of that
graph representation. It is important to keep in
mind that by basing all computations on the Stan-
ford Dependencies model we effectively ignore
most of the prepositions when using measures that
work on tokens.3 For some tasks, we perform some
additional task-specific preprocessing steps prior
to parsing, cf. task descriptions below.

2.2 Simple Measures
We use four simple heuristic similarity measures
that need very little preprocessing. The first two
are word form overlap and lemma overlap between
the two texts. We take the sets of word form to-
kens/lemmatized tokens in text A and text B and
calculate the Jaccard coefficient:

overlap =
|A∩B|
|A∪B| .

The third is a heuristic for the difference in text
length that was used by Gale and Church (1993) as
a similarity measure for aligning sentences:

zi =
di

σd
, where di = bi−

∑N
j=1 b j

∑N
j=1 a j

ai.

For each of the N text pairs we calculate the differ-
ence di between the observed length of text B and

1http://nlp.stanford.edu/software/corenlp.
shtml

2http://networkx.github.com/
3That is because in the CCprocessed variant of the Stanford

Dependencies most prepositions are “collapsed” into depen-
dency relations and are therefore represented as edges and not
as vertices in the graph.

the expected length of text B based on the length
of text A. By dividing that difference di by the stan-
dard deviation of all those differences, we obtain
our heuristic zi.

The fourth is a binary feature expressing whether
the two texts differ in their use of negation. We
check if one of the texts contains any of the lem-
mata no, not or none and the other doesn’t. That
feature is motivated by the comparatively large
number of sentences in the SICK dataset (Marelli
et al., 2014b) that mainly differ in their use of nega-
tion, e. g. sentence pair 42 in the training data that
has a gold similarity score of 3.4:

• Two people are kickboxing and spectators are
watching
• Two people are kickboxing and spectators are

not watching

2.3 Measures Based on Distributional
Document Similarity

We obtain document similarity scores from two
large-vocabulary distributional semantic models
(DSMs).

The first model is based on a 10-billion word
Web corpus consisting of Wackypedia and ukWaC
(Baroni et al., 2009), UMBC WebBase (Han et
al., 2013), and UKCOW 2012 (Schäfer and Bild-
hauer, 2012). Target terms and feature terms are
POS-disambiguated lemmata.4 We use parame-
ters suggested by recent evaluation experiments:
co-occurrence counts in a symmetric 4-word win-
dow, the most frequent 30,000 lexical words as
features, log-likelihood scores with an additional
log-transformation, and SVD dimensionality re-
duction of L2-normalized vectors to 1000 latent
dimensions. This model provides distributional
representations for 150,000 POS-disambiguated
lemmata as target terms.

The second model was derived from the second
release of the Google Books N-Grams database
(Lin et al., 2012), using the dependency pairs pro-
vided in this version. Target and feature terms are
case-folded word forms; co-occurrence ounts are
based on direct syntactic relations. Here, the most
frequent 50,000 word forms were used as features.
All other parameters are identical to the first DSM.
This model provides distributional representations
for 250,000 word forms.

We compute bag-of-words centroid vectors for
each text as suggested by (Schütze, 1998). For each

4e.g. can_N for the noun can
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text pair and DSM, we calculate the cosine similar-
ity between the two centroid vectors as a measure
of their semantic similarity. We also determine the
number of unknown words in both texts according
to both DSMs as additional features.

2.4 Alignment-based Measures

We also use features based on word-level similar-
ity. We separately compute similarities between
words using state-of-the-art WordNet similarity
measures and the two distributional semantic mod-
els described above. The words from both texts
are then aligned using those similarity scores to
maximize the similarity total. We use two types
of alignment: One-to-one alignment where some
words in the longer text remain unaligned and one-
to-many alignment where all words are aligned.
The one-to-many alignment is based on the one-to-
one alignment and aligns each previously unaligned
word in the longer text to the most similar word in
the shorter text. The discussion of the alignment
algorithm is based on the former case.

2.4.1 Alignment via Maximum Weight
Matching

We opt for a graphical solution to the alignment
problem. The similarities between the words from
both texts can be modelled as a bipartite graph in
which every word from text A is a vertice on the
left-hand side of the graph and every word from
text B a vertex on the right-hand side. Weighted
edges connect every word from text A to every
word from text B. The weight of an edge corre-
sponds to the similarity between the two words it
connects. In order to obtain an optimal one-to-one
alignment we have to select edges in such a way
that no two edges share a common vertice and that
the sum of the edge weights is maximized. That
corresponds to the problem of finding the maxi-
mum weight matching in the graph. SemantiKLUE
utilizes the NetworkX implementation of Galil’s
(1986) algorithms for finding that maximum weight
matching.

Figure 1 visualizes the one-to-one alignment be-
tween two sentences. For the one-to-many align-
ment, the previously unaligned words are aligned
as indicated by the dashed lines.

2.4.2 Measures Based on Distributional
Word Similarities

For each of the two DSMs described in Section 2.3
we compute the best one-to-one and the best one-

A

woman

is

using

a

machine

made

for

sewing

A

woman

is

sewing

with

a

machine

Figure 1: Alignment between a sentence pair from
the SICK data set.

to-many alignment using the cosine similarity be-
tween two words as edge weight. For each of
those two alignments we compute the following
two similarity measures: I) the arithmetic mean of
the cosines between all the aligned words from text
A and text B and II) the arithmetic mean ignoring
identical word pairs.

In addition to those eight measures, we use the
lemma-based DSM for computing the distribution
of cosines between lemma pairs. For both align-
ments, we categorize the cosines between aligned
lemma pairs into five heuristically determined inter-
vals ([0.2,0.35), [0.35,0.5), [0.5,0.7), [0.7,0.999),
[0.999,1.0])5 and use the proportions as features.
Intuitively, the top bins correspond to links between
identical words, paradigmatically related words
and topically related words. All in all, we use a
total of 18 features computed from the DSM-based
alignments.

2.4.3 Measures Based on WordNet
We utilize two state-of-the-art (Budanitsky and
Hirst, 2006) WordNet similarity measures for cre-
ating alignments: Leacock and Chodorow’s (1998)
normalized path length and Lin’s (1998) universal
similarity measure. For both of those similarity
measures we compute the best one-to-one and the
best one-to-many alignment. For each alignment
we compute the following two similarity measures:
I) the arithmetic mean of the similarities between
the aligned words from text A and text B and II) the
arithmetic mean ignoring identical word pairs.

5Values in the interval [0.0,0.2) are discarded as they
would be collinear with the other features.
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We also include the number of unknown words
in both texts according to WordNet as additional
features.

2.5 Measures Using the Dependency
Structure

We expect that the information encoded in the de-
pendency structure of the texts can be beneficial in
determining the semantic similarity between them.
Therefore, we use three heuristics for measuring
similarity on the level of syntactic dependencies.
The first simply measures the overlap of depen-
dency relation labels between the two texts (cf. Sec-
tion 2.2). The second utilizes the fact that the Stan-
ford Dependencies are organized in a hierarchy (de
Marneffe and Manning, 2008, 11–12) to compute
Leacock and Chodorow’s normalized path lengths
between individual dependency relations. That
measure for the similarity between dependency re-
lations is then used to determine the best one-to-one
alignment between dependency relations from text
A and text B and to compute the arithmetic mean
of the similarities between the aligned dependency
relations. The third heuristic gives an indication
of the quality of the one-to-one alignment and can
be used to distinguish texts that contain the same
words in different syntactic structures. It uses the
one-to-one alignment created with similarity scores
from the lemma-based DSM (cf. Section 2.4.2) to
compute the average overlap of neighbors for all
aligned word pairs. The overlap of neighbors is
determined by computing the Jaccard coefficient
of sets NA and NB. Set NA contains all words from
text B that are aligned to words from text A that
are connected to the target word via a single depen-
dency relation. NB contains all words from text B
that are connected to the word aligned to the target
word in text A via a single dependency relation.

2.6 Experimental Features
As an experiment, we included features from a com-
mercial text clustering software that is currently
being developed by our team (Greiner and Evert, in
preparation). We used this tool – which combines
ideas from Latent Semantic Indexing and distribu-
tional semantics with multiple clustering steps – as
a black box.

We loaded all training, development and test
items for a given task into the system and applied
the clustering algorithm. However, we did not
make use of the resulting topic clusters. Instead, we
computed cosine similarities for each pair (s1,s2)

of sentences (or other textual units) based on the in-
ternal representation. In addition, we computed the
average neighbour rank of the two sentences, based
on the rank of s2 among the nearest neighbours of
s1 and vice versa.

Since these features are generated from the task
data themselves, they should adapt automatically
to the range of meaning differences present in a
given data set.

2.7 Machine Learning

Using all the features described above, we have a
total of 39 individual features that measure seman-
tic similarity between two texts (cf. Sections 2.2 to
2.5) and two experimental features (cf. Section 2.6).
In order to obtain a single similarity score, we use
the scikit-learn6 (Pedregosa et al., 2011) implemen-
tation of support vector regression. In our cross-
validation experiments we got the best results with
an RBF kernel of degree 2 and a penalty C = 0.7, so
those are the parameters we use in our experiments.

The SemEval-2014 Task 1 also includes a classi-
fication subtask for which we use the same 39+2
features for training a support vector classifier.
Cross-validation suggests that the best parameter
setting is a polynomial kernel of degree 2 and a
penalty C = 2.5.

3 SemEval-2014 Task 1

3.1 Task Description

The focus of the shared task on “Evaluation of com-
positional distributional semantic models on full
sentences through semantic relatedness and textual
entailment” (Marelli et al., 2014a) lies on the com-
positional nature of sentence semantics. By using
a specially created data set (Marelli et al., 2014b)
that tries to avoid multiword expressions and other
idiomatic features of language outside the scope of
compositional semantics, it provides a testbed for
systems implementing compositional variants of
distributional semantics. There is also an additional
subtask for detecting the entailment relation (entail-
ment, neutral, contradiction) between to sentences.

Although SemantiKLUE lacks a truly sophisti-
cated component for dealing with compositional
semantics (besides trying to incorporate the depen-
dency structure of the texts), the system takes the
seventh place in the official ranking by Pearson
correlation with a correlation coefficient of 0.780

6http://scikit-learn.org/
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(best of 17 systems: 0.828). In the entailment sub-
task, the system even takes the fourth place with an
accuracy of 0.823 (best of 18 systems: 0.846).

3.2 Experiments
The official runs we submitted for this task were
created by a work-in-progress version of Semanti-
KLUE that did not contain all the features de-
scribed above. In this section, we report on some
post-hoc experiments with the complete system us-
ing all the features as well as various subsets of
features. See Table 1 for an overview of the results.

Run r ρ MSE Acc.

primary run 0.780 0.736 0.403 0.823
best run 0.782 0.738 0.398 0.823

complete system 0.798 0.754 0.373 0.820
no deps 0.793 0.748 0.383 0.817
no deps, no WN 0.763 0.713 0.432 0.793
complete + experimental 0.801 0.757 0.367 0.823

only DSM alignment 0.729 0.670 0.484 0.746
only WordNet 0.708 0.636 0.515 0.715
only simple 0.676 0.667 0.561 0.754
only DSM document 0.660 0.568 0.585 0.567
only deps 0.576 0.565 0.688 0.614

Table 1: Results for task 1 (Pearson’s r, Spearman’s
ρ , mean squared error and accuracy).

The whole system as described above, without
the experimental features, performs even a bit bet-
ter in the semantic similarity subtask (taking place
6) and only slightly worse in the entailment subtask
(still taking place 4) than the official submissions.
Adding the experimental features slightly improves
the results but does not lead to a better position in
the ranking.

We are particularly interested in the impact of
the resource-heavy features derived from the de-
pendency structure of the texts and from Word-
Net. If we use the complete system without the
dependency-based features (emulating the case of
a language for which we have access to a WordNet-
like resource but not to a parser), we get results
that are only marginally worse than those for the
complete system and lead to the same places in the
rankings. Additionally leaving out WordNet has a
bigger impact and results in places 9 and 8 in the
rankings.

Regarding the individual feature groups, the
DSM-alignment-based measures are the best fea-
ture group for predicting semantic similarity and
the simple heuristic measures are the best feature

group for predicting entailment.

4 SemEval-2014 Task 3

4.1 Task Description

Unlike the other tasks, which focus on similar-sized
texts, the shared task on “Cross-Level Semantic
Similarity” (Jurgens et al., 2014) is about measur-
ing semantic similarity between textual units of
different lengths. It comprises four subtasks com-
paring I) paragraphs to sentences, II) sentences to
phrases, III) phrases to words and IV) words to
word senses (taken from WordNet). Due to the
nature of this task, performance in it might be es-
pecially useful as an indicator for the usefulness of
a system in the area of summarization.

SemantiKLUE takes the fourth place out of 38 in
both the official ranking by Pearson correlation and
the alternative ranking by Spearman correlation.

4.2 Additional Preprocessing

For the official run we perform some additional pre-
processing on the data for the two subtasks on com-
paring phrases to words and words to word senses.
On the word level we combine the word with the
glosses of all its WordNet senses and on the word
sense level we replace the WordNet sense indica-
tion with its corresponding lemmata and gloss. As
our post-hoc experiments show that has a nega-
tive effect on performance in the phrase-to-word
subtask. Therefore, we skip the additional prepro-
cessing on that level for our experiments described
below.

4.3 Experiments

For each of the four subtasks, we perform the
same experiments as described in Section 3.2: We
compare the official run submitted from a work-
in-progress version of SemantiKLUE with the re-
sults from the whole system; we see how the sys-
tem performs without dependency-based features
and WordNet-based features; we try out the experi-
mental features; we determine the most important
feature group for the subtask. Table 2 gives an
overview of the results.

4.3.1 Paragraph to Sentence
Our submitted run takes the fifth place (ties with
another system) in the official ranking by Pearson
correlation with a correlation coefficient of 0.817
(best of 34 systems: 0.837) and seventh place in
the alternative ranking by Spearman correlation.
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Run Paragraph to sent. Sent. to phrase Phrase to word Word to sense
r ρ r ρ r ρ r ρ

official 0.817 0.802 0.754 0.739 0.215 0.218 0.314 0.327

complete system 0.817 0.802 0.754 0.739 0.284 0.289 0.316 0.330
no deps 0.815 0.802 0.752 0.739 0.309 0.313 0.312 0.329
no deps, no WN 0.813 0.802 0.736 0.721 0.335 0.335 0.234 0.248
complete + experimental 0.816 0.800 0.752 0.738 0.292 0.298 0.318 0.330

only DSM alignment 0.799 0.789 0.724 0.711 0.302 0.301 0.216 0.216
only WordNet 0.787 0.769 0.664 0.641 0.186 0.171 0.313 0.311
only simple 0.807 0.793 0.686 0.672 0.128 0.121 0.089 0.093
only DSM document 0.629 0.624 0.546 0.558 0.247 0.240 0.144 0.148
only deps 0.655 0.621 0.449 0.440 0.036 0.057 −0.080 −0.076

Table 2: Results for task 3 (Pearson’s r and Spearman’s ρ).

The complete SemantiKLUE system gives identical
results. Leaving out the resource-heavy features
based on the dependency structure and WordNet
diminishes the results only very slightly, though
it still resolves the tie and puts the system on the
sixth place in the Pearson ranking. Adding the
experimental features to the complete system has a
minor negative effect.

Probably due to the length of the texts, our sim-
ple heuristic measures surpass the DSM-alignment-
based measures as the best feature group for pre-
dicting semantic similarity.

4.3.2 Sentence to Phrase
In this subtask, SemantiKLUE takes the fourth
place in both the official ranking with a Pearson
correlation coefficient of 0.754 (best of 34 systems:
0.777) and in the alternative ranking by Spearman
correlation. The complete system performs iden-
tically to our submitted run and leaving out the
dependency-based features has little impact on the
results. Additionally also leaving out the WordNet-
based features has more impact on the results and
puts the system on the eighth place in the official
ranking. Just as in the paragraph-to-sentence sub-
task, adding the experimental features to the com-
plete system has a slightly negative effect.

For this subtask, the DSM-alignment-based mea-
sures are clearly the feature group that yields the
best results.

4.3.3 Phrase to Word
For our submitted run we performed the additional
preprocessing described in Section 4.2 resulting
in the eleventh place in the official ranking with
a Pearson correlation coefficient of 0.215 (best of
22 systems: 0.415) and the 14th place in the alter-
native ranking by Spearman correlation. For our
experiments with the complete system we skip that

additional preprocessing step, i. e. we do not add
the WordNet glosses to the word, and drastically
improve the results, putting our system on the third
place in the official ranking. Even more interesting
is the observation that leaving out the resource-
heavy features further improves the results, putting
the system on the second place. In consistency
with those observations, the DSM-alignment-based
measures are not only the strongest individual fea-
ture group but also yield better results when taken
alone than the complete system.

In contrast to the first two subtasks, adding the
experimental features to the complete systems has
a slightly positive effect here.

4.3.4 Word to Sense
In the word-to-sense subtask, SemantiKLUE takes
the third place in both the official ranking with a
Pearson correlation coefficient of 0.316 (best of
20 systems: 0.381) and in the alternative rank-
ing by Spearman correlation. The complete sys-
tem performs slightly better than our submitted
run and adding the experimental features gives
another marginal improvement. Leaving out the
dependency-based features has little impact but
also leaving out the WordNet-based features sev-
erly hurts performance. The reason for that be-
haviour becomes clear when we look at the results
for the individual feature groups: the WordNet-
based measures are clearly the strongest feature
group for predicting the semantic similarity be-
tween words and word senses.

5 SemEval-2014 Task 10

5.1 Task Description
The shared task on “Multilingual Semantic Textual
Similarity” (Agirre et al., 2014) is a continuation
of the SemEval-2012 and *SEM 2013 shared tasks
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Run deft-forum

deft-news

headlines

images

OnW
N

tweet-news

w. mean

best run 0.349 0.643 0.733 0.773 0.855 0.640 0.694

complete (all training data) 0.432 0.638 0.660 0.736 0.810 0.659 0.676

best overall training data 0.464 0.672 0.657 0.771 0.836 0.690 0.700
best overall, no deps 0.457 0.675 0.636 0.764 0.834 0.690 0.694
best overall, no deps, no WN 0.426 0.653 0.617 0.719 0.780 0.636 0.654
best overall + experimental 0.466 0.674 0.673 0.772 0.849 0.687 0.706

best individual training data 0.475 0.706 0.711 0.788 0.852 0.715 0.727
best individ., no deps 0.465 0.700 0.699 0.781 0.848 0.722 0.722
best individ., no deps, no WN 0.448 0.722 0.677 0.752 0.791 0.706 0.697
best individ. + experimental 0.475 0.711 0.715 0.795 0.864 0.721 0.733

Table 3: Results for task 10.

on semantic textual similarity (Agirre et al., 2012;
Agirre et al., 2013). It comprises two subtasks:
English semantic textual similarity and Spanish
semantic textual similarity. For each subtask, there
are sentence pairs from various genres.

We only participate in the English subtask and
take the 13th place out of 38 with a weighted mean
of Pearson correlation coefficients of 0.694 (best
system: 0.761).

5.2 Experiments
From participating in the *SEM 2013 shared task
on semantic textual similarity (Greiner et al., 2013)
we already know that the composition of the train-
ing data is one of the strongest influences on system
performance in this task. As the individual data sets
are not very similar to each other, we tried to come
up with a good subset of the available training data
for each data set. In doing so, we were moderately
successful as the results in Table 3 show. Run-
ning the complete system with all of the available
training data on all test data sets results in a lower
weighted mean than our submitted run. If we stick
to using the same training data for all test data sets
and optimize the subset of the training data we use,
we achieve a slightly better result than our submit-
ted run (the optimal subset consists of the FNWN,
headlines, MSRpar, MSRvid and OnWN data sets).
Using that optimal subset of the training data and
adding the experimental features to the complete
system has a minor positive effect on the weighted
mean, with the biggest impact on the headlines and
OnWN data sets. Using the complete system with-
out the dependency-based features gives roughly
the same results but omitting all resource-heavy
features has clearly a negative impact on the re-
sults.

In another experiment we try to optimize our
strategy of finding the best subset of the training
data for each test data set. Doing that gives us a
considerably higher weighted mean than using the
same training data for every test data set, putting
our system on the eighth place. Using the complete
system, we find that the best training data subsets
for the individual test data sets are those shown in
Table 4.

test set training sets

deft-forum FNWN, headlines, MSRvid
deft-news FNWN, MSRpar, MSRvid
headlines FNWN, headlines, MSRpar
images FNWN, MSRpar, MSRvid
OnWN FNWN, MSRvid, OnWN
tweet-news FNWN, headlines, MSRpar, MSRvid

Table 4: Optimal subsets of training data for use
with the complete SemantiKLUE system.

If we add the experimental features to the com-
plete system and still optimize the training data sub-
sets, we get a small boost to the results. Leaving out
the dependency-based features does not really hurt
performance but also omitting the WordNet-based
features has a negative impact on the results.

6 Conclusion

SemantiKLUE is a robust system for predicting the
semantic similarity between two texts that can also
be used to predict entailment. The system achieves
good or very good results in three SemEval-2014
tasks representing a broad variety of semantic simi-
larity problems (cf. Table 5 for an overview of the
results of all subtasks). Our two-staged strategy of
computing several similarity measures and using
them as input for a machine learning mechanism
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Subtask submitted run complete system winner score
score rank score rank

Task 1, similarity 0.780 7/17 0.798 6/17 0.828
Task 1, entailment 0.823 4/18 0.820 4/18 0.846
Task 3, par-2-sent 0.817 5/34 0.817 5/34 0.837
Task 3, sent-2-phr 0.754 4/34 0.754 4/34 0.777
Task 3, phr-2-word 0.215 11/22 0.284 3/22 0.415
Task 3, word-2-sense 0.314 3/20 0.316 3/20 0.381
Task 3 overall N/A 4/38 N/A 3/38 N/A
Task 10, deft-forum 0.349 20/38 0.464 12/38 0.531
Task 10, deft-news 0.643 22/37 0.672 19/37 0.785
Task 10, headlines 0.733 15/37 0.657 20/37 0.784
Task 10, images 0.773 16/37 0.771 17/37 0.834
Task 10, OnWN 0.855 3/36 0.836 7/36 0.875
Task 10, tweet-news 0.640 20/37 0.690 12/37 0.792
Task 10 overall 0.694 13/38 0.700 13/38 0.761

Table 5: Overview of results.

proves itself to be adaptable to the needs of the
individual tasks.

Using the maximum-weight-matching algorithm
for aligning words from both texts that have similar
distributional semantics leads to very sound fea-
tures. Even without the resource-heavy features,
the system yields competitive results. In some use
cases, those expensive features are almost negligi-
ble. Without being dependent on the availability of
resources like a dependency parser or a WordNet-
like lexical database, SemantiKLUE can easily be
adapted to other languages.

Our experimental features from the commercial
topic clustering software are useful in some cases;
in others at least they do not hurt performance.

We feel that the heuristics based on the depen-
dency structure of the texts do not exhaust all the
possibilities that dependency parsing has to offer.
In the future we would like to try out more mea-
sures based on those structures. Probably some
kind of graph edit distance incorporating the sim-
ilarities between both dependency relations and
words might turn out to be a powerful feature.
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Abstract

This paper describes the Post-Editor Z sys-
tem submitted to the L2 writing assis-
tant task in SemEval-2014. The aim of
task is to build a translation assistance
system to translate untranslated sentence
fragments. This is not unlike the task
of post-editing where human translators
improve machine-generated translations.
Post-Editor Z emulates the manual pro-
cess of post-editing by (i) crawling and ex-
tracting parallel sentences that contain the
untranslated fragments from a Web-based
translation memory, (ii) extracting the pos-
sible translations of the fragments indexed
by the translation memory and (iii) apply-
ing simple cosine-based sentence similar-
ity to rank possible translations for the un-
translated fragment.

1 Introduction

In this paper, we present a collaborative submis-
sion between Saarland University and Nanyang
Technological University to the L2 Translation As-
sistant task in SemEval-2014. Our team name
is Sensible and the participating system is Post-
Editor Z (PEZ).

The L2 Translation Assistant task concerns the
translation of an untranslated fragment from a par-
tially translated sentence. For instance, given a
sentence, “Ich konnte Bärbel noch on the border
in einen letzten S-Bahn-Zug nach Westberlin set-
zen.”, the aim is to provide an appropriate transla-
tion for the underline phrase, i.e. an der Grenze.

The aim of the task is not unlike the task of
post-editing where human translators correct er-
rors provided by machine-generated translations.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

The main difference is that in the context of post-
editing the source text is provided. A transla-
tion workflow that incorporates post-editing be-
gins with a source sentence, e.g. “I could still
sit on the border in the very last tram to West
Berlin.” and the human translator is provided with
a machine-generated translation with untranslated
fragments such as the previous example and some-
times “fixing” the translation would simply re-
quire substituting the appropriate translation for
the untranslated fragment.

2 Related Tasks and Previous
Approaches

The L2 writing assistant task lies between the
lines of machine translation and crosslingual word
sense disambiguation (CLWSD) or crosslingual
lexical substitution (CLS) (Lefever and Hoste,
2013; Mihalcea et al. 2010).

While CLWSD systems resolve the correct
semantics of the translation by providing the
correct lemma in the target language, CLS at-
tempts to provide also the correct form of the
translation with the right morphology. Machine
translation tasks focus on producing translations
of whole sentences/documents while crosslingual
word sense disambiguation targets a single lexical
item.

Previously, CLWSD systems have tried distri-
butional semantics and string matching methods
(Tan and Bond, 2013), unsupervised clustering of
word alignment vectors (Apidianaki, 2013) and
supervised classification-based approaches trained
on local context features for a window of three
words containing the focus word (van Gompel,
2010; van Gompel and van den Bosch, 2013; Rud-
nick et al., 2013). Interestingly, Carpuat (2013)
approached the CLWSD task with a Statistical MT
system .

Short of concatenating outputs of CLWSD /
CLS outputs and dealing with a reordering issue

541



and responding to the task organizers’ call to avoid
implementing a full machine translation system
to tackle the task, we designed PEZ as an Auto-
matic Post-Editor (APE) that attempts to resolve
untranslated fragments.

3 Automatic Post-Editors

APEs target various types of MT errors from de-
terminer selection (Knight and Chander, 1994) to
grammatical agreement (Mareček et al., 2011).
Untranslated fragments from machine translations
are the result of out-of-vocabulary (OOV) words.

Previous approaches to the handling of un-
translated fragments include using a pivot lan-
guage to translate the OOV word(s) into a third
language and then back into to the source lan-
guage, thereby extracting paraphrases to OOV
(Callison-burch and Osborne, 2006), combining
sub-lexical/constituent translations of the OOV
word(s) to generate the translation (Huang et al.,
2011) or finding paraphrases of the OOV words
that have available translations (Marton et al.,
2009; Razmara et al., 2013). 1

However the simplest approach to handle un-
translated fragments is to increase the size of par-
allel data. The web is vast and infinite, a human
translator would consult the web when encounter-
ing a word that he/she cannot translate easily. The
most human-like approach to post-editing a for-
eign untranslated fragment is to do a search on
the web or a translation memory and choose the
most appropriate translation of the fragment from
the search result given the context of the machine
translated sentence.

4 Motivation

When post-editing an untranslated fragment, a hu-
man translator would (i) first query a translation
memory or parallel corpus for the untranslated
fragment in the source language, (ii) then attempt
to understand the various context that the fragment
can occur in and (iii) finally he/she would sur-
mise appropriate translations for the untranslated
fragment based on semantic and grammatical con-
straints of the chosen translations.

1in MT, evaluation is normally performed using automatic
metrics based on automatic evaluation metrics that compares
scores based on string/word similarity between the machine-
generated translation and a reference output, simply remov-
ing OOV would have improved the metric “scores” of the
system (Habash, 2008; Tan and Pal, 2014).

The PEZ system was designed to emulate the
manual post-editing process by (i) first crawling
a web-based translation memory, (ii) then extract-
ing parallel sentences that contain the untranslated
fragments and the corresponding translations of
the fragments indexed by the translation memory
and (iii) finally ranking them based on cosine sim-
ilarity of the context words.

5 System Description

The PEZ system consists of three components,
viz (i) a Web Translation Memory (WebTM)
crawler, (ii) the XLING reranker and (iii) a longest
ngram/string match module.

5.1 WebTM Crawler
Given the query fragment and the context sen-
tence, “Die Frau kehrte alone nach Lima zurück”,
the crawler queries www.bab.la and returns
sentences containing the untranslated fragment
with various possible tranlsations, e.g:

• isoliert : Darum sollten wir den Kaffee nicht
isoliert betrachten.

• alleine : Die Kommission kann nun aber für
ihr Verhalten nicht alleine die Folgen tragen.

• Allein : Allein in der Europischen Union
sind.

The retrieval mechanism is based on the
fact that the target translations of the queried
word/phrase are bolded on a web-based TM and
thus they can be easily extracted by manipulating
the text between <bold>...</bold> tags. Al-
though the indexed translations were easy to ex-
tract, there were few instances where the transla-
tions were embedded betweeen the bold tags on
the web-based TM.

5.2 XLING Reranker
XLING is a light-weight cosine-based sentence
similarity script used in the previous CLWSD
shared task in SemEval-2013 (Tan and Bond,
2013). Given the sentences from the WebTM
crawler, the reranker first removes all stopwords
from the sentences and then ranks the sentences
based on the number of overlapping stems.

In situations where there are no overlapping
content words from the sentences, XLING falls
back on the most common translation of the un-
translated fragment.
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en-de en-es fr-en nl-en
acc wac rec acc wac rec acc wac rec acc wac rec

WebTM 0.160 0.184 0.647 0.145 0.175 0.470 0.055 0.067 0.210 0.092 0.099 0.214
XLING 0.152 0.178 0.647 0.141 0.171 0.470 0.055 0.067 0.210 0.088 0.095 0.214
PEZ 0.162 0.233 0.878 0.239 0.351 0.819 0.081 0.116 0.321 0.115 0.152 0.335

Table 1: Results for Best Evaluation of the System Runs.

5.3 Longest Ngram/String Matches

Due to the low coverage of the indexed trans-
lations on the web TM, it is necessary to ex-
tract more candidate translations. Assuming lit-
tle knowledge about the target language, human
translator would find parallel sentences containing
the untranslated fragment and resort to finding re-
peating phrases that occurs among the target lan-
guage sentences.

For instance, when we query the phrase history
book from the context “Von ihr habe ich mehr gel-
ernt als aus manchem history book.”, the longest
ngram/string matches module retrieves several tar-
get language sentences without any indexed trans-
lation:

• Ich weise darauf hin oder nehme an, dass
dies in den Geschichtsbüchern auch so
erwähnt wird.
• Wenn die Geschichtsbücher geschrieben wer-

den wird unser Zeitalter, denke ich, wegen
drei Dingen erinnert werden.
• Ich bin sicher, Präsident Mugabe hat sich

nun einen Platz in den Geschichtsbüchern
gesichert, wenn auch aus den falschen
Gründen.
• In den Geschichtsbüchern wird für jeden

einzelnen Tag der letzten mehr als 227 Jahre
an Gewalttaten oder Tragdien auf dem eu-
ropäischen Kontinent erinnert.

By simply spotting the repeating word/string
from the target language sentences it is pos-
sible to guess that the possible candidates
for “history book” are Geschichtsbücher or
Geschichtsbüchern. Computationally, this can
be achieved by looking for the longest matching
ngrams or the longest matching string across the
target language sentences fetched by the WebTM
crawler.

5.4 System Runs

We submitted three system runs to the L2 writing
assistant task in Semeval-2014.

1. WebTM: a baseline configuration which out-
puts the most frequent indexed translation of
the untranslated fragment from the Web TM.

2. XLING: reranks the WebTM outputs based
on cosine similarity.

3. PEZ: similar to the XLING but when the
WebTM fetches no output, the system looks
for longest common substring and reranks the
outputs based on cosine similarity.

6 Evaluation

The evaluation of the task is based on three met-
rics, viz. absolute accuracy (acc), word-based ac-
curacy (wac) and recall (rec).

Absolute accuracy measures the number of
fragments that match the gold translation of the
untranslated fragments. Word-based accuracy as-
signs a score according to the longest consecutive
matching substring between output fragment and
reference fragment; it is computed as such:

wac = |longestmatch(output,reference)|
max(|output|,|reference|)

Recall accounts for the number of fragments for
which output was given (regardless of whether it
was correct).

7 Results

Table 1 presents the results for the best evalua-
tion scores of the PEZ system runs for the En-
glish to German (en-de), English to Spanish (en-
es), French to English (fr-en) and Dutch to English
(nl-en) evaluations. Figure 1 presents the word ac-
curacy of the system runs for both best and out-of-
five (oof) evaluation2.

The results show that using the longest
ngram/string improves the recall and subsequently
the accuracy and word accuracy of the system.
However, this is not true when guessing untrans-
lated fragments from L1 English to L2. This is
due to the low recall of the system when search-
ing for the untranslated fragment in French and

2Please refer to http://goo.gl/y9f5Na for results
of other competing systems
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Figure 1: Word Accuracy of System Runs (best on
the left, oof on the right).

Dutch, where the English words/phases indexed in
the TM is much larger than other languages.

8 Error Analysis

We manually inspected the English-German out-
puts from the PEZ system and identified several
particularities of the outputs that account for the
low performance of the system for this language
pair.

8.1 Weird Expressions in the TM

When attempting to translate Nevertheless in the
context of “Nevertheless hat sich die neue Bun-
desrepublik Deutschland unter amerikanischem
Druck an der militrischen Einmischung auf dem
Balkan beteiligt.” where the gold translation is
Trotzdem or Nichtsdestotrotz. The PEZ system re-
trieves the following sentence pairs that contains a
rarely used expression nichtsdestoweniger from a
literally translated sentence pair in the TM:

• EN: But nevertheless it is a fact that nobody
can really recognize their views in the report.

• DE: Aber nichtsdestoweniger kann sich nie-
mand so recht in dem Bericht wiederfinden.

Another example of weird expression is when
translating “husband” in the context of “In der
Silvesternacht sind mein husband und ich auf die
Bahnhofstraße gegangen.”. PEZ provided a lesser
use yet valid translation Gemahl instead of the
gold translation Mann. In this case, it is also a
matter of register where in a more formal register
one will use Gemahl instead of Mann.

8.2 Missing / Additional Words from
Matches

When extracting candidate translations from the
TM index or longest ngram/string, there are sev-
eral matches where the PEZ system outputs a par-
tial phrase or phrases with additional tokens that
cause the disparity between the absolute accuracy
and word accuracy. An instance of missing words
is as follows:

• Input: Eine genetische Veranlagung
plays a decisive role.

• PEZ: Eine genetische Veranlagung
eine entscheidende rolle.

• Gold: Eine genetische Veranlagung
spielt (dabei) eine entscheidende rolle.

For the addition of superfluous words is as fol-
lows:

• Input: Geräte wie Handys sind
not permitted wenn sie nicht unterrichtlichen
Belangen dienen.
• PEZ: Geräte wie Handys sind es verboten,

wenn sie nicht unterrichtlichen Belangen
dienen.
• Gold: Geräte wie Handys sind verboten

wenn sie nicht unterrichtlichen Belangen di-
enen.

8.3 Case Sensitivity

For the English-German evaluation , there are sev-
eral instances where the PEZ system produces the
correct translation of the phrase but in lower cases
and this resulted in poorer accuracy. This is unique
to German target language and possibly contribut-
ing to the lower scores as compared to the English-
Spanish evaluation.

9 Conclusion

In this paper, we presented the PEZ automatic
post-editor system in the L2 writing assistant task
in SemEval-2014. The PEZ post-editing system is
a resource lean approach to provide translation for
untranslated fragments based on no prior training
data and simple string manipulations from a web-
based translation memory.

The PEZ system attempts to emulate the pro-
cess of a human translator post-editing out-
of-vocabulary words from a machine-generated

544



translation. The best configuration of the PEZ sys-
tem involves a simple string search for the longest
common ngram/string from the target language
sentences without having word/phrasal alignment
and also avoiding the need to handle word reorder-
ing for multi-token untranslated fragments.
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José Saias
DI - ECT - Universidade de Évora
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Abstract

This document describes the senti.ue
system and how it was used for partici-
pation in SemEval-2014 Task 9 challenge.
Our system is an evolution of our prior
work, also used in last year’s edition of
Sentiment Analysis in Twitter. This sys-
tem maintains a supervised machine learn-
ing approach to classify the tweet overall
sentiment, but with a change in the used
features and the algorithm. We use a re-
stricted set of 47 features in subtask B and
31 features in subtask A.
In the constrained mode, and for the five
data sources, senti.ue achieved a score
between 78,72 and 84,05 in subtask A, and
a score between 55,31 and 71,39 in sub-
task B. For the unconstrained mode, our
score was slightly below, except for one
case in subtask A.

1 Introduction

This paper describes the approach taken by a
team of Universidade de Évora’s Computer Sci-
ence Department in SemEval-2014 Task 9: Senti-
ment Analysis in Twitter (Rosenthal et al., 2014).
SemEval-2014 Task 9 has an expression-level
(subtask A) and a message-level (subtask B) polar-
ity classification challenges. The first subtask aims
to determine whether a word (or phrase) is posi-
tive, negative or neutral, within the textual context
in which it appears. The second subtask concerns
the classification of the overall text polarity, which
corresponds to automatically detecting the senti-
ment expressed in a Twitter message. In both sub-
tasks, systems can operate in constrained or un-
constrained mode. Constrained means that learn-
This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

ing is based only on provided training texts, with
the possible aid of static resources such as lexi-
cons. Extra tweets or additional annotated doc-
uments for training are permitted only in uncon-
strained mode.
The system we used to respond to this challenge
is called senti.ue, and follows on from our
previous work on Natural Language Processing
(NLP) and Sentiment Analysis (SA). We devel-
oped work in automatic reputation assessment, us-
ing a Machine Learning (ML) based classifier for
comments with impact on a particular target entity
(Saias, 2013). We also participated in the previ-
ous edition of SemEval SA task, where we have
implemented the basis for the current system. In
last year’s solution (Saias and Fernandes, 2013),
we treated both subtasks using the same method
(except the training set). We have updated the
method for subtask A, now considering also the
text around the area to classify, by dedicating new
features to those preceding and following tweet
parts. Text overall sentiment classification is the
core objective of our system, and is performed, as
before, with a supervised machine learning tech-
nique. For subtask B, we fixed some implemen-
tation issues in the previous version, and we went
from 22 to 53 features, explained in Section 3.

2 Related Work

The popularity of social networks and microblog-
ging facilitated the sharing of opinions. To know
whether people are satisfied or not with a particu-
lar brand or product is of great interest to market-
ing companies. Much work has appeared in SA,
trying to capture valuable information in expres-
sions of contentment or discontentment.
Important international scientific events, NLP re-
lated, include SA challenges and workshops. This
was the case in SemEval-2013, whose task 2 (Wil-
son et al., 2013) required sentiment analysis of
Twitter and SMS text messages. Being the pre-
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decessor task of the challenge for which this work
was developed, it is similar to this year’s Task 9.
The participating systems achieved better results
in contextual polarity subtask (A) than those ob-
tained for the overall message polarity subtask (B).
In that edition, the best results were obtained by
systems in constrained mode. The most common
method was supervised ML with features that can
be related to text words, syntactic function, dis-
course elements relation, internet slang and sym-
bols, or clues from sentiment lexicons. In that
task, the NRC-Canada system (Mohammad et
al., 2013) obtained the best performance, achiev-
ing an F1 of 88.9% in subtask A and 69% in sub-
task B. That system used one SVM classifier for
each subtask, together with text surface based fea-
tures, features associated with manually created
and automatically generated sentiment lexicons,
and n-gram features. Other systems with good re-
sults in that task were GU-MLT-LT (Günther and
Furrer, 2013) and AVAYA (Becker et al., 2013).
The first was implemented in the Python lan-
guage. It includes features for: text tokens af-
ter normalization, stems, word clusters, and two
values for the accumulated positive and accumu-
lated negative SentiWordNet (Baccianella et al.,
2010) scores, considering negation. Its machine
learning classifier is based on linear models with
stochastic gradient descent. The approach taken
in the AVAYA system centers on training high-
dimensional, linear classifiers with a combination
of lexical and syntactic features. This system uses
Bag-of-Words features, with negation represented
in word suffix, and including not only the raw
word forms but also combinations with lemmas
and PoS tags. Then, word polarity features are
added, using the MPQA lexicon (Wiebe et al.,
2005), as well as syntactic dependency and PoS
tag features. Other features consider emoticons,
capitalization, character repetition, and emphasis
characters, such as asterisks and dashes. The re-
sulting model was trained with the LIBLINEAR
(Fan et al., 2008) classification library.
Another NLP task very close to SA is polarity
classification on the reputation of an entity. Here,
instead the sentiment in the perspective of the
opinion holder, the goal is to detect the impact of
this particular opinion on some entity’s reputation.
The diue system (Saias, 2013) uses a supervised
ML approach for reputation polarity classification,
including Bag-of-Words and a limited set of fea-

tures based on sentiment lexicons and superficial
text analysis.

3 Method

This work follows on from our previous partici-
pation in SemEval-2013 SA task, where we have
devoted greater effort to subtask B. We start by ex-
plaining our current approach for this subtask, and
then we describe how such classifier is also used
in subtask A.

3.1 Message Polarity Classification

The senti.ue system maintains a supervised
machine learning approach to perform the over-
all sentiment classification. As before, Python and
the Natural Language Toolkit (NLTK1) are used
for text processing and ML feature extraction.
The first step was to obtain the tweet content and
forming the instances of the training set. Dur-
ing the download phase, several tweets were not
found. In constrained mode, we got only 7352 in-
stances available for training.
Tweet preprocessing includes tokenization, which
is punctuation and white space based, negation de-
tection, and lemmatization, through NLTK class
WordNetLemmatizer. After that, the system
runs the ML component. Instead of the solu-
tion we used in 2013, with two differently con-
figured classifiers in a pipeline, we chose to use
a single classifier, which this year is based on
SciKit-Learn2, and to increase the number
of features that are extracted to represent each
instance. The classification algorithm was Sup-
port Vector Machines (SVM), using SVC3 class,
with a linear kernel and 10−5 tolerance for stop-
ping criterion. SVC class implementation is based
on libsvm (Chang and Lin, 2011), and uses
one-against-one approach for multi-class classifi-
cation. From each instance, the system extracts the
47 features in Figure 1. The first two features rep-
resent the index of the first polarized token. The
following represent the repeated occurrence of a
question mark, and the existence of a token with
negation (not, never). Then there are two fea-
tures that indicate whether there is negation before
positive or negative words. The following 8 fea-

1Python based platform with resources and programming
libraries suitable for linguistic processing (Bird, 2006).

2Open source tool for Machine Learning in Python -
http://scikit-learn.org/

3http://scikit-learn.org/stable/modules/svm.html#svm-
classification

547



tures indicate whether there are positive or nega-
tive terms, just after, or near, a question mark or
an exclamation mark. We build a table with words
or phrases marked as positive or negative in sub-
task A data. Using this resource, 4 features test the
presence and the count of word n-grams marked
as positive or negative. Then the TA.alike features
represent the same, but after lemmatization and
synonym verification. To find the synonyms of
a term, we used the WordNet (Princeton Univer-
sity, 2010) resource. The probability of each word
belonging to a class was calculated. There are 3
features avgProbWordOn, one per class, that rep-
resent the average of this probability for each in-
stance words. Next 3 features represent the same,
but focusing only on the last 5 words of each text.
Then we have 6 ProbLog2Prob features, repre-
senting the average of P × log2(P ), for all words,
or only the latest 5 words, for all classes. P is
the probability of the word belonging to one class.
One feature cumulates the token polarity values,
according to SentiWordNet. The final 12 features
are based on sentiment lexicons: AFINN (Nielsen,
2011), Bing Liu (Liu et al., 2005), MPQA, and
a custom polarity table with some manually en-
tered entries. For each resource, we count the in-
stance tokens with negative and positive polarity,
and create a feature direction, having the value 1
if countTokens.pos>countTokens.neg, -1 if count-
Tokens.pos<countTokens.neg, or 0.
For the unconstrained mode, the only difference
is the use of more instances for the training set,
with 3296 short texts obtained from SemEval-
2014 Task 4 data4, about laptops and restaurants.

3.2 Contextual Polarity Disambiguation

In this subtask, the download phase fetched only
6506 tweets. These instances have boundaries
marking the substring to classify. Our system
starts by splitting the document into text segments:
fullText, leftText, rightText, sentenceText, chosenText. The
first corresponds to the entire tweet. The follow-
ing represent the text before and the text after the
chosen text. Then we have the sentence where
the chosen text is, and finally the text segment
that systems must classify. The preprocessing de-
scribed before is then applied to each of these text
segments. For each instance, the system gener-
ates the 31 features listed in Figure 2. First 27
features represent 9 values for each chosenText , sen-

4http://alt.qcri.org/semeval2014/task4/

firstIndexOf.{pos,neg}, hasDoubleQuestionMark,

hasNegation, hasNegationBefore.{pos,neg},
{pos,neg}.{After,Near}.Exclamation,
{pos,neg}.{After,Near}.Question,
hasTA.{pos,neg}.NGrams, countTA.{pos,neg}.NGrams,
hasTA.alike.{pos,neg}.NGrams,
countTA.alike.{pos,neg}.NGrams,
avgProbWordOn.{pos,neg,neutral},
last5AvgProbWordOn.{pos,neg,neutral},
avgW.ProbLog2Prob.{pos,neg,neutral},
last5AvgW.ProbLog2Prob.{pos,neg,neutral},
SentiWordNetAccumulatedValue,

{AFINN,Liu,MPQA,custom}.countTokens.{pos,neg},
{AFINN,Liu,MPQA,custom}.direction

Figure 1: features for message polarity

{AFINN,Liu,custom}.countTokens.{pos,neg},
{AFINN,Liu,custom}.direction,
{AFINN,Liu,custom}.sentence.countTok.{pos,neg},
{AFINN,Liu,custom}.sentence.direction,
{AFINN,Liu,custom}.left.countTokens.{pos,neg},
{AFINN,Liu,custom}.left.direction,
b.sentClass.{left,right,sentence,chosenText}

Figure 2: features for contextual polarity

tenceText and leftText instance segments. These val-
ues represent the count of polarized tokens, and
the direction (1, 0, or -1, as before), according to
3 sentiment lexicons. The final 4 features have the
overall sentiment classification, using the subtask
B classifier, for each text segment: leftText , right-

Text , sentenceText , and chosenText . In unconstrained
mode the instances used for subtask A training are
the same. The difference with respect to the con-
strained mode is the overall sentiment classifier
used for the last 4 features, which corresponds to
the unconstrained classifier of subtask B.
This subtask has specific features, different from
those used in the previous subtask, and after some
tests with SciKit-Learn classifiers, we found
that, in this case, our best results were not ob-
tained with SVM. For subtask A, we chose Gradi-
ent Boosting classifier5, an ensemble method that
combines the predictions of several models, con-
figured with deviance loss function, 0.1 for learn-
ing rate, and 100 regression estimators with indi-
vidual maximum depth of 4.

5http://scikit-learn.org/stable/modules/generated/sklea
rn.ensemble.GradientBoostingClassifier.html
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run LJ’14 SMS’13 T’13 T’14 T’14s
A const. 81,90 78,72 84,05 80,54 82,75
A unc. 79,70 82,93 83,80 77,07 80,02
B const. 71,39 59,34 67,34 63,81 55,31
B unc. 68,08 56,16 65,21 61,47 54,09

Table 1: senti.ue score

LJ’14 SMS’13 T’13 T’14 T’14s
A avg 77,08 77,37 79,94 76,84 68,33
A best 85,61 89,31 90,14 86,63 82,75
B avg 63,52 55,63 59,78 60,41 45,44
B best 74,84 70,28 72,12 70,96 58,16

Table 2: all systems: higher and average score

4 Results

We submitted four runs, with the system output
for each subtask, and both constrained and uncon-
strained modes. Test set documents come from
five sources: LiveJournal blogs (LJ’14), SMS test
(SMS’13) and Twitter test (T’13) data from last
year, a new Twitter collection (T’14), and 100
tweets whose text includes sarcasm (T’14s). The
primary metric to evaluate the results is the aver-
age F-measure for positive and negative classes.
Table 1 shows the score obtained by our system.
In the constrained mode, and for the five data
sources, senti.ue achieved a score between
78,72 and 84,05 in subtask A, and a score between
55,31 and 71,39 in subtask B. Comparing the
evaluation between constrained and unconstrained
modes, the latter was always a little below, ex-
cept for one case in subtask A and SMS2013 data,
where the extra training data led to a 4% score im-
provement. In this SA challenge there were a total
of 27 submissions in subtask A and 50 submis-
sions in subtask B. Among these, the best score
and the average score for each subtask are shown
in Table 2. In both subtaks, our system result is
above the participating systems average score. In
subtask A and the Twitter Sarcasm 2014 collection
(T’14s), senti.ue achieved the highest score,
with 82,75% in constrained mode.
For each data set, tables 3 and 4 show the preci-
sion and recall of our system result on the high-
est scored mode, per class. In subtask A preci-
sion is between 64 and 99% for positive and nega-
tive classes, taking the value of zero in the neutral
class. For the overall sentiment subtask, precision
is similar among the 3 classes, having the mini-
mum value in the negative class of sarcasm tweets.
The best recall value was obtained in the positive

task, mode, data Positive Negative Neutral
A, C, LJ’14 87,27 86,69 0,00
A, U, SMS’13 85,06 85,87 1,89
A, C, T’13 91,11 79,10 0,00
A, C, T’14 90,37 74,74 1,14
A, C, T’14s 98,78 64,86 0,00
B, C, LJ’14 65,11 80,59 67,64
B, C, SMS’13 48,98 55,08 88,73
B, C, T’13 65,65 65,39 77,99
B, C, T’14 65,89 62,87 71,00
B, C, T’14s 78,79 32,50 61,54

Table 3: senti.ue precision in best mode

task, mode, data Positive Negative Neutral
A, C, LJ’14 80,11 74,70 0,00
A, U, SMS’13 80,62 80,48 11,54
A, C, T’13 85,05 81,16 0,00
A, C, T’14 89,09 68,25 14,29
A, C, T’14s 83,51 88,89 0,00
B, C, LJ’14 77,65 64,99 68,30
B, C, SMS’13 83,68 58,81 74,58
B, C, T’13 78,72 60,93 68,87
B, C, T’14 80,07 49,42 60,28
B, C, T’14s 55,32 76,47 36,36

Table 4: senti.ue recall in best mode

class of the 2014 tweet collection.

5 Conclusions

Continuing last year experience, we participated
in SemEval-2014 Task 9 to test our approach for a
real-time SA system for the English used nowa-
days in social media content. We changed the
method for subtask A, now considering also the
text around the area to classify, by dedicating new
features to it, which led to good results. Our
method for overall sentiment is ML based, using
a restricted set of features that are dedicated to
superficial text properties, negation presence, and
sentiment lexicons. Without a deep linguistic anal-
ysis, our system achieved a reasonable result in
subtask B. The evaluation of our solution, in both
subtasks, shows an appreciable improvement, by
10% or more, when compared to our results in
2013. We believe that the additional training in-
stances used in unconstrained mode and subtask
B, about laptops and restaurants, have a writing
style different from most of the test set documents.
And perhaps this is the cause for lower score in
the unconstrained mode, something that happened
also with many systems in the past edition (Wilson
et al., 2013).
This time, we implemented the contextual polarity
solution based on the subtask B classifier. Given
the results, we intend to do, in the near future, a
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new iteration of our system where the overall clas-
sifier will depend on (or receive features from) the
current subtask A classifier.
It seems to us that senti.ue feature engineering
can be improved, maintaining this line of develop-
ment. Once stabilized, the introduction of named
entity recognition and a richer linguistic analysis
will help to identify the sentiment target entities,
as the ultimate goal for this system.
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Abstract

SentiKLUE is an update of the KLUE po-
larity classifier – which achieved good and
robust results in SemEval-2013 with a sim-
ple feature set – implemented in 48 hours.

1 Introduction

The SemEval-2014 shared task on “Sentiment
Analysis in Twitter” (Rosenthal et al., 2014) is a re-
run of the corresponding shared task from SemEval-
2013 (Nakov et al., 2013) with new test data.
It focuses on polarity classification in computer-
mediated communication such as Twitter, other
micro-blogging services, and SMS. There are two
subtasks: the goal of Message Polarity Classifica-
tion (B) is to classify an entire SMS, tweet or other
message as positive (pos), negative (neg) or neutral
(ntr); in the subtask on Contextual Polarity Disam-
biguation (A), a single word or short phrase has to
be classified in the context of the whole message.

The training data are the same as in SemEval-
2013. The test data from 2013 are used as a devel-
opment set in order to select features and tune ma-
chine learning algorithms, but may not be included
in the training data. The 2014 test set comprises
the development data, new Twitter messages, Live-
Journal entries as out-of-domain data, and a small
number of tweets containing sarcasm (see Rosen-
thal et al. (2014) for further details). For subtask B,
there are 10,239 training items, 5,907 items in the
development set, and 3,861 additional unseen items
in the new test set. For subtask A, there are 9,505
training items, 6,769 items in the development set,
and 3,912 additional items in the test set.

Our team participated in the SemEval-2013
shared task with a relatively simple, but robust

This work is licensed under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

system (KLUE) based on a maximum entropy clas-
sifier and a small set of features (Proisl et al., 2013).
Despite its simplicity, KLUE performed very well
in subtask B, ranking 5th out of 36 constrained
systems on the Twitter data and 3rd out of 28 on
the SMS data. Results for contextual polarity dis-
ambiguation (subtask A) were less encouraging,
with rank 14 out of 21 constrained systems on the
Twitter data and rank 12 out of 19 on the SMS data.

This paper describes our efforts to bring the
KLUE system up to date within a period of 48
hours. The results obtained by the new SentiKLUE
system are summarised in Table 1, showing that the
update was successful. The ranking of the system
has improved substantially in subtask A, making it
one of the best-performing systems in the shared
task. Rankings in subtask B are similar to those
of the previous year, showing that SentiKLUE has
kept up with recent developments. Moreover, dif-
ferences to the best-performing systems are much
smaller than in SemEval-2013.

2 Updating the KLUE polarity classifier

The KLUE polarity classifier is described in de-
tail by Proisl et al. (2013). It used the following
features as input for a maximum entropy classifier:

• The AFINN sentiment lexicon (Nielsen, 2011),
which provides numeric polarity scores ranging
from −5 to +5 for 2,476 English word forms,
extended with distributionally similar words.
For each input message, the number of positive
and negative words as well as their average
polarity score were computed.

• Emoticons and Internet slang expressions that
were manually classified as positive, negative
or neutral. Features were generated in the same
way as for the sentiment lexicon.

• A bag-of-words representation that generates a
separate feature for each word form that occurs
in at least 5 different messages ( f ≥ 5). Only
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task subset rank score best

B LJ14 3 / 42 73.99 74.84
B SMS13 4 / 42 67.40 70.28
B Twit13 6 / 42 69.06 72.12
B Twit14 10 / 42 67.02 70.96
B Sarcasm 24 / 42 43.36 58.16

A LJ14 1 / 20 85.61 85.61
A SMS13 6 / 20 85.16 89.31
A Twit13 2 / 20 90.11 90.14
A Twit14 2 / 20 84.83 86.63
A Sarcasm 2 / 20 79.32 82.75

Table 1: SentiKLUE results in SemEval 2014
Task 9 (among constrained systems). See Rosen-
thal et al. (2014) for further details and rankings
including the unconstrained systems.

single words (unigrams) were used, since ex-
periments with additional bigram features did
not lead to a clear improvement.

• A negation heuristic, which inverts the polar-
ity score of the first sentiment word within 4
tokens after a negation marker. In the bag-of-
words representation, the next 3 tokens after a
negation marker are prefixed with not_.

• For subtask A, these features were computed
both for the marked word or phrase and for the
rest of the message.

In order to improve the KLUE classifier, we drew
inspiration from two other systems participating
in the SemEval-2013 task: NRC-Canada (Moham-
mad et al., 2013), which won the task by a large
margin over competing systems, and GU-MLT-LT
(Günther and Furrer, 2013), which used similar fea-
tures to our classifier, but obtained better results
due to careful selection and tuning of the machine
learning algorithm.

Mohammad et al. (2013) used a huge set of fea-
tures, including several sentiment lexica (both man-
ually and automatically created), word n-grams (up
to 4-grams with low frequency threshold), charac-
ter n-grams (3-grams to 5-grams), Twitter-derived
word clusters and a negation heuristic similar to
our approach. Features with the largest impact
in subtask B were sentiment lexica (esp. large au-
tomatically generated word lists), word n-grams,
character n-grams and the negation heuristic, in this
order. NRC-Canada achieved F-scores of 68.46
(SMS) and 69.02 (Twitter) in task B, as well as

88.00 (SMS) and 88.93 (Twitter) in task A.
Günther and Furrer (2013) claim that state-of-

the-art results can be obtained with a small fea-
ture set if a suitable machine learning algorithm
is chosen. They used stochastic gradient descent
(SGD) and tuned its parameters by grid search. GU-
MLT-LT achieved scores of 62.15 (SMS) and 65.27
(Twitter) in task B, as well as 88.37 (SMS) and
85.19 (Twitter) in task A.

We therefore decided to make use of a wider
range of sentiment lexica, extend the bag-of-words
representation to bigrams, implement character n-
gram features, and experiment with different ma-
chine learning algorithms, resulting in the Senti-
KLUE system described in the following section.

3 The SentiKLUE system

SentiKLUE is an improved version of the KLUE
system and uses the same tokenisation, preprocess-
ing and negation heuristics; see Proisl et al. (2013)
for details. The features described below are used
as input for a machine learning classifier that pre-
dicts the polarity categories positive (pos), nega-
tive (neg) or neutral (ntr). As in KLUE and GU-
MLT-LT, the implementations of the Python library
scikit-learn (Pedregosa et al., 2011)1 are used. We
tested four different learning algorithms: logistic
regression (MaxEnt), stochastic gradient descent
(SGD), linear SVM (LinSVM) and SVM with a
RBF kernel (SVM). Parameters were tuned by grid
search and the best-performing algorithm was cho-
sen for each subtask. SentiKLUE makes use of the
following features:

• Several sentiment lexica, which are treated as
lists of positive and negative polarity words.
Numerical scores are converted by setting ap-
propriate cutoff thresholds. For each lexicon,
we compute the number of positive and neg-
ative words occurring in a message as fea-
tures, with separate counts for negated and non-
negated contexts.

– AFINN (Nielsen, 2011)2

– Bing Liu lexicon (Hu and Liu, 2004)3

– MPQA (Wilson et al., 2005)4

– SentiWords (Guerini et al., 2013)5; we cre-
1http://scikit-learn.org/
2http://www2.imm.dtu.dk/pubdb/views/publication_de-

tails.php?id=6010
3http://www.cs.uic.edu/~liub/FBS/sentiment-

analysis.html
4http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
5http://hlt.fbk.eu/technologies/sentiwords
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ated two word lists with score thresholds of
0.3 and 0.1

– Sentiment140 (Mohammad et al., 2013)6,
which was compiled from a corpus of 1.6
million tweets for NRC-Canada; we created
separate lists for normal words and hashtags
with a score threshold of 1.0

– NRC Hashtag Sentiment Lexicon (Moham-
mad et al., 2013)7, which contains words
that exhibit a strong statistical association
(PMI score) to positive or negative hashtags,
also compiled for NRC-Canada; again, we
created separate lists for normal words and
hashtags with a score threshold of 0.8

– a manual extension including synonyms,
antonyms and several word lists from on-
line sources, compiled by the SNAP team
(Schulze Wettendorf et al., 2014)

– an automatic extension with distributionally
similar words (DSM extension), using a strat-
egy similar to Proisl et al. (2013)

• Word form unigrams and bigrams. After
some experimentation, the document frequency
threshold was set to f ≥ 5 for subtask B and
f ≥ 2 for subtask A.

• In order to include information from character
n-grams, we used a Perl implementation of n-
gram language models (Evert, 2008) that has
already been applied successfully to text cat-
egorization tasks (boilerplate detection in the
CLEANEVAL 2007 competition). We trained
three separate models on positive, negative and
neutral messages. We selected a 5-gram model
(n = 5) with strong smoothing (q = 0.7), which
minimized cross-entropy on the training data
(measured by cross-validation). For each mes-
sage in the training and test data, three features
were generated, specifying per-character cross-
entropy for each of the three n-gram models.8

• Counts of positive and negative emoticons us-
ing the same lists as in the KLUE system.

• The same negation heuristic as in KLUE.9

6http://www.umiacs.umd.edu/~saif/WebPages/Abstracts/
NRC-SentimentAnalysis.htm

7ibid.
8Note that these features had to be generated by cross-

validation on the training data to avoid catastrophic overfitting.
9The full list of negation markers is not, don’t, doesn’t,

won’t, can’t, mustn’t, isn’t, aren’t, wasn’t, weren’t, couldn’t,
shouldn’t, wouldn’t. To our surprise, including further nega-
tion markers such as none, ain’t or hasn’t led to a decrease in
classification quality.

For subtask A, we chose a simplistic strategy and
computed the same set of features for the marked
word or phrase instead of the entire message. In
order to take context into account, the three class
probabilities assigned to the complete message by
a MaxEnt classifier were included as additional
features. No other features describing the context
of the marked expression were used.

Optionally, features were standardized and prior
class weights (2× for positive, 4× for negative)
were used in order to balance the predicted labels.
The best-performing machine learning algorithms
on the development set were MaxEnt for subtask B
(L1 penalty, C = 0.3) and linear SVM for subtask A
(L1 penalty, L2 loss, C = 0.5), as shown in Table 2.

4 Experiments and conclusion

In order to determine the importance of individ-
ual features, ablation experiments were carried out
for both subtasks by deactivating one group of fea-
tures at a time. Tables 3 and 4 show the resulting
changes in the official criterion Fp/n separately for
each subset of the development and test sets, as
well as micro-averaged across the full development
set (DEV) and test set (GOLD). Rows are ordered
by feature impact on the full gold standard. Posi-
tive values indicate that a feature group has a neg-
ative impact on classification quality: results are
improved by omitting the features (which is often
the case for the Sarcasm subset).

The most important features are bag-of-words
unigrams and bigrams, closely followed by senti-
ment lexica. Training class weights had a strong
positive impact in subtask B, but decreased per-
formance in subtask A. In our official submission,
they were only used for subtask B. Full-message
polarity is the third most important feature in sub-
task A. Other features contributed relatively small
individual effects, but were necessary to achieve
state-of-the-art performance in combination. They
are often specific to one of the subtasks or to a
particular subset of the gold standard.

The bottom half of each table shows ablation
results for individual sentiment lexica, with all
other features active. Key resources are the stan-
dard lexica (AFINN, Liu, MPQA) as well as
Twitter-specific lexica (Sentiment140, NRC Hash-
tag). Noisy word lists (DSM extension, SNAP,
SentiWords) have a small or even a negative effect.
Surprisingly, the standard lexica seem to give mis-
leading cues on the Twitter 2014 subset (Table 3).
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CV development set test set (gold standard)
task classifier Fall Fpos Fneg Fntr Fall Fp/n acc. Fpos Fneg Fntr Fall Fp/n acc.

B MaxEnt .727 .724 .651 .772 .735 .688 .734 .731 .650 .750 .726 .691 .725
B SGD .725 .728 .645 .773 .736 .686 .734 .733 .656 .749 .727 .695 .726
B LinSVM .702 .687 .604 .743 .700 .646 .701 .699 .599 .716 .689 .649 .690
B SVM .702 .721 .631 .742 .716 .676 .712 .729 .636 .720 .709 .683 .706

A MaxEnt .864 .890 .872 .179 .849 .881 .863 .893 .853 .171 .841 .873 .856
A SGD .864 .889 .867 .223 .849 .878 .860 .891 .847 .188 .839 .869 .852
A LinSVM .860 .892 .876 .064 .847 .884 .865 .895 .856 .064 .838 .875 .857
A SVM .855 .890 .873 .024 .842 .881 .862 .892 .853 .014 .832 .872 .854

Table 2: Performance of different machine learning algorithms on the training data (CV), development set
and test set (Fall = weighted average F-score; Fp/n = official score; best results highlighted in bold font).

Task B SMS Twitter DEV LJ14 SMS13 Twit13 Twit14 Sarcasm GOLD

– bag of words −.0837 −.0322 −.0502 −.0344 −.0807 −.0316 −.0335 +.0511 −.0430
– sentiment lexica −.0445 −.0354 −.0389 −.0690 −.0422 −.0372 −.0092 +.0750 −.0363
– training weights −.0033 −.0413 −.0266 −.0275 −.0077 −.0482 −.0204 −.0342 −.0294
– emoticons −.0071 −.0107 −.0087 −.0006 −.0067 −.0105 +.0004 +.0492 −.0048
– bow bigrams −.0074 −.0005 −.0035 +.0010 −.0105 −.0012 −.0096 +.0956 −.0028
– feature scaling −.0027 −.0010 −.0014 −.0021 −.0030 −.0026 −.0004 −.0034 −.0020
– character n-grams +.0029 −.0068 −.0033 +.0012 +.0040 −.0044 −.0056 +.0056 −.0015
– negation −.0098 +.0019 −.0014 −.0016 −.0049 +.0002 −.0012 +.0351 −.0002
– bow f ≥ 2 +.0017 +.0026 +.0022 +.0004 +.0021 −.0003 +.0021 +.0171 +.0013

sentiment lexica:
– standard lexica −.0206 −.0135 −.0152 −.0245 −.0234 −.0124 +.0035 +.0586 −.0124
– Twitter lexica −.0026 +.0000 −.0019 −.0118 −.0073 −.0007 −.0094 +.0034 −.0066
– SentiWords −.0008 −.0010 −.0009 −.0034 −.0015 −.0005 −.0075 +.0165 −.0017
– hashtag lexica −.0011 +.0021 +.0005 −.0045 −.0039 +.0035 +.0011 −.0302 −.0005
– DSM extension +.0047 −.0032 −.0002 −.0070 +.0039 +.0022 −.0025 +.0392 +.0002
– manual extension −.0008 −.0018 −.0011 −.0015 −.0019 +.0000 +.0041 +.0361 +.0009
only standard lexica −.0124 −.0119 −.0120 −.0088 −.0101 −.0108 −.0095 +.0439 −.0094
only DSM extension −.0303 −.0260 −.0262 −.0427 −.0287 −.0251 +.0021 +.0183 −.0230

Table 3: Results of feature ablation experiments for subtask B. Values show change in Fp/n-score if feature
is excluded. Rows are sorted by impact of features on the full SemEval-2014 test data (GOLD).

Task A SMS Twitter DEV LJ14 SMS13 Twit13 Twit14 Sarcasm GOLD

– bag of words −.0283 −.0252 −.0256 −.0207 −.0292 −.0249 −.0411 −.0041 −.0273
– sentiment lexica −.0027 −.0231 −.0151 −.0078 −.0023 −.0245 −.0144 −.0109 −.0141
– context (class probs) +.0027 −.0050 −.0022 −.0105 +.0017 −.0057 −.0171 +.0390 −.0062
– negation −.0081 −.0041 −.0052 −.0064 −.0063 −.0024 −.0058 +.0000 −.0043
– bow bigrams −.0045 −.0009 −.0022 −.0014 −.0046 +.0007 −.0033 +.0208 −.0014
– character n-grams −.0015 +.0003 −.0004 +.0003 −.0038 +.0001 −.0012 +.0085 −.0012
– feature scaling +.0001 +.0001 +.0001 +.0009 +.0005 −.0002 −.0029 −.0041 −.0004
– emoticons +.0023 +.0026 +.0025 +.0016 +.0038 +.0012 −.0062 +.0000 +.0004
bow f ≥ 5 +.0027 +.0000 +.0009 +.0082 +.0027 +.0006 −.0025 +.0243 +.0015
– training weights +.0046 +.0072 +.0059 +.0104 +.0037 +.0050 +.0000 −.0145 +.0040

sentiment lexica:
– standard lexica −.0100 −.0024 −.0050 +.0014 −.0086 −.0035 −.0055 +.0000 −.0044
– Twitter lexica −.0039 −.0016 −.0024 −.0009 −.0038 −.0024 −.0052 −.0085 −.0031
– hashtag lexica −.0023 −.0007 −.0012 +.0000 −.0014 −.0019 −.0030 −.0126 −.0017
– manual extensions −.0016 +.0003 −.0004 +.0021 −.0025 −.0009 +.0002 +.0000 −.0007
– SentiWords +.0017 +.0005 +.0010 +.0001 +.0013 −.0013 +.0001 +.0000 −.0002
– DSM extensions +.0099 +.0011 +.0044 −.0008 +.0098 −.0006 −.0004 −.0085 +.0019
only standard lexica +.0030 −.0038 −.0011 −.0019 +.0035 −.0048 −.0027 −.0168 −.0019
only DSM lexica −.0114 −.0085 −.0094 −.0035 −.0117 −.0104 −.0057 −.0338 −.0089

Table 4: Results of feature ablation experiments for subtask A. Values show change in Fp/n-score if feature
is excluded. Rows are sorted by impact of features on the full SemEval-2014 test data (GOLD).
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Abstract

This paper describes my approach for
parsing robot commands, which was
task 6 at SemEval 2014. My solution
is to manually create a compact unifica-
tion grammar. The grammar is highly am-
biguous, and relies heavily on filtering the
parse results by checking their consistency
with the current world.

The grammar is small, consisting of not
more than 25 grammatical and 60 lexical
rules. The parser uses simple error correc-
tion together with a straightforward itera-
tive deepening search. Nevertheless, with
these very basic algorithms, the system
still managed to get 86.1% correctness on
the evaluation data. Even more interesting
is that by making the parser slightly more
robust, the accuracy of the system rises
to 93.5%, and by adding one single word
to the lexicon, the accuracy is boosted to
98.0%.

1 Introduction

SemEval 2014, task 6, was about parsing com-
mands to a robot operating in a blocks world. The
goal is to parse utterances in natural language into
commands in a formal language, the Robot Con-
trol Language (RCL). As a guide the system can
use a spatial planner which can tell whether an
RCL command is meaningful in a given blocks
world.

The utterances are taken from the Robot Com-
mands Treebank (Dukes, 2013), which pairs 3409
sentences with semantic annotations consisting of
an RCL command together with a description of

This work is licensed under a Creative Commons Attribu-
tion 4.0 International Licence. Page numbers and proceed-
ings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

a world where the command is meaningful. The
corpus was divided into 2500 training sentences
and 909 evaluation sentences.

The system that is described in this paper, to-
gether with the evaluation data, is available online
from GitHub:

https://github.com/heatherleaf/semeval-2014-task6

2 System Description

The Shrdlite system is based on a small unification
grammar, together with a naive robust parser im-
plemented using iterative deepening. After pars-
ing, the resulting parse trees are modified accord-
ing to six extra-grammatical semantic rules.

The grammar and the semantic rules were hand-
crafted using manual analysis of the available
2500 training sentences, and an incremental and
iterative process to select and fine-tune the gram-
mar. The total amount of work for creating the
grammar consisted of about 3–4 days for one per-
son. This excludes programming the robust parser
and the rest of the system, which took another 2–3
days.

I did not have any access to the 909 evalua-
tion sentences while developing the grammar or
the other parts of the system.

2.1 Grammar

The grammar is a Prolog DCG unification gram-
mar (Pereira and Warren, 1980) which builds a se-
mantic parse tree during parsing. The core gram-
mar is shown in figure 1. For presentation pur-
poses, the DCG arguments (including the semantic
parse trees) are left out of the figure. The lexicon
consists of ca 150 surface words (or multi-word
units) divided into 23 lexical categories. The lex-
ical categories are the lowercase italic symbols in
the core grammar.
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Main −→ Event ?periods
Event −→ take-verb Entity take-suffix

| drop-verb Entity drop-suffix
| move-verb Entity ?commas move-suffix Destination
| take-verb Entity take-suffix and-then move-verb RefEntity move-suffix Destination

RefEntity −→ ?reference-pronoun
Destination −→ SpatialRelation

SpatialRelation −→ (Measure | entity-relation | Measure entity-relation) Entity
RelativeClause −→ ?commas relative-pronoun SpatialRelation

Measure −→ Entity
Entity −→ ?determiner BasicEntity

BasicEntity −→ (cardinal | indicator | color | cube-group-indicator) BasicEntity
| (type | one) ?RelativeClause
| ?(its | the) region-indicator ?of-board

Figure 1: The core grammar. Lowercase italic symbols are lexicon entries, and a question mark indicates
that the following symbol is optional. DCG arguments (semantic trees and syntactic coordination) are
left out for presentation reasons.

2.2 Semantic Modifications After Parsing

After parsing, each resulting semantic parse tree
is modified according to the following rules. Most
of these rules should be possible to implement as
grammar rules, but I felt that this would make the
grammar unnecessarily complicated.

• If a color is specified before an indicator,
change the order between them.

• If an entity of type CUBE is described using
two colours, its type is changed to CUBE-
GROUP.

• Relation words such as “above”, “oppo-
site”, “over”, etc., correspond to the relation
WITHIN() if the entity is of type CORNER or
REGION; for all other entities the relation will
be ABOVE().

• The relation FRONT() is changed to FOR-
WARD() if the entity is of type TILE.

• Add a reference id to the subject of a TAKE-
AND-DROP command sequence, unless it al-
ready has a reference id.

• If the destination of a move command
is of type TYPE-REFERENCE or TYPE-
REFERENCE-GROUP, add a reference id to
the subject; unless the subject is of type
PRISM and it has a spatial relation, in which
case the reference id is added to its spatial re-
lation instead.

2.3 Robust Parsing
The parser is a standard Prolog recursive-descent
parser, augmented with simple support for han-
dling robustness. The algorithm is shown in fig-
ure 2.

2.3.1 Misspellings and Junk Words
The parser tries to compensate for misspellings
and junk words. Any word can be recognized
as a misspelled word, penalized using the Leven-
shtein edit distance (Levenshtein, 1966), or it can
be skipped as a junk word with a fixed penalty.1

The parser first tries to find an exact match of
the sentence in the grammar, then it gradually al-
lows higher penalties until the sentence is parsed.
This is done using iterative deepening on the edit
penalty of the sentence, until it reaches the maxi-
mum edit penalty – if the sentence still cannot be
parsed, it fails. In the original evaluation I used a
maximum edit penalty of 5, but by just increasing
this penalty, the accuracy was boosted consider-
ably as discussed in sections 2.4 and 3.1.

2.3.2 Filtering Through the Spatial Planner
The parser uses the spatial planner that was dis-
tributed together with the task as a black box. It
takes a semantic parse tree and the current world
configuration, and decides if the tree is meaningful
in the given world.

When the sentence is recognized, all its parse
trees are filtered through the spatial planner. If

1The penalty of skipping over a word is 3 if the word is
already in the lexicon, and 2 otherwise.
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function robust-parse(sentence, world):
for penalty in 0. . . 5:

trees = { t ′ | t ∈ parse-dcg(sentence, edit-penalty=penalty),
t ′ = modify-tree(t),
spatial-planner(t ′, world) = MEANINGFUL }

if trees 6= /0:
return min(trees, key=treesize)

return FAILURE

Figure 2: The robust parsing algorithm.

none of the trees are meaningful in the world, the
parser tries to parse the sentence with a higher edit
penalty.

2.3.3 Selecting the Best Tree
If there is more than one possible semantic tree,
the system returns the tree with the smallest num-
ber of nodes.

2.4 Minor Modifications After Evaluation
As explained in section 3.1, the error analysis of
the final evaluation revealed one construction and
one lexical item that did not occur in the training
corpus:

• Utterances can start with 2–3 periods. The
reason why this was not caught by the robust
parser is that each of these periods are consid-
ered a word of its own, and as mentioned in
section 2.3.1, the penalty for skipping a lex-
icon word is 3 which means that the penalty
for parsing a sentence with 2–3 initial periods
is 6 or 9. Unfortunately I had chosen a maxi-
mum penalty of 5 which meant that the orig-
inal evaluation missed all these sentences.

By just increasing the maximum penalty
from 5 to 9, the accuracy increased from
86.1% to 93.5%.

• The word “cell” occurs in the evaluation
data as a synonym for the entity type
TILE, in addition to the existing tile words
“square”, “grid”, “space”, etc. Unfortu-
nately, the parser tries to correct “cell” into
the Levenshtein-similar “cube”, giving the
wrong semantics.

By adding “cell” to the lexicon, the accuracy
increased further from 93.5% to 98.0%.

The results of these minimal modifications are
substantial, and are discussed further in sec-
tion 3.2.

3 Evaluation

The system was evaluated on 909 sentences from
the treebank, and I only tested for exact matches.
The result of the initial evaluation was that 86% of
the sentences returned a correct result, when using
the spatial planner as a guide for selecting parses.
Without the planner, the accuracy was only 51%.
The results are shown in the top rows in tables 1
and 2.

The grammar is ambiguous and the system re-
lies heavily on the spatial planner to filter out can-
didates. Without the planner, 42% of the utter-
ances are ambiguous returning between 2 and 18
trees, but with the planner, only 4 utterances are
ambiguous (i.e., 0.4%).

3.1 Error Analysis
As already mentioned in section 2.4, almost all of
the errors that the system makes are of two forms
that are very easy to correct:

• None of the training sentences start with a se-
quence of periods, but 58 of the evaluation
sentences do. This was solved by increasing
the maximum edit penalty to 9.

• The word “cell” does not occur in the train-
ing sentences, but in does appear in 45 of the
evaluation sentences. To solve this error I just
added that word to the lexicon.

3.2 Evaluation Results
As already mentioned, the accuracy of the initial
grammar was 86.1% with the spatial planner. The
two minor modifications described in section 2.4
improve the results significantly, as can be seen
in table 1. Increasing the maximum edit penalty
solves 67 of the 126 failing sentences, and adding
the word “cell” solves 41 of the remaining sen-
tences. These two improvements together solve
108 sentences, leaving only 18 failing sentences.
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Max. Correct Incorrect
penalty Unique Ambiguous Total Ambiguous Miss Fail Total

Original grammar 5 782 1 86.1% 0 19 107 13.9%
Original grammar 9 845 5 93.5% 0 50 9 6.5%
Adding “cell” 9 886 5 98.0% 0 10 8 2.0%

Table 1: Evaluation results with the spatial planner.

Max. Correct Incorrect
penalty Unique Ambiguous Total Ambiguous Miss Fail Total

Original grammar 5 450 18 51.5% 315 64 62 48.5%
Original grammar 9 493 20 56.4% 330 65 1 43.6%
Adding “cell” 9 498 24 57.4% 366 20 1 42.6%

Table 2: Evaluation results without the spatial planner.

The final accuracy was therefore boosted to an im-
pressive 98.0%.

The columns in the result tables are as follows:
Unique are the number of sentences for which the
system returns one single tree which is correct.
Ambiguous are the number of sentences where the
parser returns several trees, and the correct tree is
among them: if the tree that the system selects
(i.e., the smallest tree) is correct, it is counted
as a correct ambiguous sentence, otherwise it is
counted as incorrect. Miss are the number of sen-
tences where all the returned trees are incorrect,
and Fail are the sentences for which the system
could not find a tree at all.

Table 2 shows that the modifications also im-
prove the accuracy when the spatial planner is
not used, but the improvement is not as impres-
sive. The reason for this is that many of the failed
sentences become ambiguous, and since the plan-
ner cannot be used for disambiguation, there is
still a risk that the returned tree is not the cor-
rect one. The number of sentences for which the
system returns the correct tree somewhere among
the results is the sum of all unique and ambigu-
ous sentences, which amounts to 450+18+315 =
783 (i.e., 86.1%) for the original grammar and
498+24+366 = 888 (i.e., 97.7%) for the updated
grammar. Note that these are almost the same re-
sults as in table 1, which is consistent with the fact
that the system uses the planner to filter out incor-
rect interpretations.

4 Discussion

In this paper I have showed that a traditional
symbol-based grammatical approach can be as

good as, or even superior to, a data-based machine
learning approach, in specific domains where the
language and the possible actions are restricted.
The grammar-based system gets an accuracy of
86.1% on the evaluation data. By increasing the
penalty threshold the accuracy rises to 93.5%, and
with a single addition to the lexicon it reaches
98.0%.

This suggests that grammar-based approaches
can be useful when developing interactive systems
for limited domains. In particular it seems that
a grammar-based system could be well suited for
systems that are built using an iterative and incre-
mental development process (Larman and Basili,
2003), where the system is updated frequently and
continuously evaluated by users.
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Abstract

This article presents our team’s partici-
pating system at SemEval-2014 Task 3.
Using a meta-learning framework, we
experiment with traditional knowledge-
based metrics, as well as novel corpus-
based measures based on deep learning
paradigms, paired with varying degrees of
context expansion. The framework en-
abled us to reach the highest overall per-
formance among all competing systems.

1 Introduction

Semantic textual similarity is one of the key
components behind a multitude of natural lan-
guage processing applications, such as informa-
tion retrieval (Salton and Lesk, 1971), relevance
feedback and text classification (Rocchio, 1971),
word sense disambiguation (Lesk, 1986; Schutze,
1998), summarization (Salton et al., 1997; Lin
and Hovy, 2003), automatic evaluation of machine
translation (Papineni et al., 2002), plagiarism de-
tection (Nawab et al., 2011), and more.

To date, semantic similarity research has pri-
marily focused on comparing text snippets of simi-
lar length (see the semantic textual similarity tasks
organized during *Sem 2013 (Agirre et al., 2013)
and SemEval 2012 (Agirre et al., 2012)). Yet,
as new challenges emerge, such as augmenting a
knowledge-base with textual evidence, assessing
similarity across different context granularities is
gaining traction. The SemEval Cross-level seman-
tic similarity task is aimed at this latter scenario,
and is described in more details in the task paper
(Jurgens et al., 2014).

∗{carmennb,chenditc,mihalcea}@umich.edu
This work is licensed under a Creative Commons At-
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2 Related Work

Over the past years, the research community has
focused on computing semantic relatedness us-
ing methods that are either knowledge-based or
corpus-based. Knowledge-based methods derive
a measure of relatedness by utilizing lexical re-
sources and ontologies such as WordNet (Miller,
1995) or Roget (Rog, 1995) to measure defi-
nitional overlap, term distance within a graph-
ical taxonomy, or term depth in the taxonomy
as a measure of specificity. There are many
knowledge-based measures that were proposed in
the past, e.g., (Leacock and Chodorow, 1998;
Lesk, 1986; Resnik, 1995; Jiang and Conrath,
1997; Lin, 1998; Jarmasz and Szpakowicz, 2003;
Hughes and Ramage, 2007).

On the other side, corpus-based measures such
as Latent Semantic Analysis (LSA) (Landauer
and Dumais, 1997), Explicit Semantic Analy-
sis (ESA) (Gabrilovich and Markovitch, 2007),
Salient Semantic Analysis (SSA) (Hassan and
Mihalcea, 2011), Pointwise Mutual Informa-
tion (PMI) (Church and Hanks, 1990), PMI-IR
(Turney, 2001), Second Order PMI (Islam and
Inkpen, 2006), Hyperspace Analogues to Lan-
guage (Burgess et al., 1998) and distributional
similarity (Lin, 1998) employ probabilistic ap-
proaches to decode the semantics of words. They
consist of unsupervised methods that utilize the
contextual information and patterns observed in
raw text to build semantic profiles of words. Un-
like knowledge-based methods, which suffer from
limited coverage, corpus-based measures are able
to induce the similarity between any two words, as
long as they appear in the corpus used for training.

3 System Description

3.1 Generic Features

Our system employs both knowledge and corpus-
based measures as detailed below.
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Knowledge-based features
Knowledge-based metrics were shown to provide
high correlation scores with the goldstandard in
text similarity tasks (Agirre et al., 2012; Agirre et
al., 2013). We used three WordNet-based simi-
larity measures that employ information content.
We chose these metrics because they are able to
incorporate external information derived from a
large corpus: Resnik (Resnik, 1995) (RES), Lin
(Lin, 1998) (LIN ), and Jiang & Conrath (Jiang
and Conrath, 1997) (JCN ).

Corpus based features
Our corpus based features are derived from a
deep learning vector space model that is able to
“understand” word meaning without human in-
put. Distributed word embeddings are learned us-
ing a skip-gram recurrent neural net architecture
running over a large raw corpus (Mikolov et al.,
2013b; Mikolov et al., 2013a). A primary advan-
tage of such a model is that, by breaking away
from the typical n-gram model that sees individual
units with no relationship to each other, it is able to
generalize and produce word vectors that are simi-
lar for related words, thus encoding linguistic reg-
ularities and patterns (Mikolov et al., 2013b). For
example, vec(Madrid)-vec(Spain)+vec(France) is
closer to vec(Paris) than any other word vec-
tor (Mikolov et al., 2013a). We used the pre-
trained Google News word2vec model (WTV )
built over a 100 billion words corpus, and con-
taining 3 million 300-dimension vectors for words
and phrases. The model is distributed with the
word2vec toolkit. 1

Since the methods outlined above provide similar-
ity scores at the sense or word level, we derive text
level metrics by employing two methods.
VectorSum. We add the vectors corresponding to
the non-stopwords tokens in bag of words (BOW)
A and B, resulting in vectors VA and VB , respec-
tively. The assumption is that these vectors are
able to capture the semantic meaning associated
with the contexts, enabling us to gauge their relat-
edness using cosine similarity.
Align. Given two BOW A and B as input, we
compare them using a word-alignment-based sim-
ilarity measure (Mihalcea et al., 2006). We calcu-
late the pairwise similarity between the words in
A and B, and match each word in A with its most
similar counterpart in B. For corpus-based fea-

1https://code.google.com/p/word2vec/

tures, the similarity measure represents the aver-
age over these scores, while for knowledge-based
measures, we consider the top 40% ranking pairs.

We use the DKPro Similarity package (Bär et
al., 2013) to compute knowledge-based metrics,
and the word2vec implementation from the Gen-
sim toolkit (Rehurek and Sojka, 2010).

3.2 Feature Variations

Since our system participated in all four lexical
levels evaluations, we describe below the modifi-
cations pertaining to each.
word2sense. At the word2sense level, we em-
ploy both knowledge and corpus-based features.
Since the information available in each pair is ex-
tremely limited (only a word and a sense key)
we infuse contextual information by drawing on
WordNet (Miller, 1995). In WordNet, the sense
of each word is encapsulated in a uniquely iden-
tifiable synset, consisting of the definition (gloss),
usage examples and its synonyms. We can derive
three variations (where the word and sense com-
ponents are represented by BOW A and B, respec-
tively): a) no expansion (A={word}, B={sense}),
b) expand right (R) (A={word}, B={sense gloss
& example}), c) expand left (L) & right (R)
(A={word glosses & examples}, B={sense gloss
& example}). After applying the Align method,
we obtain measures JNC, LIN , RES and
WTV 1; VectorSum results in WTV 2.
phrase2word. As this lexical level also suf-
fers from low context, we adapt the above vari-
ations, where the phrase and word components
are represented by BOW A and BOW B, re-
spectively. Thus, we have: a) no expan-
sion (A={phrase}, B={word}), b) expand R
(A={phrase}, B={word glosses and examples}),
c) expand L & R (A={phrase glosses & exam-
ples}, B={word glosses and examples}). We ex-
tract the same measures as for word2sense.
sentence2phrase. For this variation, we use only
corpus based measures; BOW A represents the
sentence component, B, the phrase. Since there is
sufficient context available, we follow the no ex-
pansion variation, and obtain metrics WTV 1 (by
applying Align) and WTV 2 (using VectorSum).
paragraph2sentence. At this level, due to the
long context that entails one-to-many mappings
between the words in the sentence and those in
the paragraph, we use a text clustering technique
prior to calculating the features’ weights.
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a) no clustering. We use only corpus based mea-
sures, where the paragraph represents BOW A,
and the sentence represents BOW B. Then we ap-
ply Align and VectorSum, resulting in WTV 1 and
WTV 2, respectively.
b) paragraph centroids extraction. Since the
longer text contains more information compared
to the shorter one, we extract k topic vectors after
K-means clustering the left context.2 These cen-
troids are able to model topics permeating across
sentences, and by comparing them with the word
vectors pertaining to the short text, we seek to cap-
ture how much of the information is covered in the
shorter text. Each word is paired with the centroid
that it is closest to, and the average is computed
over these scores, resulting in WTV 3.
c) sentence centroids extraction. Under a dif-
ferent scenario, assuming that one sentence cov-
ers only a few strongly expressed topics, unlike
a paragraph that may digress and introduce unre-
lated noise, we apply clustering on the short text.
The centroids thus obtained are able to capture
the essence of the sentence, so when compared to
every word in the paragraph, we can gauge how
much of the short text is reflected in the longer
one. Each centroid is paired with the word that it is
most similar to, and we average these scores, thus
obtaining WTV 4. In a way, methods b) and c)
provide a macro, respectively micro view of how
the topics are reflected across the two spans of text.

3.3 Meta-learning

The measures of similarity described above pro-
vide a single score per each long text - short text
pair in the training and test data. These scores then
become features for a meta-learner, which is able
to optimize their impact on the prediction process.
We experimented with multiple regression algo-
rithms by conducting 10 fold cross-validation on
the training data. The strongest performer across
all lexical levels was Gaussian processes with a
radial basis function (RBF) kernel. Gaussian pro-
cesses regression is an efficient probabilistic pre-
diction framework that assumes a Gaussian pro-
cess prior on the unobservable (latent) functions
and a likelihood function that accounts for noise.
An individual classifier3 was trained for each lex-
ical level and applied to the test data sets.

2Implementation provided in the Scikit library (Pedregosa
et al., 2011), where k is set to 3.

3Implementation available in the WEKA machine learn-
ing software (Hall et al., 2009) using the default parameters.

4 Evaluations & Discussion

Our system participated in all cross-level subtasks
under the name SimCompass, competing with 37
other systems developed by 20 teams.

Figure 1 highlights the Pearson correlations at
the four lexical levels between the gold standard
and each similarity measure introduced in Section
3, as well as the predictions ensuing as a result
of meta-learning. The left and right histograms in
each subfigure present the scores obtained on the
train and test data, respectively.

In the case of word2sense train data, we no-
tice that expanding the context provides additional
information and improves the correlation results.
For corpus-based measures, the correlations are
stronger when the expansion involves only the
right side of the tuple, namely the sense. We
notice an increase of 0.04 correlation points for
WTV1 and 0.09 for WTV2. As soon as the word
is expanded as well, the context incorporates too
much noise, and the correlation levels drop. In
the case of knowledge-based measures, expanding
the context does not seem to impact the results.
However, these trends do not carry out to the test
data, where the corpus-based features without ex-
pansion reach a correlation higher than 0.3, while
the knowledge-based features score significantly
lower (by 0.16). Once all these measures are used
as features in a meta learner (All) using Gaus-
sian processes regression (GP), the correlation in-
creases over the level attained by the best perform-
ing individual feature, reaching 0.45 on the train
data and 0.36 on the test data. SimCompass ranks
second in this subtask’s evaluations, falling short
of the leading system by 0.025 correlation points.

Turning now to the phrase2word subfigure, we
notice that the context already carries sufficient
information, and expanding it causes the perfor-
mance to drop (the more extensive the expan-
sion, the steeper the drop). Unlike the scenario
encountered for word2sense, the trend observed
here on the training data also gets mirrored in the
test data. Same as before, knowledge-based mea-
sures have a significantly lower performance, but
deep learning-based features based on word2vec
(WTV) only show a correlation variation by at
most 0.05, proving their robustness. Leveraging
all the features in a meta-learning framework en-
ables the system to predict stronger scores for both
the train and the test data (0.48 and 0.42, respec-
tively). Actually, for this variation, SimCompass
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Figure 1: Pearson correlation of individual measures on the train and test data sets. As these measures be-
come features in a regression algorithm (GP), prediction correlations are included as well. BL represents
the baseline computed by the organizers.

obtains the highest score among all competing sys-
tems, surpassing the second best by 0.10.

Noticing that expansion is not helpful when suf-
ficient context is available, for the next variations
we use the original tuples. Also, due to the re-
duced impact of knowledge-based features on the
training outcome, we only focus on deep learning
features (WTV1, WTV2, WTV3, WTV4).

Shifting to sentence2phrase, WTV2 (con-
structed using VectorSum) is the top perform-
ing feature, surpassing the baseline by 0.19,
and attaining 0.69 and 0.73 on the train and
test sets, respectively. Despite also considering
a lower performing feature (WTV1), the meta-
learner maintains high scores, surpassing the cor-
relation achieved on the train data by 0.04 (from
0.70 to 0.74). In this variation, our system ranks
fifth, at 0.035 from the top system.

For the paragraph2sentence variation, due to
the availability of longer contexts, we introduce
WTV3 and WTV4 that are based on clustering the
left and the right sides of the tuple, respectively.
WTV2 fares slightly better than WTV3 and WTV4.
WTV1 surpasses the baseline this time, leaving its
mark on the decision process. When training the
GP learner on all features, we obtain 0.78 correla-
tion on the train data, and 0.81 on test data, 0.10
higher than those attained by the individual fea-
tures alone. SimCompass ranks seventh in perfor-
mance on this subtask, at 0.026 from the first.

Considering the overall system performance,
SimCompass is remarkably versatile, ranking

among the top at each lexical level, and taking the
first place in the SemEval Task 3 overall evalu-
ation with respect to both Pearson (0.58 average
correlation) and Spearman correlations.

5 Conclusion

We described SimCompass, the system we partic-
ipated with at SemEval-2014 Task 3. Our exper-
iments suggest that traditional knowledge-based
features are cornered by novel corpus-based word
meaning representations, such as word2vec, which
emerge as efficient and strong performers under
a variety of scenarios. We also explored whether
context expansion is beneficial to the cross-level
similarity task, and remarked that only when the
context is particularly short, this enrichment is vi-
able. However, in a meta-learning framework, the
information permeating from a set of similarity
measures exposed to varying context expansions
can attain a higher performance than possible with
individual signals. Overall, our system ranked first
among 21 teams and 38 systems.
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Abstract

This paper describes the participation of
the SINAI research group in Task 4 of the
2014 edition of the International Work-
shop SemEval. This task is concerned
with Aspect Based Sentiment Analysis
and its goal is to identify the aspects of
given target entities and the sentiment ex-
pressed towards each aspect.

1 Introduction

The web has evolved progressively since its be-
ginning in 1990. At first, the user was almost a
passive subject who received the information or
published it, without many possibilities to gener-
ate an interaction. The emergence of the Web 2.0
was a social revolution, because it offered users
the possibility of producing and sharing contents,
opinions, experiences, etc.

Some years ago it was common to ask family
and friends to know their opinion about a particu-
lar topic, but after the emergence of the Web 2.0,
the number of Internet users has been greatly in-
creased. The exponential growth of the subjective
information in the last years has created a great in-
terest in the treatment of this information.

Opinion Mining (OM), also known as Senti-
ment Analysis (SA) is the discipline that focuses
on the computational treatment of opinion, sen-
timent and subjectivity in texts (Pang and Lee,
2008). Currently, OM is a trendy task in the field
of Natural Language Processing due mainly to the
fact of the growing interest in the knowledge of
the opinion of people from different sectors of the
society. However, the study on Opinion Mining
goes back to 2002 when two of the most cited arti-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

cles in this task were published (Pang et al., 2002)
(Turney, 2002).

OM or SA can be divided into two subtasks
that are known as subjectivity classification and
polarity classification. Subjectivity classification
is the task concentrated on the identification of
subjectivity in texts, that is, these systems are bi-
nary classifiers that separate the documents in two
classes, objective and subjective ones. On the
other hand, polarity classification is the task of de-
termining the semantic orientation of a subjective
text. The ideal OM system has to be composed
by a subjectivity classifier and a polarity classifier.
However, most of the works in the field of OM are
carried out considering the documents as subjec-
tive, so polarity classification systems have been
more studied than subjectivity classification ones.
The reader can find a complete overview about the
research in OM in (Pang and Lee, 2008) and (Liu,
2012).

As Liu asserts in (Liu, 2012), the polarity clas-
sification systems can be divided into three levels:

• Document level polarity classification:
This kind of systems assumes that each doc-
ument expresses an opinion on a single entity
(Pang et al., 2002) (Turney, 2002).

• Sentence level polarity classification: In
this case the polarity classification systems
are focused on the identification of the level
of polarity of each sentence of the docu-
ment (Wilson et al., 2005) (Yu and Hatzivas-
siloglou, 2003).

• Entity and Aspect level polarity classifi-
cation: These systems accomplish a finer-
grained sentiment classification. Whereas the
document-level and sentiment-level only dis-
cover the overall sentiment expressed by the
author, the goal of the entity and aspect po-
larity classification is the identification of the
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sentiment of the author towards each entity or
aspect.

An entity usually is composed by several as-
pects, for example a telephone is formed by a
headset, which also consists of a speaker and an
earphone. An entity can be regarded as a hierarchy
of all the aspects whose head is the entity, so the
entity can also be considered as an aspect or gen-
eral aspect. Therefore, the task “entity and aspect
level polarity classification” can be called “aspect
polarity classification”.

The main objective of OM at aspect level is to
discover every quintuple (ei, aij , sijkl, hk, tl) in
a given document, where ei is the entity, aij is
one of the aspects of the entity or the entity and
sijkl is the orientation of the opinion expressed
by the opinion holder hk in a certain moment tl.
To achieve the objective of populate the quintu-
ple is needed the splitting of the task into several
subtasks that correspond with the identification of
the aspect, the author or the holder of the opinion
and the moment when the opinion is expressed or
posted. But in a real scenario, OM at aspect level
is also limited like OM at sentence and document
level, and most of the research works are only fo-
cused on the identification of the aspect and in the
calculation of the level of intensity of the senti-
ment stated about the aspect. However, there are
some papers that are closely to the goal of finding
out each of the components of the quintuple (Kim
and Hovy, 2004) (Kim and Hovy, 2006).

The task four of the 2014 edition of SemEval
workshop aims to promote the research polarity
classification systems at aspect level. The task is
divided into four subtasks, two of them related to
the aspect identification and the other with the po-
larity classification. Due to the fact that OM is a
domain-dependent task, the organization proposes
the four subtasks in two different domains, Restau-
rants and Laptops. Task one and three are the
ones linked to the aspect identification. Subtask
one is focused on the identification of the aspects
in each review of the two given corpus. Subtask
three goes one step further, in which the main ob-
jective is for a given predefined set of aspect cate-
gories, identify the aspect categories discussed in
the given sentence. Subtask two proposes the clas-
sification of the sentiment expressed by the author
about each of the aspects extracted, and subtask
four has as challenge the classification of the po-
larity of each of the categories of the aspects. A

wider description of the task and the datasets used
can be found in the task description paper (Pontiki
et al., 2014).

The rest of the paper is organized as follows.
Section two outlines the two main parts of our pro-
posed system, firstly the strategy to solve the sub-
task 1 and 2 and then the method used to resolve
the subtask 3 and 4. To sum up the paper, an anal-
ysis of the results and the conclusion of this work
are shown in section three and four respectively.

2 System description

The guidelines of this task indicate that each team
may submit two runs: constrained (using only the
provided training data and other resources, such as
lexicons) and unconstrained (using additional data
for training). We decided to follow an unsuper-
vised approach that we present below.

Our system is divided into two subsystems (Fig-
ure 1). The aim of the first subsystem is to extract
the aspect terms related to a given target entity
(subtask 1) and calculate the sentiment expressed
towards each aspect in the opinion (subtask 2).
The goal of the second is, for a given set of cat-
egories, to identify the categories discussed in the
review (subtask 3) and determine its polarity (sub-
task 4).

2.1 Subsystem 1: Aspects Identification and
Polarity Classification

To identify the aspects related with the target en-
tity (laptops or restaurants) we decided to use
a bag of words built from all the aspect terms
present in the training data. But this method
only detects previously tagged aspect in the train-
ing data, so, we enriched the list of words with
data automatically extracted from the collabora-
tive knowledge base Freebase1, in order to im-
prove the identification. For this, we obtained
all categories in restaurants domain and in com-
puters domain2 (types in a domain) using MQL3

(Metaweb Query Language) (Figure 2).
Then, for each domain category we extracted all

terms (instances of a type) to enrich the bag. In
Figure 3 we can see an example to get all terms of

1http://www.freebase.com/
2Nowadays, Freebase has more than 70 different domains.

But, for this task, we are only interested in these two.
3MQL is a language which is used to express Metaweb

queries. This allows you to incorporate knowledge from the
Freebase database into your own applications and websites.
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Figure 1: Arquitecture of the system.

Figure 2: Query for list all categories in food do-
main.

a category, in particular cheese category of food
domain.

Figure 3: Query for list all term in cheese category.

In this way, given a review of the test data, the
first step is to tokenize it to get a vector of uni-
grams with all single words in the text (we do not
divide the reviews into sentences because there is
only one sentence per review). The second step
is to represent each review as a list of n lists of
unigrams, bigrams, . . . , n-grams where n is the
number of tokens in the sentence. This is because
an aspect term can be a nominal phrase, a word
formed from a verb but functioning as a different

part of speech (e.g. gerunds and participles) or a
simple term. For example, the review “The salad
was excellent as was the lamb chettinad” is repre-
sented as shown in Figure 4.

After obtaining the possible terms of a review,
the next step is to go over the list of lists to ex-
tract the aspects. Each list is traversed backwards
matching each term with each aspect from the bag.
When an aspect is found or the top of the list is
reached the search begins in the next list. In the
review showed in Figure 4, the system will iden-
tify two aspects: salad and lamb chettinad. The
search in this example begins in the list 1 with
“The salad was excellent as was the lamb chetti-
nad”, ends with “The” and continues with the next
list, because the top of the list is reached. The
search in the list 2 begins with “salad was excel-
lent as was the lamb chettinad”, ends with “salad”
because it is an aspect and continues with the list
3 and so on. At last, the search in the list 8 be-
gins with the term “lamb chettinad”, ends with it
because it is an aspect presents in the bag of words
and continues with the list 9.

Once extracted the aspects related with the tar-
get entity, the next step is to determine the words
that modify each aspect. For this, we have used
the Stanford Dependencies Parser4. This parser

4http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 4: Possible terms of the sentence “The salad was excellent as was the lamb chettinad”.

was designed to provide a simple description of
the grammatical relationships in a sentence that
can easily be understood and effectively used by
people without linguistic expertise who want to
extract textual relations (De Marneffe and Man-
ning, 2008). It represents all sentence relation-
ships uniformly as typed dependency relations. In
this work, we have considered the main relation-
ships for expressing opinion about an aspect: us-
ing a verb (“nsubj” or “nsubjpass”), an adjectival
modifier (“amod”) or a dependency relation with
another word (“dep”). In the review “The salad
was excellent as was the lamb chettinad”, the sys-
tem will identify two modifiers words: the ad-
jective excellent that expresses how is the salad
through the relationship “nsubj” and the adjective
excellent that also modified the aspect lamb chet-
tinad through the relationship “dep” Figure 5.

To determine the sentiment expressed over an
aspect we have calculated the polarity of each
word that modifies it through a voting system
based on three classifiers: Bing Liu Lexicon (Hu
and Liu, 2004), SentiWordNet (Baccianella et al.,
2010) and MPQA (Wilson et al., 2005). The Bing
Liu Lexicon is a list of 2006 positive words and
another with 4783 negative ones. MPQA is also
a subjectivity lexicon with positive and negative
words and has extra information about each one:
the part-of-speech, the strength, etc. Finally, Sen-
tiWordNet is a lexical resource that assigns to each
synset of WordNet three sentiment scores: positiv-
ity, negativity and objectivity. Therefore, an aspect
is positive/negative if there are at least two clas-

sifiers that tag it as positive/negative and neutral
in another case. It may happen that a word is af-
fected by negation, to treat this problem we have
used a straightforward method, the fixed window
size method. We have considered the negative par-
ticles: “not”, “n’t”, “no”, “never”. So if any of the
preceding or following 3 words to one aspect is
one of these negative particles, the aspect polarity
is reversed (positive —> negative, negative —>
positive, neutral —> neutral).

In the example showed in Figure 5, the aspect
salad is modified by the word excellent that also
modified the aspect lamb chettinad. This adjective
is part of the Bing Liu positive list, MPQA classi-
fies it as positive and SentiWordNet assigns it the
scores: 1 (positivity), 0(objectivity), 0 (objectiv-
ity). Then, the aspects salad and lamb chettinad
are classified as positive by the voting system.

Figure 5: Dependency analysis of the sentence:
“The salad was excellent as was the lamb chetti-
nad”.
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2.2 Subsystem 2: Categories Identification
and Polarity Classification

As we have mentioned above, this subsystem fo-
cuses on the treatment of the categories and has
been used only with the dataset of restaurants.

On the one hand, we have built a bag of words
for each of the given categories related to the tar-
get entity (restaurants). We have tagged manu-
ally each aspect of the bag of words, built for the
first subsystem, in one of the categories of the
given set (food, service, price, ambience, anec-
dotes/miscellaneous). Thus, to determine the cat-
egories that are referenced in a review we have
searched each aspect identified with the first sub-
system in each bag, if the aspect belongs to any
category then this category is identified. If any as-
pect belongs to a category, then the category allo-
cated is “anecdotes/miscellaneous”.

On the other hand, the sentiment expressed
about each category has been calculated as the
most frequent polarity of the aspects that belongs
to this category. In case of a tie between positive
and negative values, the polarity value conflict is
assigned to the category. If any aspect belongs to
the category, then the polarity value of the review
is assigned to the category.

In the above example, the aspects salad and
lamb chettinad belong to food’s bag of words, so
that the system will identify that the category food
is discussed in this review and will assign it the
polarity value positive, because the sentiment ex-
pressed about the two aspects that belongs to this
category is positive.

3 Analysis of the results

The aim of this section is to provide a meaningful
report of the results obtained after participation in
the task related to Aspect Based Sentiment Anal-
ysis (ABSA). Table 1 shows the evaluation results
for the aspect extraction subtask. As we can see,
the recall overcomes the mean value of results of
participants in both domains (laptops and restau-
rants), that is, the system identifies quite aspects
of the corpus. However, the precision is lower
because the system identifies aspects that are not
considered by the organization, due to the fact that
our bag of words contains more aspects than the
tagged by the organization.

The results reached in the aspect term extraction
subtask are similar (Table 2). It should be taken
into account that the system is a general-domain

Laptops Restaurants
SINAI Average SINAI Average

Precision 0.3729 0.6890 0.5961 0.7674
Recall 0.5765 0.5045 0.72487 0.6726
F-score 0.4529 0.5620 0.6542 0.7078

Table 1: Aspect Term Extraction results.

sentiment classifier, so it does not use specific
knowledge for each of the domains. This fact can
be shown in the results reached in the task of po-
larity classification for the two domains, which are
similar. Therefore, this subtask could be improved
by taking into account the domain and other rela-
tionships for expressing opinion about an aspect
apart from that we have treated (“nsubj”, “nsubj-
pass”, “amod”, “dep”).

Laptops Restaurants

SINAI Average SINAI Average

Accuracy 0.5872 0.5925 0.5873 0.6910

Table 2: Aspect Term Polarity results.

On the other hand, the results in the identifica-
tion of the categories discussed in a review have
been high (Table 3) and even overcome the aver-
age recall of the participating systems. At last, Ta-
ble 4 shows the result evaluation of the aspect cat-
egory polarity subtask that are slightly lower than
the average. These tables show that is possible to
reach good results using a simple approach as de-
scribed in subsection 2.2.

Restaurants
SINAI Average

Precision 0.6659 0.76
Recall 0.8244 0.7226
F-score 0.7367 0.7379

Table 3: Aspect Category Detection results.

4 Conclusion and future works

In SA can be differentiated three levels of study of
a text: document level, sentence level and aspect
level. The document level analysis determines the
overall sentiment expressed in a review, while the
sentence level analysis specifies for each sentence
of a text, whether express a positive, negative or
neutral opinion. However, these two types of anal-
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Restaurants
SINAI Average

Accuracy 0.6030 0.6951

Table 4: Aspect Category Polarity results.

ysis do not reach the level of detail that an user
wants when searches for information about a prod-
uct. The fact that the overall sentiment of a prod-
uct is positive does not mean that the author has a
positive opinion about all aspects of that product,
or the fact that is negative does not involve that
everything about the product is bad.

In addition, the large amount of sources and
the high volume of texts with reviews, make dif-
ficult for the user to select information of interest.
Therefore, it is necessary to develop classification
systems at aspect level that help users to make de-
cisions and, on the other hand, that show compa-
nies the opinion that consumers have about their
products, in order to help them to decide what to
keep, what to delete and what to improve.

In this paper we have presented our first ap-
proach for the Aspect Based Sentiment Analysis
that has been developed for the task four of the
2014 edition of SemEval workshop. After analyz-
ing the evaluation results we consider that is pos-
sible to introduce some improvements we are cur-
rently working: domain adaptation in the polarity
calculation, consideration of other relationships
to determine which words modify an aspect and
treatment of negation (in the system proposed we
have used the fixed window size method). Also, in
a near future we will try to extrapolate it to Span-
ish reviews.
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Abstract

This article presents the participation of
the SINAI research group in the task Sen-
timent Analysis in Twitter of the SemEval
Workshop. Our proposal consists of a
voting system of three polarity classifiers
which follow a lexicon-based approach.

1 Introduction

Opinion Mining (OM) or Sentiment Analysis (SA)
is the task focuses on the computational treatment
of opinion, sentiment and subjectivity in texts
(Pang and Lee, 2008). Currently, OM is a trendy
task in the field of Natural Language Processing
due mainly to the fact of the growing interest in
the knowledge of the opinion of people from dif-
ferent sectors of the society.

The interest in the research community for the
extraction of the sentiment in Twitter posts is re-
flected in the organization of several workshops
with the aim of promoting the research in this task.
Two are the most relevant, the first is the task
Sentiment Analysis in Twitter celebrated within
the SemEval workshop whose first edition was in
2013 (Nakov et al., 2013). The second is the work-
shop TASS1 , which is a workshop for promot-
ing the research in sentiment analysis in Spanish
in Twitter. The first edition of the workshop took
place in 2012 (Villena-Román et al., 2013).

The 2014 edition of the task Sentiment Analy-
sis in Twitter proposes a first subtask, which has
as challenge the sentiment classification at entity
level, and a second subtask that consists of the
polarity classification at document or tweet level.
The training corpus is the same than the former

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1http://www.daedalus.es/TASS

edition, but this year the test corpus is consider-
ably bigger than the prior one. A wider description
of the task and the corpus can be read in (Rosen-
thal et al., 2014).

We present an unsupervised polarity classifica-
tion system for the subtask B of the task Senti-
ment Analysis in Twitter. The system is based
on a voting strategy of three lexicon-based senti-
ment classifiers. The sentiment analysis research
community broadly knows the lexicons selected.
They are, SentiWordNet (Baccianella et al., 2010),
the lexicon developed by Hu and Liu (Hu and
Liu, 2004) and the MPQA lexicon (Wilson et al.,
2005).

The rest of the paper is organized as follows.
The following section focuses on the description
of the different sentiment resources used for de-
veloping the sentiment classifiers. The subsequent
section outlines the system proposed for the 2014
edition of the task. The last section exposes the
analysis of the results reached this year.

2 Sentiment lexical resources

Sentiment lexicons are lexical resources com-
posed of opinion-bearing words and some of them
also of sentiment phrases of idioms. Most of the
sentiment lexicons are formed by a list of words
without any additional information.

A sentiment classifier based on list of opinion-
bearing words usually consists of finding out the
words of the list in a given document. This method
can be considered very simple for the complexity
of OM, but it has reached acceptable results in dif-
ferent domains and also is applied in real systems
like Trayt.com2.

Our experience in the field of SA allows us to
assert that sentiment lexicons can be divided de-
pending on the information linked to each word,

2Trayt.com is a search engine of reviews of restaurants.
The polarity classifier of Tryt.com is a lexicon-based system
which uses the opinion list compiled by Bing Liu.
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so three groups can be found:

• List of opinion-bearing words: These lexi-
cons are usually two lists of polar words, one
of them of positive words and another one
of negative terms. Some examples of this
kind of sentiment lexicons are for English the
one compiled by (Hu and Liu, 2004), and for
Spanish, the iSOL lexicon (Molina-González
et al., 2013).

• List of opinion-bearing words with syntactic
information: As it is wider known, OM is a
domain-dependent task and can be also said
that a context-dependent task. Thus, some
lexicons add syntactic information with the
aim of offering some information for disam-
biguating the term, and also provide a differ-
ent orientation of the word depending on its
POS-tags. One example of this kind of lexi-
con is MPQA subjectivity lexicon (Wilson et
al., 2005).

• Knowledge base sentiment lexicons: These
lexicons usually indicate the semantic orien-
tation of the different senses of each word,
whereas the previous lexicons only indicate
the polarity of each word. Also, it is very
common that in the knowledge base senti-
ment lexicons each sense is linked to the like-
lihood of being positive, negative and neutral.
One example of this kind of polar lexicon is
SentiWordNet (Baccianella et al., 2010).

In the polarity classifier developed for the work-
shop a lexicon of each type has been utilised. The
sentiment linguistic resources used has been:

• Sentiment lexicon compiled by Bing Liu:
The lexicon was used the first time in (Hu
and Liu, 2004). Since then, the authors have
been updating the list, and currently the list is
formed by 2006 positive words and 4783 neg-
ative words. Also, the lexicon includes some
misspellings with the aim of better represent-
ing the language used in the Internet.

• MPQA Subjectivity lexicon (Wilson et al.,
2005): The lexicon is formed by over 8000
subjectivity clues. Subjectivity clues are
words and phrases that have subjective us-
ages. The lexicon was developed joining
words compiled by the authors and with
words taken from General Inquirer. Each

Figure 1: Architecture of the system.

word is linked with its grade of subjectivity,
with its part of speech tag and with its seman-
tic orientation. Due to the fact that each word
has its POS-tag there are some words that de-
pending on its POS have a different semantic
orientation.

• SentiWordNet 3.0 (Baccianella et al., 2010):
is a lexical resource which assigns three sen-
timent scores to each synset of WordNet:
positivity, negativity and objectivity.

3 Polarity classification

We wanted to take advantage from our experi-
ence in meta-classification in OM for the 2014
edition of the task, Sentiment Analysis in Twit-
ter. We have reached good results in OM us-
ing meta-classifiers in different domains (Perea-
Ortega et al., 2013) and (Martı́n-Valdivia et al.,
2013). Therefore, we propose a voting system that
combines three polarity classifiers. The general ar-
chitecture of the system is shown in Figure 1.

Tokenization is a common step of the three clas-
sifiers. Due to the specific characteristics of the
language used in Twitter, a specific tokenizer for
Twitter was preferred to use. The tokenizer pub-
lished by Christopher Potts3 was selected and up-
dated, with the aim of recognizing a wider range
of tokens.

When the tweet is tokenized, the following step
is discover its polarity. Each of the three polarity
classifiers follows the same strategy for the clas-
sification, but they perform different operations
on each tweet. The classifier based on the lexi-
con compiled by Bing Liu (C BingL) consists of
seeking each token in the opinion-bearing words

3http://sentiment.christopherpotts.net/tokenizing.html
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list. Therefore, after the tokenization, any linguis-
tic operation has to be performed on the tweet.
This classifier classifies a tweet as positive if the
number of positive tokens is greater or equal than
the number of negative tokens. If there are not po-
lar tokens, the polarity of the tweet is neutral.

The second polarity classifier is the based on
MPQA lexicon (C MPQA). Some of the words
that are in the MPQA lexicon are lemmatized,
and also the sentiment depends on their POS-tag.
Thus, to take advantage of all the information of-
fered by MPQA is needed to perform a morpho-
logical analysis to each tweet. The morphological
analysis firstly identifies the POS-tag of each to-
ken of the tweet, and then the lemmatizer extracts
the lemma of the token.

Recently, some linguistic tools have been pub-
lished to carry out linguistic analysis in tweets.
Currently, two POS-taggers for Twitter are avail-
able. One of them, is the described in (Gimpel et
al., 2011) and the second one in (Derczynski et al.,
2013). Although the authors of the two systems
are competing for which of the two taggers are bet-
ter, our selection was based on the usability of the
two systems. To use the tagger developed by Gim-
pel et al. is needed to download their software,
meanwhile the one developed by Derczynski et al.
can be integrated in other taggers. On our point of
view, the tagger of Derczynski et al. has the ad-
vantage of offering the training model of the tag-
ger4, which allows us to integrate it in other POS-
tagging tools. The training model of the tagger
was integrated in the Stanford Part-of-Speech Tag-
ger5. When each token of the tweet is associated
with its corresponding POS-tag, the lemmatizer is
run over the tweet. The lemmatizer used is the of-
fered by the toolkit for Natural Language Process-
ing, NLTK (Bird et al., 2009). When each token
is accompanied by its corresponding POS-tag and
lemma, the polarity classifier can seek each token
in the MPQA subjective lexicon.

Besides the label of the polar class (positive or
negative), each entry in the MPQA corpus has a
field called type, which indicates whether the term
is considered strongly subjective or the term is
considered weakly subjective. Thus, in the calcu-
lation of the polarity score these two levels of sub-
jectivity are considered, so when the term is strong
subjective it is considered to have a score of 1, and

4https://gate.ac.uk/wiki/twitter-postagger.html
5http://nlp.stanford.edu/software/tagger.shtml

when the term is weak subjective the system con-
siders the term as less important and its score is
0.75.

The polarity classifier based on the use of Sen-
tiWordNet (C SWN) needs that each word of the
tweet is linked with its POS-tag and its lemma,
so the same pipeline that the classifier based on
MPQA follows is also followed by the classifier
based on SentiWordNet.

In the bibliography about OM can be found dif-
ferent ways to calculate the polarity class when
SentiWordNet is used as a sentiment knowledge
base. Some works perform a disambiguation
method with the aim of selecting only the synset
that corresponds with the sense of the word in
the context of the given document. But there are
other works that do not perform any disambigua-
tion method, and also reach good results. De-
necke in (Denecke, 2008) describes a very sim-
ple method to calculate the polarity of each of the
words of a document without the need of a dis-
ambiguation process. The method consists of cal-
culating per each word in the document, which is
in SentiWordNet, the arithmetic mean of the pos-
itive, negative and neutral score of each of the
synsets that the word has in SentiWordNet. When
the scores of each word are calculated, the score
of the document is determined as the arithmetic
mean of each score of the words. The class of the
document is corresponded with the greatest polar
score (positive, negative, neutral). Due to the ac-
ceptable results that the Denecke formula reaches,
we have introduced a soft disambiguation process
with the aim of improving the classification ac-
curacy. This soft disambiguation process consist
of only taking those synsets corresponding with
POS-tag of the word whose polarity are being cal-
culated. For example, the word “good” can do the
function of an adverb, a noun or an adjective. In
SentiWordNet, there are two synsets of “good” as
an adverb, four synset of “good” as a noun, and
twenty-one synsets as an adjective. If the polar-
ity score is calculated with the Denecke formula,
the twenty-seven synsets are used. Meanwhile, if
it used our proposal, and the word “good” in the
given sentence is acting as an adverb, then only
the two synsets of the word “good” when it is ad-
verb are considered to calculate the polarity score.

During the development of the system, we no-
ticed that synsets have a lower probability to be
positive or negative, and most of them in Senti-
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WordNet are neutral. With the aim of boosting the
likelihood to be positive or negative, the polarity
classifier does not consider the neutral score of the
synset. If the positive score is greater than the neg-
ative score and greater than 0.15 then the term is
positive. If the negative score is greater than the
positive score and greater than 0.15 then the word
is negative, in other case the word is neutral.

Each of the polarity classifiers take into consid-
eration the presence of emoticons, the expressions
of laughing and negation. The emoticons are pro-
cessed as words, so for determining their polarity
a sentiment lexicon of emoticons was built. The
polar lexicon of emoticons consists of fifty-eight
positive emoticons and forty-four negative ones.
Laughing expressions usually express a positive
sentiment, so when a laughing expression is de-
tected the counter of positive words is increased
by one. The strategy for negation identification
is a bit straightforward but effective. Due to the
specific linguistic characteristics of tweets, a strat-
egy based on windows of words has been imple-
mented. When a polar word is identified, it is
sought in the previous three words whether there
is a negative particle. In those cases that a nega-
tive particle is found, the polarity of the sentiment
word is reversed, that it to say if a positive (neg-
ative) word is negated the system considers it as
negative (positive).

The last step of the polarity classifier is the run-
ning of a voting system among the three polarity
classifiers. Three are the possible output values of
the three base classifiers {negative, neutral, pos-
itive}. When the majority class is positive, the
tweet is classified as positive, when the majority
class is negative then negative is the class assigned
to the tweet and when majority class is neutral or
there is not a majority class then the tweet is clas-
sified as neutral.

4 Analysis of the results

Before showing the results reached in the evalu-
ation of the task, the results accomplished in the
development phase of the system will be shown.
Three main systems were assessed during the de-
velopment phase:

• Baseline (BL): The three base classifiers
compose the baseline system, but the three
polarity scores of SentiWordNet are consid-
ered and negation is not taken into account.

• Neutral scores are not considered (NN): It is
the same than the Baseline system but the
neutral scores of SentiWordNet are not con-
sidered.

• Negation identification (NI): The neutral
scores of SentiWordNet are not taken into ac-
count and the negation is identified.

The results are show in Table 1.

Precision Recall F1 Accuracy Improve (Acc.)

BL 55.85% 52.02% 53.87% 60.32% -
NN 56.03% 52.27% 54.09% 60.46% 0.23%
NI 57.22% 53.41% 55.25% 61.12% 1.33%

Table 1: Results achieved during the developing
phase.

As can be seen in Table 1 the systems (NN) and
(NI) reach better results than the baseline, so all
the modifications to the baseline are good for the
polarity classification process. The results confirm
our hypothesis that the neutral score of the synsets
in SentiWordNet are not contributing positively
to the sentiment classification. Also, a straight-
forward strategy for identifying the scope of the
negation improves the accuracy of the classifica-
tion. The results help us to choose the final con-
figuration of the system. As is described in the
former section the final polarity classification sys-
tem follows a voting scheme of three base lexicon-
based polarity classifiers. The three base classi-
fiers take into consideration the presence of emoti-
cons, laughing expressions, identifies the scope of
negation, and the classifier based on SentiWord-
Net does not take into consideration the neutral
score of the synsets.

The edition 2014 of the task Sentiment Analysis
in Twitter has assessed the systems with five dif-
ferent corpus tests: LiveJournal2014, SMS2013,
Twitter2013, Twitter2014, Twitter2014Sarcasm.
The results reached with each of the test corpus
are shown in Table 2.

Some of the results shown in Table 2 are much
closed to the results reached during the develop-
ment phase, because all of the F1 scores are closed
to 55%. The lower results have been reached with
the corpus Twitter2014 and Twitter2014Sarcasm.
The poor results in Twitter2014Sarcasm are due to
the lack of a module in the system for the detection
of sarcasm. A sarcastic sentence is usually a sen-
tence with a sentiment that expresses the opposite
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Precision Recall F1

LiveJournal2014

Positive 60.19% 76.95% 67.54%
Negative 36,51% 75,00% 49.12%
Neutral 82.48% 51.36% 63.31%
Overall – – 58.33%

SMS2013

Positive 63.01% 60.19% 61.57%
Negative 42.13% 71.86% 53.12%
Neutral 82.27% 73.72% 77,76%
Overall – – 57.34%

Twitter2013

Positive 60.56% 70.15% 65.01%
Negative 28.29% 50.15% 36.17%
Neutral 73.66% 57.06% 64.31%
Overall – – 50.59%

Twitter2014

Positive 57.13% 77.49% 65.77%
Negative 27.23% 42.64% 33.23%
Neutral 73.54% 49.20% 58.96%
Overall – – 49.50%

Twitter2014Sarcasm

Positive 57.58% 48.72% 52.78%
Negative 5.00% 100.00% 9.52%
Neutral 84.62% 24.44% 37.93%
Overall – – 31.15%

Table 2: Results reached with the test corpus.

sentiment, so a polarity classifier without a spe-
cific module to treat this linguistic phenomenon
will be probably misclassified the sarcastic sen-
tences. The results for Twitter2014Sarcasm for
the negative class indicate this problem. The low
value of the precision and the high value of the re-
call in the negative class mean that a high number
of negative sentences have been classified as posi-
tive.

The analysis of the results is completed with
the assessment of our method. We proceed from
the hypothesis that a combination of several clas-
sifiers will improve the final classification. Our
hypothesis is based on own previous publications,
(Perea-Ortega et al., 2013) and (Martı́n-Valdivia et
al., 2013). We have classified the test corpus with
each of the three base classifiers, with the aim of
knowing the performance of each one. The results
are shown in Table 3.

Table 3 shows that the classifier C BingL
reaches better results than the combination of
the three classifiers. The first conclusion we
draw from this fact is that the good perfor-
mance of meta-classifiers with large opinions is
not achieved with the short texts of Twitter. But,
this conclusion is preliminary, because the lower
results of the voting system may be due to a not
good combination of the three classifiers. So we
have to continue working in the analysis on how
to build a meta-classifier for OM in Twitter. The
rest of the classifiers reached lower results than the
voting system. Another reason that the voting sys-
tem achieved lower results than C BingL may be-
cause the three classifiers are not heterogeneous,

F1
C BingL C SWN C MPQA

LiveJournal2014

Positive 68.11% 42.62% 65.20%
Negative 55.43% 39.81% 49.60%
Neutral 64.03% 58.07% 58.43%
Overall 61.77% 41.21% 57.40%

SMS2013

Positive 61.67% 43.53% 53.56%
Negative 54.19% 28.79% 52.678%
Neutral 76.00% 75.85% 68.38%
Overall 57.93% 36.16% 53.12%

Twitter2013

Positive 68.30% 23.40% 62.37%
Negative 46.20% 11.60% 37.75%
Neutral 61.17% 62.11% 57.39%
Overall 57.25% 17.50% 50.06%

Twitter2014

Positive 69.33% 22.17% 66.74%
Negative 41.55% 9.79% 33.00%
Neutral 53.25% 55.63% 52.76%
Overall 55.44% 15.98% 49.87%

Twitter2014Sarcasm

Positive 56.10% 27.27% 52.06%
Negative 17.78% 9.52% 8.51%
Neutral 44.44% 30.24% 30.77%
Overall 36.94% 18.40% 30.28%

Table 3: Results reached by each base classifier
with the test corpus.

in other words, when one of the systems misclas-
sified a document the other ones classify it cor-
rectly, so the base classifiers help each other, and
the combination of systems reaches better results
than the individual systems. But, in our case may
be that the systems are not heterogeneous, so our
ongoing work is the study of the heterogeneity be-
tween the three classifiers.

If we focus only in the results achieved by
C BingL, it is remarkable that the higher differ-
ence is in the negative class. C BingL reaches
greater results than the voting system in negative
class, and it has the same negation treatment mod-
ule that the voting system. This fact allow us to say
that the low results in the negative class reached by
the voting system is not due to the negation treat-
ment module, and may because by the own com-
bination method.

To sum up, after analysing the results, we have
noticed that the same meta-classifier methodology
that we usually apply to large reviews cannot be
directly apply to tweets. Therefore, our ongoing
work is focused firstly on conducting a deep anal-
ysis of the results presented in this work, and sec-
ondly in the study on how to improve of polarity
classification in Twitter following a unsupervised
methodology, and thirdly on how to build a good
meta-classifier for OM in Twitter.
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Abstract

This paper describes the SNAP system,
which participated in Task 4 of SemEval-
2014: Aspect Based Sentiment Analysis.
We use an XML-based pipeline that com-
bines several independent components to
perform each subtask. Key resources
used by the system are Bing Liu’s senti-
ment lexicon, Stanford CoreNLP, RFTag-
ger, several machine learning algorithms
and WordNet. SNAP achieved satisfactory
results in the evaluation, placing in the top
half of the field for most subtasks.

1 Introduction

This paper describes the approach of the SemaN-
tic Analyis Project (SNAP) to Task 4 of SemEval-
2014: Aspect Based Sentiment Analysis (Pontiki
et al., 2014). SNAP is a team of undergraduate
students at the Corpus Linguistics Group, FAU
Erlangen-Nürnberg, who carried out this work as
part of a seminar in computational linguistics.

Task 4 was divided into the four subtasks As-
pect term extraction (1), Aspect term polarity (2),
Aspect category detection (3) and Aspect category
polarity (4), which were evaluated in two phases
(A: subtasks 1/3; B: subtasks 2/4). Subtasks 1 and
3 were carried out on two different datasets, one
of laptop reviews and one of restaurant reviews.
Subtasks 2 and 4 only made use of the latter.

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

Task Dataset Rank Score Best
1 Lap 10 of 21 0.624 0.746
1 Res 20 of 21 0.465 0.840
3 Res 6 of 15 0.782 0.886
2 Lap 7 of 23 0.641 0.705
2 Res 12 of 24 0.708 0.810
4 Res 11 of 18 0.696 0.829

Table 1: Ranking among constrained systems.

The developed system consists of one module
per subtask, in addition to a general infrastruc-
ture and preprocessing module, All modules ac-
cept training and test data in the XML format spec-
fied by the task organizers. The modules can be
combined into a pipeline, where each step adds
new annotation corresponding to one of the four
subtasks.

Table 1 shows our ranking among all con-
strained systems (counting only the best run from
each team), the score achieved by SNAP (accu-
racy or F-score, depending on subtask), and the
score achieved by the best system in the respec-
tive subtask. Because of a preprocessing mistake
that was only discovered after phase A of the eval-
uation had ended, results for subtasks 1 and 3 are
significantly lower than the results achieved dur-
ing development of the system.

2 Sentiment lexicon

Early on in the project it was decided that a com-
prehensive, high-quality sentiment lexicon would
play a crucial role in building a successful sys-
tem. After a review of several existing lexica, Bing
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Liu’s sentiment word list (Hu and Liu, 2004) was
taken as a foundation and expanded with extensive
manual additions.

The first step was an exhaustive manual web-
search to find additional candidates for the lexicon.
The candidates were converted to a common for-
mat, and redundant entries were discareded. The
next step consisted of further expansion with the
help of online thesauri, from which large num-
ber of synonyms and antonyms for existing entries
were obtained. Since the coverage of the lexicon
was still found to be insufficient, it was further
complemented with entries from two other exist-
ing sentiment lexica, AFINN (Nielsen, 2011) and
MPQA (Wilson et al., 2005).

Finally the augmented lexicon was compared
with the original word lists from AFINN, MPQA
and Bing Liu in order to measure the reliabilty of
the entries. The reliability score of each entry is
the number of sources in which it is found.

3 Infrastructure and preprocessing

Within the scope of Task 4 – but not one of the
official subtasks – the goal of the infrastructure
module was (i) to support the other modules with
a set of project-specific tools and (ii) to provide
a common API to the training and test data aug-
mented with several layers of linguistic annota-
tion. In order to roll out the required data as
quick as possible, the Stanford CoreNLP suite1

was used as an off-the-shelf tool. The XML files
provided by the task organizers were parsed with
the xml.etree.ElementTree API, which is part of
the standard library of Python 2.7.

Since the module for subtask 1 was pursuing an
IOB-tagging approach for aspect term identifica-
tion, the part-of-speech tags provided by CoreNLP
had to be extended. During the process of merging
the original XML files with the CoreNLP annota-
tions, IOB tags were generated indicating whether
each token is part of an aspect term or not. See
Section 4 for further information.

For determining the polarity of an aspect term,
the subtask 2 module made use of syntactic depen-
dencies between words (see Section 5 for details).
For this purpose, the dependency trees produced
by CoreNLP were converted into a more accessi-
ble format with the help of the Python software
package NetworkX.2.

1http://nlp.stanford.edu/software/corenlp.shtml
2http://networkx.github.io/

4 Aspect term extraction

The approach chosen by the aspect term extrac-
tion module (subtask 1) was to treat aspect term
extraction as a tagging task. We used a standard
IOB tagset indicating whether each token is at the
beginning of an aspect term (ATB), inside an as-
pect term (ATI), or not part of an aspect term at
all (ATX).

First experiments were carried out with uni-
gram, bigram and trigram taggers implemented in
NLTK (Bird et al., 2009), which were trained on
IOB tags derived from the annotations in the Task
4 gold standard (comprising both trial and training
data). We also tested higher-order n-gram taggers
and the NLTK implementation of the Brill tagger
(Brill, 1992).

For a more sophisticated approach we used RF-
Tagger (Schmid and Laws, 2008), which extends
the standard HMM tagging model with complex
hidden states that consist of features correspond-
ing to different pieces of information. RFTagger
was developed for morphological tagging, where
complex tags such as N.Reg.Nom.Sg.Neut
are decomposed into the main syntactic category
(N) and additional morpho-syntactic features rep-
resenting case (Nom), number (Sg), etc.

In our case, the tagger was used for joint an-
notation of part-of-speech tags and IOB tags for
the aspect term boundaries, based on the ratio-
nale that the additional information encoded in
the hidden states (compared to a simple IOB tag-
ger) would allow RFTagger to learn more mean-
ingful aspect term patterns. We decided to en-
code the IOB tags as the main category and the
part-of-speech tags as additional features, since
changing these categories, meaning POS tags as
the main category and IOB tags as additional fea-
tures, had resulted in lesser performance. The
training data were thus converted into word-
annotation pairs such as screen_AT/ATB.NN
or beautiful/ATX.JJ. Note that known as-
pect terms from the gold standard (as well as ad-
ditional candidates that were generated through
comparisons of known aspect terms with lists from
WordNet) were extended with the suffix _AT in a
preprocessing step. Our intention was to enable
the tagger to learn directly that tokens with this
suffix are likely to be aspect terms.

Table 2 shows tagging accuracy for different al-
gorithms, computed by ten-fold cross-validation
over a gold standard comprising the training and
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Tagger Rest. Laptops
Unigram 83.41% 83.91%
Bigram (backoff: U) 85.37% 85.74%
Trigram (backoff: U+Bi) 85.41% 86.33%
Brill (backoff: U+Bi+T) 85.48% 86.47%
RFTagger 95.20% 96.47%

Table 2: Accuracy of different aspect term taggers.

trial data sets. The table shows that the bigram, tri-
gram and Brill taggers achieve only marginal im-
provements over a simplistic unigram tagger, even
when they are combined through back-off linking.
The RFTagger achieved by far the best accuracy
on both data sets.

4.1 Results and debugging

Our final results for the full aspect term extraction
procedure are shown in Table 3.

Score Rest. Laptops
Precision 57.14% 64.54%
Recall 39.15% 60.40%
F1-Score 46.47% 62.40%

Table 3: Aspect term extraction results.

The huge difference between tagging accuracy
achieved in the development phase and the aspect
term extraction quality obtained on the SemEval-
2014 test set is caused by different factors. First,
Table 2 shows the tagging accuracy across all to-
kens, not limited to aspect terms. A tagger that
works particularly well for many irrelevant tokens
(punctuation, verbs, etc.), correctly marking them
ATX, may achieve high accuracy even if it has low
recall on tokens belonging to aspect terms. Sec-
ond, the official scores only consider an aspect
term candidate to be a true positive if it covers
exactly the same tokens as the gold standard an-
notation. If the tagger disagrees with the human
annotators on whether an adjective or determiner
should be considered part of an aspect term, this
will be counted as a mistake despite the overlap.
Thus, even a relatively small number of tagging
mistakes near aspect term boundaries will be pun-
ished severly in the evaluation. Unseen words as
well as long or unusual noun phrases turned out to
be particularly difficult.

Table 3 indicates a serious problem with the
restaurant data, which has surprisingly low recall,

resulting in an F1-score almost 16 percent points
lower than for the laptop data. A careful exami-
nation of the trial, training and test data revealed
an early mistake in the preprocessing code as the
main culprit. Once this mistake was corrected, the
recall score for restaurants was similar to the score
for laptops.

5 Aspect term polarity

Subtask 2 is concerned with opinion sentences,
i.e. sentences that contain one or more aspect
terms and express subjective opinions about (some
of) these aspects. Such opinions are expressed
through opinion words; common opinion words
with their corresponding confidence values (nu-
meric values from 1 to 6 expressing the level of
certainty that a word is positive or negative, cf.
Sec. 2) are collected in sentiment lexica.

The preprocessing stage in this subtask starts
with a sentence segmentation step that uses the
output of the Stanford CoreNLP parser.3 All de-
pendencies map onto a directed graph represen-
tation where words of each sentence are nodes
in the graph and grammatical relations are edge
labels. All aspect terms (Sec. 2) are marked in
each dependency graph. When processing such a
graph we extract all positive and negative opinion
words occurring in each sentence by comparing
them with word lists contained in our sentiment
lexica. A corresponding confidence value from
lexica is assigned for each opinion word, the num-
ber of positive and negative aspect terms occurring
in each sentence are counted and their confidence
values are summed up. These values serve as fea-
tures for supervised machine learning using algo-
rithms implemented in scikit-learn (Pedregosa et
al., 2011).

All opinion words that build a dependency with
an aspect term are stored for each sentence. A
dominant word of each dependency is stored as a
governor, whereas a subordinate one is stored as a
dependent. Both direct and indirect dependencies
are processed. If there are several indirect depen-
dencies to an aspect term, they are processed re-
cursively. Using lists of extracted dependencies
between opinion words and aspect terms hand-
writen rules assign corresponding confidence val-
ues to aspect terms.

3nlp.stanford.edu/software/dependencies manual.pdf
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5.1 Features based on a sentiment lexica

The extended sentiment dictionaries were used to
extract five features: I) tokens expressing a pos-
itive sentiment belonging to one aspect term, II)
tokens expressing a negative sentiment, III) con-
fidence values of positive tokens, IV) confidence
values of negative tokens, V) a sum of all confi-
dence values for all positive and all negative opin-
ion words occurring in a sentence.

5.2 Features based on hand-written rules

We made use of direct and indirect negation mark-
ers, so that all opinion words belonging to a
negated aspect term swap their polarity signs. We
added rules for negative particles not and no that
directly precede an opinion word, for adverbs
barely, scarcely and too, for such constructions
as could have been and wish in the subjunctive
mood. After swapping polarity signs of opinion
words, a general set of hand-written rules was ap-
plied to the graph dependencies. The rules fol-
low the order of importance of dependencies scal-
ing from least important up to most important.
We placed the dependencies in the following or-
der: acomp, advmod, nsubjpass, conj and, amod,
prep of, prep worth, prep on, prep in, nsubj, inf-
mod, dobj, xcomp, rcmod, conj or, appos. All de-
pendencies can be grouped into three categories
based on the direction of the polarity assignment.
The first group (acomp, advmod, amod, rcmod,
prep in) includes dependencies where a governor
of a dependency takes over polarity of a dependent
if the latter is defined. The second group (infmod,
conj or, prep on, prep worth, prep of, conj and)
covers dependencies in which a dependent ele-
ment takes over polarity of a governor if the lat-
ter is defined. The third group (dobj, xcomp) is
for cases when both governor and dependent are
defined. Here a governor takes over polarity of a
dependent.

5.3 Experiments

In this section we compare two approches to as-
pect term polarity detection. The first approach
simply counts all positive and negative words in
each sentence and then assigns a label based on
which of the two counts is larger. It does not make
use of machine learning techniques and its accu-
racy is only about 54%. Results improve signifi-
cantly with supervised machine learning based on
the feature sets described above. We experimented

with different classifiers (Maximum Entropy, Lin-
ear SVM and SVMs with RBF kernel) and var-
ious subsets of features. By default, we worked
on the level of single opinion words that express
a positive or negative polarity (sg). We added
the following features in different combinations:
an extended list of opinion words (ex) obtained
from a distribution semantic model, based on near-
est neighbours of known opinion words (Proisl et
al., 2013); potential misspellings of know opin-
ion words, within a maximal Levenshtein distance
of 1 (lv); word combinations and fixed phrases
(ml) containing up to 3 words (e.g., good man-
nered, put forth, tried and true, up and down);
and the sums of positive and negative opinion
words in the whole sentence (st). The best results
for the laptops data were achieved with a Max-
imum Entropy classifier, excluding misspellings
(lv) and word combinations (ml); the correspond-
ing line in Table 4 is highlighted in bold font.
Even though MaxEnt achieved the best results dur-
ing development, we decided to use SVM with a
RBF kernel for the test set, assuming that it would
be able to exploit interdependencies between fea-
tures. The accuracy achieved by the submitted
system is highlighted in italics in the table. The
training test data provided for restaurants and lap-
tops categories were split equally into two sets
where the first set (first half) was used for training
a model and the second set was used for the test
and evaluation stages. Experiments on the restau-
rants data produced similar results.

classifier sg ex lv ml st Acc
MaxEnt + + – – – 0.5589
MaxEnt + + + – – 0.4905
MaxEnt + + – + – 0.5479
MaxEnt + + – – + 0.6506
MaxEnt + + – + + 0.5742
SVMrbf + + – – – 0.5581
SVMrbf + + + – – 0.4905
SVMrbf + + – + – 0.5479
SVMrbf + + – – + 0.6402
SVMrbf + + – + + 0.5717

Table 4: Results for laptops category on train set.

6 Aspect category detection

Subtask 3 deals with determining which aspect
categories out of a predefined set occur in a given
sentence. The developed module consists of two
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independent parts – one based on machine learn-
ing, the other on similarities between WordNet
synsets (“synonym sets”, roughly corresponding
to concepts). While both approaches achieved
similar performance during development, combin-
ing them resulted in overall better scores. How-
ever, the success of this method crucially depends
on accurate indentification of aspect terms.

6.1 A WordNet-based approach4

The WordNet-based component operates on previ-
ously identified aspect terms (from the gold stan-
dard in the evaluation, but from the module de-
scribed in Sec. 4 in a real application setting).
For each term, it finds all synsets and compares
them to a list of “key synsets” that characterize
the different aspect categories (e.g. the category
food is characterized by the key synset meal.n.01,
among others). The best match is chosen and
added to an internal lexicon, which maps each
unique phrase appearing as an aspect term to ex-
actly one aspect category. As a similarity measure
for synsets we used path similarity, which deter-
mines the length of the shortest path between two
synsets in the WordNet hypernym/hyponym tax-
onomy. Key synsets were extracted from a list of
high frequency terms and tested manually to cre-
ate an accurate represenation for each category.

In the combined approach this component was
taken as a foundation and was augmented by high-
confidence suggestions from the machine learning
component (see below).

Additional extensions include a high-
confidence lexicon based on nearest neighbours
from a distributional semantic model, a rudi-
mentary lexicon of international dishes, and
the application of a spellchecker; together, they
accounted only for a small increase in F-score on
the development data (from 0.758 to 0.768).

6.2 A machine learning approach5

The machine learning component is essentially a
basic bag-of-words model. It employs a multino-
mial Naive Bayes classifier in a one-vs-all setup
to achieve multi-label classification. In addition
to tuning of the smoothing parameters, a probabil-
ity threshold was introduced that every predicted
category has to pass to be assigned to a sentence.

4We used the version of WordNet included in NLTK 2.0.4
(Bird et al., 2009), accessed through the NLTK API.

5We used machine learning algorithms implemented in
scikit-learn 0.14.1 (Pedregosa et al., 2011).

Test Train AT Mode F1
SE14 Dev Sub1 All 0.782
SE14 Dev* Sub1 WN 0.666
SE14 Dev Sub1* ML 0.788
SE14 Dev Gold All 0.848
SE14 Dev* Gold WN 0.829
SE14 Dev Gold* ML 0.788
Dev (cv) Dev Gold All 0.800
Dev (cv) Dev* Gold WN 0.768
Dev (cv) Dev Gold* ML 0.769

*indicates data sets not used by a given component

Table 5: Aspect category detection results.

Different thresholds were used for the stand-alone
component (th = 0.625) and the combined ap-
proach (th = 0.9). In the latter case all predici-
tions of the WordNet-based component were ac-
cepted, but only high-confidence predictions from
the Naive Bayes classifier were added.

6.3 Results

Table 5 summarizes the results of different exper-
iments with aspect category detection. In all cases
the training data consisted of the combined official
train and trial sets (Dev). The last three rows show
results obtained by ten-fold cross-validation in the
development phase, the other rows show the cor-
responding results on the official test set (SE14).
The first three rows are based on automatically de-
tected aspect terms from the module described in
Sec. 4 (Sub 1), the other rows used gold standard
aspect terms. Separate results are provided for the
combined approach (Mode: All) as well as for the
two individual components (WN = WordNet, ML
= machine learning). Note that the WN compo-
nent does not require any training data, while the
ML component does not make use of aspect terms
marked in the input.

With gold standard aspect terms, the WordNet-
based approach is equal to or better than the Naive
Bayes classifier, and best results are achived by a
combination of the two components. However, the
poor accuracy of the automatic aspect term extrac-
tion (cf. Table 3) has a disastrous effect: even the
combined approach used in the official submis-
sion performs less well than the ML component
alone. Nevertheless the experiment with gold stan-
dard aspect terms suggests that the matching from
aspect term to category works quite well, with
a small additional improvement from the Naive

582



Bayes bag-of-words model.

7 Aspect category polarity

The general approach was to allocate each aspect
term to the corresponding aspect categories. A
simple rule set was then used to determine the po-
larity of each aspect category based on the polari-
ties of the aligned aspect terms. In cases where no
aspect terms are marked (but sentences are still la-
belled with aspect categories), the idea was to fall
back on the sentiment values for the entire sen-
tences provided by the CoreNLP suite.6

7.1 Term / category alignment

To establish a basis for creating the mapping rules,
the first step was to work out the distribution of
aspect terms and aspect categories in the train-
ing data. The most common case is that an as-
pect category aligns with a single aspect term
(1476×); there are also many aspect categories
with multiple aspect terms (1179×) and some as-
pect categories without any aspect terms. Since
the WordNet-Approach from Sec. 6 showed rela-
tively good results (especially if gold standard as-
pect terms are available, which is the case here),
a modified version was used to assign each aspect
term to one of the annotated categories.

7.2 Polarity allocation

After the assignment of aspect terms to their ac-
cording aspect category – if needed – the aspect
category polarity can be determined. For this, the
polarity values of all aspect terms assigned to this
category were collected, and duplicates were re-
moved in order to produce a unique set (e.g. 1,
1, -1, 0, 0 would be reduced to 1, -1, 0). A set
with both negative and positive polarity values in-
dicates a conflict for the corresponding aspect cat-
egory, while a neutral polarity value would be ig-
nored, if positive or negative polarity values occur.
Our method achieved an accuracy of 89.16% for
sentences annotated with just a single aspect cat-
egory. In cases where only one aspect term had
been assigned to a aspect category the accuracy
was unsuprisingly high (96.61%), whereas the ac-
curacy decreased in cases of multiple assigned as-
pect terms (78.44%). For aspect categories with-
out aligned aspect terms, as well as the category
anecdotes/miscellaneous, the sentiment values of
the CoreNLP sentiment analysis tool had to be

6http://nlp.stanford.edu/software/corenlp.shtml

used, which led to a poor accuracy in those cases,
namely 52.74%.

7.3 Results
On the official test set, the module for subtask 4
achieved an accuracy of 69.56%. An important
factor is the very low accuracy in cases where the
CoreNLP sentiment value for the entire sentence
had to be used. We expect a considerable improve-
ment from using a modified version of the subtask
2 module (Sec. 5) to compute overall sentence po-
larity.

8 Conclusion

We have shown a modular system working as a
pipeline that modifies the input sentences step by
step by adding new information as XML tags.
Aspect term extraction was handled as a tagging
task that utilized an IOB tagset to find aspect
terms with the final version relying on Schmid’s
RFTagger. Determination of aspect term polar-
ity was achieved through a machine learning ap-
proach that uses SVMs with RBF kernel. This
was supported by an augmented sentiment lexicon
based on several different sources, which was ex-
panded manually by a team of students. Aspect
category detection in turn employs a combination
approach of an algorithm depending on WordNet
synsets and a bag-of-words Naive Bayes classifier.
Finally aspect category polarity was calculated by
combining the results from the last two modules.

Overall results were satisfactory, being mostly
in the top half of submitted systems. During phase
A of testing (subtasks 1 and 3), a preprocessing er-
ror caused a massive drop in performance in aspect
term extraction. This carried over to the other sub-
task, because the module uses aspect terms among
other features to identify aspect categories. Scores
for phase B (subtasks 2 and 4) were very close to
test results during development with the exception
of cases where the CoreNLP sentiment value for
an entire sentence had to be used.
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Abstract

This paper presents the system SSMT
measuring the semantic similarity between
a paragraph and a sentence submitted to
the SemEval 2014 task3: Cross-level Se-
mantic Similarity. The special difficulty
of this task is the length disparity between
the two semantic comparison texts. We
adapt several machine translation evalua-
tion metrics for features to cope with this
difficulty, then train a regression model for
the semantic similarity prediction. This
system is straightforward in intuition and
easy in implementation. Our best run gets
0.808 in Pearson correlation. METEOR-
derived features are the most effective
ones in our experiment.

1 Introduction

Cross level semantic similarity measures the simi-
larity between different levels of text unit, for ex-
ample, between a document and a paragraph, or
between a phrase and a word.

Paragraph and sentence are the natural language
units to convey opinions or state events in daily
life. We can see posts on forums, questions and
answers in Q&A communities and customer re-
views on E-commerce websites, are mainly organ-
ised in these two units. Better similarity measure-
ment across them will be helpful in clustering sim-
ilar answers or reviews.

The paragraph-to-sentence semantic similarity
subtask in SemEval2014 task3 (Jurgens et al.,
2014) is the first semantic similarity competition
across these two language levels. The special
difficulty of this task is the length disparity be-
tween the compared pair: a paragraph contains

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

3.67 times the words of a sentence on average in
the training set.

Semantic similarity on different levels, for ex-
ample, on word level (Mikolov et al., 2013), sen-
tences level (Bär et al., 2012), document level
(Turney and Pantel, 2010), have been well studied,
yet methods on one level can hardly be applied to
a different level, let alone be applied for the cross-
level tasks. The work of Pilehvar et al.(2013) was
an exception. They proposed a unified method for
semantic comparison at multi-levels all the way
from comparing word senses to comparing text
documents

Our work is inspired by automatic machine
translation(MT) evaluation, in which different
metrics are designed to compare the adequacy and
fluency of a MT system’s output, called hypothe-
sis, against a gold standard translation, called ref-
erence. As MT evaluation metrics measure sen-
tence pair similarity, it is a natural idea to general-
ize them for paragraph-sentence pair.

In this paper, we follow the motivations of sev-
eral MT evaluation metrics yet made adaption to
cope with the length disparity difficulty of this
task, and combine these features in a regression
model. Our system SSMT (Semantic Similarity in
view of Machine Translation evaluation) involves
no extensive resource or strenuous computation,
yet gives promising result with just a few simple
features.

2 Regression Framework

In our experiment, we use features adapted from
some MT evaluation metrics and combine them
in a regression model for the semantic similarity
measurement. We exploit the following two sim-
ple models:

A linear regression model is presented as:

y = w1xi + w2xi..+ wnxn + ε
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A log-linear model is presented as:

y = xw1
1 · xw2

2 .. · xwn
n · eε

Where y is the similarity score, {x1, x2.., xn} are
the feature values.

We can see that in a log-linear model, if any
feature xi get a value of 0, the output y will suck in
0 forever no matter what the values other features
get. In our experiment we resort to smoothing to
avoid this “0-trap” for some features (Section 4.3).

3 Features

MT evaluation metrics vary from lexical level to
syntactic level to semantic level. We consider only
lexical ones to avoid complicated steps like pars-
ing or semantic role labelling, which are computa-
tional expensive and may bring extra noise.

But instead of directly using the MT evaluation
metrics, we use the factors in them as features, the
idea is that the overall score of the original metric
is highly related to the length of both of the com-
pared pair, but its factors are often related to the
length of just one side yet still carry useful simi-
larity information.

3.1 BLEU-Derived Features

As the most wildly used MT evaluation metric,
BLEU (Papineni et al., 2002) uses the geomet-
ric mean of n-gram precisions to measure the hy-
potheses against references. It is a corpus-based
and precision-based metric, and uses “brevity
penalty” as a replacement for recall. Yet this
penalty is meaningless on sentence level. There-
fore we considers only the precision factors in
BLEU:

PnBLEU =
Ngramref ∩Ngramhyo

Ngramref

We use the modified n-gram precision here and
regard “paragraph” as “reference”, and “sentence”
as the “hypothesis”. N= 1,2,3,4. We call these
four features BLEU-derived features.

3.2 ROUGE-L-Derived Features

ROUGE-L (Lin and Och, 2004) measures the
largest common subsequence(LCS) between a
compared pair. BLEU implies the n-gram to be
consecutive, yet ROUGE-L allows for gaps be-
tween them. By considering only in-sequence

words, ROUGE-L captures sentence level struc-
ture in a natural way, then:

Rlcs =
LCS(ref, hyo)
length(hyo)

Plcs =
LCS(ref, hyo)
length(ref)

Flcs =
(1 + β2)RlcsPlcs)
Rlcs + β2Plcs

Where LCS(ref, hoy) is the length of LCS of the
compared pair. We set β = 1, which means we
don’t want to make much distinction between the
“reference” and “hypothesis” here. We call these
three features ROUGE-L-derived features.

3.3 ROUGE-S-Derived Features
ROUGE-S (Lin and Och, 2004) uses skip-bigram
co-occurrence statistics for similarity measure-
ment. One advantage of skip-bigram over BLEU
is that it does not require consecutive matches but
is still sensitive to word order. Given the reference
of length n, and hypothesis of length m, then:

Pskip2 =
skip2(ref, hyo)

C(m, 2)

Rskip2 =
skip2(ref, hyo)

C(n, 2)

Fskip2 =
(1 + β2)Pskip2Rskip2
Rskip2 + β2Pskip2

Where C is combination, and skip2(ref, hyo) is
the number of common skip-bigrams. We also
set β = 1 here, and call these three indicators
ROUGE-S-derived features.

3.4 METEOR-Derived Features
METEOR (Banerjee and Lavie, 2005) evaluates
a hypothesis by aligning it to a reference trans-
lation and gives sentence-level similarity scores.
It uses a generalized concept of unigram mapping
that matches words in the following types: ex-
act match on words surface forms , stem match
on words stems, synonym match according to the
synonym sets in WordNet, and paraphrase match
(Denkowski and Lavie, 2010).

METEOR also makes distinction between con-
tent words and function words. Each type of
matchmi is weighted by wi, let (mi(hc),mi(hf ))
be the number of content and function words
covered by this type in the hypothesis, and
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(mi(rc),mi(rf )) be the counts in the reference,
then:

P =
∑
i=1wi · (δ ·mi(hi) + (1− δ) ·mi(hf ))

δ· | hc | +(1− δ)· | hf |
R =

∑
i=1wi · (δ ·mi(ri) + (1− δ) ·mi(rf ))

δ· | rc | +(1− δ)· | rf |

Fmean =
P ·R

αP + (1− α)R

To account for word order difference, the frag-
mentation penalty is calculated using the total
number of matched words(m) and the number of
chunks1(ch) in the hypothesis:

Pen = γ ·
(
ch

m

)β
And the final METEOR score is:

Score = (1− Pen) · Fmean
Parameters α, β, γ, δand wi...wn are tuned to

maximize correlation with human judgements
(Denkowski and Lavie, 2014). We use Meteor1.5
system2 for scoring. Parameters are tuned on
WMT12, and the paraphrase table is extracted on
the WMT data.

We use the p, r, frag(frag = ch/m) and
score as features and call them METEOR-derived
features.

4 Experiment and Discussion

4.1 Data Set
The SemEval2014 task3 subtask gives a train-
ing set of 500 paragraph-sentence pairs, with hu-
man annotated continuous score of 0 − 4. These
pairs are labelled with genres of “Newswire/ cqa3/
metaphoric/ scientific/ travel/ review”. Systems
are asked to predict the similarity scores for 500
pairs in the test set. Performance is evaluated in
Pearson correlation and Spearman correlation.

4.2 Data Processing
To avoid meaningless n-gram match “the a”, or
words surface form difference, we employ very
simple data processings here: for features derived
from BLEU, ROUGE-L and ROUGE-S, we re-
move stop words and stem the sentences with

1Chunk is defined as a series of matched unigrams that is
contiguous and identically ordered in both sentences

2https://www.cs.cmu.edu/ alavie/METEOR/
3cqa:Community Question Answering site text

coreNLP4. For METEOR-derived features, we use
the tool’s option for text normalization before
matching.

4.3 Result
Though texts with different genres may have dif-
ferent regression parameters, we just train one
model for all for simplicity. Table 1 compares
the result. Run1 is submitted as SSMT in the
official evaluation. It’s a log-linear model. We
choose more dense features for log-linear model
and use smoothing to avoid the “0-trap” men-
tioned in (Section 2). The features include
P1,2BLEU ,PROUGE−L,PROUGE−S 4 features, and
4 METEOR-derived features, altogether 8 fea-
tures. When calculation the first 4 features, we
plus 1 to both numerator and denominator as
smoothing. Run2 is a linear-regression model with
the same features as Run1. Run3 is a simple linear
regression model, which is free from the “0-trap”,
thus we use all the 14 features without smoothing.
We use Matlab for regression. The baseline is of-
ficially given using LCS.

Run Regression Pearson Spearman
Baseline LCS 0.527 0.613
run1 log-linear 0.789 0.777
run2 linear 0.794 0.777
run3 linear 0.808 0.792

Table 1: System Performance.

4.4 System Analysis
We compares the effectiveness of different fea-
tures in a linear regression model. Table 2
shows the result. “All” refers to all the fea-
tures, “-METEOR” means the feature set ex-
cludes METEOR-derived features. We can see the
METEOR-derived features are the most effective
ones here.

Figure 1 shows the performance of our sys-
tem submitted as SSMT in the SemEval2014 task3
competition. It shows quite good correlation with
the gold standard.

A well predicted example is the #trial-p2s-5 pair
in the trial set:

Paragraph: Olympic champion Usain Bolt re-
gained his 100m world title and won a fourth in-
dividual World Championships gold with a sea-
son’s best of 9.77 seconds in Moscow. In heavy

4http://nlp.stanford.edu/software/corenlp.shtml
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Feature Pearson Spearman
All 0.808 0.792
- METEOR 0.772 0.756
- ROUGE-L 0.802 0.789
- ROUGE-S 0.807 0.793
- BLEU 0.807 0.790

Table 2: Effectiveness of Different Features.
“-METEOR” means the feature set excluding
METEOR-derived features.

Figure 1: Result Scatter of SSMT.

rain, the 26-year-old Jamaican made amends for
his false start in Daegu two years ago and fur-
ther cemented his status as the greatest sprinter
in history. The six-time Olympic champion over-
took Justin Gatlin in the final stages, forcing the
American to settle for silver in 9.85. Bolt’s com-
patriot Nesta Carter (9.95) claimed bronze, while
Britain’s James Dasaolu was eighth (10.21).

Sentence: Germany’s Robert Harting beats
Iran’s Ehsan Hadadi and adds the Olympic discus
title to his world crown.

The system gives a prediction of 1.253 against
the gold standard 1.25. We can see that topic
words like “Olympic” , “world crown”, “beats” in
the short text correspond to expressions of “world
title ” , “champion” across several sentences in the
long text, but this pair of texts are not talking about
the same event. The model captures and models
this commonness and difference very well .

But Figure 1 also reveals an interesting phe-
nomenon: the system seldom gives the boundary
scores of 0 or 4. In other words, it tends to over-
score or underscore the boundary conditions. An
example in point is the #trial-p2s-17 pair in the
trial data, it is actually the worst predicted pair by
our system in the trail set:

Paragraph: A married couple who met at work
is not a particularly rare thing. Three in ten work-
ers who have dated a colleague said in a recent
survey by CareerBuilder.com that their office ro-
mance eventually led to marriage.

Sentence: Marrying a coworker isn’t uncom-
mon given that 30% of workers who dated a
coworker ended up marrying them.

The system gives a 1.773 score against the gold
standard of 4. It should fail to detect the equality
of expressions between “three in ten” and “30%”.
Thus better detection of phrase similarity is de-
sired. We think this is the main reason to under-
score the similarity. For test pairs with the genre of
“Metaphoric”, the system almost underscores all
of them. This failure has been expected, though.
Because “Metaphoric” pairs demand full under-
standing of the semantic meaning and paragraph
structure, which is far beyond the reach of lexical
match metrics.

5 Conclusion

MT evaluation metrics have been directly used
as features in paraphrase (Finch et al., 2005) de-
tection and sentence pair semantic comparison
(Souza et al., 2012). But paragraph-to-sentence
pair faces significant length disparity, we try a way
out to alleviate this impact yet still follow the mo-
tivations underlying these metrics. By factorizing
down the original metrics, the linear model can
flexibly pick out factors that are not sensitive to
the length disparity problem.

We derive features from BLEU, ROUGE-
L, ROUGE-S and METEOR, and show that
METEOR-derived features make the most signifi-
cant contributions here. Being easy and light, our
submitted SSMT achieves 0.789 in Pearson and
0.777 in Spearman correlation, and ranks 11 out
of the 34 systems in this subtask. Our best try
achieves 0.808 in Pearson and 0.786 in Spearman
correlation.
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Abstract

We describe the submission of the team
of the Sofia University to SemEval-2014
Task 9 on Sentiment Analysis in Twit-
ter. We participated in subtask B, where
the participating systems had to predict
whether a Twitter message expresses pos-
itive, negative, or neutral sentiment. We
trained an SVM classifier with a linear
kernel using a variety of features. We
used publicly available resources only, and
thus our results should be easily replicable.
Overall, our system is ranked 20th out of
50 submissions (by 44 teams) based on the
average of the three 2014 evaluation data
scores, with an F1-score of 63.62 on gen-
eral tweets, 48.37 on sarcastic tweets, and
68.24 on LiveJournal messages.

1 Introduction

We describe the submission of the team of the
Sofia University, Faculty of Mathematics and In-
formatics (SU-FMI) to SemEval-2014 Task 9 on
Sentiment Analysis in Twitter (Rosenthal et al.,
2014).
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This SemEval challenge had two subtasks:
• subtask A (term-level) asks to predict the sen-

timent of a phrase inside a tweet;
• subtask B (message-level) asks to predict the

overall sentiment of a tweet message.
In both subtasks, the sentiment can be positive,

negative, or neutral. Here are some examples:
• positive: Gas by my house hit $3.39!!!! I’m

going to Chapel Hill on Sat. :)
• neutral: New York Giants: Game-by-Game

Predictions for the 2nd Half of the Season
http://t.co/yK9VTjcs
• negative: Why the hell does Selma have

school tomorrow but Parlier clovis & others
don’t?
• negative (sarcastic): @MetroNorth wall to

wall people on the platform at South Nor-
walk waiting for the 8:08. Thanks for the Sat.
Sched. Great sense

Below we first describe our preprocessing, fea-
tures and classifier in Section 2. Then, we discuss
our experiments, results and analysis in Section 3.
Finally, we conclude with possible directions for
future work in Section 4.

2 Method

Our approach is inspired by the highest scoring
team in 2013, NRC Canada (Mohammad et al.,
2013). We reused many of their resources.1

Our system consists of two main submodules,
(i) feature extraction in the framework of GATE
(Cunningham et al., 2011), and (ii) machine learn-
ing using SVM with linear kernels as implemented
in LIBLINEAR2 (Fan et al., 2008).

1http://www.umiacs.umd.edu/
˜saif/WebPages/Abstracts/
NRC-SentimentAnalysis.htm

2http://www.csie.ntu.edu.tw/˜cjlin/
liblinear/
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2.1 Preprocessing
We integrated a pipeline of various resources for
tweet analysis that are already available in GATE
(Bontcheva et al., 2013) such as a Twitter tok-
enizer, a sentence splitter, a hashtag tokenizer, a
Twitter POS tagger, a morphological analyzer, and
the Snowball3 stemmer.

We further implemented in GATE some shal-
low text processing components in order to handle
negation contexts, emoticons, elongated words,
all-caps words and punctuation. We also added
components to find words and phrases contained
in sentiment lexicons, as well as to annotate words
with word cluster IDs using the lexicon built at
CMU,4 which uses the Brown clusters (Brown et
al., 1992) as implemented5 by (Liang, 2005).

2.2 Features
2.2.1 Sentiment lexicon features
We used several preexisting lexicons, both manu-
ally designed and automatically generated:

• Minqing Hu and Bing Liu opinion lexicon
(Hu and Liu, 2004): 4,783 positive and 2,006
negative terms;

• MPQA Subjectivity Cues Lexicon (Wilson et
al., 2005): 8,222 terms;

• Macquarie Semantic Orientation Lexicon
(MSOL) (Mohammad et al., 2009): 30,458
positive and 45,942 negative terms;

• NRC Emotion Lexicon (Mohammad et al.,
2013): 14,181 terms with specified emotion.

For each lexicon, we find in the tweet the terms
that are listed in it, and then we calculate the fol-
lowing features:

• Negative terms count;

• Positive terms count;

• Positive negated terms count;

• Positive/negative terms count ratio;

• Sentiment of the last token;

• Overall sentiment terms count.
3http://snowball.tartarus.org/
4http://www.ark.cs.cmu.edu/TweetNLP/

cluster_viewer.html
5http://github.com/percyliang/

brown-cluster

We further used the following lexicons:

• NRC Hashtag Sentiment Lexicon: list of
words and their associations with positive
and negative sentiment (Mohammad et al.,
2013): 54,129 unigrams, 316,531 bigrams,
480,010 pairs, and 78 high-quality positive
and negative hashtag terms;

• Sentiment140 Lexicon: list of words with as-
sociations to positive and negative sentiments
(Mohammad et al., 2013): 62,468 unigrams,
677,698 bigrams, 480,010 pairs;

• Stanford Sentiment Treebank: contains
239,231 evaluated words and phrases. If a
word or a phrase was found in the tweet, we
took the given sentiment label.

For the NRC Hashtag Sentiment Lexicon and
the Sentiment140 Lexicon, we calculated the fol-
lowing features for unigrams, bigrams and pairs:

• Sum of positive terms’ sentiment;

• Sum of negative terms’ sentiment;

• Sum of the sentiment for all terms in the
tweet;

• Sum of negated positive terms’ sentiment;

• Negative/positive terms ratio;

• Max positive sentiment;

• Min negative sentiment;

• Max sentiment of a term.

We used different features for the two lexicon
groups because their contents differ. The first four
lexicons provide a discrete sentiment value for
each word. In contrast, the following two lexicons
offer numeric sentiment scores, which allows for
different feature types such as sums and min/max
scores.

Finally, we manually built a new lexicon with
all emoticons we could find, where we assigned to
each emoticon a positive or a negative label. We
then calculated four features: number of positive
and negative emoticons in the tweet, and whether
the last token is a positive or a negative emoticon.
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2.2.2 Tweet-level features
We use the following tweet-level features:

• All caps: the number of words with all char-
acters in upper case;

• Hashtags: the number ot hashtags in the
tweet;

• Elongated words: the number of words with
character repetitions.

2.2.3 Term-level features
We used the following term-level features:

• Word n-grams: presence or absence of 1-
grams, 2-grams, 3-grams, 4-grams, and 5-
grams. We add an NGRAM prefix to each n-
gram. Unfortunately, the n-grams increase
the feature space greatly and contribute to
higher sparseness. They also slow down
training dramatically. That is why our final
submission only includes 1-grams.

• Character n-grams: presence or absence of
one, two, three, four and five-character pre-
fixes and suffixes of all words. We add a PRE
or SUF prefix to each character n-gram.

• Negations: the number of negated contexts.
We define a negated context as a segment
of a tweet that starts with a negation word
(e.g., no, shouldnt) from our custom gazetteer
and ends with one of the punctuation marks:
,, ., :, ;, !, ?. A negated context affects the
n-gram and the lexicon features: we add a
NEG suffix to each word following the nega-
tion word, e.g., perfect becomes perfect NEG.

• Punctuation: the number of contiguous se-
quences of exclamation marks, of question
marks, of either exclamation or question
marks, and of both exclamation and question
marks. Also, whether the last token contains
an exclamation or a question mark (excluding
URLs).

• Stemmer: the stem of each word, excluding
URLs. We add a STEM prefix to each stem.

• Lemmatizer: the lemma of each word, ex-
cluding URLs. We add a LEMMA prefix to
each lemma. We use the built-in GATE Mor-
phological analyser as our lemmatizer.

• Word and word bigram clusters: word
clusters have been shown to improve the per-
formance of supervised NLP models (Turian
et al., 2010). We use the word clusters built
by CMU’s NLP toolkit, which were produced
over a collection of 56 million English tweets
(Owoputi et al., 2012) and built using the
Percy Liang’s HMM-based implementation6

of Brown clustering (Liang, 2005; Brown et
al., 1992), which group the words into 1,000
hierarchical clusters. We use two features
based on these clusters:

– presence/absence of a word in a word
cluster;

– presence/absence of a bigram in a bi-
gram cluster.

• POS tagging: Social media are generally
hard to process using standard NLP tools,
which are typically developed with newswire
text in mind. Such standard tools are not
a good fit for Twitter messages, which are
too brief, contain typos and special word-
forms. Thus, we used a specialized POS
tagger, TwitIE, which is available in GATE
(Bontcheva et al., 2013), and which we in-
tegrated in our pipeline. It provides (i) a
tokenizer specifically trained to handle smi-
lies, user names, URLs, etc., (ii) a normal-
izer to correct slang and misspellings, and
(iii) a POS tagger that uses the Penn Treebank
tagset, but is optimized for tweets. Using the
TwitIE toolkit, we performed POS tagging
and we extracted all POS tag types that we
can find in the tweet together with their fre-
quencies as features.

2.3 Classifier
For classification, we used the above features and
a support vector machine (SVM) classifier as im-
plemented in LIBLINEAR. This is a very scal-
able implementation of SVM that does not support
kernels, and is suitable for classification on large
datasets with a large number of features. This is
particularly useful for text classification, where the
number of features is very large, which means that
the data is likely to be linearly separable, and thus
using kernels is not really necessary. We scaled the
SVM input and we used L2-regularization during
training.

6https://github.com/percyliang/
brown-cluster
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3 Experiments, Results, Analysis

3.1 Experimental setup
At development time, we trained on train-2013,
tuned the C value of SVM on dev-2013, and eval-
uated on test-2013 (Nakov et al., 2013). For our
submission, we trained on train-2013+dev-2013,
and we evaluated on the 2014 test dataset pro-
vided by the organizers. This dataset contains two
parts and a total of five datasets: (a) progress test
(the Twitter and SMS test datasets for 2013), and
(b) new test datasets (from Twitter, from Twitter
with sarcasm, and from LiveJournal). We used
C=0.012, which was best on development.

3.2 Official results
Due to our very late entering in the competition,
we have only managed to perform a small num-
ber of experiments, and we only participated in
subtask B. We were ranked 20th out of 50 sub-
missions; our official results are shown in Table 1.
The numbers after our score are the delta to the
best solution. We have also included a ranking
among 2014 participant systems on the 2013 data
sets, released by the organizers.

Data Category F1-score (best) Ranking
tweets2014 63.62 (6.23) 23
sarcasm2014 48.34 (9.82) 19
LiveJournal2014 68.23 (6.60) 21
tweets2013 60.96 (9.79) 29
SMS2013 61.67 (8.61) 16
2014 mean 60.07 (7.55) 20

Table 1: Our submitted system for subtask B.

3.3 Analysis
Tables 2 and 3 analyze the impact of the individual
features. They show the F1-scores and the loss
when a feature or a group of features is removed;
we show the impact on all test datasets, both from
2013 and from 2014. The exception here is the all
+ ngrams row, which contains our scores if we had
used the n-grams feature group.

The features are sorted by their impact on
the Twitter2014 test set. We can see that the
three most important feature groups are POS tags,
word/bigram clusters, and lexicons.

We can further see that although the overall lex-
icon feature group is beneficial, some of the lex-
icons actually hurt the 2014 score and we would
have been better off without them.

These are the Sentiment140 lexicon, the Stan-
ford Sentiment Treebank and the NRC Emotion
lexicon. The highest gain we get is from the lex-
icons of Minqing Hu and Bing Liu. It must be
noted that using lexicons with good results ap-
parently depends on the context, e.g., the Senti-
ment140 lexicon seems to be helping a lot with
the LiveJournal test dataset, but it hurts the Sar-
casm score by a sizeable margin.

Another interesting observation is that even
though including the n-gram feature group is per-
forming notably better on the Twitter2013 test
dataset, it actually worsens performance on all
2014 test sets. Had we included it in our results,
we would have scored lower.

The negation context feature brings little in re-
gards to regular tweets or LiveJournal text, but it
heavily improves our score on the Sarcasm tweets.

It is unclear why our results differ so much from
those of the NRC-Canada team in 2013 since our
features are quite similar. We attribute the differ-
ence to the fact that some of the lexicons we use
actually hurt our score as we mentioned above.
Another difference could be that last year’s NRC
system uses n-grams, which we have disabled as
they lowered our scores. Last but not least, there
could be bugs lurking in our feature representation
that additionally lower our results.

3.4 Post-submission improvements

First, we did more extensive experiments to val-
idate our classifier’s C value. We found that the
best value for C is actually 0.08 instead of our
original proposal 0.012.

Then, we experimented further with our lexi-
con features and we removed the following ones,
which resulted in significant improvement over
our submitted version:

• Sentiment of the last token for NRC Emotion,
MSOL, MPQA, and Bing Liu lexicons;

• Max term positive, negative and sentiment
scores for unigrams of Sentiment140 and
NRC Sentiment lexicons;

• Max term positive, negative and sentiment
scores for bigrams of Sentiment140 and NRC
Sentiment lexicons;

• Max term positive, negative and sentiment
scores for hashtags of Sentiment140 and
NRC Sentiment lexicons.
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Feature Diff SMS2013 SMS2013 delta Twitter2013 Twitter2013 delta
submitted features 61.67 60.96
no POS tags 54.73 -6.94 52.32 -8.64
no word clusters 58.06 -3.61 55.44 -5.52
all lex removed 59.94 -1.73 58.35 -2.61
no Hu-Liu lex 60.56 -1.11 60.10 -0.86
all + ngrams 61.37 -0.30 62.22 1.26
no NRC #lex 61.35 -0.32 60.66 -0.30
no MSOL lex 61.88 0.21 61.35 0.39
no Stanford lex 61.84 0.17 61.02 0.06
no negation cntx 61.94 0.27 60.88 -0.08
no encodings 61.74 0.07 60.92 -0.04
no NRC emo lex 61.67 0.00 60.96 0.00
no Sent140 lex 61.61 -0.06 60.32 -0.64

Table 2: Ablation experiments on the 2013 test sets.

Feature Diff LiveJournal LJ delta Twitter Twitter delta Sarcasm Sarcasm delta
submitted features 68.23 63.62 48.34
no POS tags 62.28 -5.95 59.00 -4.62 43.70 -4.64
no word clusters 65.08 -3.15 59.82 -3.80 43.96 -4.38
all lex removed 66.16 -2.07 60.73 -2.89 49.59 1.25
no Hu-Liu lex 66.44 -1.79 62.15 -1.47 46.72 -1.62
all + ngrams 67.79 -0.44 62.96 -0.66 47.82 -0.52
no NRC #lex 66.81 -1.42 63.25 -0.37 47.54 -0.80
no MSOL lex 68.50 0.27 63.54 -0.08 48.34 0.00
no Stanford lex 67.86 -0.37 63.70 0.08 48.34 0.00
no negation cntx 68.09 -0.14 63.62 0.00 46.37 -1.97
no encodings 68.23 0.00 63.64 0.02 47.54 -0.80
no NRC emo lex 68.24 0.01 63.62 0.00 48.34 0.00
no Sent140 lex 67.32 -0.91 63.94 0.32 49.47 1.13

Table 3: Ablation experiments on the 2014 test sets.

The improved scores are shown in Table 4, with
the submitted and the best system results.

Test Set New F1 Old F1 Best
tweets2014 66.23 63.62 69.85
sarcasm2014 50.00 48.34 58.16
LiveJournal2014 69.41 68.24 74.84
tweets2013 63.08 60.96 70.75
SMS2013 62.28 61.67 70.28
2014 mean 62.20 60.07 67.62

Table 4: Our post-submission results.

4 Conclusion and Future Work

We have described the system built by the team of
SU-FMI for SemEval-2014 task 9. Due to our late
entering in the competition, we were only ranked
20th out of 50 submissions (from 44 teams).

We have made some interesting observations
about the impact of the different features. Among
the best-performing feature groups were POS-tag
counts, word cluster presence and bigrams, the
Hu-Liu lexicon and the NRC Hashtag Sentiment
lexicon. These had the most sustainable perfor-
mance over the 2013 and the 2014 test datasets.
Others we did not use, seemingly more context
dependent, seem to have been more suited for the
2013 test sets like the n-grams feature group.

Even though we made some improvements af-
ter submitting our initial version, we feel there is
more to gain and optimize. There seem to be sev-
eral low-hanging fruits based on our experiments
data, which could add few points to our F1-scores.

Going forward, our goal is to extend our experi-
ments with more feature sub- and super-sets and to
turn our classifier into a state-of-the-art performer.
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Abstract 

In this paper, we present our contribution in 
SemEval2014 ABSA task, some supervised 
methods for Aspect-Based Sentiment Analysis of 
restaurant and laptop reviews are proposed, im-
plemented and evaluated. We focus on determin-
ing the aspect terms existing in each sentence, 
finding out their polarities, detecting the catego-
ries of the sentence and the polarity of each cate-
gory. The evaluation results of our proposed 
methods exhibit a significant improvement in 
terms of accuracy and f-measure over all four 
subtasks regarding to the baseline proposed by 
SemEval organisers. 

1 Introduction 

The increasing amount of user-generated textual 
data has increased the need of efficient tech-
niques for analysing it. Sentiment Analysis (SA) 
has become more and more interesting since the 
year 2000 (Liu 2012), many techniques in Natu-
ral Language Processing have been used to un-
derstand the expressed sentiment on an entity. 
Many levels of granularity have been also distin-
guished: Document Level SA considers the 
whole document is about an entity and classifies 
whether the expressed sentiment is positive, neg-
ative or neutral; Sentence Level SA determines 
the sentiment of each sentence, some works have 
been done on Clause Level SA but they are still 
not enough; Entity or Aspect-Based SA performs 
finer-grained analysis in which all entities and  
 
This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and 
proceedings footer are added by the organisers. Li-
cence details: 
http://creativecommons.org/licenses/by/4.0/ 

 
their aspects should be extracted and the senti-
ment on them should also be determined. 
Aspect-Based SA task consists of several sub-
problems, the document is about many entities 
which could be for example a restaurant, a lap-
top, a printer. Users may refer to an entity by 
different writings but normally there are not a lot 
of variations to indicate the same entity, each 
entity has many aspects which could be its parts 
or attributes, some aspects could be another enti-
ty such as screen of laptop, but most works did 
not take this case into account. Therefore, we 
could define the opinion by the quintuple (Liu 
2012) (ei, aij, sijkl , hk, tl) where ei is the entity i, aij 
are the aspects of the entity i,  sijkl  is the ex-
pressed sentiment on the aspect at the time tl, hk 
the holder which created the document or the 
text. 
This definition does not take into account that the 
entity has aspects that could have also other as-
pects which leads to an aspect hierarchy, in order 
to avoid this information loss, few works have 
handled this issue, they proposed to represent the 
aspect as a tree of aspect terms (Wei and Gulla 
2010; Kim, Zhang et al. 2013).  
Supervised and unsupervised methods have been 
used for handling this task, in this paper, we pro-
pose supervised methods and test them over two 
datasets related to laptop reviews and restaurant 
reviews provided by the ABSA task of 
SemEval2014 (Pontiki, Galanis et al. 2014). We 
tackle four subtasks: 

1. Aspect term extraction: CRF model is 
proposed. 

2. Aspect Term Polarity Detection:  
Multinomial Naive-Bayes classifier with 
some features such as Z-score, POS and 
prior polarity extracted from Subjectivity 
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Lexicon (Wilson, Wiebe et al. 2005) and 
Bing Liu's Opinion Lexicon1. 

3. Category Detection: 
Z-score model for category detection has 
been used. 

4. Category Polarity Detection: 
The same model proposed for aspect 
term polarity detection has been adopted. 

2 Related works 

Several methods concerning the ABSA have 
been proposed, some of them are supervised, and 
others unsupervised.  The earliest work on aspect 
detection from on-line reviews presented by Hu 
and Liu used association rule mining based on 
Apriori algorithm to extract frequent noun 
phrases as product features, they used two seed 
sets of 30 positive and negative adjectives, then 
WordNet has been used to find and add the seed 
words synonyms. Infrequent aspects had been 
processed by finding the noun related to an opin-
ionated word (Hu and Liu 2004). 
Opinion Digger (Moghaddam and Ester 2010) 
used also Apriori algorithm to extract the fre-
quent aspects then it filters the non-aspects by 
applying a constraint -learned from the training 
data- on the extracted aspects. KNN algorithm is 
applied to estimate the aspect rating scaling from 
1 to 5 stands for (Excellent, Good, Average, 
Poor, Terrible), assuming that the sentiment is 
expressed by the nearest adjectives to the aspect 
term in the sentence segment, WordNet is used 
for finding the synonyms of sentiment word in 
order to use them to estimate the distance be-
tween it and the words of rating scale. 

Some unsupervised methods based on LDA 
(Latent Dirichlet allocation) were proposed. 
Brody and Elhadad used LDA to find the as-
pects, determined the number of topics by apply-
ing a clustering method (Brody and Elhadad 
2010), then they used a similar method proposed 
by Hatzivassiloglou and McKeown 
(Hatzivassiloglou and McKeown 1997) to extract 
the conjunctive adjectives but not the disjunctive 
due to the specificity of the domain, seed sets 
were used and assigned scores, these scores were 
propagated using propagation method through 
the aspect-sentiment graph building from the 
pairs of aspect and related adjectives. 
  Other works make one LDA based model for 
the aspect and sentiment extraction. Lin and He 

                                                 
1 http://www.cs.uic.edu/~liub/FBS/sentiment-
analysis.html#lexicon 

(Lin and He 2009)proposed Joint model of Sen-
timent and Topic (JST) which extends the state-
of-the-art topic model, Latent Dirichlet Alloca-
tion (LDA) by adding a sentiment layer, this 
model is fully unsupervised and it can detect sen-
timent and topic simultaneously. 
Wei and Gulla (Wei and Gulla 2010) modelled 
the hierarchical relation between product aspects. 
They defined SOT Sentiment Ontology Tree to 
formulate the knowledge of hierarchical relation-
ships among product attributes and tackle the 
problem of sentiment analysis as a hierarchical 
classification problem. Unsupervised hierarchical 
aspect  
Sentiment model (HASM) was proposed by Kim 
et al (Kim, Zhang et al. 2013) to discover a hier-
archical structure of aspect-based sentiments 
from unlabelled online reviews. 
Supervised methods uses normally a CRF or 
HMM models. Jin and Ho (Jin and Ho 2009) 
applied a lexicalized HMM model to extract as-
pects using the words and their part-of-speech 
tags in order to learn a model, then unsupervised 
algorithm for determining the aspect sentiment 
using the nearest opinion word to the aspect and 
taking into account the polarity reversal words 
(such as not). CRF model was used by Jakob and 
Gurevych (Jakob and Gurevych 2010) with these 
features: tokens, POS tags, syntactic dependency 
(if the aspect has a relation with the opinionated 
word), word distance (the distance between the 
word in the closest noun phrase and the opinion-
ated word), and opinion sentences (each token in 
the sentence containing an opinionated expres-
sion is labelled by this feature), the input of this 
method is also the opinionated expressions, they 
use these expressions for predicting the aspect 
sentiment using the dependency parsing for re-
trieving the pair aspect-expression from the train-
ing set. 
Our method for aspect extraction is closed to 
(Jakob and Gurevych 2010), where we used CRF 
model with different features for aspect extrac-
tion, but another method for sentiment detection. 
The second and fourth subtasks are concerning 
the polarity detection, so besides to all previous 
discussed works, we can handle them as sentence 
level SA. We choose to use Multinomial Naive 
Bayes with some features (POS, Z-score, pre-
polarity). The most related work is (Hamdan, 
Béchet et al. 2013) where they used Naive Bays 
with WordNet, DBpedia and SentiWordNet fea-
tures.  
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3 The System 

Our system is composed of four subtasks: 

3.1 Subtask1: Aspect Terms Extraction 

The objective of this subtask is to extract all 
aspect terms in the review sentence, aspect terms 
could be a word or multiple words. For this pur-
pose we have used CRF (Conditional Random 
Field) which have been used for information ex-
traction. We choose the IOB notation, therefore 
we distinguish the terms at the Beginning, the 
Inside and the Outside of aspect term expression. 
Then, we propose 16 features, for each term we 
extract the following features: 

- Its root (Porter Stemmer); 
- Its POS tag; 
-The stemming roots for all three words before 
and after the term; 
-The POS tags for all three words before and 
after the term; 
- A feature indicates if the word starts with 
capital letter; 
-A feature indicates if the word is capitalised. 

For example, for this review “But the staff was 
so horrible to us.” Where staff is the aspect term, 
the target of each word will be: 
 But:O the:O staff:B was:O so:O horrible:O to:O 
us:O. 

3.2 Subtask2: Aspect Term Polarity Detection 

This subtask can be seen as sentence level or 
phrase level sentiment Analysis, the first step (1) 
we should detect the context or the words related 
to the aspect term, then to compute its polarity 
according to these words. Dependency parsing 
could be used to determine these words or simple 
distance function. We extract the context of as-
pect term according to the syntax and other as-
pect terms. Therefore, the context is the term it-
self and all the surrounding terms enclosed be-
tween two separators (commas in general), if 
another aspect is also enclosed by these separa-
tors we consider it as a separator instead of the 
comma, and we do not take the terms after it or 
before it (according to its direction to the aspect 
term). If the sentence has only an aspect term the 
separators will be the beginning and the end of 
the sentence. For example, for this review “It 
took half an hour to get our check, which was 
perfect since we could sit, have drinks and talk!” 
where we have two aspect terms drinks and 
check, the context of check will be “It took half 
an hour to get our check” and the context of 

drinks will be “have drinks and talk!”. Another 
example, ”All the money went into the interior 
decoration, none of it went to the chefs.” The 
context for interior decoration will be “All the 
money went into the interior decoration” and the 
context for chefs will be “none of it went to the 
chefs”. 

The second step (2) we should determine the 
polarity, which could be positive, negative, neu-
tral or conflict. We propose to use Multinomial 
Naive-Bayes for learning a classifier based on 
different features:  

- The terms in the sentence (term frequency); 
- The POS features (the number of adjectives, 
adverbs, verbs, nouns, connectors) 
- The pre-polarity features (the number of pos-
itive and negative words in the sentence ex-
tracted from Subjectivity lexicon and Bing 
Liu's Opinion Lexicon); 
- Z-score features (the number of words which 
have Z-score more than three in each senti-
ment class),  Z_score  is described in 3.3. 

3.3 Subtask3: Category Detection 

Determining the categories of each sentence 
can be seen as a multi-label classification prob-
lem at sentence level.  

We propose to use Z-score which is capable of 
distinguishing the importance of a term in a cate-
gory. The more the term is important in a catego-
ry the more its Z-score is high in this category 
and low in other categories in which it is not im-
portant. Thus, we compute the Z-score for all 
terms using the annotated data, then for each 
given sentence, the sum of Z-score over each 
category is computed if the Z-score of term in a 
category is less than zero, we ignore it in this 
category because it is not important, the sentence 
will be attributed to the category having the 
highest Z-score, if some categories have the 
same Z-scores the sentence will be attributed to 
the both. The algorithm steps: 
For each tem t in the sentence: 

For each category c: 
If z-score(t,c)>0: 

Z_sc[c]+= z-score(t,c) 
Categories=max(Z_sc) 
 
We assume that the term frequency follows the 
multinomial distribution. Thus, Z_score can be 
seen as a standardization of the term frequency. 
We compute Z score for each term ti in a class Cj 
(tij) by calculating its term relative frequency tfrij 
in a particular class Cj, as well as the mean 
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(meani) which is the term probability over the 
whole corpus multiplied by nj the number of 
terms in the class Cj, and standard deviation (sdi) 
of term ti according to the underlying corpus (see 
Eq. (1,2)). 
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�
�	
�����	

���
Eq. (1) 
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��
∗�(��)

���∗�(��)∗(���(��))
Eq. (2) 

 
 Z_score was exploited for SA by (Zubaryeva 
and Savoy 2010), they choose a threshold (Z>2) 
for selecting the number of terms having Z_score 
more than the threshold, then they used a logistic 
regression for combining these scores. We use 
Z_score as added features for multinomial Naive 
Bayes classifier. 

3.4 Subtask4:  Category Polarity Detection 

We have used Multinomial Naive-Bayes as in 
the subtask2 step (2) with the same features, but 
the different that we add also the name of the 
category as a feature. Thus, for each sentence 
having n category we add n examples to the 
training set, the difference between them is the 
feature of the category.  

4 Experiments and Evaluations 

We tested our system using the training and test-
ing data provided by SemEval 2014 ABSA task. 
Two data sets were provided; the first con-
tains3Ksentences of restaurant reviews annotated 
by the aspect terms, their polarities, their catego-
ries, the polarities of each category. The second 
contains of 3K sentences of laptop reviews anno-
tated just by the aspect terms, their polarities. 
The evaluation process was done in two steps. 
First step is concerning the subtasks 1 and 3 
which involves the aspect terms extraction and 
category detection, we were provided with res-
taurant review and laptop review sentences and 
we had to extract the aspect terms for both data 
sets and the categories for the restaurant one. 
Baseline methods were provided; Table1 demon-
strates the results of these subtasks in terms of 
precision P, recall R and f-measure F for our sys-
tem and the baseline2. 
We remark that our system is 24% and 21% 
above the baseline for aspect terms extraction in 
restaurant and laptop reviews respectively, and 

                                                 
2http://alt.qcri.org/semeval2014/task4/data/uploads/ba
selinesystemdescription.pdf 

above 3% for category detection in restaurant 
reviews. 

 
Data subtask  P R F 
Res 1 Baseline 0,52 0,42 0,47 

System 0.81 0.63 0.71 
3 Baseline 0,73 0,59 0,65 

System 0.77 0.60 0.68 
Lap 1 Baseline 0,44 0,29 0,35 

System 0.76 0.45 0.56 
Table 1. Results of subtask 1, 2 for restaurant reviews, sub-

task 1 for laptop reviews 
 
The second step involves the evaluation of 

subtask 2 and 4, we were provided with(1) res-
taurant review sentences annotated by their as-
pect terms, and categories, we had to determine 
the polarity for each aspect term and category; 
(2) laptop review sentences annotated by aspect 
terms and we had to determine the aspect term 
polarity. Table 2 demonstrates the results of our 
system and the baseline (A: accuracy, R: number 
of true retrieved examples, All: number of all 
true examples). 

 
Data subtask  R All A 
Res 2 Baseline 673 1134 0,64 

System 818 1134 0.72 
4 Baseline 673 1025 0,65 

System 739 1025 0.72 
Lap 2 Baseline 336 654 0,51 

System 424 654 0,64 
Table 2. Results of subtask 2, 4 for restaurant reviews, sub-

task 2 for laptop reviews 
 
We remark that our system is 8% and 13% above 
the baseline for aspect terms polarity detection in 
restaurant and laptop reviews respectively, and 
7% above for category polarity detection in res-
taurant reviews. 

5 Conclusion 

We have built a system for Aspect-Based Sen-
timent Analysis; we proposed different super-
vised methods for the four sub-tasks. Our results 
are always above the baseline proposed by the 
organiser of SemEval. We proposed to use CRF 
for aspect term extraction, Z-score model for cat-
egory detection, Multinomial Naive-Bayes with 
some new features for polarity detection. We 
find that the use of Z-score is useful for the cate-
gory and polarity detection, we are going to test 
it in another sentiment analysis tasks of another 
domains. 
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Abstract

We describe a classifier to predict the
message-level sentiment of English micro-
blog messages from Twitter. This pa-
per describes the classifier submitted to
the SemEval-2014 competition (Task 9B).
Our approach was to build up on the sys-
tem of the last year’s winning approach
by NRC Canada 2013 (Mohammad et al.,
2013), with some modifications and addi-
tions of features, and additional sentiment
lexicons. Furthermore, we used a sparse
(`1-regularized) SVM, instead of the more
commonly used `2-regularization, result-
ing in a very sparse linear classifier.

1 Introduction

With the immense growth of user generated text
online, the interest in automatic sentiment analy-
sis of text has greatly increased recently in both
academia and industry.

In this paper, we describe our approach for a
modified SVM based classifier for short text as in
Twitter messages. Our system has participated in
the SemEval-2014 Task 9 competition, “Sentiment
Analysis in Twitter, Subtask–B Message Polarity
Classification” (Rosenthal et al., 2014). The goal
is to classify a tweet (on the full message level)
into the three classes positive, negative, and neu-
tral. An almost identical competition was already
run in 2013.

Our Results in the Competition. Our approach
was ranked on the 8th place out of the 50 partici-
pating submissions, with an F1-score of 67.54 on
the Twitter-2014 test set. The 2014 winning team
obtained an average F1-score of 70.96.

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

(The more detailed rankings of our approach
were 4th rank on the LiveJournal data, 5th on the
SMS data (2013), 18th on Twitter-2013, and 16th
on Twitter Sarcasm, see (Rosenthal et al., 2014)
for full details and all results).

Data. In the competition, the tweets for training
and development were only provided as tweet IDs.
A fraction (10-15%) of the tweets were no longer
available on twitter, which makes the results of the
competition not fully comparable. For testing, in
addition to last years data (tweets and SMS), new
tweets and data from a surprise domain were pro-
vided. An overview of the data, which we were
able to download, is shown in Table 1.

Table 1: Overview of the data we found available
for training, development and testing.

Dataset Total Positive Negative Neutral
Train (Tweets) 8224 3058 1210 3956
Dev (Tweets) 1417 494 286 637
Test: Twitter2014 1853 982 202 669
Test: Twitter2013 3813 1572 601 1640
Test: SMS2013 2093 492 394 1207
Test: Tw2014Sarcasm 86 33 40 13
Test: LiveJournal2014 1142 427 304 411

2 Description of Our Approach

Compared to the previous NRC Canada 2013
approach (Mohammad et al., 2013), our main
changes are the following three: First we use
sparse linear classifiers instead of classical dense
ones. Secondly, we drop n-gram features com-
pletely, in favor of what we call part-of-speech
n-grams, which are n-grams where up to two to-
kens are the original ones, and the rest of the to-
kens is replaced by their corresponding POS tag
(noun, verb, punctuation etc). Third, we added
two new sentiment lexicons, containing numerical
scores associated for all 3 classes (positive, neu-
tral, negative), instead of just 2 as in classical po-
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larity lexicons. All changes are described in more
detail in Sections 4 and 3 below.

Performance. We tried to reproduce the same
classifier as in (Mohammad et al., 2013) as a base-
line for comparison.

Trying to quantify our contributions, when
adding all our additional features and tricks de-
scribed below, the score of our method increases
from the baseline of 63.25 to 64.81 (on the Twitter-
2013 test set), which is a gain of 1.56 points in F1.

Baseline Approach by NRC Canada 2013.
Unfortunately our replica system of Mohammad
et al. (2013) only achieved an F1-score of 63.25 on
the Twitter-2013 test set, while their score in the
2013 competition on the same test set was 69.02,
nearly 6 points higher in F1.

Part of this big difference might be explained
by the fact that the exact same training sets are
not available anymore. Other possibly more im-
portant differences are the SVM classifier variant
used and class weighting (described in Section 4).
Furthermore, we didn’t implement all features in
the exactly same way, see the more detailed de-
scription in Section 3.1.2 below. Although we had
the impression that these changes individually had
only a relatively minor effect, it might be that the
changes together with the different training set add
up to the difference in score.

3 Features

Before we describe the linear classifier in Sec-
tion 4, we detail the used features for each tweet
message. On average, we generated 843 features
per tweet. For comparison, the average in our
NRC Canada 2013 replica system was only 285.
Most of the increase in features comes from the
fact that we allowed for slightly longer n-grams
(6 instead of 4), and substrings (length 6 instead
of 5).

3.1 New Features

3.1.1 Part of Speech n-grams
We used the ArkTweetNLP structured prediction
POS tagger provided by Owoputi et al. (2013)
together with their provided standard model
(model.20120919) suitable for twitter data.

Part of speech n-grams are n-grams where up
to two tokens are kept as the original ones, and all
other tokens are replaced by their corresponding

POS tag (noun, verb, punctuation etc). We gener-
ated these modified n-grams for all possible posi-
tions of the one or two original tokens within the n
positions, for 3 ≤ n ≤ 6.

As features for a classifier, we found POS n-
grams at least as useful (with some more robust-
ness) as the n-grams themselves. In our final
approach, we dropped the use of n-grams com-
pletely, and only used POS n-grams instead. The
idea of replacing some of the tokens by their POS
tag is also investigated by Joshi and Penstein-Rosé
(2009), where the authors used n ≤ 3.

3.1.2 Various Changes Compared to NRC
Canada 2013

• We do not allow n-grams (or POS n-grams)
to span over sentence boundaries.

• Substrings of length up to 6 (instead of 5).

• Substring features are weighted in-
creasingly by their length (weights
0.7 · {1.0, 1.1, 1.2, 1.4, 1.6, 1.9} for lengths
3, 4, . . . )

• Instead of the score itself, we used the sig-
moid value s(t) = 1/(1 + e−t)) of each lexi-
con score. For each lexicon, the 4 scores were
the same as in (Mohammad et al., 2013), i.e.
per tweet, we use the number of tokens ap-
pearing in the lexicon, the sum and the max
of the scores, and the last non-zero score.

We skipped some features from the baseline ap-
proach (because their effect was not significant in
our setting): Elongated words (number of words
with one character repeated more than two times),
and word clustering. Also, we had a slightly sim-
plified variant of how to use the lexicon scores.
We didn’t count the lexicon scores separately per
emotion (pos and neg), but only altogether.

3.2 Existing Features

Text Preprocessing. A good tokenization seems
very important for twitter data. We used the pop-
ular tokenizer ArkTweetNLP (Owoputi et al., 2013)
which is suitable for tweets. All text was trans-
formed to lowercase (except for those features in
(Mohammad et al., 2013) which use case infor-
mation). As usual, URLs were normalized to
http://someurl and twitter user IDs to @someuser.

We also employed the usual marking of negated
contexts of a sentence as in (Pang et al., 2002),
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using the list of negation words from Christopher
Potts’ sentiment tutorial1.

4 Classifier

We used a linear support vector machine (SVM)
classifier, which is standard for text data. The Lib-
Linear package (Fan et al., 2008) was employed for
training the multi-class classifier.

Multi-Class Formulation, and Class Weights.
We found significant performance changes de-
pending on which type of multi-class SVM, and
also which regularizer (`1- or `2-norm) is used.
For the multi-class variant, we found the one-
against-all models to perform slightly better than
the Crammer and Singer (2001) formulation.

More importantly, since the 3 classes (posi-
tive, negative and neutral) are quite unbalanced
in size in the training set, it is crucial to set a
good weight for each class in the SVM. We used
(4.52, 1.38, 1.80), which corresponds to the twice
the ratio of each class compared to the average
class size.

Sparse Linear Classifiers. In our setting, an
`1-regularized squared loss SVM (one-against-all)
performed best (this is mode L1R L2LOSS SVC in
LibLinear), despite the fact that `2-regularization is
generally more commonly used in text applica-
tions. We used C = 0.055 for the regularization
parameter, and ε = 0.003 as the optimization stop-
ping criterion. We did not employ any kernel, but
always used linear classifiers.

Another benefit of the `1-regularization is that
the resulting classifier is extremely sparse and
compact, which significantly accelerates the eval-
uation of the classifier on large amounts of text,
e.g. for testing. Our final classifier only uses
1985 non-zero features (1427 unigram/substrings,
and 558 other features, such as lexicon scores, n-
grams, POS n-grams, as explained in the previous
Section 3).

As the resulting classifier is so small, it is also
relatively easy to read and interpret. We have
made our final classifier weights publicly available
for download as a text file2 . Every line contains
the feature description followed by the 3 weights
corresponding to the 3 sentiment classes.

1 http://sentiment.christopherpotts.
net/lingstruc.html

2http://www.m8j.net/sentiment/

Our final classifier was trained on 9641 tweets,
which are all we could download from the IDs
given in this years train and dev set.

5 Lexicons

A sentiment lexicon is a mapping from words (or
n-grams) to an association score corresponding to
positive or negative sentiment. Such lists can be
constructed either from manually labeled data (su-
pervised), or automatically labeled data (unsuper-
vised) as for example tweets with a positive or
negative smiley. We used the same set of lexicons
as in (Mohammad et al., 2013), with one addition:

5.1 A Lexicon for 3-Class Classification
Our main new addition was another type of lexi-
con, which not only provides one score per word,
but 3 of them, (being the association to positive,
negative and neutral). The idea here is to improve
on the discrimination quality, especially for neu-
tral text, and treat all 3 labels in this multi-class
task the same way, instead of just 2 as in the pre-
vious approaches.

Data. We found it challenging to find good
datasets to build such a lexicon. We again used the
Sentiment140 corpus (Go et al., 2009) (containing
tweets with positive or negative emoticons). Using
a subset of 100k positive and 100k negative ones,
we added a set of 100k arbitrary (hopefully neu-
tral) tweets. The neutral set was chosen randomly
from the thinknook.com dataset3 of 1.5mio tweets
(from which we ignored the provided labels, and
counted the tweets as neutral).

We did the same with the movie reviews from
the recent kaggle competition on annotated re-
views from the rotten-tomatoes website4. We au-
tomatically built a lexicon from 100k texts in this
dataset, with the data balanced equally for the
three classes.

Features Used in the Lexicon. To construct the
lexicon, we extracted the POS n-grams (as we de-
scribed in Section 3.1.1 above) from all texts. In
comparison, Mohammad et al. (2013) used non-
contiguous n-grams (unigram–unigram, unigram–
bigram, and bigram–bigram pairs). We only used
POS n-grams with 2 tokens kept original, and the

3 http://thinknook.com/twitter-
sentiment-analysis-training-corpus-
dataset-2012-09-22/

4 http://www.kaggle.com/c/
sentiment-analysis-on-movie-reviews/data
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remaining ones replaced by their POS tag, with n
ranging from 3 to 6.

Building the Lexicon. While in (Mohammad
et al., 2013), the score for each n-gram was com-
puted using point-wise mutual information (PMI)
with the labels, we trained a linear classifier on
the same labels instead. The lexicon weights are
set as the resulting classifier weights for our (POS)
n-grams. We used the same type of sparse SVM
trained with LibLinear, for 3 classes, as in the final
classifier.

Download of the Lexicons. We built 4 lexicons
as described above. Thanks to the sparsity of
the linear weights from the SVM, they are again
relatively small, analogous to the final classifier.
We also provide the lexicons for download as text
files5.

5.2 Existing Lexicons

Lexicons from Manually Labeled Data. We
used the same 3 existing sentiment lexicons as in
(Mohammad et al., 2013). All lexicons give a sin-
gle score for each word (if present in the lexicon).
Those existing lexicons are: NRC Emotion Lexi-
con (about 14k words), the MPQA Lexicon (about
8k words), and the Bing Liu Lexicon (about 7k
words).

Lexicons from Automatically Labeled Data.
The NRC hashtag sentiment lexicon was gen-
erated automatically from a set of 775k tweets
containing a hashtag of a small predefined list
of positive and negative hashtags (Mohammad
et al., 2013). Lexicon scores were trained via
PMI (point-wise mutual information). Scores are
not only available for words, but also unigram–
unigram, unigram–bigram, and bigram–bigram
pairs (that can be non-contiguous in the text).

The Sentiment140 lexicon (Go et al., 2009) was
generated automatically from a set of 1.6 million
tweets containing a positive or negative emoticon.
This uses the same features and scoring as above.

6 Conclusion

We have described an SVM classifier to detect the
sentiment of short texts such as tweets. Our sys-
tem is built up on the approach of NRC Canada
(Mohammad et al., 2013), with several modifica-
tions and extensions (e.g. sparse linear classifiers,

5http://www.m8j.net/sentiment/

POS-n-grams, new lexicons). We have seen that
our system significantly improves the baseline ap-
proach, achieving a gain of 1.56 points in F1 score.

We participated in the SemEval-2014 competi-
tion for Twitter polarity classification, and our sys-
tem was among the top ten out of 50 submissions,
with an F1-score of 67.54 on tweets.

For future work, it would be interesting to in-
corporate our improvements into the most recent
version of NRC Canada or similar systems, to see
how much one could gain there.
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Abstract

This paper describes the Synalp-Empathic
system that competed in SemEval-2014
Task 9B Sentiment Analysis in Twitter.
Our system combines syntactic-based va-
lence shifting rules with a supervised
learning algorithm (Sequential Minimal
Optimization). We present the system, its
features and evaluate their impact. We
show that both the valence shifting mech-
anism and the supervised model enable to
reach good results.

1 Introduction

Sentiment Analysis (SA) is the determination of
the polarity of a piece of text (positive, nega-
tive, neutral). It is not an easy task, as proven
by the moderate agreement between human an-
notators when facing this task. Their agreement
varies whether considering document or sentence
level sentiment analysis, and different domains
may show different agreements as well (Berming-
ham and Smeaton, 2009).

As difficult the task is for human beings, it is
even more difficult for machines which face syn-
tactic, semantic or pragmatic difficulties. Consider
for instance irrealis phenomena such as “if this is
good” or “it would be good if ” that are both neu-
tral. Irrealis is also present in questions (“is this
good?”) but presupposition of existence does mat-
ter: “can you fix this terrible printer?” would be
polarized while “can you give me a good advice?”
would not. Negation and irrealis interact as well,
compare for instance “this could be good” (neutral
or slightly positive) and “this could not be good”
(clearly negative). Other difficult phenomena in-
clude semantic or pragmatic effects, such as point

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

of view (“Israel failed to defeat Hezbollah”, nega-
tive for Israel, positive for Hezbollah), background
knowledge (“this car uses a lot of gas”), seman-
tic polysemy (“this vacuum cleaner sucks” vs “this
movie sucks”), etc.

From the start, machine learning has been the
widely dominant approach to sentiment analy-
sis since it tries to capture these phenomena all-
together (Liu, 2012). Starting from simple n-
grams (Pang et al., 2002), more recent approaches
tend to include syntactic contexts (Socher et al.,
2011). However these supervised approaches
all require a training corpus. Unsupervised ap-
proaches such as the seminal paper of (Turney,
2002) require training corpus as well but do not
require annotations. We propose in this paper to
look first at approaches that do not require any
corpus because annotating a corpus is in general
costly, especially in sentiment analysis in which
several annotators are required to maintain a high
level of agreement1. Nevertheless supervised ma-
chine learning can be useful to adapt the system
to a particular domain and we will consider it as
well.

Hence, we propose in this paper to first consider
a domain independent sentiment analysis tool that
does not require any training corpus (section 2).
Once the performance of this tool is assessed (sec-
tion 2.4) we propose to consider how the system
can be extended with machine learning in sec-
tion 3. We show the results on the SemEval 2013
and 2014 corpora in section 4.

2 Sentiment Analysis without Corpus

We present here a system that does sentiment anal-
ysis without requiring a training corpus. We do so
in three steps: we first present a raw lexical base-
line that naively considers average valence taking
the prior valence of words from polarity lexicons.

1as done in SemEval2013 SA task (Nakov et al., 2013)
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We then show how to adapt this baseline to the
Twitter domain. Finally, we describe a method
wich takes into account the syntactic context of
polarized words. All methods and strategies are
then evaluated.

2.1 Raw Lexical Baseline

The raw lexical baseline is a simple system that
only relies on polarity lexicons and takes the aver-
age valence of all the words. The valence is mod-
eled using a continuous value in [0, 1], 0.5 being
neutral. The algorithm is as follows:

1. perform part of speech tagging of the input
text using the Stanford CoreNLP tool suite,

2. for all words in the input text, retrieve their
polarity from the lexicons using lemma and
part of speech information. If the word is
found in several lexicons, return the average
of the found polarities. Otherwise if the word
is not found, return 0.5.

3. then for the tweet, simply compute the aver-
age valence among all words.

We tried several lexicons but ended with fo-
cusing on the Liu’s lexicon (Hu and Liu, 2004)
which proved to offer the best results. However
Liu’s lexicon is missing slang or bad words. We
therefore extended the lexicon using the onlines-
langdictionary.com website which provides a list
of slang words expressing either positive or neg-
ative properties. We extracted around 100 words
from this lexicon which we call urban lexicon.

2.2 Twitter Adaptations

From this lexical base we considered several small
improvements to adapt to the Twitter material. We
first observed that the Stanford part of speech tag-
ger had a tendency to mistag the first position
in the sentence as proper noun. Since in tweets
this position is often in fact a common noun, we
systematically retagged these words as common
nouns. Second, we used a set of 150 hand writ-
ten rules designed to handle chat colloquialism
i.e., abbreviations (“wtf ”→ “what the f***”, twit-
ter specific expressions (“mistweet” → ”regretted
tweet”), missing apostrophe (”isnt” → ”isn’t”),
and smileys. Third, we applied hashtag splitting
(e.g. “#ihatemondays”→ “i hate mondays”). Fi-
nally we refined the lexicon lookup strategy to
handle discrepancies between lexicon and part of

speech tagger. For instance, while the part of
speech tagger may tag stabbed as an adjective with
lemma stabbed, the lexicon might list it as a verb
with lemma stab. To improve robustness we there-
fore look first for the inflected form then for the
lemma.

2.3 Syntactic Enhancements

Valence Shifting Valence shifting refers to the
differential between the prior polarity of a word
(polarity from lexicons) and its contextual po-
larity (Polanyi and Zaenen, 2006). Follow-
ing (Moilanen and Pulman, 2007), we apply polar-
ity rewriting rules over the parsing structure. How-
ever we differ from them in that we consider de-
pendency rather than phrase structure trees.

The algorithm is as follows:

1. perform dependency parsing of the text (with
Stanford CoreNLP)

2. annotate each word with its prior polarity as
found in polarity lexicons

3. rewrite prior polarities using dependency
matching, hand-crafted rules

4. return the root polarity

Table 1 shows example rules. Each rule is com-
posed of a matching part and a rewriting part. Both
parts have the form (N, LG, PG, LD, PD) where
N is the dependency name, LG and LD are re-
spectively the lemmas of the governor and de-
pendent words, PG and PD are the polarity of
the governor and dependent words. We write the
rules in short form by prefixing them with the
name of the dependency and either the lemma or
the polarity for the arguments, e.g. N(PG, PD).
For instance, the inversion rule “neg(PG, PD) →
neg(!PG, PD)” inverts the polarity of the gover-
nor PG for dependencies named neg. One impor-
tant rule is the propagation rule “N (0.5, PD) →
N (PD,PD)” which propagates the polarity of the
dependent word PD to the governor only if it is
neutral. Another useful rule is the overwrite rule
“amod(1,0)→ amod(0,0)” which erases for amod
dependencies, the positive polarity of the governor
given a negative modifier.

The main algorithm for rule application consists
in testing all rules (in a fixed order) on all de-
pendencies iteratively. Whenever a rule fires, the
whole set of rules is tested again. Potential looping
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Rule Example
neg(PG, PD)→ neg(!PG, PD) he’s not happy
det(PG, “no”)→ det(!PG,“no”) there is no hate

amod(1,0)→ amod(0,0) a missed opportunity
nsubj(0,1)→ nsubj(0,0) my dreams are crushed
nsubj(1,0)→ nsubj(1,1) my problem is fixed

N (0.5, PD)→ N (PD ,PD) (propagation)

Table 1: Excerpt of valence shifting rules.

is prevented because (i) the dependency graph re-
turned by the Stanford Parser is a directed acyclic
graph (de Marneffe and Manning, 2008) and (ii)
the same rule cannot apply twice to the same de-
pendency.

For instance, in the sentence “I do not think it
is a missed opportunity”, the verb “missed” has
negative polarity and the noun “opportunity” has
positive polarity. The graph in Figure 1 shows dif-
ferent rules application: first the overwrite rule (1.)
changes the positive polarity of “opportunity” to a
negative polarity which is then transferred to the
main verb “think” thanks to the propagation rule
(2.). Finally, the inversion rule (3.) inverts the neg-
ative polarity of think. As a result, the polarity of
the sentence is positive.

Figure 1: Rules application example.

Various Phenomena Several other phenomena
need to be taken into account when considering
the co-text. Because of irrealis phenomena men-
tioned in the introduction, we completely ignored
questions. We also ignored proper nouns (such as
in “u need 2 c the documentary The Devil Inside”)
which were a frequent source of errors. These two
phenomena are labeled Ignoring forms in Table 2.
Finally since our approach is sentence-based we
need to consider valence of tweets with several
sentences and we simply considered the average.

2.4 Results on SemEval2013
We measure the performance of the different
strategies on the 3270 tweets that we downloaded
from the SemEval 2013 Task 2 (Nakov et al.,
2013) test corpus2. The used metrics is the same

2Because of Twitter policy the test corpus is not dis-
tributed by organizers but tweets must be downloaded using

than SemEval 2013 one, an unweighted average
between positive and negative F-score.

System F-score Gain
Raw lexical baseline 54.75
+ Part of speech fix 55.00 +0.25
+ Colloqualism rewriting 57.66 +2.66
+ Hashtag splitting 57.80 +0.14
+ Lexicon fetch strategy 58.25 +0.45
+ Valence shifting 62.37 +4.12
+ Ignoring forms 62.97 +0.60

Table 2: Results of syntactic system.

As shown in Table 2, the raw lexical baseline
starts at 54.75% F-score. The two best improve-
ments are Colloquialism rewriting (+2.66) that
seems to capture useful polarized elements and
Valence shifting (+4.12) which provides an accu-
rate account for shifting phenomena. Overall other
strategies taken separately do not contribute much
but enable to have an accumulated +1.44 gain of
F-score. The final result is 62.97%, and we will
refer to this first system as the Syntactic system.

3 Machine Learning Optimization

The best F-score attained with the syntactic system
(62.97%) is still below the best system that par-
ticipated in SemEval2013 (69.02%)3. To improve
performance, we input the valence computed by
the syntactic system as a feature in a supervised
machine learning (ML) algorithm. While there ex-
ists other methods such as (Choi and Cardie, 2008)
which incorporates syntax at the heart in the ma-
chine algorithm, this approach has the advantage
to be very simple and independent of any specific
ML algorithm. We chose the Sequential Minimal
Optimization (SMO) which is an optimization of
Support Vector Machine (Platt, 1999) since it was
shown (Balahur and Turchi, 2012) to have good
results that we observed ourselves.

In addition to the valence output by our syntac-
tic system, we considered the following additional
low level features:

• 1-grams words: we observed lower results
with n-grams (n > 1) and decided to keep
1-grams only. The words were lemmatized
and no tf-idf weighting was applied since it
showed lower results.

• polarity counts: it is interesting to in-
clude low level polarity counts in case the

their identifiers, resulting in discrepancies from the official
campaign (3814 tweets).

3Evaluated on full 3814 tweets corpus
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syntactic system does not correctly cap-
ture valence shifts. We thus included
independent features counting the number
of positive/negative/neutral words accord-
ing to several lexicons: Liu’s lexicon (Hu
and Liu, 2004), our urban lexicon, Senti-
Wordnet (Baccianella et al., 2010), QWord-
net (Agerri and Garca-Serrano, 2010) and
MPQA lexicon (Wilson et al., 2005).

• punctuation count: exclamation and interro-
gation marks are important, so we have an
independent feature counting occurrences of
“?”, “!”, “?!”, “!?”.

Thanks to the ML approach, we can obtain for
a given tweet the different probabilities for each
class. We were then able to adapt each probabili-
ties to favor the SemEval metrics by weighting the
probabilities thanks to the SemEval 2013 training
and development corpus using 10-fold cross vali-
dation (the weights were trained on 90% and eval-
uated on 10%). The resulting weights reduce the
probability to assign the neutral class to a given
tweet while raising the positive/negative probabil-
ities. This optimization is called metrics weighting
in Table 3.

4 Optimization Results

We describe here the results of integrating the syn-
tactic system as a feature of the SMO along with
other low level features. The SemEval 2014 gold
test corpus was not available at the time of this
writing hence we detail the features only on the
SemEval 2013 gold test corpus.

4.1 On SemEval 2013

The results displayed in Table 3 are obtained with
the SMO classifier trained using the WEKA li-
brary (Hall et al., 2009) on our downloaded Se-
mEval 2013 development and training corpora
(7595 tweets). As before, the given score is the
average F-score computed on the SemEval 2013
test corpus. Note that the gain of each feature
must be interpreted in the context of other features
(e.g. Polarity counts needs to be understood as
Words+Polarity Counts).

The syntactic system feature, that is consider-
ing only one training feature which is the valence
annotated by the syntactic system, starts very low
(33.69%) since it appears to systematically fa-
vor positive and neutral classes. However adding

Features F-score Gain
Syntactic system 33.69
+ Words 63.03 +29.34
+ Polarity counts 65.02 +1.99
+ Punctuation 65.65 +0.63
+ Metrics weighting 67.83 +2.18

Table 3: Detailed results on SemEval 2013.

the 1-gram lemmatized words raises the result to
63.03%, slightly above the syntactic system alone
(62.97%). Considering polarity counts raises the
F-score to 65.02% showing that the syntactic sys-
tem does not capture correctly all valence shifts
(or valence neutralizations). Considering an inde-
pendent feature for punctuation slightly raises the
result. Metrics weighting, while not being a train-
ing feature per se, provides an important boost for
the final F-score (67.83%).

4.2 On SemEval 2014

We participated to SemEval 2014 task B as the
Synalp-Empathic team (Rosenthal et al., 2014).
The results are 67.43% on the Twitter 2014
dataset, 3.53 points below the best system. In-
terestingly the score obtained on Twitter 2014 is
very close to the score we computed ourselves on
Twitter 2013 (67.83%) suggesting no overfitting to
our training corpus. However, we observed a big
drop in the Twitter 2013 evaluation as carried out
by organizers (63.65%), we assume that the differ-
ence in results could be explained by difference in
datasets coverage caused by Twitter policy.

5 Discussion and Conclusion

We presented a two-steps approach for sentiment
analysis on Twitter. We first developed a lexico-
syntactic approach that does not require any train-
ing corpus and enables to reach 62.97% on Se-
mEval 2013. We then showed how to adapt the
approach given a training corpus which enables
reaching 67.43% on SemEval 2014, 3.53 points
below the best system. We further showed that
the approach is not sensitive to overfitting since it
proved to be as efficient on the SemEval 2013 and
the SemEval 2014 test corpus. In order to improve
the performance, it could be possible adapt the
lexicons to the specific Twitter domain (Demiroz
et al., 2012). It may also be possible to investi-
gate how to learn automatically the valence shift-
ing rules, for instance with Monte Carlo methods.
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Abstract

In this paper, we introduce our contribu-
tions to the SemEval-2014 Task 4 – As-
pect Based Sentiment Analysis (Pontiki et
al., 2014) challenge. We participated in
the aspect term polarity subtask where
the goal was to classify opinions related
to a given aspect into positive, negative,
neutral or conflict classes. To solve this
problem, we employed supervised ma-
chine learning techniques exploiting a rich
feature set. Our feature templates ex-
ploited both phrase structure and depen-
dency parses.

1 Introduction

The booming volume of user-generated content
and the consequent popularity growth of online re-
view sites has led to vast amount of user reviews
that are becoming increasingly difficult to grasp.
There is desperate need for tools that can automat-
ically process and organize information that might
be useful for both users and commercial agents.

Such early approaches have focused on deter-
mining the overall polarity (e.g., positive, nega-
tive, neutral, conflict) or sentiment rating (e.g.,
star rating) of various entities (e.g., restaurants,
movies, etc.) cf. (Ganu et al., 2009). While the
overall polarity rating regarding a certain entity
is, without question, extremely valuable, it fails
to distinguish between various crucial dimensions
based on which an entity can be evaluated. Evalu-
ations targeting distinct key aspects (i.e., function-
ality, price, design, etc) provide important clues
that may be targeted by users with different priori-
ties concerning the entity in question, thus holding

∗The work was done while this author was working as a
guest researcher at the University of Szeged

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

much greater value in one’s decision making pro-
cess.

In this paper, we introduce our contribution to
the SemEval-2014 Task 4 – Aspect Based Sen-
timent Analysis (Pontiki et al., 2014) challenge.
We participated in the aspect term polarity sub-
task where the goal was to classify opinions which
are related to a given aspect into positive, nega-
tive, neutral or conflict classes. We employed su-
pervised machine learning techniques exploiting a
rich feature set for target polarity detection, with
a special emphasis on features that deal with the
detection of aspect scopes. Our system achieved
an accuracy of 0.752 and 0.669 for the restaurant
and laptop domains, respectively.

2 Approach

We employed a four-class supervised (positive,
negative, neutral and conflict) classifier here. As
a normalization step, we converted the given texts
into their lowercased forms. Bag-of-words fea-
tures comprised the basic feature set for our max-
imum entropy classifier, which was shown to be
helpful in polarity detection (Hangya and Farkas,
2013).

In the case of aspect-oriented sentiment detec-
tion, we found it important to locate text parts
that refer to particular aspects. For this, we used
several syntactic parsing methods and introduced
parse tree based features.

2.1 Distance-weighted Bag-of-words Features
Initially, we used n-gram token features (unigrams
and bigrams). It could be helpful to take into con-
sideration the distance between the token in ques-
tion and the mention of the target aspect. The
closer a token is to an entity the more plausible
that the given token is related to the aspect.
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<ROOT> The food was great but the service was awful .
DT NN VBD JJ CC DT NN VBD JJ .

ROOT

SBJNMOD PRD

COORD

P

CONJ

NMOD SBJ PRD

Figure 1: Dependency parse tree (MATE parser).

For this we used weighted feature vectors, and
weighted each n-gram feature by its distance in to-
kens from the mention of the given aspect:

1

e
1
n
|i−j| ,

where n is the length of the review and the values
i, j are the positions of the actual word and the
mentioned aspect.

2.2 Polarity Lexicon

To examine the polarity of the words comprising
a review, we incorporated the SentiWordNet sen-
timent lexicon (Baccianella et al., 2010) into our
feature set.

In this resource, synsets – i.e. sets of word
forms sharing some common meaning – are as-
signed positivity, negativity and objectivity scores.
These scores can be interpreted as the probabilities
of seeing some representatives of the synsets in
a positive, negative and neutral meaning, respec-
tively. However, it is not unequivocal to deter-
mine automatically which particular synset a given
word belongs to with respect its context. Consider
the word form great for instance, which might
have multiple, fundamentally different sentiment
connotations in different contexts, e.g. in expres-
sions such as “great food” and “great crisis”.

We determined the most likely synset a particu-
lar word form belonged to based on its contexts by
selecting the synset, the members of which were
the most appropriate for the lexical substitution
of the target word. The extent of the appropri-
ateness of a word being a substitute for another
word was measured relying on Google’s N-Gram
Corpus, using the indexing framework described
in (Ceylan and Mihalcea, 2011).

We look up the frequencies of the n-grams that
we derive from the context by replacing the tar-
get words with its synonyms(great) from various

synsets, e.g. good versus big. We count down the
frequency of the phrases food is good and food is
big in a huge set of in-domain documents (Cey-
lan and Mihalcea, 2011). Than we choose the
meaning which has the highest probability, good
in this case. This way we assign a polarity value
for each word in a text and created three new fea-
tures for the machine learning algorithm, which
are the number of positive, negative and objective
words in the given document.

2.3 Negation Scope Detection

Since negations are quite frequent in user reviews
and have the tendency to flip polarities, we took
special care of negation expressions. We collected
a set of negation expressions, like not, don’t, etc.
and a set of delimiters and, or, etc. It is reasonable
to think that the scope of a negation starts when
we detect a negation word in the sentence and it
lasts until the next delimiter. If an n-gram was in
a negation scope we added a NOT prefix to that
feature.

2.4 Syntax-based Features

It is very important to discriminate between text
fragments that are referring to the given aspect and
the fragments that do not, within the same sen-
tence. To detect the relevant text fragments, we
used dependency and constituency parsers. Since
adjectives are good indicators of opinion polarity,
we add the ones to our feature set which are in
close proximity with the given aspect term. We
define proximity between an adjective and an as-
pect term as the length of the non-directional path
between them in the dependency tree. We gather
adjectives in proximity less than 6.

Another feature, which is not aspect specific but
can indicate the polarity of an opinion, is the polar-
ity of words’ modifiers. We defined a feature tem-
plate for tokens whose syntactic head is present in
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Figure 2: Constituency parse tree (Stanford parser).

our positive or negative lexicon. For dependency
parsing we used the MATE parser (Bohnet, 2010)
trained on the Penn Treebank (penn2malt conver-
sion), an example can be seen on Figure 1.

Besides using words that refer to a given aspect,
we tried to identify subsentences which refers to
the aspect mention. In a sentence we can express
our opinions about more than one aspect, so it is
important not to use subsentences containing opin-
ions about other aspects. We developed a sim-
ple rule based method for selecting the appropri-
ate subtree from the constituent parse of the sen-
tence in question (see Figure 2). In this method,
the root of this subtree is the leaf which contains
the given aspect initially. In subsequent steps the
subtree containing the aspect in its yield gets ex-
panded until the following conditions are met:

• The yield of the subtree consists of at least
five tokens.

• The yield of the subtree does not contain any
other aspect besides the five-token window
frame relative to the aspect in question.

• The current root node of the subtree is either
the non-terminal symbol PP or S.

Relying on these identified subtrees, we intro-
duced a few more features. First, we created
new n-gram features from the yield of the sub-
tree. Next, we determined the polarity of this sub-
tree with a method proposed by Socher et al. ()
and used it as a feature. We also detected those
words which tend to take part in sentences con-
veying subjectivity, using the χ2 statistics calcu-
lated from the training data. With the help of these

words, we counted the number of opinion indica-
tor words in the subtree as additional features. We
used the Stanford constituency parser (Klein and
Manning, 2003) trained on the Penn Treebank for
these experiments.

2.5 Clustering

Aspect mentions can be classified into a few dis-
tinct topical categories, such as aspects regarding
the price, service or ambiance of some product or
service. Our hypothesis was that the distribution
of the sentiment categories can differ significantly
depending on the aspect categories. For instance,
people might tend to share positive ideas on the
price of some product rather than expressing neg-
ative, neutral or conflicting ideas towards it. In
order to make use of this assumption, we automat-
ically grouped aspect mentions based on their con-
texts as different aspect target words can still refer
to the very same aspect category (e.g. “delicious
food” and “nice dishes”).

Clustering of aspect mentions was performed
by determining a vector for each aspect term based
on the words co-occurring with them. 6, 485 dis-
tinct lemmas were found to co-occur with any of
the aspect phrases in the two databases, thus con-
text vectors originally consisted of that many el-
ements. Singular value decomposition was then
used to project these aspect vectors into a lower di-
mensional ’semantic’ space, where k-means clus-
tering (with k = 10) was performed over the data
points. For each classification instance, we re-
garded the cluster ID of the particular aspect term
as a nominal feature.
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3 Results

In this section, we will report our results on the
shared task database which consists of English
product reviews. There are 3, 000 laptop and
restaurant related sentences, respectively. Aspects
were annotated in these sentences, resulting in a
total of 6, 051 annotated aspects. In our experi-
ments, we used maximum entropy classifier with
the default parameter settings of the Java-based
machine learning framework MALLET (McCal-
lum, ).
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Figure 3: Accuracy on the restaurant test data.
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Figure 4: Accuracy on the laptop test data.

Our accuracy measured on the restaurant and
laptop test databases can be seen on figures 3 and
4. On the x-axis the accuracy loss can be seen
comparing to our baseline (n-gram features only)
and full-system, while turning off various sets of
features. Firstly, the weighting of n-gram features
are absent, then features based on aspect clustering
and words which indicate polarity in texts. After-
wards, features that are created using dependency
and constituency parsing are turned off and lastly
sentiment features based on the SentiWordNet lex-
icon are ignored. It can be seen that omitting the
features based on parsing results in the most seri-
ous drop in performance. We achieved 1.1 and 2.6
error reduction on the restaurant and laptop test
data using these features, respectively.

In Table 1 the results of several other participat-
ing teams can be seen on the restaurant and laptop
test data. There were more than 30 submissions,
from which we achieved the sixth and third best
results on the restaurants and laptop domains, re-
spectively. At the bottom of the table the official
baselines for each domain can be seen.

Team restaurant laptop
DCU 0.809 0.704

NRC-Canada 0.801 0.704
SZTE-NLP 0.752 0.669

UBham 0.746 0.666
USF 0.731 0.645

ECNU 0.707 0.611
baseline 0.642 0.510

Table 1: Accuracy results of several other partici-
pants. Our system is named SZTE-NLP.

4 Conclusions

In this paper, we presented our contribution to the
aspect term polarity subtask of the SemEval-2014
Task 4 – Aspect Based Sentiment Analysis chal-
lenge. We proposed a supervised machine learn-
ing technique that employs a rich feature set tar-
geting aspect term polarity detection. Among the
features designed here, the syntax-based feature
group for the determination of the scopes of the as-
pect terms showed the highest contribution. In the
end, our system was ranked as 6th and 3rd, achiev-
ing an 0.752 and 0.669 accuracies for the restau-
rant and laptop domains, respectively.
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Gábor Berend and Richárd Farkas was partially
funded by the ”Hungarian National Excellence
Program“ (TÁMOP 4.2.4.A/2-11-1-2012-0001),
co-financed by the European Social Fund.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. SentiWordNet 3.0: An Enhanced Lex-
ical Resource for Sentiment Analysis and Opinion
Mining. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC’10).

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010), pages 89–97, Bei-
jing, China, August. Coling 2010 Organizing Com-
mittee.

Hakan Ceylan and Rada Mihalcea. 2011. An efficient
indexer for large n-gram corpora. In ACL (System
Demonstrations), pages 103–108. The Association
for Computer Linguistics.

Gayatree Ganu, Noemie Elhadad, and Amelie Marian.
2009. Beyond the stars: Improving rating predic-
tions using review text content. In WebDB.

Viktor Hangya and Richard Farkas. 2013. Target-
oriented opinion mining from tweets. In Cognitive
Infocommunications (CogInfoCom), 2013 IEEE 4th
International Conference on, pages 251–254. IEEE.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st ACL, pages 423–430.

Andrew Kachites McCallum. Mallet: A machine
learning for language toolkit.

Maria Pontiki, Dimitrios Galanis, John Pavlopou-
los, Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4:
Aspect based sentiment analysis. In Proceedings of
the International Workshop on Semantic Evaluation,
SemEval ’14.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, October.

614



Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 615–618,
Dublin, Ireland, August 23-24, 2014.

SZTE-NLP: Clinical Text Analysis with Named Entity Recognition

Melinda Katona and Richárd Farkas
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Abstract

This paper introduces our contribution to
the SemEval-2014 Task 7 on ”Analysis of
Clinical Text”. We implemented a sys-
tem which combines MetaMap taggings
and Illinois NER Tagger. MetaMap is de-
veloped to link the text of medical doc-
uments to the knowledge embedded in
UMLS Metathesaurus. The UMLS con-
tains a very rich lexicon while the promise
of a NER system is to carry out context-
sensitive tagging. Our system’s perfor-
mance was 0.345 F-measure in terms of
strict evaluation and 0.551 F-measure in
terms of relaxed evaluation.

1 Introduction

Clinical notes and discharge summaries from the
patient’s medical history contain a huge amount
of useful information for medical researchers and
also for hospitals. The automatic identification
of these unstructured information is an impor-
tant task for analysis of free-text electronic health
records. Natural Language Processing (NLP)
techniques provide a solution to process clinical
documents and to help patients understand the
contents of their clinical records (Tang et al., 2012;
Lee et al., 2004).

In this paper we introduce an approach which
discovers mentions of disorders in the free-text of
discharge summaries. The system participated in
the SemEval-2014 Task 7: Analysis of Clinical
Text, Task A.

Task A aims at the identifying of mention
concepts that belong to the UMLS (Boden-
reider, 2004) semantic group ”disorders” and
Task B is for mapping from each mention to

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

a unique UMLS/SNOMED-CT CUI (Concept
Unique Identifiers). Here are a few examples from
the task description:

• The rhythm appears to be atrial fibrillation.

,,atrial fibrillation” is a mention of type disor-
ders with CUI C0004238

• The left atrium is moderately dilated.

,,left atrium [...] dilated” is a mention of type
disorders with CUI C0344720

• 53 year old man s/p fall from ladder.
,,fall from ladder” is a mention of type disor-
ders with CUI C0337212

Many approaches have been published to solve
these problems cf. (Skeppstedt et al., 2012; Pes-
tian et al., 2007).

2 Approach

After a text-normalization step we run a Named
Entity Recogniser (NER) on the documents. This
NER model was trained on the training set of the
shared task. It also employs a dictionary gathered
from UMLS through MetaMap tagging. Our ini-
tial experiments revealed that MetaMap (Aronson
and Lang, 2010) in its own gives a very poor pre-
cision hence we decided to investigate a NER ap-
proach which takes the context also into account.

2.1 Normalization
Clinical reports contain numerous special annota-
tions, such as anonymized data (for example pa-
tient name), etc. We made the following steps to
normalize texts:

• We removed the unnecessary characters, such
as . , ! ? # : ; — = + * ˆ

• Then replaced the [****] anonymized tags
with REPLACED ANONYMOUS DATA
notation.
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2.2 UMLS Dictionary

Our NER system constructs features from dic-
tionaries as well. We created a dictionary from
UMLS with the help of MetaMap for incorporat-
ing external knowledge into the NER. The use of a
specialized dictionary is important because it con-
tains phrases that occur in clinical texts.

MetaMap (Aronson and Lang, 2010) is devel-
oped to link the text of medical documents to the
knowledge embedded in UMLS Metathesaurus.
MetaMap employs natural language processing
techniques working at the lexical/syntactic lev-
els, for example handling acronyms/abbrevations,
POS tagging, word sense disambiguation and so
on.

Both the test and training datasets were used
for creating our dictionary. We used MetaMap to
collect disorders from raw texts. After that, we
removed the redundant and most frequently used
common words, based on a list of the 5000 most
frequent English words according to the Google’s
n-gram corpus1.

2.3 Named Entity Recognition

In the task “Analysis of Clinical Text”, our task is
to recognize mentions of concepts that belong to
the UMLS semantic group “disorder”, which can
be viewed as a subclass of named entities, so NER
approach is effective for this assignment.

For training, we used the Illinois Named En-
tity Recognition (Ratinov and Roth, 2009) sys-
tem. By default, Illinois NER contains Wikipedia
gazetters and categories, but in this task, we need
one or more dictionary which contains disorders
and other clinical text terminology.

NER is typically viewed as a sequence label-
ing problem. The typical models include HMM
(Rabiner, 1989), CRF (Lafferty et al., 2001) and
sequential application of Perceptron or Winnow
(Collins, 2002). Illinois NER has several infer-
ence algorithms: Viterbi, beamsearch, greedy left-
to-right decoding. In our approach, we used beam-
search. The beamsize was 3. Initially, we used
bigger beamsize, but our empirical studies showed
that applying a small beamsize is more effective.

Beside the decoding algorithm, an important
question that has been studied extensively in the
context of shallow parsing which was somewhat
overlooked in the NER literature is the represen-

1http://storage.googleapis.com/books/ngrams/books/
datasetsv2.html

tation of text segments. Illinois NER contains
several representation schemes such as BIO and
BILOU - two of the most popular schemes. The
BIO scheme is employed to train classifiers that
identify Beginning, the Inside and the Outside of
the text segment. The BILOU scheme is employed
to train classifiers that identify the Beginning, the
Inside and the Last tokens of multi-token chunks
as well as Unit-length chunks. We used the
BILOU scheme.

The key intuition behind non-local features in
NER has been that identical tokens should have
identical label assignments. Ratinov and Roth
(2009) consider three approaches proposed in the
literature namely context aggregation, two-stage
prediction aggregation and extended prediction
history. The combination of these approaches is
more stable and better than any approach taken
alone.

In our experiments we used the combination
of context aggregation and two-stage prediction
aggregation. Context aggregation is the fol-
lowing approach in Illinois NER: for each to-
ken instance xi we used the tokens in the win-
dow of size two around it as features: ci =
xi−2, xi−1, xi, xi+1, xi+2. If the same token (t)
appears in several locations in the text for each in-
stance xij (xi1 , xi2 , . . ., xiN ). We also aggregated
the context across all instances within 200 tokens.

Context aggregation as done above can lead to
an excessive number of features. Some instances
of a token appear in easily-identifiable contexts.
The resulting predictions were used as features at
a second level of inference. This is a two-stage
prediction aggregation.

3 Experimental Results

Our system was developed and trained only on the
training set provided by the organizers and was
evaluated on the test set. The performance was
evaluated by Precision, Recall and F-measure in
both “strict” and “relaxed” modes. ”Strict“ means
that a concept is recognized correctly if the start-
ing and ending offsets are the same as in gold stan-
dard and “relaxed” means that a disorder mention
is correctly recognized as long as it overlaps with
the gold standard disorder mention.

3.1 Dataset

For training and testing, we used the datasets pro-
vided by the shared task organisers. The train-
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Strict Relaxed
P R F P R F

original NER 0.508 0.225 0.312 0.874 0.378 0.528
NER with normalization 0.509 0.229 0.316 0.875 0.383 0.528
NER with normalization and full dictionary 0.512 0.226 0.313 0.878 0.378 0.533
NER with normalization and filtered dictionary 0.516 0.232 0.320 0.890 0.390 0.542

Table 1: Evaluation results of our system on the training set (P - Precision, R - Recall, F - F-score).

ing dataset contains of 398 notes from different
clinical documents including radiology reports,
discharge summaries, and ECG/ECHO reports.
For each note, disorder entities were annotated
based on a pre-defined guideline and then mapped
to SNOMED-CT concepts represented by UMLS
CUIs. The reference UMLS version was 2012AB.
If a disorder entity could not be found, it was
marked as CUI-less, otherwise marked with CUI
identifier.

The training set was used for system develop-
ment, and we evaluated the system on the test set
of 133 notes.

3.2 Results

We examined the contribution of our systems’
steps. Table 1 summarizes the results where the
first column contains result of named entity tag-
ger without any modification. Normalization gave
only a marginal improvement in accuracy. Next,
we employed all MetaMap matches as a feature
for the NER module. This decreased recall, be-
cause NER identified a lot of unnecessary expres-
sion. In our final and submitted system, we filtered
this dictionary as described in the previous section.

Lastly, Table 2 shows our official evaluation re-
sults.

Strict Relaxed
Precision 0.547 0.884
Recall 0.252 0.401
F-score 0.345 0.551

Table 2: Results of our submission on the test set.

4 Error Analysis

In both strict and relaxed evaluation modes, preci-
sion is high but recall is low. We have found three
important source of errors:

• multiple meaning words

• unknown disorders

• discontinuous phrases

A named entity tagger with context-aggregation
mode does not monitor multiple meanings, so if a
word has more occurrence, but in other meaning,
it will be a bad tagging. For example

”Seizure-like activity with clamped jaw and left
lip twitching was then noted after several days
of treatment. [...] Despite these therapies, she
failed to recover, and began to show further signs
of increasing intracranial pressure with increasing
seizure activity and posturing [...]”

Our sequence labeling approach cannot recog-
nize discontinuous phrases. Even when every to-
ken was marked, we took only continuous se-
quences as named entity mentions. For example
the sentence

”The left ventricular cavity is moderately di-
lated.”

yields three errors in the strict evaluation sce-
nario. We did not recognise the three token-long
phrase while predicted two false positive men-
tions. We also note that this shortcoming of our
approach is the reason for the huge difference be-
tween the achieved strict and relaxed scores.

The last error category is unrecognised disor-
ders. For instance,

”The PICC line was trimmed to the appropriate
length and advanced over the 0.018 wire with the
tip int the axillary vein”

Named entity tagger identified hepatitis B, but
hepatitis C not because dictionary does not contain
it. Expansion of dictionary increase accuracy.

5 Conclusion

In this paper we examined a machine learning
based disorder recognition system using MetaMap
and Illinois Named Entity Recognition. Illinois
NER uses different dictionaries for training. We
created a new filtered in-domain dictionary and we
showed that this dictionary is an important factor
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for accuracy. The results achieved on the training
set and the test set show that the proposed clinical
dictionary creation procedure is efficient.
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Abstract

This paper provides system description of
the cross-level semantic similarity task for
the SEMEVAL-2014 workshop. Cross-
level semantic similarity measures the de-
gree of relatedness between texts of vary-
ing lengths such as Paragraph to Sen-
tence and Sentence to Phrase. Latent Se-
mantic Analysis was used to evaluate the
cross-level semantic relatedness between
the texts to achieve above baseline scores,
tested on the training and test datasets. We
also tried using a bag-of-vectors approach
to evaluate the semantic relatedness. This
bag-of-vectors approach however did not
produced encouraging results.

1 Introduction

Semantic relatedness between texts have been
dealt with in multiple situations earlier. But it is
not usual to measure the semantic relatedness of
texts of varying lengths such as Paragraph to Sen-
tence (P2S) and Sentence to Phrase (S2P). This
task will be useful in natural language process-
ing applications such as paraphrasing and summa-
rization. The working principle of information re-
trieval system is the motivation for this task, where
the queries are not of equal lengths compared to
the documents in the index. We attempted two
ways to measure the semantic similarity for P2S
and S2P in a scale of 0 to 4, 4 meaning both texts
are similar and 0 being dissimilar. The first one
is Latent Semantic Analysis (LSA) and second, a
bag-of-vecors (BV) approach. An example of tar-
get similarity ratings for comparison type S2P is
provided in table 1.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence de-
tails: http://creativecommons.org/licenses/
by/4.0/

Sentence: Schumacher was undoubtedly one of
the very greatest racing drivers there has ever
been, a man who was routinely, on every lap, able
to dance on a limit accessible to almost no-one
else.

Score Phrase
4 the unparalleled greatness

of Schumachers driving abilities
3 driving abilities
2 formula one racing
1 north-south highway
0 orthodontic insurance

Table 1: An Example - Sentence to Phrase simi-
larity ratings for each scale

2 Data

The task organizers provided training data, which
included 500 pairs of P2S, S2P, Phrase to Word
(P2W) and their similarity scores. The training
data for P2S and S2P included text from different
genres such as Newswire, Travel, Metaphoric and
Reviews. In the training data for P2S, newswire
text constituted 36% of the data, while reviews
constituted 10% of the data and rest of the three
genres shared 54% of the data.

Considering the different genres provided in the
training data, a chunk of data provided for NIST
TAC’s Knowledge Base Population was used for
building a term-by-document matrix on which
to base the LSA method. The data included
newswire text and web-text, where the web-text
included data mostly from blogs. We used 2343
documents from the NIST dataset1, which were
available in eXtended Markup Language format.

Further to the NIST dataset, all the paragraphs
in the training data2 of paragraph to sentence were
added to the dataset. To add these paragraphs to
the dataset, we converted each paragraph into a

1Distributed by LDC (Linguistic Data Consortium)
2provided by the SEMEVAL task-3 organizers
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new document and the documents were added to
the corpus. The unique number of words identi-
fied in the corpus were approximately 40000.

3 System description

We tried two different approaches for evaluating
the P2S and S2P. Latent Semantic Analysis (LSA)
using SVD worked better than the Bag-of-Vectors
(BV) approach. The description of both the ap-
proaches are discussed in this section.

3.1 Latent Semantic Analysis
LSA has been used for information retrieval al-
lowing retrieval via vectors over latent, arguably
conceptual, dimensions, rather than over surface
word dimensions (Deerwester et al., 1990). It was
thought this would be of advantage for comparison
of texts of varying length.

3.1.1 Representation
The data corpus was converted into a mxn term-
by-document matrix, A, where the counts (cm,n)
of all terms (wm) in the corpus are represented
in rows and the respective documents (dn) in
columns:

A =


d1 d2 · · · dn

w1 c1,1 c1,2 · · · c1,n

w2 c2,1 c2,2 · · · c2,n
...

...
...

. . .
...

wm cm,1 cm,2 · · · cm,n


The document indexing rules such as text tok-
enization, case standardization, stop words re-
moval, token stemming, and special characters and
punctuations removal were followed to get the ma-
trix A.

Singular Value Decomposition (SVD) decom-
poses the matrix into U , Σ and V matrices (ie.,
A = UΣV T ) such that U and V are orthonormal
matrices and Σ is a diagonal matrix with singular
values. Retaining just the first k columns of U and
V , gives an approximation of A

A ≈ Ak = UkΣkV
T
k (1)

According to LSA, the columns of Uk are thought
of as representing latent, semantic dimensions,
and an arbitrary m-dimensional vector #»v can be
projected onto this semantic space by taking the
dot-product with each column of Uk; we will call
the result #      »vsem .

In the experiments reported later, the m-
dimensional vector #»v is sometimes a vector of

word counts, and sometimes a thresholded or
‘boolean’ version, mapping all non-zero numbers
to 1.

3.1.2 Similarity Calculation
To evaluate the similarity of a paragraph, p, and a
sentence, s, first these are represented as vectors of
word counts, #»p and #»s , then these are projected in
the latent semantic space, to give #      »psem and #      »ssem ,
and then between these the cosine similarity met-
ric is calculated:

cos( #      »psem . #      »ssem ) =
#      »psem . #      »ssem

| #      »psem |.| #      »ssem | (2)

The cosine similarity metric provides a similarity
value in the range of 0 to 1, so to match the target
range of 0 to 4, the cosine values were multiplied
by 4. Exactly the same procedure is used for the
sentence to phrase comparison.

Further, the number of retained dimensions of
Uk was varied, giving different dimensionalities
of the LSA space. The results of testing at the re-
duced dimensions are discussed in 4.1

3.2 Bag-of-Vectors
Another method we experimented on could be
termed a ‘bag-of-vectors’ (BV) approach: each
word in an item to be compared is replaced by a
vector representing its co-occurrence behavior and
the obtained bags of vectors enter into the compar-
ison process.

3.2.1 Representation
For the BV approach, the same data sources as was
used for the LSA approach is turned into a m×m
term-by-term co-occurrence matrix C:

C =



w1 w2 · · · wm

w1 c1,1 c1,2 · · · c1,m

w2 c2,1 c2,2 · · · c2,m

...
...

...
. . .

...

wm cm,1 cm,2 · · · cm,m


The same preprocessing steps as for the LSA ap-
proach applied (text tokenization, case standard-
ization, stop words removal, special characters and
punctuations removal). Via C, if one has a bag-
of-words representing a paragraph, sentence or
phrase, one can replace it by a bag-of-vectors, re-
placing each word wi by the corresponding row of
C – we will call these rows word-vectors.
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3.2.2 Similarity Calculation
For calculating P2S similarity, the procedure is
as follows. The paragraph and sentence are tok-
enized, and stop-words were removed and are rep-
resented as two vectors #»p and #»s .

For each word pi from #»p , its word vector from
C is found, and this is compared to the word vector
for each word si in #»s , via the cosine measure. The
highest similarity score for each word pi in #»p is
stored in a vector

# »

Sp shown in (3). The overall
semantic similarity score between paragraph and
sentence is then the mean value of the vector

# »

Sp ×
4 – see (4).

Sp =
[
Sp1 Sp2 · · · Spi

]
(3)

Ssim =
∑n

i=1 Spi

n
× 4 (4)

Exactly corresponding steps are carried out for the
S2P similarity. Although experiments were car-
ried out this particular BV approach, the results
were not encouraging. Details of the experiments
carried out are explained in 4.2.

4 Experiments

Different experiments were carried out using LSA
and BV systems described in sections 3.1 and 3.2
on the dataset described in section 2. Pearson
correlation and Spearman’s rank correlation were
the metrics used to evaluate the performance of
the systems. Pearson correlation provides the de-
gree of similarity between the system’s score for
each pair and the gold standard’s score for the said
pair while Spearman’s rank correlation provides
the degree of similarity between the rankings of
the pairs according to similarity.

4.1 LSA
The LSA model was used to evaluate the semantic
similarity between P2S and S2P.

4.1.1 Paragraph to Sentence
An initial word-document matrix A was built by
extracting tokens just based on spaces, stop words
removed and tokens sorted in alphabetical order.
As described in 3.1.1, via the SVD of A, a ma-
trix Uk is obtained which can be used to project an
m dimensional vector into a k dimensional one.
In one setting the paragraph and sentence vec-
tors which are projected into the LSA space have
unique word counts for their dimensions. In an-
other setting before projection, these vectors are

Dimensions 100% 90% 50% 30% 10%

Basic word-doc representation 0.499 - 0.494 0.484 0.426
Evaluation-boolean counts 0.548 - 0.533 0.511 0.420
Constrained tokenization 0.368 0.564 0.540 0.516 0.480

Added data 0.461 0.602 0.568 0.517 0.522

Table 2: Pearson scores at different dimensions -
Paragraph to Sentence

thresholded into ‘boolean’ versions, with 1 for ev-
ery non-zero count.

The Pearson scores for these settings are in the
first and second rows of table 2. They show the
variation with the number of dimensions of the
LSA representation (that is the number of columns
of U that are kept)3. An observation is that the
usage of boolean values instead of word counts
showed improved results.

Further experiments were conducted, retaining
the boolean treatment of the vectors to be pro-
jected. In a new setting, further improvements
were made to the pre-processing step, creating a
new word-document matrix A using constrained
tokenization rules, removing unnecessary spaces
and tabs, and tokens stemmed4. The performance
of the similarity calculation is shown as the third
row of Table 2: there is a trend of increase in cor-
relation scores with respect to the increase in di-
mensionality up to a maximum of 0.564, reached
at 90% dimension.
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Figure 1: Paragraph to Sentence - Pearson corre-
lation scores for four different experiments at dif-
ferent dimensions3 (represented in percent) of Uk

Not convinced with the pearson scores, more

3Here, the dimension X% means k = (X/100) × N ,
where N is the total number of columns in A in the unreduced
SVD.

4Stemmed using Porter Stemmer module availabe from
http://tartarus.org/∼martin/PorterStemmer/
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documents were added to the dataset to build a
new word-document matrix representation A. The
documents included all the paragraphs from the
training set. Each paragraph provided in the train-
ing set was added to the dataset as a separate docu-
ment. The experiment was performed maintaining
the settings from the previous experiment and the
results are shown in the fourth row of table 2. The
increase in trend of correlation scores with respect
to the increase in dimensionality is followed by the
new U produced from A after applying SVD. Fig-
ure 2 provides the distribution of similarity scores
evaluated at 90% dimension of the model with re-
spect to the gold standard.

Further to compare the performance of different
experiments, all the experiment results are plotted
in Figure 1. It can be observed that every subse-
quent model built has shown improvements in per-
formance. The first two experiments shown in the
first two rows of table 2 are shown in red and blue
lines in the figure. It can be observed that in both
the settings, the pearson correlation scores were
increasing as the the number of dimensions main-
tained also increased, whereas in the other two set-
tings, the pearson correlation scores reached their
maximum at 90% and came down at 100% di-
mension, which is unexpected and so is not jus-
tified. It is observed from Figure 2 that the scores
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Figure 2: Semantic similarity scores - Gold stan-
dard (Line plot) vs System scores (Scatter plot) for
examples in training data

of the system in scatter plot are not always clus-
tered around the gold standard scores, plotted as a
line. As the gold standard score goes up, the sys-
tem prediction accuracy has come down. One rea-
son for this pattern can be attributed to the train-
ing set which had data mostly data from Newswire

Dimensions 100% 90% 70% 50% 30% 10%

Basic word-doc
representation 0.493 - - 0.435 0.423 0.366

Evaluation
boolean counts 0.472 - - 0.449 0.430 0.363

Constrained
tokenization 0.498 0.494 0.517 0.485 0.470 0.434

Added
data 0.493 0.504 0.498 0.498 0.488 0.460

Table 3: Pearson scores at different dimensions3-
Sentence to Phrase

and webtext. Therefore, during evaluation all the
words from paragraph and/or sentence would not
have got a position while getting projected on the
latent semantic space, which we believe has pulled
down the accuracy.

4.1.2 Sentence to Phrase

The experiments carried out for P2S provided in
4.1.1 were conducted for S2P examples as well.
The pearson scores produced by different experi-
ments at different dimensions are provided in ta-
ble 3. This table shows that the latest word-
document representation made with added docu-
ments, did not have any impact on the correlation
scores, while the earlier word-document represen-
tation provided in 3rd row, which used the original
dataset preprocessed with constrained tokeniza-
tion rules, removing unnecessary spaces and tabs,
and tokens stemmed, provided better correlation
score at 70% dimension. Further the comparison
of different experiments carried out at different
settings are plotted in Figure 3.
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Figure 3: Sentence to Phrase - Pearson correlation
scores for four different experiments at different
dimensions3 (represented in percentage) of Uk
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4.2 Bag of Vectors

BV was tested in two different settings. The
first representation was created with bi-gram co-
occurance count as mentioned in section 3.2.1 and
experiments were carried out as mentioned in sec-
tion 3.2.2. This produced negative Pearson corre-
lation scores for P2S and S2P. Then we created an-
other representation by getting co-occurance count
in a window of 6 words in a sentence, on evalua-
tion produced correlation scores of 0.094 for P2S
and 0.145 for S2P. As BV showed strong negative
results, we did not continue using the method for
evaluating the test data. But we strongly believe
that the BV approach can produce better results if
we could compare the sentence to the paragraph
rather than the paragraph to the sentence as men-
tioned in section 3.2.2. During similarity calcula-
tion, when comparing sentence to the paragraph,
for each word in the sentence, we look for the best
semantic match from the paragraph, which would
increase the mean value by reducing the number of
divisions representing the number of words in the
sentence. In the current setting, it is believed that
while computing the similarity for the paragraph
to sentence, the words in the paragraph (longer
text) will consider a few words in the sentence to
be similar multiple times. This could not be right
when we compare the texts of varying lengths.

5 Conclusion and Discussion

On manual verification, it was identified that the
dataset used to build the representation did not
have documents related to the genres Metaphoric,
CQA and Travel. The original dataset mostly had
documents from Newswire text and blogs which
included reviews as well. Further, it can be identi-
fied from tables 2 and 3, the word-document rep-
resentation with added documents from the train-
ing set improved Pearson scores. This allowed to
assume that the dataset did not have completely
relevant set of documents to evaluate the training
set which included data from different genres. For
evaluation of the model on test data, we submitted
two runs and best of them reported Pearson score
of 0.607 and 0.552 on P2S and S2P respectively.
In the future work, we should be able to experi-
ment with more relevant data to build the model
using LSI and also use statistically strong unsu-
pervised classifier pLSI (Hofmann T, 2001) for the
same task. Further to this, as discussed in 4.2 we
would be able to experiment with the BV approach

by comparing the sentence to the paragraph, which
we believe will yield promising results to compare
the texts of varying lengths.
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Abstract

This paper presents a word-for-word trans-
lation approach using Wiktionary for
SemEval-2014 Task 5. The language
pairs attempted for this task were English-
Spanish and English-German. Since this
approach did not take context into account,
it performed poorly.

1 Introduction

The objective of SemEval-2014 Task 5 is to trans-
late a few words or a phrase from one language
(L1) into another (L2). More specifically, a sen-
tence containing primarily L2 and a few L1 words
is provided, and the task is to translate the L1
words into the L2. This task is similar to the previ-
ous cross-linguistic SemEval tasks involving lexi-
cal substitution (Mihalcea et al., 2010) and word-
sense disambiguation (Lefever and Hoste, 2013).

For example, consider the following sentence,
written entirely in German except for one English
word: Aber auf diesem Schiff wollen wir auch
Ruderer sein, wir sitzen im selben Boot und wollen
mit Ihnen row. Here, the word row is polysemous
and can be translated as the verb rudern or as the
noun Reihe depending on context. The words to
be translated can also form an idiomatic expres-
sion, such as in exchange in die 1967 eroberten
arabischen Gebiete in exchange gegen Frieden.
These examples reveal that this is not a straightfor-
ward task, as word-for-word translation may give
inaccurate results.

Wiktionary is a multilingual dictionary con-
taining word-sense, examples, sample quotations,
collocations, usage notes, proverbs and transla-
tions (Torsten et al., 2008; Meyer and Gurevych,
2012). Since Wiktionary data have previously

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

been used for translations (Orlandi and Passant,
2010), it was chosen for looking up the transla-
tion of source language (L1) words. However, the
translation approach was word-for-word and ig-
nored the target language (L2) context, i.e., the
context in which the text fragment to be trans-
lated is found. The Wiktionary-based solution
is for English-to-Spanish and English-to-German
language translation though four language pairs
were provided in this shared task.

2 Wiktionary

For a given word, the English version of Wik-
tionary gives not only its definition but also possi-
ble translations. The translations are divided based
on part of speech (PoS) and word sense and at
times also encode gender and number informa-
tion. For example, the German and Spanish trans-
lations for the English word book are stored in
Wiktionary as follows:

====Noun====
{{en-noun}}

=====Translations=====
{{trans-top|collection of sheets
of paper bound together
containing printed or written
material}}

* German: {{t+|de|Buch|n}}

* Spanish: {{t+|es|libro|m}}

{{trans-top|record of betting}}

* German: {{t|de|Wettliste|f}}
{{trans-top|convenient collection
of small paper items, such as
stamps}}

* German: {{t+|de|Album|n}}

* Spanish: {{t+|es|álbum|m}}

{{trans-top|major division of
a published work, larger than
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a chapter}}

{{trans-top|script of a musical}}

* Spanish: {{t+|es|libreto|m}}

{{trans-top|usually in plural:
records of the accounts of
a business}}

* German: {{t+|de|Bücher|n-p}}

{{trans-top|ebook}}

* German: {{t+|de|E-Book|n}}

====Verb====
{{en-verb}}

=====Translations=====
{{trans-top|to reserve}}

* German: {{t+|de|buchen}},
{{t+|de|reservieren}}

* Spanish: {{t|es|reservar}}

{{trans-top|to write down,
register, record}}

* German: {{t+|de|notieren}},
{{t+|de|schreiben}}

* Spanish: {{t+|es|anotar}}

{{trans-top|to record the details
of}}

* {{ttbc|de}}: {{t+|de|bestrafen}}

{{trans-top|sports: to issue with
a caution}}

{{trans-top|slang: to travel
very fast}}

* German: {{t+|de|rasen}}

* {{ttbc|es}}: {{t|es|multar}}

The Wiktionary dump1 is an XML file contain-
ing the word in the <title> tag and its descrip-
tion under the <text> tag. The translation of the
word is indicated by {{t| or {{t+| followed by
two letters to denote the target language (es for
Spanish and de for German). This is followed by
the translation and gender information in the case
of nouns.

The information in Wiktionary was converted
into a multidimensional hash table consisting of
English words as key and PoS and translations in

1For this task the 17 Dec 2013 version was used.

Spanish and German as the values. This table was
used to look up the translations for the task.

Wiktionary also contains lists of the 10000 most
frequent words in Spanish and of the 2000 most
frequent words in German. This information was
used to sort the target language words in the hash
table in decreasing order of frequency. The trans-
lations absent from these frequency lists were kept
in the hash table in the order that they were ex-
tracted from Wiktionary.

3 Translation

TreeTagger PoS Wiktionary PoS
DT Determiner, Article
NC, NN, NNS Noun
IN, TO Preposition
VB, VBG,VBZ, MD Verb
RB, RBR, RP, WRB Adverb
CD Numeral
CC Conjunction
PP, PRP, WP Pronoun
JJ, JJS Adjective

Table 1: PoS Mapping

The TreeTagger (Schmid, 1994) was used to
parse the English (L1) phrases to obtain the PoS of
each word along with the lemma. The PoS tags re-
turned by the TreeTagger were mapped to the PoS
used in Wiktionary as shown in Table 1. The word
and its PoS were searched for in the hash table. If
the translation was not found, then the lemma and
its PoS were looked up. If the lemma lookup also
failed then the phrase was not translated.

Once the L2 words were obtained for all the L1
words in the phrase, the L2 words were matched
based on the gender and number information pro-
vided. For example, for the phrase this ques-
tion, Wiktionary offered este|m and esta|f as
Spanish translations of this, and interrogante|m
pregunta|f duda|f cuestión|f incógnita|f for
question. The translations were paired based on
gender agreement rules (e.g. este interrogante,
where both are masculine, and esta pregunta,
where both are feminine) and provided as solu-
tions.

3.1 Rules for English-to-Spanish Translation
Wiktionary only provides translations for the cita-
tion form of a word (even though other forms ex-
ist in WIktionary as valid entries), which is prob-
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Language Pair Dataset Approach Evaluation Accuracy Word Accuracy Recall

en-es

Trial
Word-by-Word

Best 0.278 0.372 0.876
Oof 0.382 0.471 0.876

Word-by-Word Best 0.340 0.434 0.844
+ Rules Oof 0.444 0.535 0.844

Test
Word-by-Word

Best 0.200 0.308 0.785
Oof 0.246 0.356 0.785

Word-by-Word Best 0.223 0.333 0.751
+ Rules Oof 0.277 0.386 0.751

en-de
Trial Word-by-Word

Best 0.210 0.306 0.900
Oof 0.316 0.422 0.900

Test Word-by-Word Best 0.218 0.293 0.851
Oof 0.307 0.385 0.851

Table 2: Performance of the System.

lematic when translating plural nouns or conju-
gated (finite) verbs. Lack of this inflectional infor-
mation degraded the overall performance of both
English-to-Spanish and English-to-German trans-
lations. Two rules were included in an attempt to
improve the English-to-Spanish translations: (1)
plural nouns and adjectives were formed by adding
-s or -es, and (2) where a noun was preceded by
an adjective in a L1 phrase, after the translation,
the positions of the noun and the adjective were
switched to respect the noun-adjective word order
that is more commonly found in Spanish.

4 Results and Conclusions

Table 2 shows the performance of the system
for the English-to-Spanish and English-to-German
translations. The approach in bold was submit-
ted for evaluation. The accuracy refers to the per-
centage of the fragments that were predicted accu-
rately, whereas word accuracy measures the par-
tially correct solutions. For each fragment, up to
5 translations could be submitted with one consid-
ered as the best answer and the rest regarded as
alternatives. The best evaluation considered only
the best answers. On the other hand, oof (out-of-
five) evaluation considered the alternative answers
to calculate the scores if the best answer was in-
correct.

A context-independent, word-for-word transla-
tion approach to L2 Writing Assistant was pro-
posed. The mediocre performance was due to
the fact the approach was very basic. The sys-
tem can be significantly improved by using the
Spanish and German versions of Wiktionary to
make up for the translations missing from the

English version and by considering the L2 con-
text provided. One such example in the German
Wiktionary is the {{Charakteristische
Wortkombinationen}} tag, which refers to
the possible collocations. For example, one of
the translations of the English word exchange in
German is Austausch, which is most often col-
located with im or als. Also, using a tool like
JWKTL2 would improve the quality of informa-
tion extracted from Wiktionary.
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Abstract

This paper describes the system that has
been used by TeamX in SemEval-2014
Task 9 Subtask B. The system is a senti-
ment analyzer based on a supervised text
categorization approach designed with fol-
lowing two concepts. Firstly, since lex-
icon features were shown to be effective
in SemEval-2013 Task 2, various lexicons
and pre-processors for them are introduced
to enhance lexical information. Secondly,
since a distribution of sentiment on tweets
is known to be unbalanced, an weighting
scheme is introduced to bias an output of a
machine learner. For the test run, the sys-
tem was tuned towards Twitter texts and
successfully achieved high scoring results
on Twitter data, average F1 70.96 on Twit-
ter2014 and average F1 56.50 on Twit-
ter2014Sarcasm.

1 Introduction

The growth of social media has brought a ris-
ing interest to make natural language technologies
that work with informal texts. Sentiment anal-
ysis is one such technology, and several work-
shops such as SemEval-2013 Task 2 (Nakov et
al., 2013), CLEF 2013 RepLab 2013 (Amigó
et al., 2013), and TASS 2013 (Villena-Román
and Garcı́a-Morera, 2013) have recently targeted
tweets or cell phone messages as analysis text.
This paper describes a system that has submit-
ted a sentiment analysis result to Subtask B of
SemEval-2014 Task9 (Rosenthal et al., 2014).
SemEval-2014 Task9 is a rerun of SemEval-2013
Task 2 with different test data, and Subtask B is a
task of message polarity classification.
This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

The system we prepared is a sentiment ana-
lyzer based on a supervised text categorization
approach. Various features and their extraction
methods are integrated in the system following the
works presented in SemEval-2013 Task 2. Addi-
tionally to these features, we assembled following
notable functionalities to the system:

1. Processes to enhance word-to-lemma map-
ping.

(a) A spelling corrector to normalize out-of-
vocabulary words.

(b) Two Part-of-Speech (POS) taggers to
realize word-to-lemma mapping in two
perspectives.

(c) A word sense disambiguator to obtain
word senses and their confidence scores.

2. An weighting scheme to bias an output of a
machine learner.

Functionalities 1a to 1c are introduced to enhance
information based on lexical knowledge, since
features based on lexicons are shown to be ef-
fective in SemEval-2013 Task 2 (Mohammad et
al., 2013). Functionality 2 is introduced to make
the system adjustable to polarity unbalancedness
known to exists in Twitter data (Nakov et al.,
2013).

The accompanying sections of this papers are
organized as follows. Section 2 describes re-
sources such as labeled texts and lexicons used in
our system. Section 3 explains the details of the
system. Section 4 discusses the submission test
run and some extra test runs that we performed
after the test data release. Finally, section 5 con-
cludes the paper.

2 Resources

2.1 Sentiment Labeled Data

The system is a constrained system, therefore only
the sentiment labeled data distributed by the task
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Type #Used #Full %
Twitter(train) 6949 9684 71.8
Twitter(dev) 1066 1654 64.4
Twitter(dev-test) 3269 3813 85.7
SMS(dev-test) 2094 2094 100

Table 1: The numbers of messages for each type.
‘train’, ‘dev’, and ‘dev-test’ denote training, devel-
opment, and development-test respectively. #Used
is the number of messages that we were able to
obtain, and #Full is the maximum number of mes-
sages that were provided.

Criterion Lexicon
General Inquirer

FORMAL MPQA Subjectivity Lexicon
SentiWordNet
AFINN-111

INFORMAL
Bing Liu’s Opinion Lexicon

NRC Hashtag Sentiment Lexicon
Sentiment140 Lexicon

Table 2: The seven sentiment lexicons and their
criteria.

organizers were used. However, due to accessibil-
ity changes in tweets, a subset of the training, the
development, and the development-test data were
used. Table 1 shows the numbers of messages for
each type.

2.2 Sentiment Lexicons

The system includes seven sentiment lexicons
namely: AFINN-111 (Nielsen, 2011), Bing Liu’s
Opinion Lexicon1, General Inquirer (Stone et al.,
1966), MPQA Subjectivity Lexicon (Wilson et al.,
2005), NRC Hashtag Sentiment Lexicon (Moham-
mad et al., 2013), Sentiment140 Lexicon (Moham-
mad et al., 2013), and SentiWordNet (Baccianella
et al., 2010). We categorized these seven lexi-
cons to two criteria: ‘FORMAL’ and ‘INFOR-
MAL’. Lexicons that include lemmas of erroneous
words (e.g. misspelled words) were categorized
to ‘INFORMAL’. Table 2 illustrates the criteria of
the seven lexicons. These criteria are used in the
process of word-to-lemma mapping processes and
will be explained in Section 3.1.3.

3 System Details

The system is a modularized system consisting
of a variety of pre-processors, feature extractors,

1http://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html
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Figure 1: An overview of the system．

and a machine learner. Figure 1 illustrates the
overview of the system.

3.1 Pre-processors

3.1.1 Text Normalizer
The text normalizer performs following three rule-
based normalization of an input text:

• Unicode normalization in form NFKC2.
• All upper case letters are converted to lower

case ones (ex. ‘GooD’ to ‘good’).
• URLs are exchanged with string ‘URL’s (ex.

‘http://example.org’ to ‘URL’).

3.1.2 Spelling Corrector
A spelling corrector is included in the system to
normalize misspellings. We used Jazzy3, an open
source spell checker with US English dictionaries
provided along with Jazzy. Jazzy combines Dou-
bleMetaphone phonetic matching algorithm and a
near-miss match algorithm based on Levenshtein
distance to correct a misspelled word.

3.1.3 POS Taggers
The system includes two POS taggers to realize
word-to-lemma mapping in two perspectives.

Stanford POS Tagger Stanford Log-linear Part-
of-Speech Tagger (Toutanova et al., 2003) is
one POS tagger which is used to map words

2http://www.unicode.org/reports/tr15/
3http://jazzy.sourceforge.net/
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to lemmas of ‘FORMAL’ criterion lexicons,
and to extract word sense features. A finite-
state transducer based lemmatizer (Minnen et
al., 2001) included in the POS tagger is used
to obtain lemmas of tokenized words.

CMU ARK POS Tagger A POS tagger for
tweets by CMU ARK group (Owoputi et al.,
2013) is another POS tagger used to map
words to lemmas of ‘INFORMAL’ criterion
lexicons, and to extract ngram features and a
cluster feature.

3.1.4 Word Sense Disambiguator
A word sense disambiguator is included in the sys-
tem to determine a sense of a word. We used
UKB4 which implements graph-based word sense
disambiguation based on Personalized PageRank
algorithm (Agirre and Soroa, 2009) on a lexical
knowledge base. As a lexical knowledge base,
WordNet 3.0 (Fellbaum, 1998) included in the
UKB package is used.

3.1.5 Negation Detector
The system includes a simple rule-based negation
detector. The detector is an implementation of the
algorithm on Christopher Potts’ Sentiment Sym-
posium Tutorial5. The algorithm is a simple algo-
rithm that appends a negation suffix to words that
appear within a negation scope surrounded by a
negation key (ex. ‘no’) and a certain punctuation
(ex. ‘:’).

3.2 Features

The followings are the features used in the system.

word ngrams Contiguous 1, 2, 3, and 4 grams
of words, and non-contiguous 3 and 4 grams
of words are extracted from a given words.
Non-contiguous ngram are ngrams where one
of words are replaced with a wild card word
‘*’. Example of contiguous 3 grams is
‘by the way’, and the corresponding noncon-
tiguous variation is ‘by * way’.

character ngrams Contiguous 3, 4, and 5 grams
of characters with in a word are extracted
from given words.

lexicons Words are mapped to seven lexicons of
section 2.2. For two sentiment labels (pos-
itive and negative) in each lexicon, follow-
ing four values are extracted: total matched

4http://ixa2.si.ehu.es/ukb/
5http://sentiment.christopherpotts.

net/lingstruc.html#negation

I liked an example.org video http://example.org

Sense ID Score

01824736­v 0.442313

01777210­v 0.355679

01776952­v 0.148101

…

Sense ID Score

06277280­n 0.688655

06277803­n 0.163343

04534127­n 0.103199

…

text

WSD result

Feature Weight

01824736­v 0.442313

Features

01777210­v 0.355679

01776952­v 0.148101

06277280­n 0.688655

…

Figure 2: An example of word senses feature．

word count, total score, maximal score, and
last word score6. For lexicons without senti-
ment scores, score 1.0 is used for all entries.
Note that different POS taggers are used in
word-to-lemma mapping as described in Sec-
tion 3.1.3.

clusters Words are mapped to Twitter Word Clus-
ters of CMU ARK group7. The largest clus-
tering result consisting of 1000 clusters from
approximately 56 million tweets is used as
clusters.

word senses A result of the word sense disam-
biguator is extracted as weighted features ac-
cording to their scores. Figure 2 shows an
example of this feature.

The ngram features are introduced as basic bag-
of-words features in a supervised text categoriza-
tion approach. Lexicon features are designed to
strengthen the lexical features of Mohammad et
al. (2013) which have been shown to be effective
in the last year’s task. Cluster features are im-
plemented as an improvement for an supervised
NLP system following the work of Turian et al.
(2010). Word sense features are utilized to help
subjectivity analysis and contextual polarity anal-
ysis (Akkaya et al., 2009).

3.3 Machine Learner

Logistic Regression is utilized as an algorithm of
a supervised machine learning method. As an
implementation of Logistic Regression, LIBLIN-
EAR (Fan et al., 2008) is used. A Logistic Regres-
sion is trained using the features of Section 3.2
with the three polarities (positive, negative, and
neutral) as labels.

6The total number of lexical features is 7× 2× 4 = 56.
7http://www.ark.cs.cmu.edu/TweetNLP/
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Parameters Sources
Parameter Selection Source

C wpos wneg

LiveJournal SMS Twitter Twitter Twitter2014
2014 2013 2013 2014 Sarcasm

Twitter(train)+Twitter(dev) 0.07 1.7 2.6 71.23 62.33 71.28 70.40 53.32
Twitter(dev-test)* 0.03 2.4 3.3 69.44 57.36 72.12 70.96 56.50

SMS(dev-test) 0.80 1.1 1.2 72.99 68.92 65.65 66.66 48.24
SMS(dev-test)+Twitter(dev-test) 0.07 1.9 2.0 72.54 65.44 70.41 69.80 51.09

Table 3: The scores for each source in the test runs. The run with asterisk (*) denotes the submission
run. The values in the ‘Sources’ columns represent scores in SemEval-2014 Task 9 metric (the average
of positive F1 and negative F1).

3.4 Prediction Adjuster

Since the labels in the tweets data are unbalanced
(Nakov et al., 2013), we prepared a prediction ad-
juster for Logistic Regression output. For each po-
larity l, an weighting factor wl that adjusts a proba-
bility output Pr(l) is introduced. An updated pre-
diction label is decided by selecting an l that max-
imizes score(l) which can be expressed as equa-
tion 1.

arg max
l∈{pos,neg,neu}

score(l) = wlPr(l) (1)

The approach we took in this prediction adjuster
is a simple approach to bias an output of Logistic
Regression, but may not be a typical approach to
handle unbalanced data. For instance, LIBLIN-
EAR includes the weighting option ‘-wi’ which
enables a use of different cost parameter C for dif-
ferent classes. One advantage of our approach is
that the change in wl does not require a training of
Logistic Regression. Various values of wl can be
tested with very low computational cost, which is
helpful in a situation like SemEval tasks where the
time for development is limited.

4 Test Runs

4.1 Submission Test Run

The system was trained using the 8,015 tweets in-
cluded in Twitter(train) and Twitter(dev) described
in Section 2.1. Three parameters: cost parameter
C of Logistic Regression, weight wpos of the pre-
diction adjuster, and weight wneg of the predic-
tion adjuster, were considered in the submission
test run. For the wneu of the prediction adjuster, a
fixed value of 1.0 was used.

Prior to the submission test run, the following
two steps were performed to select a parameter
combination for the submission run.

Step 1 The system with all combinations of C in
range of {0.01 to 0.09 by step 0.01, 0.1 to 0.9

by step 0.1, 1 to 10 by step 1}, wpos in range
of {1.0 to 5.0 by step 0.1}, and wneg in range
of {1.0 to 5.0 by step 0.1} were prepared8.

Step 2 The performances of the system for all
these parameter combinations were calcu-
lated using Twitter(dev-test) described in
Section 2.1.

As a result, the parameter combination C = 0.03,
wpos = 2.4, and wneg = 3.3 which performed
best in Twitter(dev-test) was selected as a parame-
ter combination for the submission run.

Finally, the system with the selected parameters
was applied to the test set of SemEval-2014 Task
9. ‘Twitter(dev-test)’ in Table 3 shows the val-
ues of this submission run. The system achieved
high performances on Twitter data: 72.12, 70.96,
and 56.50 on Twitter2013, Twitter2014, and Twit-
ter2014Sarcasm respectively.

4.2 Post-Submission Test Runs

The system performed quite well on Twitter
data but not so well on other data on the sub-
mission run. After the release of the gold
data of the 2014 test tun, we conducted sev-
eral test runs using different parameter combina-
tions. ‘Twitter(train)+Twitter(dev)’, ‘SMS(dev-
test)’, and ‘SMS(dev-test)+Twitter(dev-test)’ are
the results of test runs with different data sources
used for the parameter selection process. In ‘Twit-
ter(train)+Twitter(dev)’, the parameter combina-
tion that maximizes a micro-average score of 5-
fold cross validation was chosen since the training
data and the parameter selection are equivalent.

The parameter combination selected with ‘Twit-
ter(train)+Twitter(dev)’ showed similar result as
the submission run, which is high performances
on Twitter data. In the case of ‘SMS(dev-test)’, the
system performed well on ‘LiveJournal2014’ and
‘SMS(dev-test)’ namely 72.99 and 68.92. How-

8The total number of parameter combination is 29×51×
51 = 75429.
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ever, in this parameter combination the scores on
Twitter data were clearly lower than the submis-
sion run. Finally, ‘SMS(dev-test)+Twitter(dev-
test)’ resulted to a mid performing result, where
scores for each source marked in-between values
of ‘Twitter(dev-test)’ and ‘SMS(dev-test)’.

5 Conclusion

We proposed a system that is designed to enhance
information based on lexical knowledge and to
be adjustable to unbalanced training data. With
parameters tuned towards Twitter data, the sys-
tem successfully achieved high scoring results on
Twitter data, average F1 70.96 on Twitter2014 and
average F1 56.50 on Twitter2014Sarcasm.

Additional test runs with different parameter
combination showed that the system can be tuned
to perform well on non-Twitter data such as blogs
or short messages. However, the limitation of our
approach to directly weight a machine learner’s
output was shown, since we could not find a
general purpose parameter combination that can
achieve high scores on any types of data.
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Abstract

This paper presents an overlap-based ap-
proach using bag of words and the Spanish
WordNet to solve the STS-Spanish sub-
task (STS-Es) of SemEval-2014 Task 10.
Since bag of words is the most commonly
used method to ascertain similarity, the
performance is modest.

1 Introduction

The objective of STS-Es is to score a pair of sen-
tences in Spanish on the scale of 0 (the two sen-
tences are on different topics) to 4 (the two sen-
tences are completely equivalent, as they mean the
same thing) (Agirre et al., 2014). The textual sim-
ilarity finds its utility in various NLP applications
such as information retrieval, text categorisation,
word sense disambiguation, text summarisation,
topic detection, etc. (Besançon et al., 1999; Mi-
halcea et al., 2006; Islam and Inkpen, 2008).

The method presented in this paper calculates
the similarity based on the number of words that
are common in two given sentences. This ap-
proach, being simplistic, suffers from various
drawbacks. Firstly, the semantically similar sen-
tences need not have many words in common (Li
et al., 2006). Secondly, even if the sentences have
many words in common, the context in which they
are used can be different (Sahami and Heilman,
2006). For example, based on the bag of words ap-
proach, the sentences in Table 1 would be scored
the same:

However, only sentences [2] and [3] mean the
same.

Despite the flaws, this approach was used be-
cause of the Basic Principle of Compositional-
ity (Zimmermann, 2011), which states that the

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

No. Spanish English
1 Él es listo. He is clever.
2 Él está listo. He is ready.
3 Él está preparado. He is prepared.

Table 1: Examples.

meaning of a complex expression depends upon
the meaning of its components and the man-
ner in which they are composed. Furthermore,
mainly nouns were considered in the bag of words
because Spanish is an exocentric language, and
nouns contain more specific, concrete semantic
information than verbs (Michael Herslund, 2010;
Michael Herslund, 2012).

2 Methodology

The training dataset provided for the task con-
sisted of 65 pairs of sentences along with their cor-
responding similarity scores. There were two test
sets: one consisted of 480 sentence pairs from a
news corpus, and the other had 324 sentence pairs
taken from Wikipedia.

The approach consisted of learning the scoring
with the help of linear regression. Two runs were
submitted as solutions. The first run used three-
feature vectors, whereas the second one used four-
feature vectors. The features are the Jaccard in-
dices for the lemmas, noun lemmas, synsets, and
noun subjects in each sentence pair. For both runs,
the sentence pairs were parsed using the TreeTag-
ger (Schmid, 1994). The TreeTagger was used be-
cause it provides the part-of-speech tag and lemma
for each word of a sentence.

Run 1 used these features:

• The fraction of lemmas that were common
between the two sentences. In other words,
the number of unique lemmas common be-
tween the sentences divided by the total num-
ber of unique lemmas of the two sentences.
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• The fraction of noun lemmas common be-
tween the two sentences.

• The fraction of synsets common between the
two sentences. For each noun, its correspond-
ing synset1 was extracted from the Span-
ish WordNet (spaWN) of the Multilingual
Central Repository2 (MCR 3.0) (Gonzalez-
Agirre et al., 2012).

Run 2 employed one more feature in addition
to the aforementioned, which was the fraction of
synsets of noun subjects that were common for
each sentence pair. The subject nouns were ex-
tracted from the sentences after parsing them with
the MaltParser (Nivre et al., 2007). Since the Tree-
Tagger PoS tagset3 differed from the EAGLES
(Expert Advisory Group on Language Engineer-
ing Standards) tagset4 required by the MaltParser,
rules were written to best translate the TreeTag-
ger tags into EAGLES tags. However, one-to-
one mapping was not possible: EAGLES tags are
seven characters long and encode number and gen-
der, whereas TreeTagger tags do not. For example,
using the EAGLES tagset, the masculine singular
common noun árbol ‘tree’ is tagged as NCMS000,
whereas the feminine singular common noun hoja
‘leaf’ is tagged as NCFS000; TreeTagger, on the
other hand, tags both as NC.

3 Results and Conclusions

Table 2 presents the performance, measured us-
ing the Pearson correlation, of the approach. Run
1 achieved a weighted correlation of 0.66723 and
ranked 15th among 22 submissions to the task.

Dataset Run 1 Run 2
Training 0.83693 0.83773
Wikipedia (Test) 0.61020 0.60425
News (Test) 0.71654 0.70974

Table 2: Performance of the Approach.

Given that the approach relied mostly on bag
of words, a modest performance was expected.
The performance was also affected by the fact
that the spaWN did not have synsets for most of

1stored as synset offset in wei spa-30 variant.tsv
2The resource can be obtained from

http://grial.uab.es/descarregues.php
3http://www.cis.uni-muenchen.de/⇠schmid/tools/

TreeTagger/data/spanish-tagset.txt
4http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html

the words. Finally, converting TreeTagger tags to
those required by the MaltParser instead of using
a parser which annotates with EAGLES tags may
also have contributed to the relatively low Run 2
score. However, the confidence intervals of the
two runs obtained after bootstrapping overlapped.
Thus, the difference between the two runs for both
the datasets is not statistically significant.
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Abstract 

Twitter has become more and more an im-
portant resource of user-generated data. Sen-
timent Analysis in Twitter is interesting for 
many applications and objectives. In this pa-
per, we propose to exploit some features 
which can be useful for this task; the main 
contribution is the use of Z-scores as features 
for sentiment classification in addition to 
pre-polarity and POS tags features. Our ex-
periments have been evaluated using the test 
data provided by SemEval 2013 and 2014. 
The evaluation demonstrates that Z_scores 
features can significantly improve the predic-
tion performance. 

1 Introduction 

The interactive Web has changed the relation 
between the users and the web. Users have be-
come an important source of content. They ex-
press their opinion towards different issues. The-
se opinions are important for others who are in-
terested in understanding users’ interests such as 
buyers, sellers and producers. 
 Twitter is one of the most important platforms in 
which the users express their opinions. Many 
works have exploited this media for predicting 
valuable issues depending on Sentiment Analysis 
(SA). The authors in (Asur and Huberman 2010) 
predicted the box-office revenues of movies in 
advance of their releases using the tweets talking 
about them. In (Bae and Lee 2012) Sentiment 
 
This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers 
and proceedings footer are added by the organisers. 
Licence details: 
http://creativecommons.org/licenses/by/4.0/ 

 
Analysis has been used to study the impact of 13 
twitter accounts of famous persons on their fol-
lowers and also for forecasting the interesting 
tweets which are more probably to be reposted 
by the followers (Naveed, Gottron et al. 2011). 
Sentiment Analysis can be done in different lev-
els; Document level; Sentence level; Clause level 
or Aspect-Based level. SA in Twitter can be seen 
as a sentence level task, but some limitations 
should be considered in such sentences. The size 
of tweets is limited to 140 characters, informal 
language, emotion icons and non-standard ex-
pressions are commonly used, and many spelling 
errors can be found due to the absence of cor-
rectness verification. 
   Three different approaches can be identified in 
the literature of Sentiment Analysis in Twitter, 
the first approach is lexicon based, using specific 
types of lexicons to derive the polarity of a text, 
this approach suffers from the limited size of lex-
icon and requires human expertise to build man-
ual lexicon (Joshi, Balamurali et al. 2011), in the 
other hand the automatic lexicons are not so effi-
cient. The second one is machine learning ap-
proach which uses annotated texts with a given 
labels to learn a classification model, an early 
work was done on a movie review dataset (Pang, 
Lee et al. 2002). Both lexicon and machine learn-
ing approaches can be combined to achieve a 
better performance (Khuc, Shivade et al. 2012). 
These two approaches are used for SA task but 
the third one is specific for Twitter or social con-
tent, the social approach exploits social network 
properties and data for enhancing the accuracy of 
the classification (Speriosu, Sudan et al. 2011). 
    In this paper, we exploit machine learning al-
gorithm with the aid of some features: 

• The original Terms: the terms represent-
ing the tweet after the tokenization and  
stemming; 
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• Pre-polarity features: the number of neg-
ative, positive and neutral words extract-
ed from two sentiment lexicons; 

• POS tags: the number of adjectives, con-
nectors, verbs, nouns, adverbs in the 
tweet; 

• Z-score: The numbers of terms having Z-
score value more than three for each 
class positive, negative and neutral. 

   We extended the original terms with these last 
features. We also constructed a dictionary for the 
abbreviations and the slang words used in Twit-
ter in order to overcome the ambiguity of the 
tweets.  We tested the performance of every pos-
sible combination of these features. 
     The rest of this paper is organized as follows. 
Section 2 outlines previous work that focused on 
sentiment analysis in Twitter. Section 3 presents 
the Z_score features and the others which we 
used for training a classifier. Our experiments are 
described in section 4, conclusion and future 
work is presented in section 5. 

2 Related Works 

We can identify three main approaches for sen-
timent analysis in Twitter. The lexicon based 
approaches which depend on sentiment lexicons 
containing positive, negative and neutral words 
or expressions; they calculate the polarity ac-
cording to the number of common opinionated 
words between the lexicons and the text. Many 
dictionaries have been created manually such as 
ANEW (Affective Norms for English Words) or 
automatically such as SentiWordNet 
(Baccianella, Esuli et al. 2010). Four lexicon dic-
tionaries were used to overcome the lack of 
words in each one (Joshi, Balamurali et al. 2011; 
Mukherjee, Malu et al. 2012). Automatically 
construction of a Twitter lexicon was imple-
mented by (Khuc, Shivade et al. 2012). 
      Machine learning approaches were employed 
from annotated tweets by using Naive Bayes, 
Maximum Entropy MaxEnt and Support Vector 
Machines (SVM). The authors (Go, Bhayani et 
al. 2009) reported that SVM outperforms other 
classifiers. They tried a unigram and a bigram 
model in conjunction with parts-of-speech (POS) 
features; they noted that the unigram model out-
performs all other models when using SVM and 
that POS features decrease the quality of results. 
The authors in (Kouloumpis, Wilson et al. 2011) 
found that N-gram with lexicon features and mi-
cro-blogging features are useful but POS features 
are not.  In contrast, in (Pak and Paroubek 2010) 

they reported that POS and bigrams both help. In 
(Barbosa and Feng 2010) the authors proposed 
the use of syntax features of tweets like retweet, 
hashtags, link, punctuation and exclamation 
marks in conjunction with features like prior po-
larity of words and POS tags, in (Agarwal, Xie et 
al. 2011) this approach was extended by using 
real valued prior polarity and by combining prior 
polarity with POS. Authors in (Saif, He et al. 
2012) proposed to use the semantic features, 
therefore they extracted the named entities in the 
tweets. Authors in (Hamdan, Béchet et al. 2013) 
used the concepts extracted from DBpedia and 
the adjectives from WordNet, they reported that 
the DBpedia concepts are useful with Naïve-
Bayes classifier but less useful with SVM. 
     The third main approach takes into account 
the influence of users on their followers and the 
relation between the users and the tweets they 
wrote. It assumes that using the Twitter follower 
graph might improve the polarity classification. 
In (Speriosu, Sudan et al. 2011) they demonstrat-
ed that using label propagation with Twitter fol-
lower graph improves the polarity classification. 
In  (Tan, Lee et al. 2011) they employed social 
relation for user-level sentiment analysis. In (Hu, 
Tang et al. 2013) a Sociological Approach to 
handling the Noisy and short Text (SANT) for 
supervised sentiment classification is used; they 
reported that social theories such as Sentiment 
Consistency and Emotional Contagion could be 
helpful for sentiment analysis. 

3 Feature Selection 

We used different types of features in order to 
improve the accuracy of sentiment classification. 
- Bag of words (Terms) 
The most commonly used features in text analy-
sis are the bag of words which represent a text as 
unordered set of words or terms. It assumes that 
words are independent from each other and also 
disregards their order of appearance. We 
stemmed the words using Porter Stemmer and 
used them as a baseline features.  
 
- Z_score Features (Z) 
We suggest using a new type of features for Sen-
timent Analysis, Z_score can distinguish the im-
portance of each term in each class. We compute 
the number of terms having Z_score more than 
three for each class over each tweet. We assume 
that the term frequencies follow the multinomial 
distribution. Thus, Z_score can be seen as a 
standardization of the term. We compute the 
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Z_score for each term ti in a class Cj (tij) by cal-
culating its term relative frequency tfrij in a par-
ticular class Cj, as well as the mean (meani) 
which is the term probability over the whole cor-
pus multiplied by nj the number of terms in the 
class Cj, and standard deviation (sdi) of term ti 
according to the underlying corpus (see Eq. 
(1,2)).  
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�����	

���
             Eq. (1) 

 

Z�������	
� =
�
�	
��
∗�(��)

���∗�(��)∗(���(��))
   Eq. (2) 

 
 The term which has salient frequency in a class 
in compassion to others will have a salient 
Z_score. Z_score was exploited for SA by 
(Zubaryeva and Savoy  2010) , they choose a 
threshold (>2) for selecting the number of terms 
having Z_score more than the threshold, then 
they used a logistic regression for combining 
these scores. We use Z_scores as added features 
for classification because the tweet is too short, 
therefore many tweets does not have any words 
with salient Z_score. The three following figures 
1,2,3 show the distribution of Z_score over each 
class, we remark that the majority of terms has 
Z_score between -1.5 and 2.5 in each class and 
the rest are either vey frequent (>2.5) or very rare 
(<-1.5). It should indicate that negative value 
means that the term is not frequent in this class in 
comparison with its frequencies in other classes. 
Table1 demonstrates the first ten terms having 
the highest Z_scores in each class. We have test-
ed to use different values for the threshold, the 
best results was obtained when the threshold is 3. 

 

positive 

Z
_score 

negative 

Z
_score 

N
eutral 

Z
_score 

Love 
Good 
Happy 
Great 
Excite 
Best 
Thank 
Hope 
Cant 
Wait 

14.31 
14.01 
12.30 
11.10 
10.35 
9.24 
9.21 
8.24 
8.10 
8.05 

Not 
Fuck 
Don’t 
Shit 
Bad 
Hate 
Sad 
Sorry 
Cancel 
stupid 

13.99 
12.97 
10.97 
8.99 
8.40 
8.29 
8.28 
8.11 
7.53 
6.83 

Httpbit 
Httpfb 
Httpbnd 
Intern 
Nov 
Httpdlvr 
Open 
Live 
Cloud 
begin 

6.44 
4.56 
3.78 
3.58 
3.45 
3.40 
3.30 
3.28 
3.28 
3.17 

Table1. The first ten terms having the highest Z_score in 
each class 

 
-  Sentiment Lexicon Features (POL) 
We used two sentiment lexicons, MPQA Subjec-
tivity Lexicon(Wilson, Wiebe et al. 2005) and 

Bing Liu's Opinion Lexicon which is created by 
(Hu and Liu 2004) and augmented in many latter 
works. We extract the number of positive, nega-
tive and neutral words in tweets according to the-
se lexicons. Bing Liu's lexicon only contains 
negative and positive annotation but Subjectivity 
contains negative, positive and neutral. 

 
- Part Of Speech (POS) 
We annotate each word in the tweet by its POS 
tag, and then we compute the number of adjec-
tives, verbs, nouns, adverbs and connectors in 
each tweet. 

4 Evaluation 

4.1 Data collection 
  We used the data set provided in SemEval 2013 
and 2014 for subtask B of sentiment analysis in 
Twitter(Rosenthal, Ritter et al. 2014) (Wilson, 
Kozareva et al. 2013). The participants were 
provided with training tweets annotated as posi-
tive, negative or neutral. We downloaded these 
tweets using a given script. Among 9646 tweets, 
we could only download 8498 of them because 
of protected profiles and deleted tweets. Then, 
we used the development set containing 1654 
tweets for evaluating our methods. We combined 
the development set with training set and built a 
new model which predicted the labels of the test 
set 2013 and 2014.  

 
4.2 Experiments 

 
Official Results 
   The results of our system submitted for 
SemEval evaluation gave 46.38%, 52.02% for 
test set 2013 and 2014 respectively. It should 
mention that these results are not correct because 
of a software bug discovered after the submis-
sion deadline, therefore the correct results is 
demonstrated as non-official results. In fact the 
previous results are the output of our classifier 
which is trained by all the features in section 3, 
but because of index shifting error the test set 
was represented by all the features except the 
terms. 

 
Non-official Results 
  We have done various experiments using the 
features presented in Section 3 with Multinomial 
Naïve-Bayes model. We firstly constructed fea-
ture vector of tweet terms which gave 49%, 46% 
for test set 2013, 2014 respectively. Then, we 
augmented this original vector by the Z_score 
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features which improve the performance by 6.5% 
and 10.9%, then by pre-polarity features which 
also improve the f-measure by 4%, 6%, but the 
extending with POS tags decreases the f-
measure. We also test all combinations with the-
se previous features, Table2 demonstrates the 
results of each combination, we remark that POS 
tags are not useful over all the experiments, the 
best result is obtained by combining Z_score and 
pre-polarity features. We find that Z_score fea-
tures improve significantly the f-measure and 
they are better than pre-polarity features.    

 

 
Figure 1 Z_score distribution in positive class 

 
Figure 2 Z_score distribution in neutral class 

 
Figure 3 Z_score distribution in negative class 

 Features F-measure 
2013 2014 

Terms 49.42 46.31 
Terms+Z 55.90 57.28 
Terms+POS 43.45 41.14 
Terms+POL 53.53 52.73 
Terms+Z+POS 52.59 54.43 
Terms+Z+POL 58.34 59.38 
Terms+POS+POL 48.42 50.03 
Terms+Z+POS+POL 55.35 58.58 
Table 2. Average f-measures for positive and negative clas-

ses of SemEval2013 and 2014 test sets. 
We repeated all previous experiments after using 
a twitter dictionary where we extend the tweet by 
the expressions related to each emotion icons or 
abbreviations in tweets. The results in Table3 
demonstrate that using that dictionary improves 
the f-measure over all the experiments, the best 
results obtained also by combining Z_scores and 
pre-polarity features. 
 
Features F-measure 

2013 2014 
Terms 50.15 48.56 
Terms+Z 57.17 58.37 
Terms+POS 44.07 42.64 
Terms+POL 54.72 54.53 
Terms+Z+POS 53.20 56.47 
Terms+Z+POL 59.66 61.07 
Terms+POS+POL 48.97 51.90 
Terms+Z+POS+POL 55.83 60.22 

Table 3. Average f-measures for positive and negative clas-
ses of SemEval2013 and 2014 test sets after using a twitter 

dictionary. 

5 Conclusion 

  In this paper we tested the impact of using 
Twitter Dictionary, Sentiment Lexicons, Z_score 
features and POS tags for the sentiment classifi-
cation of tweets. We extended the feature vector 
of tweets by all these features; we have proposed 
new type of features Z_score and demonstrated 
that they can improve the performance. 
We think that Z_score can be used in different 
ways for improving the Sentiment Analysis, we 
are going to test it in another type of corpus and 
using other methods in order to combine these 
features. 

Reference 

Apoorv Agarwal,Boyi Xie,Ilia Vovsha,Owen 
Rambow and Rebecca Passonneau (2011). 
Sentiment analysis of Twitter data. 
Proceedings of the Workshop on Languages 

639



in Social Media. Portland, Oregon, 
Association for Computational Linguistics: 
30-38. 

Sitaram Asur and Bernardo A. Huberman (2010). 
Predicting the Future with Social Media. 
Proceedings of the 2010 IEEE/WIC/ACM 
International Conference on Web 
Intelligence and Intelligent Agent 
Technology - Volume 01, IEEE Computer 
Society: 492-499. 

Stefano Baccianella,Andrea Esuli and Fabrizio 
Sebastiani (2010). SentiWordNet 3.0: An 
Enhanced Lexical Resource for Sentiment 
Analysis and Opinion Mining. Proceedings 
of the Seventh Conference on International 
Language Resources and Evaluation 
(LREC'10), European Language Resources 
Association (ELRA). 

Younggue Bae and Hongchul Lee (2012). "Sentiment 
analysis of twitter audiences: Measuring the 
positive or negative influence of popular 
twitterers." J. Am. Soc. Inf. Sci. Technol. 
63(12): 2521-2535. 

Luciano Barbosa and Junlan Feng (2010). Robust 
sentiment detection on Twitter from biased 
and noisy data. Proceedings of the 23rd 
International Conference on Computational 
Linguistics: Posters. Beijing, China, 
Association for Computational Linguistics: 
36-44. 

Alec Go,Richa Bhayani and Lei Huang Twitter 
Sentiment Classification using Distant 
Supervision. 

Hussam Hamdan,Frederic Béchet and Patrice Bellot 
(2013). Experiments with DBpedia, 
WordNet and SentiWordNet as resources for 
sentiment analysis in micro-blogging. 
Proceedings of the Seventh International 
Workshop on Semantic Evaluation (SemEval 
2013), Atlanta, Georgia, USA. 

Minqing Hu and Bing Liu (2004). Mining and 
summarizing customer reviews. Proceedings 
of the tenth ACM SIGKDD international 
conference on Knowledge discovery and 
data mining. Seattle, WA, USA, ACM: 168-
177. 

Xia Hu,Lei Tang,Jiliang Tang and Huan Liu (2013). 
Exploiting social relations for sentiment 
analysis in microblogging. Proceedings of 
the sixth ACM international conference on 
Web search and data mining. Rome, Italy, 
ACM: 537-546. 

Aditya Joshi,A. R. Balamurali,Pushpak Bhattacharyya 
and Rajat Mohanty (2011). C-Feel-It: a 
sentiment analyzer for micro-blogs. 
Proceedings of the 49th Annual Meeting of 
the Association for Computational 
Linguistics: Human Language Technologies: 
Systems Demonstrations. Portland, Oregon, 

Association for Computational Linguistics: 
127-132. 

Vinh Ngoc Khuc,Chaitanya Shivade,Rajiv Ramnath 
and Jay Ramanathan (2012). Towards 
building large-scale distributed systems for 
twitter sentiment analysis. Proceedings of the 
27th Annual ACM Symposium on Applied 
Computing. Trento, Italy, ACM: 459-464. 

E. Kouloumpis,T. Wilson and J. Moore (2011). 
Twitter Sentiment Analysis: The Good the 
Bad and the OMG! Fifth International AAAI 
Conference on Weblogs and Social Media. 

Subhabrata Mukherjee,Akshat Malu,Balamurali A.R. 
and Pushpak Bhattacharyya (2012). TwiSent: 
a multistage system for analyzing sentiment 
in twitter. Proceedings of the 21st ACM 
international conference on Information and 
knowledge management. Maui, Hawaii, 
USA, ACM: 2531-2534. 

Nasir Naveed,Thomas Gottron,J\'Er\^Ome Kunegis 
and Arifah Che Alhadi (2011). Bad News 
Travels Fast: A Content-based Analysis of 
Interestingness on Twitter. Proc. Web 
Science Conf. 

Alexander Pak and Patrick Paroubek (2010). Twitter 
as a Corpus for Sentiment Analysis and 
Opinion Mining. Proceedings of the Seventh 
conference on International Language 
Resources and Evaluation (LREC'10), 
Valletta, Malta, European Language 
Resources Association (ELRA). 

Bo Pang,Lillian Lee and Shivakumar Vaithyanathan 
(2002). Thumbs up?: sentiment classification 
using machine learning techniques. 
Proceedings of the ACL-02 conference on 
Empirical methods in natural language 
processing - Volume 10, Association for 
Computational Linguistics: 79-86. 

Sara Rosenthal,Alan Ritter,Veselin Stoyanov and 
Preslav Nakov (2014). "SemEval-2014 Task 
9: Sentiment Analysis in Twitter." In 
Proceedings of the Eighth International 
Workshop on Semantic Evaluation 
(SemEval'14).August 23-24, Dublin, Ireland. 

Hassan Saif,Yulan He and Harith Alani (2012). 
Semantic sentiment analysis of twitter. 
Proceedings of the 11th international 
conference on The Semantic Web - Volume 
Part I. Boston, MA, Springer-Verlag: 508-
524. 

Michael Speriosu,Nikita Sudan,Sid Upadhyay and 
Jason Baldridge (2011). Twitter polarity 
classification with label propagation over 
lexical links and the follower graph. 
Proceedings of the First Workshop on 
Unsupervised Learning in NLP. Edinburgh, 
Scotland, Association for Computational 
Linguistics: 53-63. 

Chenhao Tan,Lillian Lee,Jie Tang,Long Jiang,Ming 
Zhou and Ping Li (2011). User-level 

640



sentiment analysis incorporating social 
networks. Proceedings of the 17th ACM 
SIGKDD international conference on 
Knowledge discovery and data mining. San 
Diego, California, USA, ACM: 1397-1405. 

Theresa Wilson,Zornitsa Kozareva,Preslav 
Nakov,Alan Ritter,Sara Rosenthal and 
Veselin Stoyanov (2013). "SemEval-2013 
Task 2: Sentiment Analysis in Twitter." 
Proceedings of the 7th International 
Workshop on Semantic Evaluation. 
Association for Computational Linguistics. 

Theresa Wilson,Janyce Wiebe and Paul Hoffmann 
(2005). Recognizing contextual polarity in 
phrase-level sentiment analysis. Proceedings 
of the conference on Human Language 
Technology and Empirical Methods in 
Natural Language Processing. Vancouver, 
British Columbia, Canada, Association for 
Computational Linguistics: 347-354. 

Olena Zubaryeva and Jacques Savoy (2010). "Opinion 
Detection by Combining Machine Learning 
& Linguistic Tools." In Proceedings of the 
8th NTCIR, Workshop Meeting on 
Evaluation of Information Access 
Technologies: InformationRetrieval, 
Question Answering and Cross-Lingual 
Information Access. 

 
 

641



Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 642–646,
Dublin, Ireland, August 23-24, 2014.

The Meaning Factory: Formal Semantics for Recognizing Textual
Entailment and Determining Semantic Similarity

Johannes Bjerva
Univ. of Groningen
j.bjerva@rug.nl

Johan Bos
Univ. of Groningen
johan.bos@rug.nl

Rob van der Goot
Univ. of Groningen

r.van.der.goot@rug.nl

Malvina Nissim
Univ. of Bologna

malvina.nissim@unibo.it

Abstract
Shared Task 1 of SemEval-2014 com-
prised two subtasks on the same dataset
of sentence pairs: recognizing textual en-
tailment and determining textual similar-
ity. We used an existing system based on
formal semantics and logical inference to
participate in the first subtask, reaching
an accuracy of 82%, ranking in the top
5 of more than twenty participating sys-
tems. For determining semantic similar-
ity we took a supervised approach using a
variety of features, the majority of which
was produced by our system for recogniz-
ing textual entailment. In this subtask our
system achieved a mean squared error of
0.322, the best of all participating systems.

1 Introduction
The recent popularity of employing distributional
approaches to semantic interpretation has also lead
to interesting questions about the relationship be-
tween classic formal semantics (including its com-
putational adaptations) and statistical semantics.
A promising way to provide insight into these
questions was brought forward as Shared Task 1 in
the SemEval-2014 campaign for semantic evalua-
tion (Marelli et al., 2014). In this task, a system is
given a set of sentence pairs, and has to predict for
each pair whether the sentences are somehow re-
lated in meaning. Interestingly, this is done using
two different metrics: the first stemming from the
formal tradition (contradiction, entailed, neutral),
and the second in a distributional fashion (a simi-
larity score between 1 and 5). We participated in
this shared task with a system rooted in formal se-
mantics. In particular, we were interested in find-
ing out whether paraphrasing techniques could in-
crease the accuracy of our system, whether mean-
ing representations used for textual entailment are
This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

useful for predicting semantic similarity, and con-
versely, whether similarity features could be used
to boost accuracy of recognizing textual entail-
ment. In this paper we outline our method and
present the results for both the textual entailment
and the semantic similarity task.1

2 Recognizing Textual Entailment

2.1 Overview
The core of our system for recognizing textual en-
tailment works as follows: (i) produce a formal se-
mantic representation for each sentence for a given
sentence pair; (ii) translate these semantic repre-
sentations into first-order logic; (iii) use off-the-
shelf theorem provers and model builders to check
whether the first sentence entails the second, or
whether the sentences are contradictory. This is
essentially an improved version of the framework
introduced by Bos & Markert (2006).

To generate background knowledge that could
assist in finding a proof we used the lexical
database WordNet (Fellbaum, 1998). We also
used a large database of paraphrases (Ganitkevitch
et al., 2013) to alter the second sentence in case no
proof was found at the first attempt, inspired by
Bosma & Callison-Burch (2006). The core sys-
tem reached high precision on entailment and con-
tradiction. To increase recall, we used a classifier
trained on the output from our similarity task sys-
tem (see Section 3) to reclassify the “neutrals” into
possible entailments.

2.2 Technicalities
The semantic parser that we used is Boxer (Bos,
2008). It is the last component in the pipeline of
the C&C tools (Curran et al., 2007), comprising
a tokenizer, POS-tagger, lemmatizer (Minnen et

1To reproduce these results in a linux environment (with
SWI Prolog) one needs to install the C&C tools (this in-
cludes Boxer and the RTE system), the Vampire theorem
prover, the two model builders Paradox and Mace-2, and the
PPDB-1.0 XL database. Detailed instructions can be found in
the src/scripts/boxer/sick/README folder of the
C&C tools.
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al., 2001), and a robust parser for CCG (Steed-
man, 2001). Boxer produces semantic represen-
tations based on Discourse Representation Theory
(Kamp and Reyle, 1993). We used the standard
translation from Discourse Representation Struc-
tures to first-order logic, rather than the one based
on modal first-order logic (Bos, 2004), since the
shared task data did not contain any sentences with
propositional argument verbs.

After conversion to first-order logic, we
checked with the theorem prover Vampire (Ri-
azanov and Voronkov, 2002) whether a proof
could be found for the first sentence entailing the
second, and whether a contradiction could be de-
tected for the conjunction of both sentences trans-
lated into first-order logic. If neither a proof nor
a contradiction could be found within 30 seconds,
we used the model builder Paradox (Claessen and
Sörensson, 2003) to produce a model of the two
sentences separately, and one of the two sentences
together. However, even though Paradox is an ef-
ficient piece of software, it does not always return
minimal models with respect to the extensions of
the non-logical symbols. Therefore, in a second
step, we asked the model builder Mace-2 (Mc-
Cune, 1998) to construct a minimal model for the
domain size established by Paradox. These mod-
els are used as features in the similarity task (Sec-
tion 3).

Background knowledge is important to increase
recall of the theorem prover, but hard to acquire
automatically (Bos, 2013). Besides translating hy-
pernym relations of WordNet to first-order logic
axioms, we also reasoned that it would be benefi-
cial to have a way of dealing with multi-word ex-
pressions. But instead of translating paraphrases
into axioms, we used them to rephrase the input
sentence in case no proof or contradiction was
found for the original sentence pair. Given a para-
phrase SRC7→TGT, we rephrased the first sen-
tence of a pair only if SRC matches with up to
four words, no words of TGT were already in the
first sentence, and every word of TGT appeared in
the second sentence. The paraphrases themselves
were taken from PPDB-1.0 (Ganitkevitch et al.,
2013). In the training phrase we found that the XL
version (comprising o2m, m2o, phrasal, lexical)
gave the best results (using a larger version caused
a strong decrease in precision, while smaller ver-
sions lead to a decrease in recall).

We trained a separate classifier in order to re-
classify items judged by our RTE system as be-
ing neutral. This classifier uses a single feature,
namely the relatedness score for each sentence
pair. As training material, we used the gold relat-

edness scores from the training and trial sets. For
classification of the test set, we used the related-
ness scores obtained from our Semantic Similarity
system (see Section 3). The classifier is a Support
Vector Machine classifier, in the implementation
provided by Scikit-Learn (Pedregosa et al., 2011),
based on the commonly used implementation LIB-
SVM (Chang and Lin, 2011). We used the imple-
mentation’s standard parameters.

2.3 Results
We submitted two runs. The first (primary) run
was produced by a configuration that included re-
classifying the ’neutrals’. The second run is with-
out the reclassification of the neutrals. After sub-
mission we ran a system that did not use the para-
phrasing technique in order to measure what in-
fluence the PPDB had on our performance. The
results are summarized in Table 1. In the train-
ing phase we got the best results for the configu-
ration using the PPDB and reclassication, which
was submitted as our primary run.

Table 1: Results on the entailment task for various
system configurations.

System Configuration Accuracy
most frequent class baseline 56.7
−PPDB, −reclassification 77.6
+PPDB, −reclassification 79.6
+PPDB, +reclassification 81.6

In sum, our system for recognizing entailment
performed well reaching 82% accuracy and by
far outperforming the most-frequent class baseline
(Table 1). We show some selected examples illus-
trating the strengths of our system below.

Example 1627 (ENTAILMENT)
A man is mixing a few ingredients in a bowl
Some ingredients are being mixed in a bowl by a person

Example 2709 (CONTRADICTION)
There is no person boiling noodles
A woman is boiling noodles in water

Example 9051 (ENTAILMENT)
A pair of kids are sticking out blue and green colored tongues
Two kids are sticking out blue and green colored tongues

A proof for entailment is found for Ex. 1627,
because for passive sentences Boxer produces
a meaning representation equivalent to their ac-
tive variants. A contradiction is detected for
Ex. 2709 because of the way negation is han-
dled by Boxer. Both examples trigger background
knowledge from WordNet hyperonyms (man →
person; woman → person) that is used in the
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proofs.2 Ex. 9051 shows how paraphrasing helps,
here “a pair of” 7→ “two”.

3 Determining Semantic Similarity

3.1 Overview

The Semantic Similarity system follows a super-
vised approach to solving the regression problem
of determining the similarity between each given
sentence pair. The system uses a variety of fea-
tures, ranging from simpler ones such as word
overlap, to more complex ones in the form of
deep semantic features and features derived from a
compositional distributional semantic model. The
majority of these features are derived from the
models from our RTE system (see Section 2).

3.2 Technicalities

3.2.1 Regressor
The regressor used is a Random Forest Regressor
in the implementation provided by Scikit-Learn
(Pedregosa et al., 2011). Random forests are ro-
bust with respect to noise and do not overfit easily
(Breiman, 2001). These two factors make them a
highly suitable choice for our approach, since we
are dealing with a relatively large number of weak
features, i.e., features which may be seen as indi-
vidually containing a rather small amount of infor-
mation for the problem at hand.

Our parameter settings for the regressor is fol-
lows. We used a total of 1000 trees, with a maxi-
mum tree depth of 20. At each node in a tree the
regressor looked at maximum 3 features in order
to decide on the split. The quality of each such
split is determined using mean squared error as
measure. These parameter values were optimised
when training on the training set, with regards to
performance on the trial set.

3.2.2 Feature overview
We used a total of 32 features for our regres-
sor. Due to space constraints, we have sub-divided
our features into groups by the model/method in-
volved. For all features we compared the outcome
of the original sentence pair with the outcome of
the paraphrased sentence pairs (see Section 2.2)3.
If the paraphrased sentence pair yielded a higher
feature overlap score than the original sentence
pair, we utilized the former. In other words, we

2In the training data around 20% of the proofs for entail-
ment were established with the help of WordNet, but only 4%
for detecting contradictions.

3In addition to the PPDB we added handling of negations,
by removing some negations {not, n’t} and substituting oth-
ers {no:a, none:some, nobody:somebody}.

assume that the sentence pair generated with para-
phrases is a good representation of the original
pair, and that similarities found here are an im-
provement on the original score.

Logical model We used the logical models cre-
ated by Paradox and Mace for the two sentences
separately, as well as a combined model (see Sec-
tion 2.2). The features extracted from this model
are the proportion of overlap between the in-
stances in the domain, and the proportion of over-
lap between the relations in the model.

Noun/verb overlap We first extracted and lem-
matised all nouns and verbs from the sentence
pairs. With these lemmas we calculated two new
separate features, the overlap of the noun lemmas
and the overlap of the verb lemmas.

Discourse Representation Structure (DRS)
The two most interesting pieces of information
which easily can be extracted from the DRS mod-
els are the agents and patients. We first extracted
the agents for both sentences in a sentence pair,
and then computed the overlap between the two
lists of agents. Secondly, since all sentences in the
corpus have exactly one patient, we extracted the
patient of each sentence and used this overlap as a
binary feature.

Wordnet novelty We build one tree containing
all WordNet concepts included in the first sen-
tence, and one containing all WordNet concepts
of both sentences together. The difference in size
between these two trees is used as a feature.

RTE The result from our RTE system (entail-
ment, neutral or contradiction) is used as a feature.

Compositional Distributional Semantic Model
Our CDSM feature is based on word vectors de-
rived using a Skip-Gram model (Mikolov et al.,
2013a; Mikolov et al., 2013b). We used the pub-
licly available word2vec4 tool to calculate these
vectors. We trained the tool on a data set con-
sisting of the first billion characters of Wikipedia5

and the English part of the French-English 109

corpus used in the wmt11 translation task6. The
Wikipedia section of the data was pre-processed
using a script7 which made the text lower case, re-
moved tables etc. The second section of the data
was also converted to lower case prior to training.

We trained the vectors using the following pa-
rameter settings. Vector dimensionality was set

4code.google.com/p/word2vec/
5mattmahoney.net/dc/enwik9.zip
6statmt.org/wmt11/translation-task.html#download
7mattmahoney.net/dc/textdata.html
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Table 2: Pearson correlation and MSE obtained on the test set for each feature group in isolation.

Feature group p [−PPDB] p [+PPDB] MSE [−PPDB] MSE [+PPDB]
Logical model 0.649 0.737 0.590 0.476
Noun/verb overlap 0.647 0.676 0.592 0.553
DRS 0.634 0.667 0.610 0.569
Wordnet novelty 0.652 0.651 0.590 0.591
RTE 0.621 0.620 0.626 0.627
CDSM 0.608 0.609 0.681 0.679
IDs 0.493 0.493 0.807 0.807
Synset 0.414 0.417 0.891 0.889
Word overlap 0.271 0.340 0.944 0.902
Sentence length 0.227 0.228 0.971 0.971
All with IDs 0.836 0.842 0.308 0.297
All without IDs 0.819 0.827 0.336 0.322

to 1600 with a context window of 10 words. The
skip-gram model with hierarchical softmax, and a
negative sampling of 1e-3 was used.

To arrive at the feature used for our regressor,
we first calculated the element-wise sum of the
vectors of each word in the given sentences. We
then calculated the cosine distance between the
sentences in the sentence pair.

IDs One surprisingly helpful feature was each
sentence pair’s ID in the corpus.8 Since this
feature clearly is not representative of what one
would have access to in a real-world scenario, it
was not included in the primary run.

Synset Overlap We built one set for each sen-
tence pair consisting of each possible lemma form
of all possible noun synsets for each word. The
proportion of overlap between the two resulting
sets was then used as a feature. Given cases where
relatively synonymous words are used (e.g. kid
and child), these will often belong to the same
synset, thus resulting in a high overlap score.

Synset Distance We first generated each possi-
ble word pair consisting of one word from each
sentence. Using these pairings, we calculated
the maximum path similarity between the noun
synsets available for these words. This calculation
is restricted so that each word in the first sentence
in each pair is only used once.

Word overlap Our word overlap feature was
calculated by first creating one set per sentence,
containing each word occurring in that sentence.

8We discovered that the ordering of the entire data set was
informative for the prediction of sentence relatedness. We
have illustrated this by using the ordering of the sentences
(i.e. the sentence IDs) as a feature in our model, and thereby
obtaining better results. Relying on such a non-natural order-
ing of the sentences would be methodologically flawed, and
therefore this feature was not used in our primary run.

The four most common words in the corpus were
used as a stop list, and removed from each set. The
proportion of overlap between the two sets was
then used as our word overlap feature.

Sentence Lengths The difference in length be-
tween the sentence pairs proved to be a somewhat
useful feature. Although mildly useful for this par-
ticular data set, we do not expect this to be a par-
ticularly helpful feature in real world applications.

3.3 Results

We trained our system on 5000 sentence pairs, and
evaluated it on 4927 sentence pairs. Table 2 con-
tains our scores for the evaluation, broken up per
feature group. Our relatedness system yielded the
highest scores compared to all other systems in
this shared task, as measured by MSE and Spear-
man correlation scores. Although our system per-
formed slightly worse as measured by Pearson
correlation, there is no significant difference to the
scores obtained by the two higher ranked systems.

4 Conclusion

Our work shows that paraphrasing techniques can
be used to improve the results of a textual entail-
ment system. Additionally, the scores from our
semantic similarity measure could be used to im-
prove the scores of the textual entailment system.
Our work also shows that deep semantic features
can be used to predict semantic relatedness.
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Abstract

In this paper we describe a Deep Convo-
lutional Neural Network (DNN) approach
to perform two sentiment detection tasks:
message polarity classification and con-
textual polarity disambiguation. We apply
the proposed approach for the SemEval-
2014 Task 9: Sentiment Analysis in Twit-
ter. Despite not using any handcrafted
feature or sentiment lexicons, our system
achieves very competitive results for Twit-
ter data.

1 Introduction

In this work we apply a recently proposed deep
convolutional neural network (dos Santos and
Gatti, 2014) that exploits from character- to
sentence-level information to perform sentiment
analysis of Twitter messages (tweets). The net-
work proposed by dos Santos and Gatti (2014),
named Character to Sentence Convolutional Neu-
ral Network (CharSCNN), uses two convolutional
layers to extract relevant features from words and
messages of any size.

We evaluate CharSCNN in the unconstrained
track of the SemEval-2014 Task 9: Sentiment
Analysis in Twitter (Rosenthal et al., 2014). Two
subtasks are proposed in the SemEval-2014 Task
9: the contextual polarity disambiguation (Sub-
taskA), which consists in determining the polar-
ity (positive, negative, or neutral) of a marked
word or phrase in a given message; and the
message polarity classification (SubtaskB), which
consists in classifying the polarity of the whole
message. We use the same neural network to per-
form both tasks. The only difference is that in

This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

SubtaskA, CharSCNN is fed with a text segment
composed by the words in a context window cen-
tered at the target word/phrase. While in Sub-
taskB, CharSCNN is fed with the whole message.

The use of deep neural networks for sentiment
analysis has been the focus of recent research.
However, instead of convolutional neural network,
most investigation has been done in the use of
recursive neural networks (Socher et al., 2011;
Socher et al., 2012; Socher et al., 2013).

2 Neural Network Architecture

Given a segment of text (e.g. a tweet), CharSCNN
computes a score for each sentiment label τ ∈
T = {positive, negative, neutral}. In order to
score a text segment, the network takes as input
the sequence of words in the segment, and passes
it through a sequence of layers where features with
increasing levels of complexity are extracted. The
network extracts features from the character-level
up to the sentence-level.

2.1 Initial Representation Levels

The first layer of the network transforms words
into real-valued feature vectors (embeddings) that
capture morphological, syntactic and semantic in-
formation about the words. We use a fixed-
sized word vocabulary V wrd, and we consider that
words are composed of characters from a fixed-
sized character vocabulary V chr. Given a sen-
tence consisting of N words {w1, w2, ..., wN}, ev-
ery word wn is converted into a vector un =
[rwrd; rwch], which is composed of two sub-
vectors: the word-level embedding rwrd ∈ Rdwrd

and the character-level embedding rwch ∈ Rcl0u

of wn. While word-level embeddings are meant
to capture syntactic and semantic information,
character-level embeddings capture morphologi-
cal and shape information.

647



2.1.1 Word-Level Embeddings
Word-level embeddings are encoded by col-
umn vectors in an embedding matrix Wwrd ∈
Rdwrd×|V wrd|. Each column Wwrd

i ∈ Rdwrd
cor-

responds to the word-level embedding of the i-th
word in the vocabulary. We transform a word w
into its word-level embedding rwrd by using the
matrix-vector product:

rwrd = Wwrdvw (1)

where vw is a vector of size
∣∣V wrd

∣∣ which has
value 1 at index w and zero in all other positions.
The matrix Wwrd is a parameter to be learned,
and the size of the word-level embedding dwrd is
a hyper-parameter to be chosen by the user.

2.1.2 Character-Level Embeddings
In the task of sentiment analysis of Twitter data,
important information can appear in different parts
of a hash tag (e.g., “#SoSad”, “#ILikeIt”) and
many informative adverbs end with the suffix
“ly” (e.g. “beautifully”, “perfectly” and “badly”).
Therefore, robust methods to extract morphologi-
cal and shape information from this type of tokens
must take into consideration all characters of the
token and select which features are more impor-
tant for sentiment analysis. Like in (dos Santos
and Zadrozny, 2014), we tackle this problem us-
ing a convolutional approach (Waibel et al., 1989),
which works by producing local features around
each character of the word and then combining
them using a max operation to create a fixed-sized
character-level embedding of the word.

Given a word w composed of M characters
{c1, c2, ..., cM}, we first transform each charac-
ter cm into a character embedding rchr

m . Character
embeddings are encoded by column vectors in the
embedding matrix W chr ∈ Rdchr×|V chr|. Given a
character c, its embedding rchr is obtained by the
matrix-vector product:

rchr = W chrvc (2)

where vc is a vector of size
∣∣V chr

∣∣which has value
1 at index c and zero in all other positions. The
input for the convolutional layer is the sequence
of character embeddings {rchr

1 , rchr
2 , ..., rchr

M }.
The convolutional layer applies a matrix-

vector operation to each window of size
kchr of successive windows in the sequence
{rchr

1 , rchr
2 , ..., rchr

M }. Let us define the vector
zm ∈ Rdchrkchr

as the concatenation of the

character embedding m, its (kchr − 1)/2 left
neighbors, and its (kchr − 1)/2 right neighbors:

zm =
(
rchr
m−(kchr−1)/2, ..., r

chr
m+(kchr−1)/2

)T

The convolutional layer computes the j-th element
of the vector rwch, which is the character-level em-
bedding of w, as follows:

[rwch]j = max
1<m<M

[
W 0zm + b0

]
j

(3)

where W 0 ∈ Rcl0u×dchrkchr
is the weight matrix

of the convolutional layer. The same matrix is
used to extract local features around each charac-
ter window of the given word. Using the max over
all character windows of the word, we extract a
“global” fixed-sized feature vector for the word.

Matrices W chr and W 0, and vector b0 are pa-
rameters to be learned. The size of the char-
acter vector dchr, the number of convolutional
units cl0u (which corresponds to the size of the
character-level embedding of a word), and the size
of the character context window kchr are hyper-
parameters.

2.2 Sentence-Level Representation and
Scoring

Given a text segment x with N words
{w1, w2, ..., wN}, which have been converted to
joint word-level and character-level embedding
{u1, u2, ..., uN}, the next step in CharSCNN
consists in extracting a segment-level represen-
tation rseg

x . Methods to extract a segment-wide
feature set most deal with two main problems:
text segments have different sizes; and important
information can appear at any position in the
segment. A convolutional approach is a good
option to tackle this problems, and therefore
we use a convolutional layer to compute the
segment-wide feature vector rseg. This second
convolutional layer works in a very similar way to
the one used to extract character-level features for
words. This layer produces local features around
each word in the text segment and then combines
them using a max operation to create a fixed-sized
feature vector for the segment.

The second convolutional layer applies a
matrix-vector operation to each window of size
kwrd of successive windows in the sequence
{u1, u2, ..., uN}. Let us define the vector zn ∈
R(dwrd+cl0u)kwrd

as the concatenation of a se-
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quence of kwrd embeddings, centralized in the n-
th word1:

zn =
(
un−(kwrd−1)/2, ..., un+(kwrd−1)/2

)T

The convolutional layer computes the j-th element
of the vector rseg as follows:

[rseg]j = max
1<n<N

[
W 1zn + b1

]
j

(4)

where W 1 ∈ Rcl1u×(dwrd+cl0u)kwrd
is the weight

matrix of the convolutional layer. The same ma-
trix is used to extract local features around each
word window of the given segment. Using the max
over all word windows of the segment, we extract
a “global” fixed-sized feature vector for the seg-
ment. Matrix W 1 and vector b1 are parameters
to be learned. The number of convolutional units
cl1u (which corresponds to the size of the segment-
level feature vector), and the size of the word con-
text window kwrd are hyper-parameters to be cho-
sen by the user.

Finally, the vector rseg
x , the “global’ feature vec-

tor of text segment x, is processed by two usual
neural network layers, which extract one more
level of representation and compute a score for
each sentiment label τ ∈ T :

s(x) = W 3h(W 2rseg
x + b2) + b3 (5)

where matrices W 2 ∈ Rhlu×cl1u and W 3 ∈
R|T |×hlu , and vectors b2 ∈ Rhlu and b3 ∈ R|T |

are parameters to be learned. The transfer func-
tion h(.) is the hyperbolic tangent. The size of the
number of hidden units hlu is a hyper-parameter
to be chosen by the user.

2.3 Network Training

Our network is trained by minimizing a nega-
tive likelihood over the training set D. Given a
text segment x, the network with parameter set θ
computes a score sθ(x)τ for each sentiment label
τ ∈ T . In order to transform this score into a con-
ditional probability p (τ |x, θ) of the label given the
segment and the set of network parameters θ, we
apply a softmax operation over all tags:

p (τ |x, θ) =
esθ(x)τ∑
i e

sθ(x)i
(6)

1We use a special padding token for the words with in-
dices outside of the text segment boundaries.

Taking the log, we arrive at the following con-
ditional log-probability:

log p (τ |x, θ) = sθ(x)τ−log

(∑
∀i∈T

esθ(x)i

)
(7)

We use stochastic gradient descent (SGD) to
minimize the negative log-likelihood with respect
to θ:

θ 7→
∑

(x,y)∈D

−log p(y|x, θ) (8)

where (x, y) corresponds to a text segment (e.g. a
tweet) in the training corpus D and y represents its
respective sentiment class label.

We use the backpropagation algorithm to com-
pute the gradients of the network (Lecun et al.,
1998; Collobert, 2011). We implement the
CharSCNN architecture using the automatic dif-
ferentiation capabilities of the Theano library
(Bergstra et al., 2010).

3 Experimental Setup and Results

3.1 Unsupervised Learning of Word-Level
Embeddings

Unsupervised pre-training of word embeddings
has shown to be an effective approach to improve
model accuracy (Collobert et al., 2011; Luong et
al., 2013; Zheng et al., 2013). In our experiments,
we perform unsupervised learning of word-level
embeddings using the word2vec tool2.

We use two Twitter datasets as sources of un-
labeled data: the Stanford Twitter Sentiment cor-
pus (Go et al., 2009), which contains 1.6 mil-
lion tweets; and a dataset containing 10.4 mil-
lion tweets that were collected in October 2012
for a previous work by the author (Gatti et al.,
2013). We tokenize these corpora using Gimpel et
al.’s (2011) tokenizer, and removed messages that
are less than 5 characters long (including white
spaces) or have less than 3 tokens. Like in (Col-
lobert et al., 2011) and (Luong et al., 2013), we
lowercase all words and substitute each numerical
digit by a 0 (e.g., 1967 becomes 0000). The re-
sulting corpus contains about 12 million tweets.

We do not perform unsupervised learning of
character-level embeddings, which are initial-
ized by randomly sampling each value from an
uniform distribution: U (−r, r), where r =√

6
|V chr|+ dchr

. The character vocabulary is

2https://code.google.com/p/word2vec/
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constructed by the (not lowercased) words in the
training set, which allows the neural network to
capture relevant information about capitalization.

3.2 Sentiment Corpora and Model Setup
SemEval-2014 Task 9 is a rerun of the SemEval-
2013 Task 2 (Nakov et al., 2013), hence the train-
ing set used in 2014 is the same of the 2013 task.
However, as we downloaded the Twitter training
and development sets in 2014 only, we were not
able to download the complete dataset since some
tweets have been deleted by their respective cre-
ators. In Table 1, we show the number of messages
in our SemEval-2013 Task 2 datasets.

Dataset SubtaskA SubtaskB
Train 7390 8213
Dev. 904 1415
Twitter2013 (test) 3491 3265
SMS2013 (test) 2,334 2,093

Table 1: Number of tweets in our version of
SemEval-2013 Task2 datasets.

In SemEval-2014 Task 9, three different test
sets are used: Twitter2014, Twitter2014Sarcarm
and LiveJournal2014. While the two first contain
Twitter messages, the last one contains sentences
from LiveJournal blogs. In Table 2, we show the
number of messages in the SemEval-2014 Task 9
test datasets.

Test Dataset SubtaskA SubtaskB
Twitter2014 2597 1939
Twitter2014Sarcasm 124 86
LiveJournal2014 1315 1142

Table 2: Number of tweets in the SemEval-2014
Task9 test datasets.

We use the copora Twitter2013 (test) and
SMS2013 to tune CharSCNN’s hyper-parameter
values. In Table 3, we show the selected hyper-
parameter values, which are the same for both
SubtaskA and SubtaskB. We concatenate the
SemEval-2013 Task 2 training and development
sets to train the submitted model.

3.3 Sentiment Prediction Results
In Table 4, we present the official results of our
submission to the SemEval-2014 Task9. In Sub-
taskB, CharSCNN’s result for the Twitter2014 test
corpus is the top 11 out of 50 submissions, and is

Parameter Parameter Name Value
dwrd Word-Level Emb. dim. 100
kwrd Word Context window 3
dchr Char. Emb. dim. 5
kchr Char. Context window 5
cl0u Char. Convol. Units 30
cl1u Word Convol. Units 100
hlu Hidden Units 300
λ Learning Rate 0.02

Table 3: Neural Network Hyper-Parameters.

3.9 F-measure points from the top performing sys-
tem. In the SubtaskA, CharSCNN’s result for the
Twitter2014 test corpus is the top 6 out of 27 sub-
missions. These are very promising results, since
our approach do not use any handcrafted features
or lexicons, all features (representations) are auto-
matically learned from unlabeled and labeled data.

Nevertheless, our system result for the Live-
Journal2014 corpus in SubtaskB is regular. For
this dataset CharSCNN achieves only the top 25
out of 50 submissions, and is 7.9 F-measure points
behind the top performing system. We believe the
main reason for this poor result is the exclusive use
of Twitter data in the unsupervised pre-training.

Test Subset SubtaskA SubtaskB
Twitter2014 82.05 67.04
Twitter2014Sarcasm 76.74 47.85
LiveJournal2014 80.90 66.96
Twitter2013 88.06 68.15
SMS2013 87.65 63.20

Table 4: Average F-measure of CharSCNN for dif-
ferent test sets.

4 Conclusions

In this work we describe a sentiment analysis
system based on a deep neural network architec-
ture that analyses text at multiple levels, from
character-level to sentence-level. We apply the
proposed system to the SemEval-2014 Task 9 and
achieve very competitive results for Twitter data in
both contextual polarity disambiguation and mes-
sage polarity classification subtasks. As a future
work, we would like to investigate the impact of
the system performance for the LiveJournal2014
corpus when the unsupervised pre-training is per-
formed using in-domain texts.
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Abstract

In 2014, SemEval organized multiple chal-
lenges on natural language processing and
information retrieval. One of the task was
analysis of the clinical text. This challenge
is further divided into two tasks. The task
A of the challenge was to extract disor-
der mention spans in the clinical text and
the task B was to map each of the disor-
der mentions to a unique Unified Medical
Language System Concept Unique Iden-
tifier. We participated in the task A and
developed a clinical disorder recognition
system. The proposed system consists of
a Conditional Random Fields based ap-
proach to recognize disorder entities. The
SemEval challenge organizers manually
annotated disorder entities in 298 clini-
cal notes, of which 199 notes were used
for training and 99 for development. On
the test data, our system achieved the F-
measure of 0.844 for entity recognition in
relaxed and 0.689 in strict evaluation.

Keywords: medical language processing,
clinical concept extraction, conditional
random fields.

1 Introduction

Mining concepts from the electronic medical
records such as clinical reports, discharge sum-
maries as well as large number of doctor’s notes
has become an utmost important task for auto-
matic analysis in the medical domain. Identifica-
tion and mapping of the concepts like symptoms,
disorders, surgical procedures, body sites to a nor-
malized standards are usually the first steps to-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

wards understanding natural language text in the
medical records.

In this paper, we describe a machine learning
based disorder recognition system for the Task 7A
of 2014 SemEval challenge. In Section 2 we give
a background of the existing solutions to tackle
the problem. Section 3 covers our approach in
detail, followed by evaluation and conclusion in
Section 4 and Section 5 respectively.

2 Background

In recent times, many systems have been de-
veloped to extract clinical concepts from vari-
ous types of clinical notes. The earlier nat-
ural language processing (NLP) systems were
mainly built heavily using domain knowledge
i.e. medical dictionaries. These systems in-
clude MetaMap (Aronson and Lang, 2010), Hi-
TEX (Zeng et al., 2006), KnowledgeMap (Denny
et al., 2003), MedLEE (Friedman et al., 1994),
SymText (Koehler, 1994) and Mplus (Christensen
et al., 2002). In the past couple of years, re-
searchers have been exploring the use of machine
learning algorithms in the clinical concept detec-
tion. To promote the research in this field many or-
ganizations such as ShARe/CLEF, SemEval have
organized a few clinical NLP challenges. In CLEF
2013 (Pradhan et al., 2013), the challenge was to
recognize medication-related concepts. Both rule-
based (Fan et al., 2013; Ramanan et al., 2013;
Wang and Akella, 2013) and machine learning
based methods as well as hybrid methods (Xia
et al., 2013; Osborne et al., 2013; Hervas et al.,
2013) were developed. In this shared-task sequen-
tial labeling algorithms (i.e., Conditional Random
Fields (CRF)) (Gung, 2013; Patrick et al., 2013;
Bodnari et al., 2013; Zuccon et al., 2013) and ma-
chine learning methods (i.e., Support Vector Ma-
chine (SVM)) (Cogley et al., 2013) have been
demonstrated to achieve promising performance
when provided with a large annotated corpus for
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Figure 1: Dataset distribution

training.

3 Approach

Entity recognition has been tried in various do-
mains like news articles, Wikipedia, sports arti-
cles, financial reports and clinical texts. In clinical
text, entities can vary from medical procedures,
disorders, body site indicators etc. Clinical text
also presents with a peculiar concept of disjoint
disorders/entities. This phenomenon is common
in clinical domain compared to others and further
complicates entity extraction from clinical notes.

3.1 Data
The data consisted of around 298 notes from dif-
ferent clinical types including radiology reports,
discharge summaries, ECG and ECHO reports.
For each note, disorder entities were annotated
based on a pre-defined guidelines. The data set
was further divided into two, with 199 notes in the
training set and 99 notes in the development set.
The training set contains 5811 disorders where as
the development contained 5340 disorders. Figure
1 shows the distribution of the training and devel-
opment set respectively.

3.2 Data Preprocessing
In the pre-processing step we tokenized, lemma-
tized and tagged the text with part of speech us-
ing the Apache cTAKES1 (Savova et al., 2010).
Further, section and source meta data extraction is
done for the text in the documents.

In Named Entity Recognition (NER), when
solved using machine learning, the text is typically
converted to BIO format (Beginning, Inside and
Outside the entity). BIO representation means the

1https://ctakes.apache.org/

words in the text are assigned one of the follow-
ing tags B - begin, I - inside and O - outside of the
entity i.e. in this case a disorder. So now the task
of NER is a sequence labeling problem to assign
the labels to the tokens. Especially in the medical
domain, the challenge is more complicated due to
the presence of disjoint disorders (<10%), which
could not be solved using the traditional BIO-
notation. BIO approach works well with entities
which are consecutive. So, we took an enhanced
approach (Tang et al., 2013a) where the consec-
utive disorders are assigned traditional BIO tags
and for disjoint disorders we create two tag sets a)
D{B,I} : for disjoint entity words which are not
shared by multiple concepts; and b) H{B,I}: for
disjoint entity words which belong to more than
one disjoint concept.

The following examples show the annotations
of consecutive as well as disjoint disorders.

1: “The left atrium is moderately dilated.”
“The/O left/DB atrium/DI is/O moderately/O
dilated/DB ./O”

2: “The left & right atrium are moderately
dilated.”
“The/O left/DB &/O right/DB atrium/HB are/O
moderately/O dilated/HB ./O”

3.3 Sequence Labeling

We have used Conditional Random Fields (CRF),
a popular approach to solve sequence labeling
tasks. CRF++2 was used as an implementation of
CRF for our purpose.

2http://crfpp.googlecode.com/svn/trunk/doc/index.html
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Feature set used for the learning algorithm:

• Word level features: words [-2,2], suffix and
prefix.

• Syntactic features: parts-of-speech(POS).

• Discourse features: source & section. Sen-
tence containing disorder mentions usually
have similar syntactic patterns based on sec-
tions (ex: ‘Past Medical History’) and source
type (ex: discharge summary, radiology re-
port). To capture this, source and section
meta data have been provided as a feature.

• Distributional semantics: We used a con-
textual similarity based approach from the
popular concept called NC-value (Frantzi et
al., 2000).

We followed the following steps to encap-
sulate the distributional semantics into the
learning model:

– For all the disorders in the training data
we created two sets of contextual words
namely context before (CBatrain) and
context after (CAatrain). These words
belong to open class (Noun, Verb, Ad-
jective, Adverb) allocated for each sec-
tion (Sj).

– Weights are calculated for the contex-
tual words.

Weight(btrain) = freq(disorders,b)
freq(disorders)

– For each word in the test data we created
a similar sets of contextual words(CBa,
CAa) as above.

– Two scores are calculated for each
token based on the product of frequency
of the contextual word per section Sj

with weight calculated of that word in
the training set.

For each section (Sj):

NC−valueB(a) =
X

bεCBa,Sj

fa(btest)∗weight(btrain)

(1)

NC−valueA(a) =
X

bεCAa,Sj

fa(btest)∗weight(btrain)

(2)

where
a is the candidate term,

CBa is the set of context words of “a”
in a window of [-2,0],
CAa is the set of context words of “a”
in a window of [0,2],
Sj is a section like “Past Medical
History”, “Lab Reports” etc.
b is a word from CBa or CAa,
fa(btest) is the frequency of b as a term
context word of “a” in the test set,
weight(btrain) is the weight of b as term
context word of a disorder in the
training set,
NC-valueB(a) is the distributional
semantic score of contextual words
before the candidate term,
NC-valueA(a) is the distributional
semantic score of contextual words
after the candidate term.

– Further a similarity class is calculated
based on a set of thresholds on the
NC-value namely High-Sim, Med-Sim,
Low-Sim and assigned to the tokens.

Most of the features were similar to that of the pre-
vious approaches (Tang et al., 2013a; Tang et al.,
2012; Tang et al., 2013; Jiang et al., 2011) with an
addition of an innovative distributional semantics
based features (Nc-valueB , NC-valueA), which we
have tried and tested for concept mining in clinical
text.

4 Evaluation

The evaluation was done in two categories a) strict
evaluation: exact match, which requires the start-
ing and ending of the concept to be the same as
the gold standard data b) relaxed evaluation: here
the concepts don’t match exactly with the start and
end of the concept but may overlap.

In the strict and relaxed evaluation, the best F-
measure among our system was 0.689, 0.844 with-
out the distributional semantics where as best Pre-
cision was 0.907, 0.749 with the distributional se-
mantics as a feature. Table 1. shows the detailed
result.

5 Conclusion

Extraction of the concepts from the medical text
is the fundamental task in the process of analysing
patient data. In this paper we have tried a CRF
based approach to mine the disorder terms from
the clinical free text. We have tried various word

654



SemEval-2014 Strict Relaxed
Shared Task 7A Precision Recall F-measure Precision Recall F-measure
Disorder Recognition

0.734 0.65 0.689 0.892 0.802 0.844without Distributional
Semantics Feature
Disorder Recognition

0.749 0.617 0.677 0.907 0.758 0.826with Distributional
Semantics Feature

Table 1: Results of the system on test set

level, syntactic, discourse and distributional se-
mantic based features as adapted to the medical
domain.

We have observed an increase (+1.5%) in pre-
cision but a drastic fall (-4.4%) in recall while
using the distributional semantic feature. Ideally
this feature has to improve the results because it
takes contextual features into consideration. In our
opinion inappropriate scaling of the feature values
might have caused the drop. Further we would
like to investigate the use of large unlabeled data,
dependency tree based context and more experi-
ments have to be carried out like threshold setting,
feature value scaling to show better results. Also
due to license issues we could not use UMLS dic-
tionary. From our survey we figured out that 2-3%
of improvement has been observed when the con-
cepts from the dictionary are used.
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Abstract 

The TJP system is presented, which partici-

pated in SemEval 2014 Task 9, Part A: 

Contextual Polarity Disambiguation. Our 

system is ‘constrained’, using only data 

provided by the organizers. The goal of this 

task is to identify whether marking contexts 

are positive, negative or neutral. Our system 

uses a support vector machine, with exten-

sive pre-processing and achieved an overall 

F-score of 81.96%. 

1 Introduction 

The aim of sentiment analysis is to identify 

whether the subject of a text is intended to be 

viewed positively of negatively by a reader. Such 

emotions are sometimes hidden in long sentences 

and are difficult to identify. Consequently senti-

ment analysis is an active research area in natural 

language processing.
 *
 

Sentiment is currently conceived terms of po-

larity. This has numerous interesting applica-

tions. For example, Grabner et al. (2012) used  

sentiment analysis to classify customers’ reviews 

of hotels by using a star rating to categorize the  

                                                           
*     This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Page numbers and pro-

ceedings footer are added by the organisers. Licence details: 

http://creativecommons.org/licenses/by/4.0/ 

 

reviews as bad, neutral and good. Similarly, 

Tumasjan et al. (2010) tried to predict the out-

come of the German federal election through the 

analysis more than 100,000 tweets posted in the 

lead up. Sentiment analysis has also used to 

classify whether dreams are positive or nega-

tive (Nadeau et al. 2006). 
This paper presents the TJP system which 

was  submitted to SemEval 2014 Task 9, Part A: 

Contextual Polarity Disambiguation (Rosenthal 

et al., 2014). TJP focused on the ‘Constrained’ 

task.  

The ‘Constrained’ task only uses data provid-

ed by the organizers. That is, external resources 

such as sentiment inventories (e.g. Sentiwordnet 

(Esuli, and Sebastiani 2006) are excluded. The 

objective of the TJP system was to use the results 

for comparison with our previous experiment 

(Chalothorn and Ellman, 2013). More details of 

these can be found in section 5.  

The TJP system was implemented using a 

support vector machine (SVM, e.g. Joachims, 

1999) with the addition of extensive pre-

processing such as stopword removal, negation, 

slang, contraction,  and emoticon expansions. 

The remainder of this paper is constructed as 

follows: firstly, related work is discussed in sec-

tion 2; the methodology, the experiment and re-

sults are presented in sections 3 and 4, 
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respectively. Finally a discussion and future 

work are given in section 5. 

2 Related Work  

Twitter is a popular social networking and mi-

croblogging site that allows users to post mes-

sages of up to 140 characters; known as 

‘Tweets’. Tweets are extremely attractive to the 

marketing sector, since tweets may be searched 

in real-time. This means marketing can find cus-

tomer sentiment (both positive and negative) far 

more quickly than through the use of web pages 

or traditional media. Consequently analyzing the 

sentiment of tweets is currently active research 

task. 

The word 'emoticon' is a neologistic contrac-

tion of 'emotional icon'.  It refers specifically to 

the use of combinations of punctuation charac-

ters to indicate sentiment in a text. Well known 

emoticons include :) to represent a happy face, 

and :( a sad one. Emoticons allow writers to 

augment the impact of limited texts (such as in 

SMS messages or tweets) using few characters.  

Read (2005) used emoticons from a training 

set downloaded from Usenet newsgroups as an-

notations (positive and negative). Using the ma-

chine learning techniques of Naïve Bayes and 

SVM, Read (2005) achieved up to 61.50 % and 

70.10%, accuracy respectively in determining 

text polarity from the emoticons used.  

Go et al. (2009) used distant supervision to   

classify sentiment of Twitter, similar to Read 

(2005). Emoticons were used as noisy labels in 

training data. This allowed the performance of  

supervised learning (positive and negative) at a 

distance. Three classifiers were used: Naïve 

Bayes, Maximum   Entropy and SVM. These 

classifiers were able to   obtain more than 

81.30%, 80.50% and 82.20%, respectively accu-

racy on their unigram testing data . 

Aramaki et al. (2011) classified contexts on 

Twitter related to influenza using a SVM. The 

training data was annotated with the polarity la-

bel by humans, whether they are positive or neg-

ative. The contexts will be labelled as positive if 

the contexts mention the user or someone close 

to them has the flu, or if they mention a time 

when they caught the flu. The results demon-

strated that they obtained a 0.89 correction ratio 

for their testing data against a gold standard. 

Finally, a well known paper by Bollen and 

Mao (2011) identified a correlation between the 

movements of the Dow Jones stock market    

index, and prevailing sentiment as determined 

from twitter's live feed. This application has 

prompted considerable work such as Makrehchi 

et al (2013) that has attempted to create success-

ful trading strategies from sentiment analysis of 

tweets.  

These work both the wide ranging applica-

tions of analysing twitter data, and the             

importance of Sentiment Analysis. We now 

move on to look at our approach to SemEval 

2014 task 9. 

3 Methodology  

3.1 Corpus 

The training and development dataset of 

SemEval was built using Tweets from more than 

one thousand pieces of context. The contexts 

have various features often used in Tweets, such 

as emoticons, tags, usernames etc. These features 

were extracted from the datasets before training 

for the  supervised machine learning model. 

During initial pre-processing of the datasets, 

emoticons were labelled by matching with the 

emoticons that have been collect manually from 

the dataset. Those labelled were matched against 

a well-known collection of emoticons
†
. 

Subsequently, negative contractions
‡
 were 

expanded in place and converted to full form 

(e.g. don’t -> do not). Moreover, the features of 

                                                           
†http://en.wikipedia.org/wiki/List_of_emoticons 
‡http://en.wikipedia.org/wiki/English_auxiliaries_and_contr

actions#Negative_contractions 
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twitters were also removed or replaced by words 

such as twitter usernames, URLs and hashtags. 

A Twitter username is a unique name that 

shows in the user's profile and may be used for 

both authentication and identification.  This is 

shown by prefacing the username with an @ 

symbol. When a tweet is directed at an individual 

or particular entity this can be shown in the tweet 

by including @username. For example a tweet 

directed at ‘tawunrat’ would include the text  

@tawunrat.  Before URLs are posted in twitter 

they are shortened automatically to use the t.co 

domain whose modified URLs are at most 22 

characters. However, both features have been 

removed from the datasets. For the hashtags, 

they are used for represent keyword and topics in 

twitter by using # follow by words or phrase 

such as #newcastleuk.  This feature has been re-

placed with the following word after # symbol. 

For example, #newcastleuk was replaced by 

newcastleuk. 

Frequently repeated letters are used in tweets 

for emphasis. These were reduced and replaced 

using a simple regular expression by two of the 

same character. For example, happpppppy will 

be replaced with happy, and coollllll will be re-

placed by cooll. Next, special character such as 

[,],{,},?,and ! were also removed. Slang and con-

tracted words were converted to their full form. 

E.g. ‘fyi’ was converted to ‘for your infor-

mation’. Finally, NLTK (Bird et al. 2009) stop-

words such as ‘a’, ‘the’, etc., were removed from 

the datasets. 

3.2 Classifier 

Our system uses the SVM classifier model 

(Hearst et al., 1998, Cristianini and Shawe-

Taylor, 2000), which is based on SVM-light (Jo-

achims, 1999). SVM is a binary linear classifica-

tion model with the learning algorithm for 

classification and regression analyzing the data 

and recognizing the pattern. 

Training SVMLight requires data to be for-

mulated into vectors of attribute value pairs pre-

ceded by a numeric value. For example, 
 

<target>  <feature>:<value> <feature>:<value> ... <feature>:<value> # 

<info> 

 

Here, ‘target’ represents the polarity of a sen-

tence or tweet; ‘feature’ refers to a term in the 

document, and ‘value’ refers to a feature weight. 

This could be used as the relative frequency of a 

term in the set of documents, or Tf-Idf. Tf-idf is 

the combination of term frequency (tf) and in-

verse document frequency (idf), is a weight value 

often used in text mining and information re-

trieval. This weight is a statistical measure used 

to evaluate the relative important of word in a 

document in the collection (Manning et al., 

2008).  

 
                     (1) 

where           is the weighting the scheme assigns to 

term   in document   

 
Term frequency (tf) is used to measure how fre-

quent the term appears in the document. 

 

       
    

∑      

 
(2) 

where      is the number of term   appears in a document    

∑       is the total number of terms   in the document  . 

 

Inverse document frequency (idf) is used to 

measure how important the term is – i.e. whether 

the term is common or rare in the collection.  

 

        
 

  
 

(3) 

where   is the total number of documents in the collection 

in corpus.    is the number of documents   which term   
appears. 

 

Therefore, we chose to work with both of these 

to observe which yielded the best results in the 

polarity classification.  
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The default settings of SVMLight were used 

throughout. This meant that we used a linear 

kernel that did not require any parameters.
§
 

4 Experiment and Results  

In our experiment, we used the datasets and 

evaluated the system using the F-score measure-

ment. During pre-processing features were ex-

tracted from both datasets. First, we used a 

frequency of word as a featured weight by calcu-

lating the frequency of word in the dataset and, 

during pre-processing, we labelled the emotions 

in both datasets. The results revealed a lower 

than average F-score at 34.80%.  As this was 

quite low we disregarded further use of term fre-

quency as a feature weight. We moved on to use 

Tf-Idf as the feature weight and, again, emoti-

cons in both datasets were labelled. The score of 

78.10% was achieved. Then, we kept the pre-

possessing of the training set stable by combin-

ing the features to extract from the testing data. 

These results are presented in Table 1
**

.  

The highest score of 81.96% was recorded 

when all the features were combined and extract-

ed from both datasets.  

The lowest score of 36.48% was recorded 

when emoticons were extracted from testing data 

and all features were extracted from training da-

tasets. The results of the highest scoring experi-

ment were submitted to the task organizers. 

Following solution submissions, the task or-

ganizers announced the scores by separating the 

data into the following five groups: LiveJour-

nal2014; SMS2013; Twitter2013; Twitter2014; 

and Twitter2014 Sarcasm. This would allow the 

identification of any domain dependent effects. 

However, the results showed that we achieved 

above average in all the datasets, as illustrated in 

Figure 1. 

                                                           
§Based on SVMLight 
**The results in the table are from the test set 2014 in task 

2A. 

5 Conclusion and Future Work 

The TJP system participated in SemEval 2014 

Task 9, Part A: Contextual Polarity Disambigua-

tion. The system exploited considerable pre-

processing, before using the well known, 

SVMLight machine learning algorithm (Joa-

chims. 1999). The pre-processing used several 

twitter specific features, such as hashtags and 

ids, in addition to more traditional Information 

Retrieval concepts such as the Tf-Idf heuristic 

(Manning et al., 2008). The results showed that 

the combination of all features in both datasets 

achieved the best results, at 81.96%. 

An aspect of this contribution is the compara-

tive analysis of feature effectiveness. That is, we 

attempted to identify which factor(s) made the 

most significant improvement to system perfor-

mance. It is clear the pre-processing had a con-

siderable effect on system performance. The use 

of a different learning algorithm also contributed 

to performance since, on this task, SVMLight 

performed better than the Naive Bayes algorithm 

that was used by our team in 2013. 

Sentiment resources was not been used in our 

system in SemEval 2014 as same as in SemEval 

2013 whilst other user groups have employed a 

variety of resources of different sizes, and accu-

racy (Wilson et al., 2013). These points lead to 

the following plan for future activities. 

Our future work is to rigorously investigate 

the success factors for sentiment analysis, espe-

cially in the twitter domain. More specifically, 

we have formulated the following research ques-

tions as a result of our participation in SemEval 

 Are Sentiment resources essential for the 

Sentiment Analysis task? 

 Can the accuracy and effectiveness of 

sentiment lexicons be measured? If so, 

which feature of the resource (accuracy 

vs. coverage) is the most effective met-

ric. 

 Might it be more effective to use a range 

of sentiments (e.g. [-1.0 .. 1.0]), rather 
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than binary approach(e.g. positive and 

negative) taken in SemEval 2013, and 

2014? 

 Is one machine learning algorithm suffi-

cient, and if so which is it? Or, alternate-

ly would an ensemble approach (Rokach, 

2005) significantly improve perfor-

mance?

 

 
Table 1: The results of each feature analyzed in the approach of TF-IDF 

 

Figure 1: The comparison of TJP and average scores 
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Abstract 

We present our participation in Task 7 of 

SemEval shared task 2014. The goal of 

this particular task includes the identifica-

tion of disorder named entities and the 

mapping of each disorder to a unique Uni-

fied Medical Language System concept 

identifier, which were referred to as Task 

A and Task B respectively. We partici-

pated in both of these subtasks and used 

YTEX as a baseline system. We further 

developed a supervised linear chain Con-

ditional Random Field  model based on 

sets of features to predict disorder men-

tions. To take benefit of results from both 

systems we merged these results. Under 

strict condition our best run evaluated at 

0.549 F-measure for Task A and an accu-

racy of 0.489 for Task B on test dataset. 

Based on our error analysis we conclude 

that recall of our system can be signifi-

cantly increased by adding more features 

to the Conditional Random Field model 

and by using another type of tag represen-

tation or frame matching algorithm to deal 

with the disjoint entity mentions. 

                                                 
 

1 Introduction 

Clinical notes are rich sources of valuable pa-

tient’s information. These clinical notes are often 

plain text records containing important entity 

mentions such as clinical findings, procedures and 

disease mentions (Jimeno et al., 2008). Using au-

tomated tools to extract the aforementioned infor-

mation can undoubtedly help researchers and cli-

nicians with better decision making. An important 

subtask of information extraction called named 

entity recognition (NER) can recognize the 

boundary of named entity mention and classify it 

into a certain semantic group.  

The focus of the SemEval-2104 task 7 is recogni-

tion and normalization of disorder entities men-

tioned in clinical notes. As such, this task was fur-

ther divided into two parts: first, task A which in-

cludes recognition of mention of concepts that be-

long to UMLS (Unified Medical Language Sys-

tem) semantic group disorders (Bodenreider, 

2004). The concepts considered in Task A include 

the following eleven UMLS semantic types: Con-

genital Abnormality; Acquired Abnormality; In-

jury or Poisoning; Pathologic Function; Disease 

or Syndrome; Mental or Behavioral Dysfunction; 

Cell or Molecular Dysfunction; Experimental 

Model of Disease; Anatomical Abnormality; Ne-

oplastic Process; and Signs and Symptoms. Sec-

ond, task B referred to as task of normalization in-

volves the mapping of each disorder mention to a 

UMLS concept unique identifier (CUI).The map-

ping was limited to UMLS CUI of SNOMED clin-

ical term codes (Spackman, Campbell, & CÃ, 

1997). We participated in both tasks and devel-
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oped a disorder concept recognition/normaliza-

tion system based on several openly available 

tools and machine learning algorithms. 

2 Methods 

2.1 System Design 

For both task A and B, YTEX (Garla et al., 

2011) system was employed as a baseline system. 

We chose to use YTEX since it is specifically de-

signed for processing clinical notes with improve-

ments to cTAKES’s dictionary lookup algorithm 

and word sense disambiguation feature. The pre-

processing involves sentence detection, tokeniza-

tion and part-of-speech (POS) tagging(Fiscus, 

1997). Based on the tokenized tokens, several fea-

tures along with the corresponding part-of-speech 

tags were extracted for the supervised learning al-

gorithm–conditional random field (CRF) model 

(Lafferty, McCallum, & Pereira, 2001). After 

training, the CRF model was used for recognizing 

disorder mentions. Furthermore the recognized 

disorder concepts were sent to MetaMap 

(Aronson & Lang, 2010) to look for their corre-

sponding CUIs for generating normalized results. 

The results were finally merged with the output of 

YTEX. A high level diagram of the developed 

system is schematized in Figure 1.  

2.2 Disorder Concept Recognition 

The task A involves detecting boundaries of en-

tity that belongs to UMLS semantic group, disor-

ders. We used the sequence tagging tool based on 

Mallet’s implementation of the supervised linear 

chain CRF model to perform this task. We fol-

lowed the traditional BIO format to formulate the 

disorder concept recognition task as a sequential 

labelling task, wherein each token was assigned a 

label such as B is indicated the Beginning of en-

tity, I is indicated the Inside an entity, or O is in-

dicated the Outside of an entity. Thus, the model 

assigns each of the word into one of the above 

three labels. We investigated various types of fea-

tures proposed in previous works (Jiang et al., 

2011; Li, Kipper-Schuler, & Savova, 2008; Tang, 

Cao, Wu, Jiang, & Xu, 2013), like semantic fea-

ture which includes UMLS semantic group and 

semantic type, to develop our classifier. We also 

investigated various word features like POS, cap-

italization, and ‘position of word’ in the sentence. 

We also used ‘previous word’, ‘next word’ and 

‘label of these words’ as a feature for developing 

our classifier. 

2.3 Disorder Concept Normalization 

Each disorder concept recognized by our recogni-

tion system was passed to a local installation of 

MetaMap using MetaMap Java API to obtain its 

candidate CUI. To increase the recall, we merged 

results from both YTEX and MetaMap systems. 

Output from YTEX baseline system was merged 

to the output from our CRF model with MetaMap. 

This method was used because it was observed 

that our CRF/MetaMap model has higher preci-

sion while YTEX baseline system has higher re-

call. 

3 Results  

3.1 Datasets 

For Task A and Task B, the training and devel-

opment datasets provided by the SemEval task 7 

organizers were used. Both were derived from 

ShARe corpus containing de-identified  plain text 

clinical notes from MIMIC II database (Suominen 

et al., 2013).  These clinical notes were manually 

annotated for disorder mention and normalized to 

 
Fig. 1: TMUNSW system design for SemEval-2014 Task 7. 
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an UMLS CUI when possible. The corpus con-

sisted of four types of clinical notes: discharge 

summaries, electrocardiogram, echocardiogram, 

and radiology reports. As the dataset, we included 

different types of clinical notes, further we trained 

a CRF model for each type and evaluated its per-

formance on the corresponding development data. 

However, test set from task organizers contained 

discharge summaries only. Hence, the model de-

veloped for discharge summary was selected for 

evaluation on the test set. 

3.2 Evaluation Metrics  

The official evaluation script provided by or-

ganizers of the shared task was used to evaluate 

our system ability to correct an identify spans of 

text that belongs to semantic group disorders and 

to normalize them to the corresponding CUIs.  

We calculated the evaluation measures under 

two settings-strict and relaxed. The strict setting 

matches exact boundaries with the gold standard, 

while relaxed setting matches overlapping bound-

aries in the gold standard. The evaluation 

measures were calculated using the commonly 

used evaluation measures including recall (R), 

precision (P), and F-measure (F) (Powers, 2007). 

3.3 System Configurations 

We used YTEX V0.8 with cTAKES V2.5.0 as 

the baseline system for performance comparison. 

All default settings for YTEX, including the con-

cept window of the length 10, were adopted. We 

submit two runs for both tasks. For Task A, the 

first run, denoted as Run0, used the developed 

CRF model to recognize the disorder concepts. 

The second run was denoted as Run1, which 

merged the results of CRF model with YTEX. 

Similarly, for Task B, Run0 used the MetaMap 

2012 version to normalize the candidate disorder 

concepts recognized by our CRF model. For 

Run1, we merged normalized annotation results 

of YTEX with Run0. 

3.4 System Performance Comparison 

We performed a ten-fold cross validation on 

the combination of the training and development 

datasets for examining the recognition and nor-

malization performance of the developed CRF 

model combined with MetaMap (Run0), and com-

pared with the YTEX as the baseline system. Ta-

ble 1 summarized the results for Task A and B. 

 The results showed, for both tasks, Run0 sig-

nificantly outperformed YTEX in the strict setting. 

The higher F-score of Run0 can be attributed by 

the fact that Run0 is developed based on the re-

leased corpus and the machine learning algorithm 

which is better suited for NER task as compared 

to the rule based YTEX system. In the relaxed set-

ting, for Task A, Run0 also has significantly 

higher F-score than the YTEX baseline system. 

However, in case of Task B accuracy of YTEX is 

significantly greater than Run0. We believe that 

the higher accuracy of the baseline system can be 

attributed by the word sense disambiguation fea-

ture within YTEX. 

 

Task 

A 

YTEX Run0 

Strict Relaxed Strict Relaxed 

P 0.524 0.917 0.771 0.978 

R 0.469 0.670 0.615 0.811 

F 0.495 0.774 0.682 0.884 

Task  

B 
YTEX Run0 

Strict Relaxed Strict Relaxed 

Accuracy 0.469 1.000 0.684 0.752 

Table 1. Summary of Training Set Evaluation Re-

sults. 

3.5 Official Evaluation Results 

Table 2 shows the official evaluation results 

of the submitted two configurations, Run0 and 

Run1. Under the strict setting, Run1 achieves the 

better performance with an F-measure of 0.549 for 

Task A and an accuracy of 0.489 for Task B on 

test dataset. Our best run for Task A was ranked 

15 out of 21 participants, while for Task B it was 

ranked 9 out of 18 participants. 

 

Task 

A 

Run0 Run1 

Strict Relaxed Strict Relaxed 

P 0.622 0.899 0.524 0.914 

R 0.429 0.652 0.576 0.765 

F 0.508 0.756 0.549 0.833 

Task 

B 

Run0 Run1 

Strict Relaxed Strict Relaxed 

Accuracy 0.358 0.834 0.489 0.849 

Table 2. Summary of Test Set Evaluation Results.  

 

Table 2 shows that Run1 has higher F-score 

than Run0 because of its high recall. On the other 

hand, Run0 achieves significantly higher preci-

sion compared to Run1 for Task A. The result is 

in accordance with our expectation, because Run1 

integrated the results from YTEX to improve the 

recall of Run0 at the cost of the decrease in preci-

sion. The trade-off seems acceptable because it 

can significantly improve the accuracy in normal-

izing disorder concepts. 
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4 Discussion 

We performed error analysis on development da-

taset and found that the lower recall of Run0 de-

rived from the miss of many disjoint entities 

(where the tokens comprising the entity string are 

non-adjacent), which cannot be captured by the 

current BIO tag set. For example, consider the 

sentence “Abdomen is soft, nontender, non-

distended, negative bruits.” For this sentence the 

gold annotations contain three entities as “Abdo-

men bruits-CUI= C0221755”, “Abdomen 

nontender-CUI=CUI-less” and “nondistended-

CUI=CUI-less”. In the current BIO formulation, 

all of the above three disjoint entities cannot be 

correctly recognized. There are also abbreviations 

which were rarely seen in the training dataset but 

appeared more in the development/test sets. So 

when we test our developed model on test set the 

abbreviations which are not part of training and 

development set must have been missed by our 

system. We believe that by incorporating medical 

abbreviations database into our model develop-

ment, the performance of our overall system 

would have been better. Also, the precision in 

Task A of Run1 was lower than Run0 because of 

some disjoint annotations.  

5 Conclusion  

We present a clinical NER system based on Mal-

let’s implementation of CRF and a hybrid normal-

ization system using MetaMap and YTEX. We 

developed our system with limited features due to 

the time constraint. We can conclude from error 

analysis that recall of this system could be signif-

icantly increased by adding more features to it. 

We plan to extend our system in future by using 

another type of tag representation or frame-based 

pattern matching algorithm to handle disjoint 

named entities. Similarly missing abbreviations 

can be handled by employing external resources 

such as abbreviation recognition tools. 
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Abstract

We describe the grammar induction sys-
tem for Spoken Dialogue Systems (SDS)
submitted to SemEval’14: Task 2. A sta-
tistical model is trained with a rich fea-
ture set and used for the selection of can-
didate rule fragments. Posterior probabil-
ities produced by the fragment selection
model are fused with estimates of phrase-
level similarity based on lexical and con-
textual information. Domain and language
portability are among the advantages of
the proposed system that was experimen-
tally validated for three thematically dif-
ferent domains in two languages.

1 Introduction

A critical task for Spoken Dialogue Systems
(SDS) is the understanding of the transcribed user
input, that utilizes an underlying domain grammar.
An obstacle to the rapid deployment of SDS to
new domains and languages is the time-consuming
development of grammars that require human ex-
pertise. Machine-assisted grammar induction has
been an open research area for decades (K. Lari
and S. Young, 1990; S. F. Chen, 1995) aiming
to lower this barrier. Induction algorithms can
be broadly distinguished into resource-based, e.g.,
(A. Ranta, 2004), and data-driven, e.g., (H. Meng
and K.-C. Siu, 2002). The main drawback of
the resource-based paradigm is the requirement of
pre-existing knowledge bases. This is addressed
by the data-driven paradigm that relies (mostly)
on plain corpora. SDS grammars are built by uti-
lizing low- and high-level rules. Low-level rules

This work is licenced under a Creative Commons Attri-
bution 4.0 International License. Page numbers and pro-
ceedings footer are added by the organizers. License de-
tails: http://creativecommons.org/licenses/
by/4.0/

are similar to gazetteers consisting of terminal en-
tries, e.g., list of city names. High-level rules can
be lexicalized as textual fragments (or chunks),
which are semantically defined on top of low-
level rules, e.g., ‘depart from <City>’.
The data-driven induction of low-level rules is a
well-researched area enabled by various technolo-
gies including web harvesting for corpora creation
(Klasinas et al., 2013), term extraction (K. Frantzi
and S. Ananiadou, 1997), word-level similarity
computation (Pargellis et al., 2004) and cluster-
ing (E. Iosif and A. Potamianos, 2007). High-level
rule induction is a less researched area that poses
two main challenges: 1) the extraction and selec-
tion of salient candidate fragments from a corpus
that convey semantics relevant to the domain of in-
terests and 2) the organization of such fragments
(e.g., via clustering) according to their semantic
similarity. Despite the recent interest on phrase (J.
Mitchell and M. Lapata, 2010) and sentence simi-
larity, each respective problem remains open.

Next, our submission1 for the Se-
mEval’14: Task2 is briefly described, which
constitutes a data-driven approach for inducing
high-level SDS grammar rules. At the system’s
core lies a statistical model for the selection of
textual fragments based on a rich set of features.
This set includes various lexical features, aug-
mented with statistics from n-gram language
models, as well as with heuristic features. The
candidate selection model posterior is fused
with a phrase-level semantic similarity metric.
Two different approaches are used for similarity
computation relying on the overlap of character
bigrams or context-based similarity according
to the distributional hypothesis of meaning.
The domain and language portability of the
proposed system is demonstrated by its successful
application across three different domains and

1Please note that the last three authors of this submission
are among the organizers of this task.
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two languages. All the four subtasks defined by
the organizers were completed with very good
performance that exceeds the baseline.

2 System Description

The basic functionality of the proposed system
is the mapping (assignment) of unknown textual
fragments into known high-level grammar rules.
Let E be the set of unknown fragments, while the
set of known rules is denoted byR. Each unknown
fragment f ∈E is allowed to be mapped to a sin-
gle high-level rule rs ∈R, where 1≤ s≤ m and
m is the total number of rules in the grammar.

Figure 1: Overview of system architecture.
The system consists of three major components as
shown at the system architecture diagram in Fig.
1, specifically: 1) candidate selection: a set of
classifiers is built, one for each rs to select whether
f ∈ E is a candidate member of the specific rule2,
2) similarity computation between f and rs, and
3) mapping f to a high-level rule rs (denoted as
f 7→ rs) according to the following model:

argmax
s
{p(rs|f)wS(f, rs)} : f 7→ rs (1)

where p(rs|f) stands for the probability of f
belonging to rule rs and it is estimated via the
respective classifier. The similarity between
f and rs is denoted by S(f |rs), while w is
a fixed weight taking values in the interval
[0 ∞). The fusion weight w controls the rela-
tive importance of the candidate selection and
semantic similarity modules, e.g., for w = 0
only the similarity metric S(f, rs) is used in the
decision. For example, consider the fragment f
‘leaving <City>’. Also, assume two high-
level rules, namely, <ArrCity>={‘arrive

2The requirement for building a classifier for each gram-
mar rule is realistic for the case of SDS, especially for the typ-
ical iterative human-in-the-loop grammar development sce-
nario.

at <City>’,...} and <DepCity>=
{‘depart <City>’,...}. According to (1)
f is mapped to the <DepCity> rule.

2.1 Candidate Selection
In this section, the features used for building the
candidate selection module for each rs ∈ R are
briefly described. Given a pair (f ,rs) a two-class
statistical classification model that corresponds to
rs is used for estimating p(rs|f) in (1).
Definitions. A high-level rule rs can be con-
sidered as a set of fragments, e.g.,‘depart
<City>’, ‘leaving <City>’. For each
fragment there are two types of constituents,
namely, lexical (e.g., ‘depart’,‘leaving’)
and low-level rules (e.g., ‘<City>’). The fol-
lowing features are extracted for rs considering its
respective fragments, as well as for f .
Shallow features. 1) the number of constituents
(i.e., tokens), 2) the count of lexical constituents
to the number of tokens, 3) the count of low-level
rules to the number of tokens, 4) the count of lex-
ical constituents that follow the right-most low-
level rule of the fragment, and 5) the count of low-
level rules that appear twice in a fragment.
Perplexity-based features. A fragment f̃ can
be represented as a sequence of tokens as
w1 w2 ... wz . The perplexity of f̃ is defined as
PP (f̃)=2H(f̃), where H(f̃)= 1

z log(p(f̃)). p(f̃)
stands for the probability of f̃ estimated using an
n-gram language model. Two PP values were
used as features computed for n=2, 3.
Features of lexical similarity. Four scores of lex-
ical similarity computed between f and rs were
used as features. Let Ns denote the set of frag-
ments that are included in the training set of each
rule rs. The following metrics were employed
for computing the similarity between the unknown
fragment f and a fragment fs ∈ Ns: 1) the nor-
malized longest common subsequence (Stoilos et
al., 2005) denoted as SC , 2) the normalized over-
lap in character bigrams that is denoted as SB and
it is defined in (2), 3) a proposed variation of the
Levenshtein distance, SL, defined as SL(f, fs) =
l1−L(f,fs)

l1+d , where l1 and l2 are the lengths (in char-
acters) of the lengthiest and the shortest fragment
between f and fs, respectively, while d= l1 − l2.
L(.) stands for the Levenshtein distance (V. I. Lev-
enshtein, 1966; R. A. Wagner and M. J. Fischer,
1974). 4) if f and fs differ by one token exactly
SL is applied, otherwise their similarity is set to
0. Regarding SC and SB , the similarity between
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f and rs was estimated as the maximum similarity
yielded when computing the similarities between
f and each fs ∈Ns. For the rest metrics, the sim-
ilarity between f and rs was estimated by averag-
ing the |Ns| similarities computed between f and
each fs∈Ns.
Heuristic features. Considering an unknown
fragment f and the set of training fragments Ns

corresponding to rule rs, in total nine features
were used: 1) the difference between the aver-
age length (in tokens) of fragments in Ns and the
length of f , 2) the difference between the average
number of low-level rules in Ns and the number
of low-level rules in f , 3) as 2) but considering
the lexical constituents instead of low-level rules,
4) the number of low-level rules shared between
Ns and f , 5) as 4) but considering the lexical con-
stituents instead of low-level rules, 6) a boolean
function that equals 1 if f is a substring of at least
one fs ∈ Ns, 7) a boolean function that equals 1 if
f shares the same lexical constituents at least one
fs ∈ Ns, 8) a boolean function that equals 1 if f
is shorter by one token compared to any fs ∈ Ns,
9) a boolean function that equals 1 if f is lengthier
by one token compared to any fs ∈ Ns.
Selection. The aforementioned features are used
for building a binary classifier for each rs ∈ R,
where 1 ≤ s ≤ m, for deciding whether f can
be regarded as a candidate member of rs or not.
Given an unknown fragment f these classifiers are
employed for estimating in total m probabilities
p(rs|f).

2.2 Similarity Metrics
Here, two types of similarity metrics are defined,
which are used for estimating S(f, rs) in (1).
String-based similarity. Consider two fragments
fi and fj whose sets of character bigrams are de-
noted as Mi and Mj , respectively. Also, Mmin =
min(|Mi |, |Mj |) and Mmax = max(|Mi |, |Mj |
). The similarity between fi and fj is based on
the overlap of their respective character bigrams
defined as (Jimenez et al., 2012):

SB(fi, fj) =
|Mi ∩Mj |

αMmax + (1− α)Mmin
, (2)

where 0≤α≤ 1, while, here we use α=0.5. The
similarity between a fragment f and a rule rs is
computed by averaging the similarities computed
between f and each fs∈Ns.
Context-based similarity. This is a corpus-based
metric relying on the distributional hypothesis of

meaning suggesting that similarity of context im-
plies similarity of meaning (Z. Harris, 1954). A
contextual window of size 2K+1 words is cen-
tered on the fragment of interest fi and lexical
features are extracted. For every instance of fi in
the corpus the K words left and right of fi for-
mulate a feature vector vi. For a given value of K
the context-based semantic similarity between two
fragments, fi and fj , is computed as the cosine of
their feature vectors: SK(fi, fj) = vi.vj

||vi|| ||vj || . The
elements of feature vectors can be weighted ac-
cording various schemes (E. Iosif and A. Potami-
anos, 2010), while, here we use a binary scheme.
The similarity between a fragment f and a rule
rs is computed by averaging the similarities com-
puted between f and each fs∈Ns.

2.3 Mapping of Unknown Fragments

The output of the described system is the mapping
of a fragment f to a single (i.e., one-to-one assign-
ment) high-level rule rs ∈ R, where 1 ≤ s ≤ m.
This is achieved by applying (1). The p(rs|f)
probabilities were estimated as described in Sec-
tion 2.1. The S(f, rs) similarities were estimated
using either SK or SB defined in Section 2.2.

3 Datasets and Experiments

Datasets. The data was organized with respect to
three different domains: 1) air travel (flight book-
ing, car rental etc.), 2) tourism (information for
city guide), and 3) finance (currency exchange). In
total, there are four separate datasets: two datasets
for the air travel domain in English (EN) and
Greek (GR), one dataset for the tourism domain
in English, and one dataset for the finance domain
in English.

The number of high-level rules for each dataset

Domain #rules #train frag. #test frag.
Travel:EN 32 982 284
Travel:GR 35 956 324

Tourism:EN 24 1004 285
Finance:EN 9 136 37

Table 1: Number of rules and train/test fragments.

are shown in Table 1, along with the number
of fragments included in training and test data.
Experiments. Regarding the computation of
perplexity-based features (defined in Section 2.1)
the SRILM toolkit (A. Stolcke, 2002) was used.
The n-gram probabilities were estimated over a
corpus that was created by aggregating all the
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valid fragments included in the training data.
For the computation of the context-based similar-
ity metric SK (defined in Section 2.2) a corpus
of web-harvested data was created for each do-
main/language. The context window size K was

Domain # sentences
Travel:EN 5721
Travel:GR 6359

Tourism:EN 829516
Finance:EN 168380

Table 2: Size of corpora used in SK metric.

set to 1. The size of the used corpora are presented
Table 2, while the process of corpus creation is
detailed in (Klasinas et al., 2013). The classifiers
used for the candidate selection module, described
in Section 2.1 were random forests with 50 trees
(L. Breiman, 2001).

4 Evaluation Metrics and Results

The proposed model defined by (1) was evaluated
in terms of weighted F-measure, (FM ). Initially,
we run our system using the training and develop-
ment set provided by the task organizers, in order
to tune the w and K parameters. The tuning was
conducted on the Travel English domain, while the
respective evaluation results are shown in Table 3
in terms of FM . We observe that the best re-

Weight w 0 1 50 500
FM 0.68 0.72 0.70 0.72

Table 3: Results for the tuning of w.

sults are achieved for w = 1 and w = 500. In
the case where w = 0 the rule mapping relies only
on the similarity metric. In addition, we exper-
imented with various values the context window
size K of the context-based similarity metric SK :
K = 1, 3, 7. For all values of K similar perfor-
mance was obtained (0.70). Given the aforemen-

Domains Baseline Run 1 Run 2 Run 3
Travel:EN 0.51 0.66 0.65 0.68
Travel:GR 0.26 0.52 0.49 0.49

Tourism:EN 0.87 0.86 0.85 0.86
Finance:EN 0.60 0.70 0.63 0.58

UA 0.56 0.69 0.66 0.65
WA 0.52 0.66 0.64 0.65

Table 4: Official results.

tioned tuning the following values were selected

for the official runs: w = 1, w = 500 and K = 1.
In total, three system runs were submitted:
Run 1. The character bigram similarity metric was
used, while w was set to 1.
Run 2. The context-based similarity metrics was
used with K = 1, while w was set to 1.
Run 3. The character bigram similarity metric was
used, while w was set to 500.
The results for the aforementioned runs, along
with the baseline performance are shown in Ta-
ble 4. An overview of the participating systems
suggests that our submission achieved the high-
est performance for almost all domains and lan-
guages. The weighted (WA) and unweighted (UA)
average across the 4 datasets are also presented,
where the weight depends on the number of rules
in the dataset. Using these measures, our main
run (Run 1) obtained the best results. We ob-
serve that the performance is consistently worse
for Runs 2 and 3, with the exception of the Travel
English dataset. Comparing the performance of
Runs 1 and 2, we observe that the character bigram
metric consistently outperforms the context-based
one. For individual datasets, our system underper-
forms for the Finance (in Run 3) and the Tourism
domain (in all Runs). For the case of the Finance
domain this may be attributed to the relatively lim-
ited training data.

5 Conclusions

We proposed a supervised grammar induction sys-
tem using the fusion of a grammar fragment se-
lection and similarity estimation modules. The
best configuration of our system was Run 1 which
achieved the highest performance compared to
other submissions, in almost all domains. To sum-
marize, 1) the selection module boost the sys-
tem’s performance significanlty, 2) the high per-
formance in different domains is a promising indi-
cator for domain and language portability. Future
work should involve the implementation of more
complex features for the candidate selection algo-
rithm and further investigation of phrase level sim-
ilarity metrics.
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Abstract

This paper describes our participation in
the message polarity classification task of
SemEval 2014. We focused on exploiting
unlabeled data to improve accuracy, com-
bining features leveraging word represen-
tations with other, more common features,
based on word tokens or lexicons. We
analyse the contribution of the different
features, concluding that unlabeled data
yields significant improvements.

1 Introduction

Research in exploiting social media for mea-
suring public opinion, evaluating popularity of
products and brands, anticipating stock-market
trends, or predicting elections showed promising
results (O’Connor et al., 2010; Mitchell et al.,
2013). However, this type of content poses a par-
ticularly challenging problem for text analysis sys-
tems. Typical messages show heavy use of Inter-
net slang, emoticons and other abbreviations and
discourse conventions. The lexical variation intro-
duced by this creative use of language, together
with the unconventional spelling and occasional
typos, leads to very large vocabularies. On the
other hand, messages are very short, and there-
fore word feature representations tend to become
very sparse, degrading the performance of ma-
chine learned classifiers.

The growing interest in this problem motivated
the creation of a shared task for Twitter Sentiment
Analysis in the 2013 edition of SemEval. The
Message Polarity Classification task was formal-
ized as follows: Given a message, decide whether
the message is of positive, negative, or neutral sen-
timent. For messages conveying both a positive

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

Positive Neutral Negative
Train 2014 3230 4109 1265
Tweets 2013 1572 1640 601
Tweets 2014 982 669 202
SMS 2013 492 1207 394
Tweets Sarcasm 2014 33 13 40
LiveJournal 2014 427 411 304

Table 1: Number of examples per class in each
SemEval dataset. The first row represents all train-
ing data; the other rows are sets used for testing.

and negative sentiment, whichever is the stronger
sentiment should be chosen (Nakov et al., 2013).

We describe our participation on the 2014 edi-
tion of this task, for which a set of manually la-
belled messages was created. Complying with the
Twitter policies for data access, the corpus was
distributed as a list of message IDs and each par-
ticipant was responsible for downloading the ac-
tual tweets. Using the provided script, we col-
lected a training set with 8604 tweets. After sub-
mission, the 2014 test sets were also made avail-
able. Along with the Tweets 2014 test set, evalu-
ation was also performed on a set of tweets with
sarcasm, on a set of LiveJournal blog entries, and
on sets of tweets and SMS messages from the 2013
edition of the task. Table 1 shows the class distri-
bution for each of these datasets.

In the 2013 edition (task 2B), the NRC-Canada
system (Mohammad et al., 2013) earned first place
by scoring 69.02% on the Official SemEval metric
(see Section 4) with a significant margin with re-
spect to the other systems: the second (Günther
and Furrer, 2013) and third (Reckman et al., 2013)
best systems scored 65.27% and 64.86%, respec-
tively. The main novelty in the NRC-Canada sys-
tem was the use of sentiment lexicons, specific
for the Twitter domain, generated from unlabeled
tweets using emoticons and hashtags as indicators
of sentiment. They found that these lexicons had a
strong impact on the results – more than word and

673



character n-grams.
The automatically induced lexicons are a way

to use information from unlabeled data to aid in
the classification task. In our approach, we take
this reasoning further, and focus on the impact of
various ways to incorporate knowledge from un-
labeled data. This allows us to mimic many real-
world scenarios where labelled data is scarce but
unlabeled data is plentiful.

2 Word Representations

In text classification it is common to represent doc-
uments as bags-of-words, i.e., as unordered col-
lections of words. However, in the case of very
short social media texts, these representations be-
come less effective, as they lead to increased data
sparseness. We focused our experiments in com-
paring and complementing these approaches with
denser representations, which we now describe.

2.1 Bag-Of-Words and ∆BM25

In a representation based on bags-of-words,
each message is represented as a vector m =
{w1, w2, ..., wn} ∈ RV , where V is the size of
the vocabulary. In order to have weights that re-
flect how relevant a word is to each of the classes,
we weighted the individual terms according to the
∆BM25 heuristic (Paltoglou and Thelwall, 2010):

∆BM25(wi) = tfi × log
(

(Np−dfi,p+s)·dfi,n+s
(Nn−dfi,n+s)·dfi,p+s

)
, (1)

where tfi represents the frequency of term i in the
message, Na is the size of corpus a, dfi,a is the
document frequency of term i in the corpus a (i.e.,
in one of two subsets for the training data, corre-
sponding to either positive or negative messages),
and s is a smoothing constant, which we set to
0.5. This term weighting function was previously
shown to be effective for sentiment analysis.

2.2 Brown Clusters

Brown et al. (1992) proposed a greedy agglomer-
ative hierarchical clustering procedure that groups
words to maximize the mutual information of bi-
grams. Clusters are initialized as consisting of a
single word each, and are then greedily merged ac-
cording to a mutual information criterion, to form
a lower-dimensional representation of a vocabu-
lary. The hierarchical nature of the clustering al-
lows words to be represented at different levels in
the hierarchy. This approach provides a denser

representation of the messages, mitigating the fea-
ture sparseness problem. We used a publicly avail-
able1 set of 1000 Brown clusters induced from a
corpus of 56 million Twitter messages.

We leveraged the word clusters by mapping
each word to the corresponding cluster, and we
then represented each message as a bag-of-clusters
vector in RK , where K = 1000 is the number
of clusters. These word cluster features were also
weighted with the ∆BM25 scheme.

2.3 Concise Semantic Analysis
Concise Semantic Analysis is a form of term
and document representation that assigns, to each
term, its weight on each of the classes (Li et al.,
2011). These weights, computed from the fre-
quencies of the term on the training data, reflect
how associated the term is to each class. The
weight of term j in class c is given by (Lopez-
Monroy et al., 2013):

wcj =
∑
k∈Pc

log2

(
1 +

tfkj

len(k)

)
, (2)

where Pc is the set of documents with label c
and tfkj is the term frequency of term j in doc-
ument k. To prevent labels with a higher number
of examples, or terms with higher frequencies, to
have stronger weights, an additional normalization
step is performed to obtain nwcj , the normalized
weight of term j in class c:

nwcj =
wcj∑

l∈L

wlj ×
∑
t∈T

wct
. (3)

In the formula, L is the set of class labels and T is
the set of terms, making wlj the weight of term
j for a class l, and wct the weight of a term t
in class c. After defining every term as a vector
tj = {nw1j , . . . , nwCj} ∈ RC , where C is the
number of classes, each message m is represented
by summing each of its terms’ weight vectors:

mcsa =
∑
j∈m

tfj

len(m)
× tj . (4)

In the formula, tfj is the frequency of term j in m.

2.4 Dense Word Vectors
Efficient approaches have recently been intro-
duced to train neural networks capable of produc-
ing continuous representations of words (Mikolov

1
http://www.ark.cs.cmu.edu/TweetNLP/
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Lexicon #1-grams #2-grams #pairs
Bing Liu 6789 - -
MPQA 8222 - -
SentiStrength 2546 - -
NRC EmoLex 14177 - -
Sentiment140 62468 677698 480010
NRC HashSent 54129 316531 308808

Table 2: Number of unigrams, bigrams, and collo-
cation pairs, in the lexicons used in our system.

et al., 2013). These approaches allow fast train-
ing of projections from a representation based on
bags-of-words, where vectors have very high di-
mension (of the order of 104), but are also very
sparse and integer-valued, to vectors of much
lower dimensions (of the order of 102), with full
density and continuous values.

To induce word embeddings, a corpus of 17 mil-
lion Twitter messages was collected with the Twit-
ter crawler of Boanjak et al. (2012). Then, us-
ing word2vec2, we induced representations for the
word tokens occurring in the messages. All the to-
kens were represented as vectors wj ∈ Rn, with
n = 100. A message was modeled as the sum of
the vector representations of the individual words:

mvec =
∑
j∈m

wj . (5)

We also created a polarity class vector pc for each
class c, defined as:

pc =
1

Nc

∑
m∈c

mvec, (6)

where m is a message of class c and Nc is the total
number of instances in class c. These vectors can
be interpreted as prototypes of their classes, and
are used in the classVec features described below.

3 The TUGAS System

We now describe the TUGAS approach, detailing
the considered features and our modeling choices.

3.1 Word Features

To reduce the feature space of the model,
messages were lower-cased, Twitter user men-
tions (@username) were replaced with the to-
ken <USER> and URLs were replaced with
the <URL> token. We also normalized words
to include at most 3 repeated characters (e.g.,

2
https://code.google.com/p/word2vec/

“helloooooo!” to “hellooo!”). Following Pang et
al. (2002), negation was directly integrated into
the word representations. All the tokens occurring
between a negation word and the next punctuation
mark, were suffixed with the NEG annotation.

We used the following groups of features:
• bow-uni: vector of word unigrams
• bow-bc: vector of Brown word clusters
• csa: Concise Semantic Analysis vector mcsa

• wordVec: word2vec message vector mvec

• classVec: Euclidean distance between mes-
sage vector mvec and each class vector pc

3.2 Lexicon Features

The document model was enriched with features
that take into account the presence of words with a
known prior polarity, such as happy or sad. We in-
cluded words from manually annotated sentiment
lexicons: Bing Liu Opinion Lexicon (Hu and Liu,
2004), MPQA (Wilson et al., 2005) and the NRC
Emotion Lexicon (Mohammad and Turney, 2013).
We also used the two automatically generated lex-
icons from Mohammad et al. (2013): the NRC
Hashtag Sentiment Lexicon and the Sentiment140
Lexicon. Table 2 summarizes the number of terms
of each lexicon.

As Mohammad et al. (2013), we added the fol-
lowing set of lexicon features, for each lexicon,
and for each combination of negated/non-negated
words and positive/negative polarity.
• The sum of the sentiment scores of all

(negated/non-negated) terms with (posi-
tive/negative) sentiment
• The largest of those scores
• The sentiment score of the last word in the

message that is also present in the lexicon
• The number of terms within the lexicon
Notice that terms can be unigrams, bigrams, and

collocations pairs. A group of these features was
computed for each of the sentiment lexicons.

3.3 Syntactic Features

We extracted syntactic features aimed at the Twit-
ter domain, such as the use of heavy punctuation,
emoticons and character repetition. Concretely,
the following features were computed from the
original Twitter messages:
• Number of words originally with more than 3

repeated characters
• Number of sequences of exclamation marks

and/or question marks
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Tweets Test 2013 Tweets Test 2014 SMS 2013 Live Journal 2014 Tweets Sarcasm 2014
Features Acc F1 Official Acc F1 Official Acc F1 Official Acc F1 Official Acc F1 Official
bow-uni 65.62 59.30 54.60 69.94 66.30 65.60 68.80 62.40 54.90 60.42 58.30 56.60 47.67 43.90 41.50
submitted 69.55 67.50 65.60 71.45 69.00 69.00 70.57 67.60 62.70 68.21 68.20 69.80 53.49 50.10 52.90

- lexicons 66.90 64.30 61.70 70.37 67.00 66.40 66.46 63.50 58.30 64.27 64.20 65.50 48.84 45.10 47.00
- classVec 69.37 67.30 65.40 71.83 69.30 69.60 69.14 66.60 62.10 67.51 67.50 69.30 53.49 50.10 52.90
- wordVec 69.63 67.70 66.00 70.32 67.70 68.00 66.79 64.90 60.90 68.04 68.00 69.70 53.49 50.50 53.50
- bow-bc 68.06 66.40 65.10 67.40 64.30 65.30 67.89 65.20 60.40 68.30 68.30 70.00 52.33 49.90 49.90
+ syntactic 69.58 67.60 65.70 71.24 68.30 68.50 70.38 67.40 62.40 67.95 68.00 69.70 52.33 48.80 50.00
+ csa 67.45 63.70 60.50 70.10 67.30 67.50 71.48 67.60 62.10 66.11 66.00 68.30 53.49 51.30 50.30
+ bow-uni 67.69 62.50 58.50 70.64 67.30 66.70 72.77 67.10 60.40 67.60 67.20 67.10 51.16 48.00 43.90

Table 3: Impact of removing or adding groups of features. The row marked as submitted, in bold, is the
one that we submitted to the shared task. The bold column is the official score used to rank participants.

• Number of positive/negative emoticons, de-
tected with a pre-existing regular expression3

• Number of capitalized words

3.4 Model Training
We used the L2-regularized logistic regression im-
plementation from scikit-learn4. Given a set of m
instance-label pairs (xi, yi), with i = 1, . . . ,m,
xi ∈ Rn, and yi ∈ {−1, +1}, learning the clas-
sifier involves solving the following optimization
problem, where C > 0 is a penalty parameter.

min
w

1
2
w′w + C

m∑
i=1

log(1 + e−yiw
′xi). (7)

In scikit-learn, the problem is solved through
a trust region Newton method, using a wrapper
over the implementation available in the liblin-
ear5 package. For multi-class problems, scikit-
learn uses the one-vs-the-rest strategy. This par-
ticular implementation also suports the introduc-
tion of class weights, which we set to be inversely
proportional to the class frequency in the training
data, thus making each class equally important.

The selection of groups of features to be in-
cluded in the submitted run, as well as the tun-
ing of the regularization constant, were obtained
by cross-validation on the training dataset.

4 Results

We report results using the following metrics:
• Accuracy, defined as the percentage of

tweets correctly classified.
• Overall F1, computed by averaging the F1

score of all three classes.
• The Official SemEval score, computed by

averaging the F1 scores of the positive and
negative classes (Nakov et al., 2013).

3
http://sentiment.christopherpotts.net/

4
http://scikit-learn.org/

5
http://www.csie.ntu.edu.tw/˜cjlin/liblinear/

Feature group Acc F1 Official
bow-bc 66.33 63.30 60.30
wordVec 62.34 60.00 57.90
bow-uni 65.62 59.30 54.60
csa 61.58 56.70 52.90

Table 4: Performance comparison using different
word representations in isolation.

We tried including or excluding various groups
of features, and obtained the best results on the
training set using Brown clusters (bow-bc), lexi-
con features (lexicon), word2vec word represen-
tations (wordVec), and the Euclidean distance be-
tween the word2vec representation and each class
vector (classVec). These features were the ones
used in our submission. Inclusion of syntactic
features (syntactic), Concise Semantic Analysis
(csa), and word unigrams (bow-uni) was found to
decrease performance during cross-validation, and
thus these features were not included.

Table 4 shows the results on the Twitter 2014
test set using only a single group of word represen-
tation features to train the model, from each of the
techniques introduced in Section 2. This table sug-
gests that exploiting unlabeled data is beneficial,
as representing words through their Brown clus-
ters (bow-bc) or through word2vec (wordVec)
yields better results than unigrams or CSA.

Table 3 shows results on five different test sets,
including two from the 2013 challenge (Nakov et
al., 2013), when features are added or removed
from the official submission, one group at a time.
Adding representations like bow-uni or csa actu-
ally hurts the performance, suggesting that, given
the relatively small set of training instances, using
coarse-level features in isolation, such as Brown
clusters, can yield better results.

More importantly, we verify that lexicon-based
and Brown cluster features have the largest impact
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(2.6% and 3.7%, respectively, in the official met-
ric). These results indicate that leveraging unla-
beled data yields significant improvements.

5 Conclusions

This paper describes the participation of the
TUGAS team in the message polarity classifica-
tion task of SemEval 2014. We showed that there
are significant gains in leveraging unlabeled data
for the task of classifying the sentiment of Twit-
ter texts. Our score of 69% ranks at fifth place in
42 submissions, roughly 2% points below the top
score of 70.96%. We believe that the direction of
leveraging unlabeled data is still vastly unexplored
and, for future work, we intend to: (a) experi-
ment with semi-supervised learning approaches,
further exploiting unlabeled tweets; and (b) make
use of domain adaptation strategies to leverage on
labelled non-Twitter data.
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Abstract

In this paper we introduce our system ca-
pable of producing semantic parses of sen-
tences using three different annotation for-
mats. The system was used to partic-
ipate in the SemEval-2014 Shared Task
on broad-coverage semantic dependency
parsing and it was ranked third with an
overall F1-score of 80.49%. The sys-
tem has a pipeline architecture, consisting
of three separate supervised classification
steps.

1 Introduction

In the SemEval-2014 Task 8 on semantic parsing,
the objective is to extract for each sentence a rich
set of typed semantic dependencies in three differ-
ent formats: DM, PAS and PCEDT. These formats
differ substantially both in the assignment of se-
mantic heads as well as in the lexicon of seman-
tic dependency types. In the open track of the
shared task, participants were encouraged to use
all resources and tools also beyond the provided
training data. To improve the comparability of the
systems, the organizers provided ready-to-use de-
pendency parses produced using the state-of-the-
art parser of Bohnet and Nivre (2012).

In this paper we describe our entry in the open
track of the shared task. Our system is a pipeline
of three support vector machine classifiers trained
separately for detecting semantic dependencies,
assigning their roles, and selecting the top nodes
of semantic graphs. In this, we loosely follow
the architecture of e.g. the TEES (Björne et al.,
2012) and EventMine (Miwa et al., 2012) systems,
which were found to be effective in the structurally

∗These authors contributed equally.
This work is licenced under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/

related task of biomedical event extraction. Sim-
ilar classification approach is shown to be effec-
tive also in semantic parsing by e.g. Zhao et al.
(2009), the winner of the CoNLL’09 Shared Task
on Syntactic and Semantic Dependencies in Mul-
tiple Languages (SRL-only subtask) (Hajič et al.,
2009), where semantic parsing is approached as a
word-pair classification problem and semantic ar-
guments and their roles are predicted simultane-
ously. In preliminary experiments, we also de-
veloped a joint approach to simultaneously iden-
tify semantic dependencies and assign their roles,
but found that the performance of the joint predic-
tion was substantially worse than for the current
pipeline approach. As the source of features, we
rely heavily on the syntactic parses as well as other
external resources such as vector space represen-
tations of words and large-scale syntactic n-gram
statistics.

In the following sections, we describe the three
individual classification steps of our semantic
parsing pipeline.

2 Detecting Semantic Dependencies

The first step of our semantic parsing pipeline
is to detect semantic dependencies, i.e. governor-
dependent pairs which has a semantic relation be-
tween them. The first stage covers only the identi-
fication of such dependencies; the labels describ-
ing the semantic roles of the dependents are as-
signed in a later stage.

The semantic dependencies are identified using
a binary support vector machine classifier from the
LIBSVM package (Chang and Lin, 2011). Each
possible combination of two tokens in the sen-
tence is considered to be a candidate for a seman-
tic dependency in both directions, and thus also
included as a training example. No beforehand
pruning of possible candidates is performed dur-
ing training. However, we correct for the over-
whelming number of negative training examples
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by setting the weights of positive and negative ex-
amples used during training, so as to maximize the
unlabeled F1-score on the development set.

Increasing the recall of semantic dependency
detection can be beneficial for the overall perfor-
mance of the pipeline system, since a candidate
lost in the dependency detection stage cannot be
recovered later. We therefore tested the approach
applied, among others by Björne et al. (2012),
whereby the dependency detection stage heavily
overgenerates candidates and the next stage in the
pipeline is given the option to predict a nega-
tive label, thus removing a candidate dependency.
In preliminary experiments we tried to explicitly
overgenerate the dependency candidates by alter-
ing the classifier threshold, but noticed that heavy
overgeneration of positive examples leads to a de-
creased performance in the role assigning stage.
Instead, the above-mentioned optimization of the
example weights during training results in a clas-
sifier which overgenerates positive examples by
4.4%, achieving the same objective and improving
the overall performance of the system.

Features used during the dependency identifi-
cation are derived from tokens and the syntactic
parse trees provided by the organizers. Our pri-
mary source of features are the syntactic trees,
since 73.2% of semantic dependencies have a cor-
responding undirected syntactic dependency in the
parse tree. Further, the syntactic dependency path
between the governor and the dependent is shorter
than their linear distance in 48.8% of cases (in
43.4% of cases the distance is the same). The final
feature set used in the identification is optimized
by training models with different combinations of
features and selecting the best combination based
on performance on the held-out development set.
Interestingly, the highest performance is achieved
with a rather small set of features, whose full list-
ing is shown in Table 1. The feature vectors are
normalized to unit length prior to classification
and the SVM regularization parameter c is opti-
mized separately for each annotation format.

3 Role Assignment

After the semantic governor-dependent pairs are
identified, the next step is to assign a role for
each pair to constitute a full semantic dependency.
This is done by training a multiclass support vec-
tor machine classifier implemented in the SVM-
multiclass package by Joachims (1999). We it-

Feature D R T
arg.pos X X
arg.deptype X X
arg.lemma X X
pred.pos X X X
pred.deptype X X X
pred.lemma X X X
pred.is predicate X X
arg.issyntaxdep X
arg.issyntaxgov X
arg.issyntaxsibling X
path.length X X
undirected path.deptype X X
directed path.deptype X X
undirected path.pos X X
extended path.deptype X X
simplified path.deptype with len X
simplified path.deptype wo len X
splitted undirected path.deptype X
arg.prev.pos X X
arg.next.pos X X
arg.prev+arg.pos X X
arg.next+arg.pos X X
arg.next+arg+arg.prev.pos X X
pred.prev.pos X X
pred.next.pos X X
pred.prev+pred.pos X X
pred.next+pred.pos X X
pred.next+pred+pred.prev.pos X X
linear route.pos X
arg.child.pos X
arg.child.deptype X
arg.child.lemma X
pred.child.pos X
pred.child.deptype X X
pred.child.lemma X
syntaxgov.child.deptype X
vector similarities X
n-gram frequencies X
pred.sem role X
pred.child.sem role X
pred.syntaxsibling.deptype X
pred.semanticsibling.sem role X

Table 1: Features used in the detection of semantic
dependencies (D), assigning their roles (R) and top
node detection (T). path refers to syntactic depen-
dencies between the argument and the predicate,
and linear route refers to all tokens between the
argument and the predicate. In top node detection,
where only one token is considered at a time, the
pred is used to represent that token.
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erate through all identified dependencies, and for
each assign a role, or alternatively classify it as a
negative example. This is to account for the 4.4%
of overgenerated dependencies. However, the pro-
portion of negative classifications should stay rel-
atively low and to ensure this, we downsample the
number of negative examples used in training to
contain only 5% of all negative examples. The
downsampling ratio is optimized on the develop-
ment set using grid search and downsampled train-
ing instances are chosen randomly.

The basic features, shown in Table 1, follow the
same style as in dependency identification. We
also combine some of the basic features by creat-
ing all possible feature pairs in a given set, but do
not perform this with the full set of features. In the
open track, participants are also allowed to use ad-
ditional data and tools beyond the official training
data. In addition to the parse trees, we include also
features utilizing syntactic n-gram frequencies and
vector space similarities.

Google has recently released a large corpus
of syntactic n-grams, a collection of depen-
dency subtrees with frequency counts (Goldberg
and Orwant, 2013). The syntactic n-grams are
induced from the Google Books collection, a
350B token corpus of syntactically parsed text.
In this work we are interested in arcs, which
are (governor, dependent, syntactic relation)
triplets associated with their count.

For each governor-dependent pair, we generate
a set of n-gram features by iterating through all
known dependency types and searching from the
syntactic n-grams how many times (if any) the
governor-dependent pair with the particular de-
pendency type is seen. A separate feature is then
created for each dependency type and the counts
are encoded in feature weights compressed using
w = log10(count). This approach gives us an op-
portunity to include statistical information about
word relations induced from a very large corpus.
Information is captured also outside the particular
syntactic context, as we iterate through all known
dependency types during the process.

Another source of additional data used in role
classification is a publicly available Google News
vector space model1 representing word similari-
ties. The vector space model is induced from the
Google News corpus with the word2vec software
(Mikolov et al., 2013) and negative sampling ar-

1https://code.google.com/p/word2vec/

chitecture, and each vector have 300 dimensions.
The vector space representation gives us an oppor-
tunity to measure word similarities using the stan-
dard cosine similarity function.

The approach to transforming the vector repre-
sentations into features varies with the three dif-
ferent annotation formats. On DM and PAS, we
follow the method of Kanerva and Ginter (2014),
where for each role an average argument vector
is calculated. This is done by averaging all word
vectors seen in the training data as arguments for
the given predicate with a particular role. For each
candidate argument, we can then establish a set of
similarity values to each possible role by taking
the cosine similarity of the argument vector to the
role-wise average vectors. These similarities are
then turned into separate features, where the simi-
larity values are encoded as feature weights.

On PCEDT, preliminary experiments showed
that the best strategy to include word vectors into
classification is by turning them directly into fea-
tures, so that each dimension of the word vector
is represented as a separate feature. Thus, we it-
erate through all 300 vector dimensions and cre-
ate a separate feature representing the position and
value of a particular dimension. Values are again
encoded in feature weights. These features are cre-
ated separately for both the argument and the pred-
icate. The word vectors are pre-normalized to unit
length, so no additional normalization of feature
weights is needed.

Both the n-gram– and vector similarities–based
features give a modest improvement to the classi-
fication performance.

4 Detecting Top Nodes

The last step in the pipeline is the detection of
top nodes. A top node is the semantic head or
the structural root of the sentence. Typically each
sentence annotated in the DM and PAS formats
contains one top node, whereas PCEDT sentences
have on average 1.12 top nodes per sentence.

As in the two previous stages, we predict top
nodes by training a support vector machine clas-
sifier, with each token being considered a candi-
date. Because the top node prediction is the last
step performed, in addition to the basic informa-
tion available in the two previous steps, we are
able to use also predicted arguments as features.
Otherwise, the feature set used in top node detec-
tion follows the same style as in the two previous
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LP LR LF UF
DM 80.94 82.14 81.53 83.48
PAS 87.33 87.76 87.54 88.97
PCEDT 72.42 72.37 72.40 85.86
Overall 80.23 80.76 80.49 86.10

Table 2: Overall scores of whole task as well as
separately for each annotation format in terms of
labeled precision (LP), recall (LR) and F1-score
(LF) as well as unlabeled F1-score (UF).

tasks, but is substantially smaller (see Table 1). We
also create all possible feature pairs prior to clas-
sification to simulate the use of a second-degree
polynomial kernel.

For each token in the sentence, we predict
whether it is a top node or not. However, in DM
and PAS, where typically only one top node is al-
lowed, we choose only the token with the maxi-
mum positive value to be the final top node. In
PCEDT, we simply let all positive predictions act
as top nodes.

5 Results

The primary evaluation measure is the labeled F1-
score of the predicted dependencies, where the
identification of top nodes is incorporated as an
additional dummy dependency. The overall se-
mantic F1-score of our system is 80.49%. The
prediction performance in DM is 81.53%, in PAS
87.54% and in PCEDT 72.40%. The top nodes
are identified with an overall F1-score of 87.05%.
The unlabeled F1-score reflects the performance
of the dependency detection in isolation from la-
beling task and by comparing the labeled and un-
labeled F1-scores from Table 2 we can see that the
most common mistake relates to the identification
of correct governor-dependent pairs. This is espe-
cially true with the DM and PAS formats where the
difference between labeled and unlabeled scores
is very small (1.9pp and 1.4pp), reflecting high
performance in assigning the roles. Instead, in
PCEDT the role assignment accuracy is substan-
tially below the other two and the difference be-
tween unlabeled and labeled F1-score is as much
as 13.5pp. One likely reason is the higher number
of possible roles defined in the PCEDT format.

5.1 Discussion

Naturally, our system generally performs better
with frequently seen semantic roles than roles that

are seen rarely. In the case of DM, the 4 most
common semantic roles cover over 87% of the
gold standard dependencies and are predicted with
a macro F1-score of 85.3%, while the remaining
35 dependency labels found in the gold standard
are predicted at an average rate of 49.4%. To
give this a perspective, the most common 4 roles
have on average 121K training instances, while the
remaining 35 roles have on average about 2000
training instances. For PAS, the 9 most common
labels, which comprise over 80% of all depen-
dencies in the gold standard data and have on av-
erage about 66K training instances per role, are
predicted with an F1-score of 87.6%, while the
remaining 32 labels have on average 4200 train-
ing instance and are predicted with an F1-score of
57.8%. The PCEDT format has the highest num-
ber of possible semantic roles and also lowest cor-
relation between the frequency in training data and
F1-score. For PCEDT, the 11 most common la-
bels, which cover over 80% of all dependencies in
the gold standard, are predicted with an F1-score
of 69.6%, while the remaining 53 roles are pre-
dicted at an average rate of 46.6%. The higher
number of roles also naturally affects the number
of training instances and the 11 most common la-
bels in PCEDT have on average 35K training in-
stances, while the remaining 53 roles have on av-
erage 1600 instances per role.

Similarly, the system performs better with se-
mantic arguments which are nearby the governor.
This is true for both linear distance between the
two tokens and especially for distance measured
by syntactic dependency steps. For example in the
case of DM, semantic dependencies shorter than
3 steps in the syntactic tree cover more than 95%
of the semantic dependencies in the gold standard
and have an F1-score of 75.1%, while the rest have
only 32.6%. The same general pattern is also evi-
dent in the other formats.

6 Conclusion

In this paper we presented our system used to
participate in the SemEval-2014 Shared Task on
broad-coverage semantic dependency parsing. We
built a pipeline of three supervised classifiers to
identify semantic dependencies, assign a role for
each dependency and finally, detect the top nodes.

In addition to basic features used in classifica-
tion we have shown that additional information,
such as frequencies of syntactic n-grams and word
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similarities derived from vector space representa-
tions, can also positively contribute to the classifi-
cation performance.

The overall F1-score of our system is 80.49%
and it was ranked third in the open track of the
shared task.
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Abstract

This paper describes the system devel-
oped by the UBham team for the SemEval-
2014 Aspect-Based Sentiment Analysis
task (Task 4). We present an approach
based on deep linguistic processing tech-
niques and resources, and explore the pa-
rameter space of these techniques applied
to the different stages in this task and ex-
amine possibilities to exploit interdepen-
dencies between them.

1 Introduction

Aspect-Based Sentiment Analysis (ASBA) is con-
cerned with detection of the author’s sentiment to-
wards different issues discussed in a document,
such as aspects or features of a product in a cus-
tomer review. The specific ASBA scenario we ad-
dress in this paper is as follows. Given a sentence
from a review, identify (1) aspect terms, specific
words or multiword expressions denoting aspects
of the product; (2) aspect categories, categories of
issues being commented on; (3) aspect term po-
larity, the polarity of the sentiment associated with
each aspect term; and (4) aspect category polarity,
the polarity associated with each aspect category
found in the sentence. For example, in:

I liked the service and the staff, but not the food.

aspect terms are service, staff and food, where the
first two are evaluated positively and the last one
negatively; and aspect categories are SERVICE and
FOOD, where the former is associated with pos-
itive sentiment and the latter with negative. It
should be noted that a given sentence may contain

This work is licenced under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/
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“Workbench for Interactive Contrastive Analysis of Patent
Documentation” under grant no. FP7-SME-606163.

one, several, or no aspect terms, one, several, or no
aspect categories, and may express either positive,
negative, neutral, or conflicted sentiment.

While the ASBA task is usually studied in the
context of documents (e.g., online reviews), pecu-
liarities of this scenario are short input texts, com-
plex categorization schemas, and a limited amount
of annotated data. Therefore we focused on ways
to exploit deep linguistic processing techniques,
which we use for both creating complex classifi-
cation features and rule-based processing.

2 Related Work

2.1 Aspect Term Extraction

To recognize terms that express key notions in a
product or service review, a common general ap-
proach has been to extract nouns and noun phrases
as potential terms and then apply a certain filtering
technique to ensure only the most relevant terms
remain. These techniques include statistical asso-
ciation tests (Yi et al., 2003), associative mining
rules with additional rule-based post-processing
steps (Hu and Liu, 2004), and measures of asso-
ciation with certain pre-defined classes of words,
such as part-whole relation indicators (Popescu
and Etzioni, 2005).

2.2 Aspect Category Recognition

Aspect category recognition is often addressed as
a text classification problem, where a classifier
is learned from reviews manually tagged for as-
pects (e.g., Snyder and Barzilay, 2007, Ganu et al.,
2009). Titov and McDonald (2008) present an ap-
proach which jointly detects aspect categories and
their sentiment using a classifier trained on top-
ics discovered via Multi-Grain LDA and star rat-
ings available in training data. Zhai et al. (2010)
presented an approach based on Expectation-
Maximization to group aspect expressions into
user-defined aspect categories.
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2.3 Sentence Sentiment

Lexicon-based approaches to detecting sentiment
in a sentence rely on a lexicon where words and
phrases are provided with sentiment labels as well
as on techniques to recognize “polarity shifters”,
phrases causing the polarity of a lexical item
to reverse. Early work on detection of polarity
shifters used surface-level patterns (Yu and Hatzi-
vassilouglu, 2003; Hu and Liu, 2004). Moila-
nen and Pulman (2007) provide a logic-oriented
framework to compute the polarity of grammatical
structures, that is capable of dealing with phenom-
ena such as sentiment propagation, polarity rever-
sal, and polarity conflict. Several papers looked at
different ways to use syntactic dependency infor-
mation in a machine learning framework, to better
account for negations and their scope (Nakagawa
et al., 2010; Socher et al., 2013).

To adapt a generic sentiment lexicon to a new
application domain, previous work exploited se-
mantic relations encoded in WordNet (Kim and
Hovy, 2006), unannotated data (Li et al, 2012), or
queries to a search engine (Taboada et al., 2006).

3 Our Approach

In the following sections, we will describe our ap-
proach to each stage of the Shared Task, reporting
experiments on the provided training data using a
10-fold cross-validation.

3.1 Aspect Term Extraction

During pre-processing training data was parsed
using a dependency parser (Bohnet and Nivre,
2012), and sentiment words were recognized in it
using a sentiment lexicon (see Section 6.1). Can-
didate terms were extracted as single nouns, noun
phrases, adjectives and verbs, enforcing certain
exceptions as detailed in the annotation guidelines
for the Shared Task (Pontiki et al., 2014), namely:

• Sentiment words were not allowed as part of
terms;

• Noun phrases with all elements capitalized
and acronyms were excluded, under the as-
sumption they refer to brands rather than
product aspects;

• Nouns referring to the product class as a
whole (“restaurant”, “laptop”, etc) were ex-
cluded.

Candidate terms that exactly overlapped with
manually annotated terms were discarded, while
those that did not were used as negative examples
of aspect terms.

In order to provide the term extraction process
with additional lexical knowledge, from the train-
ing data we extracted those manually annotated
terms that corresponded to a single aspect cate-
gory. Then the set of terms belonging to each
category was augmented using WordNet: first we
determined the 5 most prominent hyperonyms of
these terms in the WordNet hierarchy using Resnik
(1992)’s algorithm for learning a class in a seman-
tic hierarchy that best represents selectional pref-
erences of a verb, additionally requiring that each
hypernym is at least 7 nodes away from the root, to
make them sufficiently specific. Then we obtained
all lexical items that belong to children synsets of
these hypernyms, and further extended these lexi-
cal items with their meronyms and morphological
derivatives. The resulting set of lexical items was
later used as an extended aspect term lexicon. We
additionally created a list of all individual lemmas
of content words found in this lexicon.

For each term, we extracted the following fea-
tures to be used for automatic classification:

• Normalized form: the surface form of the
term after normalization;

• Term lemmas: lemmas of content words
found in the term;

• Lexicon term: if the term is in the lexicon;

• Lexicon lemmas ratio: the ratio of lexicon
lemmas in the term;

• Unigram: 3 unigrams on either side of the
term;

• Bigrams: The two bigrams around the term;

• Adj+term: If an adjective depends on the
term1 or related to it via a link verb (“be”,
“get”, “become”, etc);

• Sentiment+term: If a sentiment word de-
pends on the term or related via a link verb;

• Be+term: If the term depends on a link verb;

• Subject term: If the term is a subject;
1In case the term was a multi-word expression, the rela-

tion to the head of the phrase was used.
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• Object term: If the term is an object.

We first look at how well the manually designed
patterns extracted potential terms. We are primar-
ily interested in recall at this stage, since after that
potential terms are classified into terms and non-
terms with an automatic classifier. The recall on
the restaurants was 70.5, and on the laptops −
56.9. These are upper limits on recall for the over-
all task of aspect term recognition.

Table 1 and Table 2 compare the performance of
several learning algorithms on the restaurants and
the laptops dataset, respectively2.

P R F
Linear SVM 94.42 95.51 94.96
Decision Tree 94.24 92.90 93.56
Naı̈ve Bayes 84.97 95.67 89.99
kNN (k=5) 82.71 93.50 87.76

Table 1: Learning algorithms on the aspect term
extraction task, restaurants dataset.

P R F
Linear SVM 88.14 94.07 91.00
Naı̈ve Bayes 93.61 79.46 85.92
Decision Tree 83.87 82.99 83.39
kNN (k=5) 82.83 83.31 83.03

Table 2: Learning algorithms on the aspect term
extraction task, laptops dataset.

On both datasets, linear SVMs performed best,
and so they were used in the subsequent experi-
ments on term recognition. To examine the qual-
ity of each feature used for term classification, we
ran experiments where a classifier was built and
tested without that feature, see Tables 3 and 4, for
the restaurants and laptops datasets respectively,
where a greater drop in performance compared to
the entire feature set, indicates a more informative
feature.

The results show the three most useful features
are the same in both datasets: the occurrence of the
candidate term in the constructed sentiment lexi-
con, the lemmas found in the term, and the nor-
malized form of the term account.

We ran further experiments manually selecting
several top-performing features, but none of the

2This and the following experiments were run on the train
data supplied by the shared task organizers using 10-fold
cross-validation.

P R F
Lexicon term 91.74 95.01 93.33
Term lemmas 92.43 95.00 93.69
Normalized form 93.45 95.36 94.39
Be+term 93.99 95.28 94.63
Left bigram 94.21 95.09 94.64
All features 94.42 95.51 94.96

Table 3: Top 5 most informative features for the
term extraction subtask, restaurants dataset.

P R F
Lexicon term 88.82 88.61 88.69
Term lemmas 85.02 95.16 89.79
Normalized form 87.79 92.13 89.89
Left bigram 87.83 93.62 90.62
Term is obj 87.79 94.43 90.97
All features 88.14 94.07 91.00

Table 4: Top 5 most informative features for the
term extraction subtask, laptops dataset.

configurations produced significant improvements
on the use of the whole feature set.

Table 5 shows the results of evaluation of the as-
pect term extraction on the test data of the Shared
Task (baseline algorithms were provided by the or-
ganizers). The results correspond to what can be
expected based on the upper limits on recall for
the pattern-based extraction of candidate terms as
well as precision and recall for the classifier.

P R F
Restaurants 77.9 61.1 68.5
Restaurants, baseline 53.9 51.4 52.6
Laptops 60.3 39.1 47.5
Laptops, baseline 40.1 38.1 39.1

Table 5: Aspect term extraction on the test data of
the Shared Task.

3.2 Aspect Category Recognition
To recognize aspect categories in a sentence, we
classified individual clauses found in it, assuming
that each aspect category would be discussed in
a separate clause. Features used for classification
were lemmas of content words; to account for the
fact that aspect terms are more indicative of aspect
categories than other words, we additionally used
entire terms as features, weighting them twice as
much as other features. Table 6 compares the per-
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formance of several learning algorithms when au-
tomatically recognized aspect terms were not used
as an additional feature; Table 7 shows results
when terms were used as features.

P R F
Linear SVM 66.37 58.07 60.69
Decision Tree 58.07 51.22 53.05
Naı̈ve Bayes 74.34 46.07 48.63
kNN (k=5) 58.65 43.77 46.57

Table 6: Learning algorithms on the aspect cate-
gory recognition task, aspect terms not weighted.

P R F
Linear SVM 67.23 59.43 61.90
Decision Tree 64.41 55.84 58.36
Naı̈ve Bayes 78.02 49.57 52.87
kNN (k=5) 67.92 47.91 51.94

Table 7: Learning algorithms on the aspect cate-
gory recognition task, aspect terms weighted.

The addition of aspect terms as separate features
increased F-scores for all the learning methods,
sometimes by as much as 5%. Based on these re-
sults, we used the linear SVM method for the task
submission. Table 8 reports results achieved on
the test data of the Shared Task.

P R F
Restaurants 81.8 67.9 74.2
Baseline 64.8 52.5 58.0

Table 8: Aspect category extraction on the test
data of the Shared Task.

3.3 Aspect Term Sentiment
To recognize sentiment in a sentence, we take a
lexicon-based approach. The sentiment lexicon
we used encodes the lemma, the part-of-speech
tag, and the polarity of the sentiment word. It was
built by combining three resources: lemmas from
SentiWordNet (Baccianella et al., 2010), which do
not belong to more than 3 synsets; the General
Inquirer lexicon (Stone et al., 1966), and a sub-
section of the Roget thesaurus annotated for sen-
timent (Heng, 2004). In addition, we added sen-
timent expressions that are characteristic of the
restaurants and laptop domains, obtained based on
manual analysis of the restaurants corpus used in

(Snyder and Barzilay (2007) and the laptop re-
views corpus used in (Jindal and Liu, 2008).

To detect negated sentiment, we used a list of
negating phrases such as “not”, “never”, etc., and
two types of patterns to determine the scope of a
negation. The first type detected negations on the
sentence level, checking for negative phrases at
the start of the sentence; negations detected on the
sentence level were propagated to the clause level.
The second type of patterns detected negated sen-
timent within a clause, using patterns specific to
the part-of-speech of the sentiment word (e.g.,
“AUXV + negation + VB + MAINV”, where
MAINV is a sentiment verb). The output of this
algorithm is the sentence split into clauses, with
each clause being assigned one of four sentiment
labels: “positive”, “negative”, “neutral”, “con-
flict”. Thus, each term was associated with the
sentiment of the clause it appeared in.

On the test data of the Shared Task, the algo-
rithm achieved the accuracy scores of 76.0 (the
restaurants data, for the baseline of 64.3) and 63.6
(the laptops data, for the baseline of 51.1).

3.4 Category Sentiment

Recall that aspect categories were recognized in a
sentence by classifying its individual clauses. Cat-
egory sentiment was determined from the senti-
ment of the clauses where the category was found.
In case more than one clause was assigned to the
same category and at least one clause expressed
positive sentiment and at least one − negative,
such cases were classified as conflicted sentiment.
This method achieved the accuracy of 72.8 (on the
restaurants data), with the baseline being 65.65.

4 Conclusion

Our study has shown that aspect terms can be de-
tected with a high accuracy using a domain lexicon
derived from WordNet, and a set of classification
features created with the help of deep linguistic
processing techniques. However, the overall accu-
racy of aspect term recognition is greatly affected
by the extraction patterns that are used to extract
initial candidate terms. We also found that au-
tomatically extracted aspect terms are useful fea-
tures in the aspect category recognition task. With
regards to sentiment detection, our results suggest
that reasonable performance can be achieved with
a lexicon-based approach coupled with carefully
designed rules for the detection of polarity shifts.
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Abstract

We describe our systems for the SemEval
2014 Task 5: L2 writing assistant where a
system has to find appropriate translations
of L1 segments in a given L2 context. We
participated in three out of four possible
language pairs (English-Spanish, French-
English and Dutch-English) and achieved
the best performance for all our submit-
ted systems according to word-based ac-
curacy. Our models are based on phrase-
based machine translation systems and
combine topical context information and
language model scoring.

1 Introduction

In the past years, the fields of statistical machine
translation (SMT) and word sense disambigua-
tion (WSD) have developed largely in parallel,
with each field organising their own shared tasks
aimed at improving translation quality (Bojar et
al., 2013) and predicting word senses, e.g. Agirre
et al. (2010). Because sense disambiguation is
a central problem in machine translation, there
has been work on integrating WSD classifiers into
MT systems (Carpuat and Wu, 2007a; Carpuat
and Wu, 2007b; Chan et al., 2007). However,
one problem with the direct integration of WSD
techniques into MT has been the mismatch be-
tween word predictions of WSD systems and the
phrase segmentations of MT system. This prob-
lem was adressed in Carpuat and Wu (2007b) by
extending word sense disambiguation to phrase
sense disambiguation. The relation between word
sense distinctions and translation has also been
explored in past SemEval tasks on cross-lingual
word sense disambiguation, where senses are not

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

defined in terms of WordNet senses as in previ-
ous tasks, but instead as translations to another
language (Lefever and Hoste, 2010; Lefever and
Hoste, 2013).

This year’s L2 writing assistant task is simi-
lar to the cross-lingual word sense disambigua-
tion task but differs in the context provided for
disambiguation and the length of the fragments
(source phrases instead of words). While in other
translation and disambiguation tasks the source
language context is given, the L2 writing assis-
tant task assumes a given target language con-
text that constrains the possible translations of L1
fragments. This is interesting from a machine
translation point-of-view because it allows for a
direct comparison with systems that exploit the
target context using a language model. As lan-
guage models have become more and more power-
ful over the years, mostly thanks to increased com-
puting power, new machine translation techniques
are also judged by their ability to improve perfor-
mance over a baseline system with a strong lan-
guage model. Another difference to previous Se-
mEval tasks is the focus on both lexical and gram-
matical forms, while previous tasks have mostly
focused on lexical selection.

2 Translation Model for L1 Fragments in
L2 Context

Our model for translating L1 fragments in L2 con-
text is a phrase-based machine translation system
with an additional context similarity feature. We
aim to resolve lexical ambiguities by taking the
entire topical L2 context of an L1 fragment into
account rather than only relying on the phrasal L1
context. We do not explicitly model the grammat-
icality of target word forms but rather use a stan-
dard 5-gram language model to score target word
sequences. We describe the context similarity fea-
ture in the following section.
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2.1 Context Similarity Feature
The context similarity feature is derived from the
phrase pair topic model (PPT) described in Hasler
et al. (2014). At training time, this model learns
topic distributions for all phrase pairs in the phrase
table in an unsupervised fashion, using a variant of
Latent Dirichlet Allocation (LDA). The underly-
ing assumption is that all phrase pairs share a set of
global topics of predefined size, thus each phrase
pair is assigned a distribution over the same set of
global topics. This is in contrast to Word Sense In-
duction (WSI) methods which typically learn a set
of topics or senses for each word type, for example
in Lau et al. (2010).

The input to the model are distributional profiles
of words occurring in the context of each phrase
pair, thus, the model learns lower-dimensional
representations of the likely context words of a
phrase pair. While in a normal machine transla-
tion setup the source sentence context is given, it is
straightforward to replace source language words
with target language words as given in the L2 con-
text for each test example. At test time, the topic
model is applied to the given L2 context to infer a
topic distribution of the test context. The topic dis-
tribution of an applicable phrase pair is compared
to the topic distribution of a given test context (de-
fined as all L2 words in the same sentence as the
L1 fragment, excluding stop words) using cosine
similarity.

To adapt the translation system to the context
of each test sentence, the phrase table is filtered
per test sentence and each applicable phrase pair
receives one additional feature that expresses its
topical similarity with the test context. While
the baseline system (the system without similar-
ity feature) translates the entire test set with the
same translation model, the context-sensitive sys-
tem loads an adapted phrase table for each test sen-
tence. While the phrase pair topic model can also
deal with document-level context, here we con-
sider only sentence-level context as no wider con-
text was available. We evaluate three variations of
the context similarity feature on top of a standard
phrase-based MT system:

• 50-topics The cosine similarity according to
the PPT model trained with 50 topics (sub-
mitted as run1)

• mixture:geoAvg The geometric average of
the cosine similarities according to PPT mod-
els trained with 20, 50 and 100 topics (sub-
mitted as run2)

• mixture:max For each source phrase, the co-
sine similarity according to the PPT model
that yields the lowest entropy (out of the
models with 20, 50 and 100 topics) when
converting the similarities into probabilities
(submitted as run3)

2.2 Language Model Scoring of L2 Context
On top of using the words in the L2 context for
computing the similarity feature described above,
we introduce a simple method for using a language
model to score the target sequence that includes
the translated L1 segments and the words to the
left and right of the translated segments. In order
to use the language model scoring implemented in
the Moses decoder, we present the decoder with
an input sentence that contains the L1 fragment as
well as the L2 context with XML markup. While
the L1 fragments are translated without special
treatment, the L2 tokens are passed through un-
translated by specifying the identity translation as
markup. The XML markup also includes reorder-
ing walls to prevent the decoder from reordering
the L2 context. An example input sentence with
markup (French-English) is shown below:

<wall/>les manifesteurs<wall/>
<np translation=”want”>want</np><wall/>
<np translation=”to”>to</np><wall/>
<np translation=”replace”>replace</np><wall/>
<np translation=”the”>the</np><wall/>
<np translation=”government”>government</np><wall/>
<np translation=”.”>.</np><wall/>

3 Experimental Setup

Although the task is defined as building a transla-
tion assistance system rather than a full machine
translation system, we use a standard machine
translation setup to translate L1 phrases. We used
the Moses toolkit (Koehn et al., 2007) to build
phrase-based translation systems for the language
pairs English-Spanish, French-English and Dutch-
English1. For preprocessing, we applied punctua-
tion normalisation, truecasing and tokenisation us-
ing the scripts provided with the Moses toolkit.
The model contains the following standard fea-
tures: direct and inverse phrase translation prob-
abilities, lexical weights, word and phrase penalty,
lexicalised reordering and distortion features and
a 5-gram language model with modified Kneser-
Ney smoothing. In addition, we add the context
similarity feature described in Section 2.1.

1We left out the English-German language pair for time
reasons.
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Training data English-Spanish French-English Dutch-English
Europarl 1.92M 1.96M 1.95M
News Commentary 192K 181K n/a
TED 157K 159K 145K
News 2.1G 2.1G 2.1G
Commoncrawl 50M 82M -

Table 1: Overview of parallel and monolingual training data (top/bottom, in number of sentences/words).

3.1 Training Data
Most of the training data was taken from the
WMT13 shared task (Bojar et al., 2013), ex-
cept where specified otherwise. For the English-
Spanish and French-English systems, we used par-
allel training data from the Europarl and News
Commentary corpora, as well as the TED corpus
(Cettolo et al., 2012). For Dutch-English, we used
parallel data from the Europarl and TED corpus.
The language models were trained on the target
sides of the parallel data and additional news data
from the years 2007-2012. For English-Spanish
and French-English, we used additional language
model data from the Commoncrawl corpus2. Sep-
arate language models were trained for each cor-
pus and interpolated on a development set. An
overview of the training data is shown in Table 1.

3.2 Tuning Model Parameters
The parameters of the baseline MT excluding
the similarity feature were tuned with kbest-mira
(Cherry and Foster, 2012) on mixed development
sets containing the trial data (500 sentence pairs
with XML markup) distributed for the task as well
as development data from the news and TED cor-
pora for the English-Spanish and French-English
systems and development data from the TED cor-
pus for the Dutch-English system. Because the do-
main(s) of the test examples was not known be-
forehand, we aimed for learning model weights
that would generalise across domains by using
rather diverse tuning sets. In total, the develop-
ment sets consisted of 3435, 3705 and 3516 sen-
tence pairs, respectively. We did not tune the
weight of the similarity feature automatically, but
set it to an empirically determined value instead.

3.3 Simulating Ambiguous Development
Data

When developing our systems using the trial data
supplied by the task organisers, we noticed that

2For the Dutch-English system, the Commoncrawl data
did not seem to improve performance.

Source words Translations
chaı̂ne chain, string, channel, station
matière matter, material, subject
flux stream, flow, feed
démon demon, daemon, devil
régime regime, diet, rule

Table 2: Examples of ambiguous source words
and their different translations in the simulated de-
velopment set.

System French-English
Baseline 0.314
+ LM context 0.726
20-topics 0.603
+ LM context 0.845
50-topics 0.674
+ LM context 0.886
100-topics 0.628
+ LM context 0.872
mixture:arithmAvg 0.650
+ LM context 0.869
mixture:geoAvg 0.670
+ LM context 0.883
mixture:max 0.690
+ LM context 0.889

Table 3: Word accuracy (best) on the simulated de-
velopment set for the smaller baseline system and
the systems with added context similarity feature,
with and without language model context.

the context similarity feature did not add much to
the overall performance, which we attributed to
the small number of ambiguous examples in the
trial data. Therefore, we extracted a set of 1076
development instances containing 14 ambiguous
French words and their English translations from
a mixed corpus containing data from the News
Commentary, TED and Commoncrawl corpora as
used in Hasler et al. (2014). Examples of ambigu-
ous source words and their translations in that de-
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velopment set are shown in Table 2.
Translating the L1 fragments in the simulated

development set using a smaller baseline system
trained on this mixed data set yields the results at
the top of Table 3. Note that even though the in-
stances were extracted from the training set, this
does not affect the translation model since the
L1 fragments contain only the ambiguous source
words and no further source context that could be
memorised.

The bottom part of Table 3 shows the perfor-
mance of the three context similarity features de-
scribed in Section 2.1 plus some further variants
(the models with 20 and 100 topics as well as
the arithmetic average of the cosine similarities
of models trained with 20, 50 and 100 topics).
First, we observe that each of the features clearly
outperforms the baseline system without language
model context. Second, each context similarity
feature together with the language model context
still outperforms the Baseline + LM context. Even
though the gain of the context similarity features
is smaller when the target context is scored with
a language model, the topical context still pro-
vides additional information that improves lexical
choice. We trained versions of the three best mod-
els from Table 3 (in bold) for our submissions on
the official test sets.

4 Results and Discussion

In this section we report the experimental results
of our systems on the official test sets. The re-
sults without scoring the L2 context with a lan-
guage model are shown in Table 4 and including
language model scoring of L2 context in Table 5.
We limit the reported scores to word accuracy and
do not report recall because our systems produce
output for every L1 phrase.

In Table 4, we compare the performance of the
baseline MT system to systems including one of
three variants of the similarity feature as described
in Section 2.1, according to the 1-best transla-
tion (best) as well as the 5-best translations (out-
of-five) in a distinct n-best list. For five out of
the six tasks, at least one of the systems includ-
ing the similiary feature yields better performance
than the baseline system. Only for French-English
best, the baseline system yields the best word ac-
curacy. Among the three variants, 50-topics and
mixture:geoAvg perform slightly better than mix-
ture:max in most cases.

Table 5 shows the results of our submitted runs

Input: There are many ways of cooking
<f>des œufs</f> for breakfast.

Reference: There are many ways of cooking
<f>eggs</f> for breakfast.

Input: I loved animals when I was <f>un
enfant</f>.

Reference: I loved animals when I was <f>a
kid<alt>a child</alt></f>.

Figure 1: Examples of official test instances.

(run1-run3) as well as the baseline system, all
with language model scoring of L2 context via
XML markup. The first thing to note in com-
parison to Table 4 is that providing the L2 con-
text for language model scoring yields quite sub-
stantial improvements (0.165, 0.101 and 0.073, re-
spectively). Again, in five out of six cases at least
one of the systems with context similarity feature
performs better than the baseline system. Only for
Spanish-English best, the baseline system yields
higher word accuracy than the three submitted
runs. As before, 50-topics and mixture:geoAvg
perform slightly better than mixture:max, with a
preference for 50-topics. For comparison, we also
show the word accuracies of the 2nd-ranked sys-
tem for both tasks and each language pair. We
note that the distance to the respective runner-up
system is largest for French-English and on aver-
age larger for the out-of-five task than for the best
task.

As a general observation, we can state that
although the similarity feature improves perfor-
mance in most cases, the improvements are small
compared to the improvements achieved by scor-
ing the L2 language model contexts. We suspect
two reasons for this effect: first, we do not explic-
itly model grammaticality of word forms. There-
fore, our system relies on the language model to
choose the best word form for those test examples
that do not contain any lexical ambiguity. Second,
we have noticed that for some of the test exam-
ples, the correct translations do not depend partic-
ularly on words in the L2 context, as shown in Fig-
ure 1 where the most common translations of the
source phrases without context would match the
reference translations. These are cases where we
do not expect much of an improvement in transla-
tion by taking the L2 context into account.

Since in Section 3.3 we have provided evidence
that topical similarity features can improve lexical
choice over simply using a target language model,
we believe that the lower performance of the sim-
ilarity features on the official test set is caused by
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System English-Spanish French-English Dutch-English
best oof best oof best oof

Baseline 0.674 0.854 0.722 0.884 0.613 0.750
50-topics 0.682 0.860 0.719 0.896 0.616 0.759
mixture:geoAvg 0.677 0.863 0.715 0.896 0.619 0.756
mixture:max 0.679 0.860 0.712 0.887 0.618 0.753

Table 4: Word accuracy (best and out-of-five) of the baseline system and the systems with added context
similarity feature. All systems were run without scoring the language model context.

System English-Spanish French-English Dutch-English
best oof best oof best oof

Baseline + LM context 0.839 0.944 0.823 0.934 0.686 0.809
run1:
50-topics + LM context 0.827 0.946 0.824 0.938 0.692 0.811
run2:
mixture:geoAvg + LM context 0.827 0.944 0.821 0.939 0.688 0.808
run3:
mixture:max + LM context 0.820 0.949 0.816 0.937 0.688 0.808
2nd-ranked systems 0.8091 0.8872 0.6942 0.8392 0.6793 0.7533

Table 5: Word accuracy (best and out-of-five) of all submitted systems (runs 1-3) as well as the baseline
system without the context similarity feature. All systems were run with the language model context
provided via XML input. Systems on 2nd rank: 1UNAL-run2, 2CNRC-run1, 3IUCL-run1

different levels of ambiguity in the simulated de-
velopment set and the official test set. For the
simulated development set, we explicitly selected
ambiguous source words in contexts which trig-
ger multiple different translations, while the offi-
cial test set also contains examples where the fo-
cus is on correct verb forms. It further contains ex-
amples where the baseline system without context
information could easily provide the correct trans-
lation, as shown above. Thus, the performance of
our topical context models should ideally be eval-
uated on test sets that contain a sufficient number
of ambiguous source phrases in order to measure
its ability to improve lexical selection.

Finally, in Figure 2 we show some examples
where the 50-topics system (with LM context)
produced semantically better translations than the
baseline system and where words in the L2 con-
text would have helped in promoting them over the
choice of the baseline system.

5 Conclusion

We have described our systems for the SemEval
2014 Task 5: L2 writing assistant which achieved
the best performance for all submitted language
pairs and both the best and out-of-five tasks. All

Input: Why has Air France authorised <f>les ap-
pareils électroniques</f> at take-off?

Baseline: .. <f>the electronics</f> ..
50-topics: .. <f>electronic devices</f> ..
Reference: .. <f>electronic devices</f> ..

Input: This project represents one of the rare ad-
vances in strenghtening <f>les liens</f>
between Brazil and the European Union.

Baseline: .. <f>the links</f> ..
50-topics: .. <f>the ties</f> ..
Reference: .. <f>the ties<alt>relations</alt><alt>

the bonds</alt></f> ..

Figure 2: Examples of improved translation output
with the context similarity feature.

systems are based on phrase-based machine trans-
lation systems with an added context similarity
feature derived from a topic model that learns
topic distributions for phrase pairs. We show that
the additional similarity feature improves perfor-
mance over our baseline models and that further
gains can be achieved by passing the L2 context
through the decoder via XML markup, thereby
producing language model scores of the sequences
of L2 context words and translated L1 fragments.
We also provide evidence that the relative perfor-
mance of the context similarity features depends
on the level of ambiguity in the L1 fragments.
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Abstract

This paper describes our submission to Se-
mEval 2014 Task 41 (aspect based senti-
ment analysis). The current work is based
on the assumption that it could be advan-
tageous to connect the subtasks into one
workflow, not necessarily following their
given order. We took part in all four sub-
tasks (aspect term extraction, aspect term
polarity, aspect category detection, aspect
category polarity), using polarity items de-
tection via various subjectivity lexicons
and employing a rule-based system ap-
plied on dependency data. To determine
aspect categories, we simply look up their
WordNet hypernyms. For such a basic
method using no machine learning tech-
niques, we consider the results rather sat-
isfactory.

1 Introduction

In a real-life scenario, we usually do not have any
golden aspects at our disposal. Therefore, it could
be practical to be able to extract both aspects and
their polarities at once. So we first parse the data,
bearing in mind that it is very difficult to detect
both sources/targets and their aspects on plain text
corpora. This holds especially for pro-drop lan-
guages, e.g. Czech (Veselovská et al., 2014) but
the proposed method is still language independent
to some extent. Secondly, we detect the polar-
ity items in the parsed text using a union of two
different existing subjectivity lexicons (see Sec-
tion 2). Afterwards, we extract the aspect terms in
the dependency structures containing polarity ex-

1http://alt.qcri.org/semeval2014/
task4/
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pressions. In this task, we employ several hand-
crafted rules detecting aspects based on syntactic
features of the evaluative sentences, inspired by
the method by Qiu et al. (2011). Finally, we iden-
tify aspect term categories with the help of the En-
glish WordNet and derive their polarities based on
the polarities of individual aspects. The obtained
results are discussed in Section 4.

2 Related Work

This work is related to polarity detection based on
a list of evaluative items, i.e. subjectivity lexi-
cons, generally described e.g. in Taboada et al.
(2011). The English ones we use are minutely de-
scribed in Wiebe et al. (2005) and several papers
by Bing Liu, starting with Hu and Liu (2004). In-
spired by Kobayashi et al. (2007), who make use
of evaluative expressions when learning syntac-
tic patterns obtained via pattern mining to extract
aspect-evaluation pairs, we use the opinion words
to detect evaluative structures in parsed data. The
issue of target extraction in sentiment analysis is
discussed in articles proposing different methods,
mainly tested on product review datasets (Popescu
and Etzioni, 2005; Mei et al., 2007; Scaffidi et al.,
2007). Some of the authors take into consideration
also product aspects (features), defined as prod-
uct components or product attributes (Liu, 2006).
Hu and Liu (2004) take as the feature candidates
all noun phrases found in the text. Stoyanov and
Cardie (2008) see the problem of target extraction
as part of a topic modelling problem, similarly to
Mei et al. (2007). In this contribution, we follow
the work of Qiu et al. (2011) who learn syntactic
relations from dependency trees.

3 Pipeline

Our workflow is illustrated in Figure 1. We first
pre-process the data, then mark all aspects seen in
the training data (still on plain text). The rest of
the pipeline is implemented in Treex (Popel and
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Pattern Example sentence
Subjaspect Predcopula PAdj The food was great.
Subjaspect Predcopula PNoun The coconut juice is the MUST!
Subjaspect Pred Adveval The pizza tastes so good.
Attreval Nounaspect Nice value.
Subjaspect Predeval Their wine sucks.
Subjsource Predeval Objaspect I liked the beer selection.

Table 1: Syntactic rules.

Pre-process & spellcheck

Mark known aspects

Mark aspect categories

P
la

in
 t

e
x
t

Tr
e
e
x

Mark evaluative words

Run tagger & parser

Apply syntactic rules

Figure 1: Overall schema of our approach.

Žabokrtský, 2010) and consists of linguistic anal-
ysis (tagging, dependency parsing), identification
of evaluative words, and application of syntactic
rules to find the evaluated aspects. Finally, for
restaurants, we also identify aspect categories and
their polarity.

3.1 Data

We used the training and trial data provided by the
organizers. During system development, we used
the trial section as a held-out set. In the final sub-
mission, both datasets are utilized in training.

3.2 Pre-processing

The main phase of pre-processing (apart from
parsing the input files and other simple tasks) is
running a spell-checker. As data for this task
comes from real-world reviews, it contains various
typos and other small errors. We therefore imple-
mented a statistical spell-checker which works in
two stages:

1. Run Aspell2 to detect typos and obtain sug-
gestions for them.

2. Select the appropriate suggestions using a
language model (LM).

We trained a trigram LM from the English side
of CzEng 1.0 (Bojar et al., 2012) using SRILM
(Stolcke, 2002). We binarized the LM and use
the Lazy decoder (Heafield et al., 2013) for select-
ing the suggestions that best fit the current context.
Our script is freely available for download.3

We created a list of exceptions (domain-specific
words, such as “netbook”, are unknown to As-
pell’s dictionary) which should not be corrected
and also skip named entities in spell-checking.

3.3 Marking Known Aspects
Before any linguistic processing, we mark all
words (and multiword expressions) which are
marked as aspects in the training data. For our fi-
nal submission, the list also includes aspects from
the provided development sets.

3.4 Morphological Analysis and Parsing
Further, we lemmatize the data and parse it using
Treex (Popel and Žabokrtský, 2010), a modular
framework for natural language processing (NLP).
Treex is focused primarily on dependency syntax
and includes blocks (wrappers) for taggers, parsers
and other NLP tools. Within Treex, we used the
Morče tagger (Hajič et al., 2007) and the MST de-
pendency parser (McDonald et al., 2005).

3.5 Finding Evaluative Words
In the obtained dependency data, we detect polar-
ity items using MPQA subjectivity lexicon (Wiebe
et al., 2005) and Bing Liu’s subjectivity clues.4

2http://aspell.net/
3https://redmine.ms.mff.cuni.cz/

projects/staspell
4http://www.cs.uic.edu/˜liub/FBS/

sentiment-analysis.html#lexicon
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Task 1: aspect extraction Task 2: aspect polarity Task 3: category detection Task 4: category polarity
prec recall F-measure accuracy prec recall F-measure accuracy

UFAL 0.50 0.72 0.59 0.67 0.57 0.74 0.65 0.63
best 0.91 0.82 0.84 0.81 0.91 0.86 0.88 0.83

Table 2: Results of our system on the Restaurants dataset as evaluated by the task organizers.

Task 1: aspect extraction Task 2: aspect polarity
prec recall F-measure accuracy

UFAL 0.39 0.66 0.49 0.57
best 0.85 0.67 0.75 0.70

Table 3: Results of our system on the Laptops dataset as evaluated by the task organizers.

We lemmatize both lexicons and look first for
matching surface forms, then for matching lem-
mas. (English lemmas as output by Morče are
sometimes too coarse, eliminating e.g. negation
– we can mostly avoid their matching by looking
at surface forms first.)

3.6 Syntactic Rules

Further, we created six basic rules for finding
aspects in sentences containing evaluative items
from the lexicons, e.g. “If you find an adjective
which is a part of a verbonominal predicate, the
subject of its governing verb should be an aspect.”,
see Table 1. Situational functions are marked with
subscript, PAdj and PNoun stand for adjectival and
nominal predicative expressions.

Moreover, we applied three more rules con-
cerning coordinations. We suppose that if we find
an aspect, every member of a given coordination
must be an aspect too.

The excellent mussels, puff pastry, goat cheese
and salad.

Concerning but-clauses, we expect that if
there is no other aspect in the second part of
the sentence, we assign the conflict value to the
identified aspect.

The food was pretty good, but a little flavorless.

If there are two aspects identified in the
but-coordination, they should be marked with
opposite polarity.

The place is cramped, but the food is fantastic!

3.7 Aspect Categories

We collect a list of aspects from the training data
and find all their hypernyms in WordNet (Fell-
baum, 1998). We hand-craft a list of typical hy-
pernyms for each category (such as “cooking” or
“consumption” for the category “food”). More-
over, we look at the most frequent aspects in the
training data and add as exceptions those for which
our list would fail.

We rely on the output of aspect identification
for this subtask. For each aspect marked in the
sentence, we look up all its hypernyms in Word-
Net and compare them to our list. When we find
a known hypernym, we assign its category to the
aspect. Otherwise, we put the aspect in the “anec-
dotes/miscellaneous” category. For category po-
larity assignment, we combine the polarities of all
aspects in that category in the following way:

• all positive→ positive

• all negative→ negative

• all neutral→ neutral

• otherwise→ conflict

4 Results and Discussion

Table 2 and Table 3 summarize the results of our
submission. We do not achieve the best perfor-
mance in any particular task, our system overall
ranked in the middle.

We tend to do better in terms of recall than pre-
cision. This effect is mainly caused by our deci-
sion to also automatically mark all aspects seen in
the training data.

4.1 Effect of the Spell-checker

We evaluated the performance of our system with
and without the spell-checker. Overall, the impact
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is very small (f-measure stays within 2-decimal
rounding error). In some cases its corrections are
useful (“convienent” → “convenient parking”),
sometimes its limited vocabulary harms our sys-
tem (“fettucino alfredo”→ “fitting Alfred”). This
issue could be mitigated by providing a custom
lexicon to Aspell.

4.2 Sources of Errors

As we always extract aspects that were observed in
the training data, our system often marks them in
non-evaluative contexts, leading to a considerable
number of false positives. However, using this ap-
proach improves our f-measure score due to the
limited recall of the syntactic rules.

The usefulness of our rules is mainly limited by
the (i) sentiment lexicons and (ii) parsing errors.

(i) Since we used the lexicons directly without
domain adaptation, many domain-specific terms
are missed (“flavorless”, “crowded”) and some are
matched incorrectly.

(ii) Parsing errors often confuse the rules and
negatively impact both recall and precision. Of-
ten, they prevented the system from taking nega-
tion into account, so some of the negated polarity
items were assigned incorrectly.

The “conflict” polarity value was rarely correct
– all aspects and their polarity values need to be
correctly discovered to assign this value. How-
ever, this type of polarity is infrequent in the data,
so the overall impact is small.

Having participated in all four tasks, our sys-
tem can be readily deployed as a complete solution
which covers the whole process from plain text to
aspects and aspect categories annotated with po-
larity. Considering the number of tasks covered
and the fact that our system is entirely rule-based,
the achieved results seem satisfactory.

5 Conclusion and Future Work

In our work, we developed a purely rule-based sys-
tem for aspect based sentiment analysis which can
both detect aspect terms (and categories) and as-
sign polarity values to them. We have shown that
even such a simple approach can achieve relatively
good results.

In the future, our main plan is to involve ma-
chine learning in our system. We expect that out-
puts of our rules can serve as useful indicator fea-
tures for a discriminative learning model, along

with standard features such as bag-of-words (lem-
mas) or n-grams.
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Abstract

In this paper we present our participa-
tion in the Semeval 2014 task “Evalu-
ation of compositional distributional se-
mantic models on full sentences through
semantic relatedness and textual entail-
ment”. Our results demonstrate that us-
ing generic tools for semantic analysis is a
viable option for a system that recognizes
textual entailment. The invested effort in
developing such tools allows us to build
systems for reasoning that do not require
training.

1 Introduction

Recognizing textual entailment (RTE) has been a
popular area of research in the last years. It has
appeared in a variety of evaluation campaigns as
both monolingual and multilingual tasks. A wide
variety of techniques based on different levels of
text interpretation has been used, e.g., lexical dis-
tance, dependency parsing and semantic role la-
beling (Androutsopoulos and Malakasiotis, 2010).

Our approach uses a semantic representation
formalism called Minimal Recursion Semantics
(MRS), which, to our knowledge, has not been
used extensively in entailment decision systems.
Notable examples of systems that use MRS are
Wotzlaw and Coote (2013), and Bergmair (2010).
In Wotzlaw and Coote (2013), the authors present
an entailment recognition system which combines
high-coverage syntactic and semantic text analysis
with logical inference supported by relevant back-
ground knowledge. MRS is used as an interme-
diate format in transforming the results of the lin-
guistic analysis into representations used for log-
ical reasoning. The approach in Bergmair (2010)

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

uses the syllogism as an approximation of natural
language reasoning. MRS is used as a step in the
translation of natural language sentences into logi-
cal formulae that are suitable for processing. Both
works describe approaches that can be adapted
to RTE, but no empirical evaluation is included
to demonstrate the potential of the proposed ap-
proaches.

In contrast to these approaches, our system
bases entailment decision directly on the MRS
representations. Graph alignment over MRS rep-
resentations forms the basis for entailment recog-
nition. If key nodes in the hypothesis MRS can be
aligned to nodes in the text MRS, this is treated as
an indicator of entailment.

This paper represents our first attempt to evalu-
ate a system based on logical-form semantic rep-
resentations in a RTE competition. Using a state-
of-the-art semantic analysis component, we have
created a generic rule-based system for recogniz-
ing textual entailment that obtains competitive re-
sults on a real evaluation dataset. Our approach
does not require training. We confront it with
a strong baseline provided by the EDITS system
(Kouylekov et al., 2011).

In Section 2 we describe the computational se-
mantics framework that forms the basis of our ap-
proach. Section 3 details our entailment system,
and in Section 4 we analyze our results from the
task evaluation.

2 Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) (Copestake
et al., 2005) is a framework for computational se-
mantics which provides expressive representations
with a clear interface with syntax. MRS allows
underspecification of scope, in order to capture the
different readings of a sentence with a single MRS
representation. We use the MRS analyses that are
produced by the HPSG English Resource Gram-
mar (ERG) (Flickinger, 2000).
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The core of an MRS representation is a mul-
tiset of relations, called elementary predications
(EPs). An EP represents a single lexeme, or gen-
eral grammatical features. Each EP has a predi-
cate symbol, and a label (also called handle) that
identifies the EPs position within the MRS struc-
ture. Each EP contains a list of numbered argu-
ments: ARG0, ARG1, etc., whose values are scopal
or non-scopal variables. The ARG0 value is called
the EP’s distinguished variable, and denotes an
event or state, or an entity.

Finally, an MRS has a set of handle constraints
which describe how the scopal arguments of the
EPs can be equated with EP labels. A constraint
hi =q hj denotes equality modulo quantifier inser-
tion. EPs are directly and indirectly linked through
handle constraints and variable sharing, and the re-
sulting MRS forms a connected graph.

In Figure 1, we see an MRS for the sentence
A woman is cutting a potato. The topmost EP,
cut v 1, has a list of three argument-value pairs:

its distinguished variable e3 denotes an event, and
the variables x6 and x9 refer to the entities filling
the agent and patient roles in the verb event. x6

and x9 are in turn the distinguished variables of
the EPs that represent a woman and a potato, re-
spectively.

3 System Description

In the following, Tsent and Hsent refer to the text
and hypothesis sentence, and Tmrs and Hmrs to
their MRS representations.

The core of our system is a rule based compo-
nent, which bases entailment decision on graph
alignment over MRS structures. An earlier ver-
sion of the system is described in Lien (2014).
The earlier version was developed on the data set
from the SemEval-2010 shared task Parser Eval-
uation using Textual Entailment (PETE) (Yuret et
al., 2010). Using no external linguistic resources,
the system output positive entailment decisions for
sentence pairs where core nodes of the Hmrs could
be aligned to nodes in Tmrs according to a set of
heuristic matching rules. The system we present
in this paper extends the earlier version by adding
support for contradiction recognition, and by us-
ing lexical relations from WordNet.

For our participation in the entailment recogni-
tion task, first, we did an analysis of the SICK trial
data. In the ENTAILMENT pairs, Hsent is a para-
phrase over the whole or part of the text sentence.

The changes from Tsent to Hsent can be syntactic
(e.g., active-passive conversion), lexical (e.g., syn-
onymy, hyponymy-hypernymy, multiword expres-
sions replaced by single word), or Tsent contains
some element that does not appear in Hsent (e.g.,
Tsent is a conjunction and Hsent one of its con-
juncts, a modifier in Tsent is left out of Hsent). In
the CONTRADICTION category, the sentences of
a pair are also basically the same or paraphrases,
and a negation or a pair of antonymous expres-
sions create the contradiction. The NEUTRAL
pairs often have a high degree of word overlap, but
Hsent cannot be inferred from Tsent. Our system
accounts for many of these characteristics.

The system bases its decision on the results of
two procedures: a) an event relation match which
searches for an alignment between the MRSs, and
b) a contradiction cue check. After running these
procedures, the system outputs

1. ENTAILMENT, if the event relation match-
ing procedure found an alignment, and no
contradiction cues were found,

2. CONTRADICTION, if contradiction cues
were found,

3. NEUTRAL, if neither of the above condi-
tions are met.

The event relation matching procedure extends
the one developed in Lien (2014) to account for
the greater lexical variation in the SICK data. The
procedure selects all the EPs in Tmrs and Hmrs

that have an event variable as their ARG0—we call
them event relations. These event relations mainly
represent verbs, verb conjunctions, adjectives, and
prepositions. For each event relation Hevent in the
hypothesis the procedure tries to find a matching
relation Tevent among the text event relations. We
say that Hevent matches Tevent if:

1. they represent the same lexeme with the
same part-of-speech, or if both are verbs and
Hevent is a synonym or hypernym of Tevent,
and

2. all their arguments match. Two event rela-
tion arguments in the same argument position
match if:

• they are the same or synonymous, or the
Hevent argument is a hypernym of the
Tevent argument, or
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〈h1,
h4: a q〈0:1〉(ARG0 x6, RSTR h7, BODY h5),
h8: woman n 1〈2:7〉(ARG0 x6),
h2: cut v 1〈11:18〉(ARG0 e3, ARG1 x6, ARG2 x9),
h10: a q〈19:20〉(ARG0 x9, RSTR h12, BODY h11),
h13: potato n 1〈21:28〉(ARG0 x9)
{h12 =q h13, h7 =q h8, h1 =q h2 } 〉

Figure 1: MRS for A woman is cutting a potato (pair 4661, SICK trial data).

• the argument in Tevent represents a noun
phrase and the argument in Hevent is an
underspecified pronoun like somebody,
or
• the argument in Tevent is either a sco-

pal relation or a conjunction relation,
and one of its arguments matches that of
Hevent, or
• the argument in Hevent is not expressed

(i.e., it matches the Tevent argument by
default)

The matching procedure does not search for
more than one alignment between the event rela-
tions of Hmrs and Tmrs.

The contradiction cue procedure checks
whether the MRS pairs contain relations express-
ing negation. The quantifier no q rel negates
an entity (e.g., no man), whereas neg rel
denotes sentence negation. If a negation relation
appears in one but not the other MRS, we treat
this as an indicator of CONTRADICTION.

Example: Figure 1 shows the MRS analysis of
the hypothesis in the entailment pair A woman
is slicing a potato ⇒ A woman is cutting a
potato. There is only one event relation in Hmrs:
cut v 1. Tmrs is an equivalent structure with

one event relation slice v 1. Using Word-
Net, the system finds that cut v 1 is a hyper-
nym of slice v 1. Then, the system compares
the ARG1 and ARG2 values of the event relations.
The arguments match since they are the same re-
lations. There are no contradiction cues in either
of the MRSs, so the system correctly outputs EN-
TAILMENT.

If we look at the rule based component’s output
(Table 1) for the 481 of the 500 SICK trial sen-
tence pairs for which the ERG produced MRSs,
we get a picture of how well it covers the phenom-
ena in the data set:

Of the 134 ENTAILMENT pairs, 59 were para-
phrases where the variation was relatively limited

gold ENT gold CON gold NEU
sys ENT 59 0 1
sys CON 0 51 14
sys NEU 75 22 259

Table 1: Output for the system on SICK trial data.

and could be captured by looking for synonyms,
hyponyms, and treating the hypothesis as a sub-
graph of the text. The simple contradiction cue
check, which looks for negation relations, covered
51 of 73 CONTRADICTION pairs.

75 ENTAILMENT and 22 CONTRADICTION
pairs were not captured by the matching and con-
tradiction cue procedures. Almost 30% of the
ENTAILMENT pairs had word pairs whose lex-
ical relationship was not recognized using Word-
Net (e.g.: playing a guitar⇒ strumming a guitar).
In the other pairs there were alternations between
simple and more complex noun phrases (protec-
tive gear ⇒ gear used for protection), change of
part-of-speech from Tsent to Hsent for the same
meaning entities (It is raining on a walking man⇒
A man is walking in the rain); some pairs required
reasoning, and in some cases Hsent contained in-
formation not present in Tsent. In some cases, en-
tailment recognition fails because the MRS analy-
sis is not correct (e.g., misrepresentation of passive
constructions).

The contradiction cue check did not look for
antonymous words and expressions, and this ac-
counts for almost half of the missing CONTRA-
DICTION pairs. The rest contained negation,
but were misclassified either because an incorrect
MRS analysis was chosen by the parser or because
synonymous words within the scope of the nega-
tion were not recognized.

EDITS We used a backoff-system for the pairs
when the rule-based system fails to produce re-
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System 1 2 3 4 5
Rules Only Rules Only Combined Combined Edits

Training 76.13 75.4 76.62 76.62 74.78
Test 77.0 76.35 77.12 77.14 74.79

Table 2: Submitted system accuracy on training and test set.

sults. Our choice was EDITS1 as it provides
a strong baseline system for recognizing textual
entailment (Kouylekov et al., 2011). EDITS
(Kouylekov and Negri, 2010) is an open source
package which offers a modular, flexible, and
adaptable working environment for experimenting
with the RTE task over different datasets. The
package allows to: i) create an entailment engine
by defining its basic components; ii) train this
entailment engine over an annotated RTE corpus
to learn a model and iii) use the entailment en-
gine and the model to assign an entailment judg-
ment and a confidence score to each pair of an un-
annotated test corpus.

We used two strategies for combining the rule-
based system with EDITS: Our first strategy was
to let the rule-based system classify those sentence
pairs for which the ERG could produce MRSs, and
use EDITS for the pairs were we did not have
MRSs (or processing failed due to errors in the
MRSs) . The second strategy was to mix the out-
put from both systems when they disagree. In this
case we took the ENTAILMENT decisions from
the rule-based, and EDITS contributes with CON-
TRADICTION and NEUTRAL.

4 Analysis

We have submitted the results obtained from five
system configurations. The first four used the rule-
based system as the core. The fifth was a system
obtained by training EDITS on the training set.
We use the fifth system as a strong baseline. In
the few cases in which the rule-based system did
not produce result (2% of the test set pairs) EDITS
judgments were used in the submission. In System
1 and System 2 we have used the first combination
strategy described in the end of section 3. In Sys-
tem 4 and System 5 the entailment decisions are a
combination of the results from the rule-based sys-
tem and EDITS as described in the second strategy
in the same section. The rule-based component
in System 1 and System 3 has more fine-grained

1http://edits.sf.net

Precision Recall F-Measure
Contradiction 0.8422 0.7264 0.78
Entailment 0.9719 0.4158 0.5825
Neutral 0.7241 0.9595 0.8254

Table 3: Performance of System 1.

negation rules so that no q rel is not treated as
a contradiction cue in different contexts (e.g., No
woman runs does not contradict A woman sings).
Table 2 shows the results for the five submitted
systems.

The results demonstrate that the rule-based sys-
tem can be used as a general system for recogniz-
ing textual entailment. It surpasses with 3 points
of accuracy EDITS, which is an established strong
baseline system. We are quite content with the re-
sults obtained as we did not use the training dataset
to create the rules, but only the trial dataset. The
combination of the two systems brings a slight im-
provement.

Overall the rule-based system is quite precise
as demonstrated in Table 3. The numbers in the
table correspond to System 1 but are comparable
to the other rule-based systems 2, 3 and 4. The
system achieves an excellent precision on the en-
tailment and contradiction relations. It is almost
always correct when assigning the entailment rela-
tion. And it also obtains a decent recall, correctly
assigning almost half of the entailment pairs. On
the contradiction relation the system also obtained
a decent result, capturing most of the negation
cases.

5 Conclusions

Using a state-of-the-art semantic analysis compo-
nent, we have created a generic rule-based sys-
tem for recognizing textual entailment that obtains
competitive results on a real evaluation dataset.
An advantage of our approach is that it does not
require training. The precision of the approach
makes it an excellent candidate for a system that
uses textual entailment as the core of an intelligent
search engine.
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Abstract

We present a sentiment classification sys-
tem that participated in the SemEval 2014
shared task on sentiment analysis in Twit-
ter. Our system expands tokens in a tweet
with semantically similar expressions us-
ing a large novel distributional thesaurus
and calculates the semantic relatedness of
the expanded tweets to word lists repre-
senting positive and negative sentiment.
This approach helps to assess the polarity
of tweets that do not directly contain po-
larity cues. Moreover, we incorporate syn-
tactic, lexical and surface sentiment fea-
tures. On the message level, our system
achieved the 8th place in terms of macro-
averaged F-score among 50 systems, with
particularly good performance on the Life-
Journal corpus (F1=71.92) and the Twitter
sarcasm (F1=54.59) dataset. On the ex-
pression level, our system ranked 14 out
of 27 systems, based on macro-averaged
F-score.

1 Introduction

Microblogging sites, such as Twitter, have become
an important source of information about current
events. The fact that users write about their ex-
periences, often directly during or shortly after
an event, contributes to the high level of emo-
tions in many such messages. Being able to auto-
matically and reliably evaluate these emotions in
context of a specific event or a product would be
highly beneficial not only in marketing (Jansen et
al., 2009) or public relations, but also in political
sciences (O’Connor et al., 2010), disaster manage-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

ment, stock market analysis (Bollen et al., 2011)
or the health sector (Culotta, 2010).

Due to its large number of applications, senti-
ment analysis on Twitter is a very popular task.
Challenges arise both from the character of the
task and from the language specifics of Twit-
ter messages. Messages are normally very short
and informal, frequently using slang, alternative
spelling, neologism and links, and mostly ignor-
ing the punctuation.

Our experiments have been carried out as part
of the SemEval 2014 Task 9 - Sentiment Anal-
ysis on Twitter (Rosenthal et al., 2014), a rerun
of a SemEval-2013 Task 2 (Nakov et al., 2013).
The datasets are thus described in detail in the
overview papers. The rerun uses the same train-
ing and development data, but new test data from
Twitter and a “surprise domain”. The task con-
sists of two subtasks: an expression-level subtask
(Subtask A) and a message-level subtask (Subtask
B). In subtask A, each tweet in a corpus contained
a marked instance of a word or phrase. The goal
is to determine whether that instance is positive,
negative or neutral in that context. In subtask B,
the goal is to classify whether the entire message
is of positive, negative, or neutral sentiment. For
messages conveying both a positive and negative
sentiment, the stronger one should be chosen.

The key components of our system are the sen-
timent polarity lexicons. In contrast to previous
approaches, we do not only count exact lexicon
hits, but also calculate explicit semantic related-
ness (Gabrilovich and Markovitch, 2007) between
the tweet and the sentiment list, benefiting from
resources such as Wiktionary and WordNet. On
top of that, we expand content words (adjectives,
adverbs, nouns and verbs) in the tweet with sim-
ilar words, which we derive from a novel corpus
of more than 80 million English Tweets gathered
by the Language Technology group1 at TU Darm-

1http://www.lt.informatik.tu-darmstadt.de
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stadt.

2 Experimental setup

Our experimental setup is based on an open-source
text classification framework DKPro TC2 (Daxen-
berger et al., 2014), which allows to combine NLP
pipelines into a configurable and modular system
for preprocessing, feature extraction and classifi-
cation. We use the unit classification mode of
DKPro TC for Subtask A and the document clas-
sification mode for Subtask B.

2.1 Preprocessing

We customized the message reader for Subtask B
to ignore the first part of the tweet when the word
but is found. This approach helps to reduce the
misleading positive hits when a negative message
is introduced positively (It’d be good, but).

For preprocessing the data, we use components
from DKPro Core3. Preprocessing is the same
for subtasks A and B, with the only difference
that in the subtask A the target expression is addi-
tionally annotated as text classification unit, while
the rest of the tweet is considered to be a doc-
ument context. We first segment the data with
the Stanford Segmenter4, apply the Stanford POS
Tagger with a Twitter-trained model (Derczynski
et al., 2013), and subsequently apply the Stan-
ford Lemmatizer4, TreeTagger Chunker (Schmid,
1994), Stanford Named Entity Recognizer (Finkel
et al., 2005) and Stanford Parser (Klein and Man-
ning, 2003) to each tweet. After this linguistic pre-
processing, the token segmentation of the Stanford
tools is removed and overwritten by the ArkTweet
Tagger (Gimpel et al., 2011), which is more suit-
able for recognizing hashtags and smileys as one
particular token. Finally, we expand the tweet and
proceed to feature extraction as described in detail
in Section 3.

2.2 Classification

We trained our system on the provided training
data only, excluding the dev data. We use clas-
sifiers from the WEKA (Hall et al., 2009) toolkit,
which are integrated in the DKPro TC framework.
Our final configuration consists of a SVM-SMO
classifier with a gaussian kernel. The optimal hy-
perparameters have been experimentally derived

2http://code.google.com/p/dkpro-tc
3http://code.google.com/p/dkpro-core-asl
4http://nlp.stanford.edu/software/corenlp.shtml

and finally set to C=1 and G=0.01. The resulting
model was wrapped in a cost sensitive meta classi-
fier from the WEKA toolkit with the error costs set
to reflect the class imbalance in the training set.

3 Features used

We now describe the features used in our exper-
iments. For Subtask A (contextual polarity), we
extracted each feature twice - once on the tweet
level and once on the focus expression level. Only
n-gram features were extracted solely from the ex-
pressions. For Subtask B (tweet polarity), we ex-
tracted features on tweet level only. In both cases,
we use the Information Gain feature selection ap-
proach in WEKA to rank the features and prune
the feature space with a threshold of T=0.005.

3.1 Lexical features

As a basis for our similarity and expansion ex-
periments (sections 3.4 and 3.5), we use the bi-
nary sentiment polarity lexicon by Liu (2012) aug-
mented with the smiley polarity lexicon by Becker
et al. (2013) and an additional swear word list5

[further as Liuaugmented]. We selected this aug-
mented lexicon for two reasons: firstly, it was the
highest ranked lexical feature on the development-
test and crossvalidation experiments, secondly it
consists of two plain word lists and therefore does
not introduce another complexity dimension for
advanced feature calculations.

We further measure lexicon hits normalized per
number of tweet tokens for the following lexicons:
Pennebaker’s Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2001), the NRC Emo-
tion Lexicon (Mohammad and Turney, 2013), the
NRC Hashtag Emotion Lexicon (Mohammad et
al., 2013) and the Sentiment140 lexicon (Moham-
mad et al., 2013). We use an additional lexicon
of positive, negative, very positive and very nega-
tive words, diminishers, intensifiers and negations
composed by Steinberger et al. (2012), where we
calculate the polarity score as described in their
paper.

In a complementary set of features we combine
each of the lexicons above with a list of weighted
intensifying expressions as published by Brooke
(2009). The intensity of any polar word found in
any of the emotion lexicons used is intensified or
diminished by a given weight if an intensifier (a

5based on http://www.youswear.com
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bit, very, slightly...) is found within the preceding
three tokens.

Additionally, we record the overall counts of
lexicon hits for positive words, negative words and
the difference of the two. In one set of features
we consider only lexicons clearly meant for binary
polarity, while a second set of features also in-
cludes other emotions, such as fear or anger, from
the NRC and the LIWC corpora.

3.2 Negation

We handle negation in two ways. On the expres-
sion level (Subtask A) we rely on the negation
dependency tag provided by the Stanford Depen-
dency Parser. This one captures verb negations
rather precisely and thus helps to handle emotional
verb expressions such as like vs don’t like. On the
tweet level (all features of Subtask B and entire-
tweet-level features of Subtask A) we adopt the
approach of Pang et al. (2002), considering as a
negation context any sequence of tokens between
a negation expression and the end of a sentence
segment as annotated by the Stanford Segmenter.
The negation expressions (don’t, can’t...) are rep-
resented by the list of invertors from Steinberger’s
lexicon (Steinberger et al., 2012). We first assign
polarity score to each word in the tweet based on
the lexicon hits and then revert it for the words ly-
ing in the negation context. This approach is more
robust than the one of the dependency governor
but is error-prone in the area of overlapping (cas-
caded) negation contexts.

3.3 N-gram features

We extract the 5,000 most frequent word uni-
grams, bigrams and trigrams cleaned with the
Snowball stopword list6 as well as the same
amount of skip-n-grams and character trigrams.
These are extracted separately on the target ex-
pression level for subtask A and on document
level for subtask B. On the syntactic level, we
monitor the most frequent 5,000 part-of-speech
ngrams with the size up to part-of-speech quadru-
ples. Additionally, as an approximation for ex-
ploiting the key message of the sentence, we ex-
tract from the tweets a verb chunk and its left and
right neighboring noun chunks, obtaining combi-
nations such as we-go-cinema. The 1,000 most
frequent chunk triples are then used as features
similarly to ngrams.

6http://snowball.tartarus.org/algorithms/english/stop.txt

Word Score Word (continued) Score

awesome 1,000 fun 60
amazing 194 sexy 59
great 148 cold 59
cool 104 crazy 57
good 96 fantastic 56
best 93 bored 55
beautiful 93 excited 54
nice 87 true 53
funny 84 stupid 53
cute 81 gr8 52
perfect 70 entertaining 52
wonderful 67 favorite 52
lovely 66 talented 49
tired 65 other 49
annoying 63 depressing 48
Great 63 flawless 48
new 62 inspiring 47
hilarious 62 incredible 46
bad 61 complicated 46
hot 61 gorgeous 45

Table 1: Unsupervised expansion of ‘awesome’

3.4 Tweet expansion
We expanded the content words in a tweet, i.e.
nouns, verbs, adjectives and adverbs, with sim-
ilar words from a word similarity thesaurus that
was computed on 80 million English tweets from
2012 using the JoBim contextual semantics frame-
work (Biemann and Riedl, 2013). Table 1 shows
an example for a lexical expansion of the word
awesome. The score was computed using left and
right neighbor bigram features for the holing oper-
ation. The value hence shows how often the word
appeared in the same left and right context as the
original word. The upper limit of the score is set
to 1,000.

We then match the expanded tweet against the
Liuaugmented positive and negative lexicons. We
assign to the lexicon hits of the expanded words
their (contextual similarity) expansion score, us-
ing a score of 1,000 as an anchor-value for the
original tweet, setting an expansion cut at 100.
The overall tweet score is then normalized by the
sum of word expansion scores.

3.5 Semantic similarity
Tweet messages are short and each emotional
word is very valuable for the task, even when it
may not be present in a specific lexicon. There-
fore, we calculate a semantic relatedness score
between the tweet and the positive or negative
word list. We use the ESA similarity measure
(Gabrilovich and Markovitch, 2007) as imple-
mented in the DKPro similarity software pack-
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age (Bär et al., 2013), calculated on English Wik-
tionary and WordNet as two separate concept
spaces. The ESA vectors are freely available7.
This way we obtain in total six features: sim(orig-
inal tweet word list, positive word list), sim(orig-
inal tweet word list, negative word list), differ-
ence between the two, sim(expanded tweet word
list, positive word list), sim(expanded tweet word
list, negative word list) and difference between the
two. Our SemEval run was submitted using Word-
Net vectors mainly for the shorter computation
time and lower memory requirements. However,
in our later experiments Wiktionary performed
better. We presume this can be due to a better
coverage for the Twitter corpus, although detailed
analysis of this aspect is yet to be performed.

3.6 Other features

Pak and Paroubek (2010) pointed out a relation
between the presence of different part-of-speech
types and sentiment polarity. We measure the
ratio of each part-of-speech type to each chunk.
We furthermore count the occurrences of the
dependency tag for negation. We use the Stanford
Named Entity Recognizer to count occurrence
of persons, organizations and locations in the
tweet. Additionaly, beside basic surface metrics,
such as the number of tokens, characters and
sentences, we measure the number of elon-
gated words (such as coool) in a tweet, ratio
of sentences ending with exclamation, ratio of
questions and number of positive and negative
smileys and their proportion. We capture the
smileys with the following two regular expres-
sions for positive, respectively negative ones:
[<>]?[:;=8][-o*’]?[)]dDpPxXoO0*}],
[<>]?[:;=8][-o*’]?[([/:{|]. We also
separately measure the sentiment of smileys at
the end of the tweet body, i.e. followed only by a
hashtag, hyperlink or nothing.

4 Results

In Subtask A, our system achieved an averaged
F-score of 81.42 on the LiveJournal corpus and
79.67 on the Twitter 2014 corpus. The highest
scores achieved in related work were 85.61 and
86.63 respectively. For subtask B, we scored 71.92
on LifeJournal and 63.77 on Twitter 2014, while
the highest F-scores reported by related work were
74.84 and 70.96.

7https://code.google.com/p/dkpro-similarity-asl/downloads/list

Features with the highest Information Gain
were the ones based on Liuaugmented. Adding the
weighted intensifiers of Brooke to the sentiment
lexicons did not outperform the simple lexicon
lookup. They were followed by features derived
from the lexicons of Steinberger, which includes
invertors, intensifiers and four polarity levels of
words. On the other hand, adding the weighted
intensifiers of Brooke to lexicons did not outper-
form the simple lexicon lookup. Overall, lexicon-
based features contributed to the highest perfor-
mance gain, as shown in Table 3. The negation
approach based on the Stanford dependency parser
was the most helpful, although it tripled the run-
time. Using the simpler negation context as sug-
gested in Pang et al. (2002) performed still on av-
erage better than using none.

When using WordNet, semantic similarity to
lexicons did not outperform direct lexicon hits.
Usage of Wiktionary instead lead to major im-
provement (Table 3), unfortunately after the Se-
mEval challenge.

Tweet expansion appears to improve the clas-
sification performance, however the threshold of
100 that we used in our setup was chosed too
conservatively, expanding mainly stopwords with
other stopwords or words with their spelling al-
ternatives, resulting in a noisy, little valuable fea-
ture (expansion full in Table 3). Setting
up the threshold to 50 and cleaning up both the
tweet and the expansion with Snowball stopword
list (expansion clean in Table 3), the perfor-
mance increased remarkably.

Amongst other prominent features were parts of
lexicons such as LIWC Positive emotions, LIWC
Affect, LIWC Negative emotions, NRC Joy, NRC
Anger and NRC Disgust. Informative were also
the proportions of nouns, verbs and adverbs, the
exclamation ratio or number of positive and nega-
tive smileys at the end of the tweet.

Feature(s) ∆F1 Twitter2014 ∆F1 LifeJournal

Similarity Wikt. 0.56 3.65
Similarity WN 0.0 2.61
Expansion full 0.0 0.0
Expansion clean 0.59 3.82
Lexical negation 0.24 0.13
N-gram features 0.30 0.32
Lexicon-based f. 7.85 4.74

Table 3: Performance increase where feature
added to the full setup
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# Gold label Prediction Message

1 negative positive Your plans of attending the Great Yorkshire Show may have been washed out because
of the weather, so how about...

2 neutral positive sitting here with my belt in jean shorts watching Cena win his first title.
I think we tie for 1st my friend xD

3 neutral positive saw your LJ post ... yay for Aussies ;)
4 positive negative haha , that sucks , because the drumline will be just fine
5 positive negative ...woah, Deezer. Babel only came out on Monday, can you leave it up for longer than a day

to give slow people like me a chance?
6 positive negative Yeah so much has changed for the 6th. Lots of combat fighting. And inventory is different.
7 positive negative just finish doing it and tomorrow I’m going to the celtics game and don’t fucking say

”thanks for the invite” it’s annoying
8 positive negative Haha... Yup hopefully we will lose a few kg by mon. after hip hop can go orchard and weigh
9 positive negative U r just like my friends? I made them feel warm, happy, then make them angry and they cry?

Finally they left me? Will u leave 2? I hope not. Really hope so.

Table 2: Examples of misclassified messages

5 Error analysis

Table 2 lists a sample of misclassified messages.
The majority of errors resulted from misclassify-
ing neutral tweets as emotionally charged. This
was partly caused by the usage of emoticons and
expressions such as haha in a neutral context, such
as in examples 2 and 3. Other errors were cause by
lexicon hits of proper nouns (example 1), or by us-
ing negative words and swearwords in overall pos-
itive tweet (examples 4, 7, 9). Some tweets con-
tained domain specific vocabulary that would hit
the negative lexicon, e.g., discussing fighting and
violence in computer games would, in contrast to
other topic domains, usually have positive polar-
ity (example 6). Similar domain-specific polarity
distinction could be applied to certain verbs, e.g.,
lose weight vs. lose a game (example 8).

Another challenge for the system was the non-
standard language in twitter with a large number of
spelling variants, which was only partly captured
by the emotion lexicons tailored for this domain.
A twitter-specific lemmatizer, which would group
all variations of a misspelled word into one, could
help to improve the performance.

The length of the negation context window does
not suit all purposes. Also double negations such
as I don’t think he couldn’t... can easily misdirect
the polarity score.

6 Conclusion

We presented a sentiment classification system
that can be used on both message level and ex-
pression level with only small changes in the
framework configuration. We employed a con-
textual similarity thesaurus for the lexical expan-
sion of the messages. The expansion was not

efficient without an extensive stopword cleaning,
overweighting more common words and introduc-
ing noise. Utilizing the semantic similarity of
tweets to lexicons instead of a direct match im-
proves the score only with certain lexicons, possi-
bly dependent on the coverage. Negation by de-
pendency parsing was more beneficial to the clas-
sifier than the negation by keyword span anno-
tation. Naive combination of sentiment lexicons
was not more helpful than using individual ones
separately. Among the common source of errors
were laughing signs used in neutral messages and
swearing used in positive messages. Even within
Twitter, same words can have different polarity in
different domains (lose weight, lose game, game
with nice violent fights...). Deeper semantic in-
sights are necessary to distinguish between polar
words in context.
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Abstract

This paper describes our participation on
Task 7 of SemEval 2014, which fo-
cused on the recognition and disambigua-
tion of medical concepts. We used an
adapted version of the Stanford NER sys-
tem to train CRF models to recognize tex-
tual spans denoting diseases and disor-
ders, within clinical notes. We consid-
ered an encoding that accounts with non-
continuous entities, together with a rich
set of features (i) based on domain spe-
cific lexicons like SNOMED CT, or (ii)
leveraging Brown clusters inferred from a
large collection of clinical texts. Together
with this recognition mechanism, we used
a heuristic similarity search method, to
assign an unambiguous identifier to each
concept recognized in the text.

Our best run on Task A (i.e., in the recog-
nition of medical concepts in the text)
achieved an F-measure of 0.705 in the
strict evaluation mode, and a promising
F-measure of 0.862 in the relaxed mode,
with a precision of 0.914. For Task B (i.e.,
the disambiguation of the recognized con-
cepts), we achieved less promising results,
with an accuracy of 0.405 in the strict
mode, and of 0.615 in the relaxed mode.

1 Introduction

Currently, many off-the-shelf named entity recog-
nition solutions are available, and these can be
used to recognize mentions in clinical notes de-
noting diseases and disorders. We decided to use
the Stanford NER tool (Finkel et al., 2005) to train
CRF models based on annotated biomedical text.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

The use of unsupervised methods for inferring
word representations is nowadays also known to
increase the accuracy of entity recognition mod-
els (Turian et al., 2010). Thus, we also used Brown
clusters (Brown et al., 1992; Turian et al., 2009)
inferred from a large collection of non-annotated
clinical texts, together with domain specific lexi-
cons, to build features for our CRF models.

An important challenge in entity recognition re-
lates to the recognition of overlapping and non-
continuous entities (Alex et al., 2007). In this
paper, we describe how we modified the Stan-
ford NER system to be able to recognize non-
continuous entities, through an adapted version of
the SBIEO scheme (Ratinov and Roth, 2009).

Besides the recognition of medical concepts, we
also present the strategy used to map each of the
recognized concepts into a SNOMED CT identi-
fier (Cornet and de Keizer, 2008). This task is
particularly challenging, since there are many am-
biguous cases. We describe our general approach
to address the aforementioned CUI mapping prob-
lem, based on similarity search and on the infor-
mation content of SNOMED CT concept names.

2 Task and Datasets

Task 7 of SemEval 2014 actually consisted of two
smaller tasks: recognition of mentions of medi-
cal concepts (Task A) and mapping each medical
concept, recognized in clinical notes, to a unique
UMLS CUI (Task B). In the first task, recogni-
tion of medical concepts, systems have to detect
continuous and discontinuous medical concepts
that belong to the UMLS semantic group disor-
ders. The second task, concerning with normal-
ization and mapping, is limited to UMLS CUIs
of SNOMED CT codes (i.e., although the UMLS
meta-thesaurus integrates several resources, we
are only interested in SNOMED CT). Each con-
cept that was previously recognized can have a
unique CUI associated to it, or none at all (CUI-
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LESS). The goal here is to disambiguate the con-
cepts and choose the right CUI for each case. For
supporting the recognition and CUI mapping of
medical concepts, we retrieved the disorders sub-
set of SNOMED CT directly from UMLS1.

The evaluation can be done in a strict or a in
a relaxed way. For the case of strict evaluation,
an exact match must be achieved in the recogni-
tion, by having correct start and end offsets, within
the text, for the continuous concepts, and a cor-
rect set of start and end offsets for the discontin-
uous concepts. In the relaxed evaluation, there is
some space for errors in the offset values from the
recognition task. If there is some overlap between
the concepts, then the result is considered a partial
match, otherwise it is a recognition error.

A set of annotated biomedical texts was given
to the participants, separated in three categories:
trial, development and training. We also received a
final test set, and a large set of non-annotated texts.
All the provided texts were initially converted into
a common tokenized format, to be used as input
to the tools that we considered for developing our
approach. After processing, we converted the re-
sults back into the format used by SemEval 2014,
this way generating the official runs.

3 Entity Recognition

Our entity recognition approach was based on the
usage of the Stanford NER software, which em-
ploys a linear chain Conditional Random Field
(CRF) approach for building probabilistic mod-
els based on training data (Finkel et al., 2005).
In Stanford NER, model training is based on the
L-BFGS algorithm, and model decoding is made
through the Viterbi algorithm.

This tool requires all input texts to be tokenized
and encoded according to a named entity recog-
nition scheme such as SBIEO (Ratinov and Roth,
2009), characterized by only being able to recog-
nize continuous entities. As we also need to rec-
ognize non-continuous entities, we modified the
Stanford NER software to use a SBIEON encod-
ing scheme. This new scheme has the following
specific token-tag associations:

S: Single, that indicates if the token individually
constitutes an entity to be recognized.

B: Begin, identifying the beginning of the entity.
This tag is only given to the first word of the

1http://www.nlm.nih.gov/research/umls/

entity, being followed is most cases by tokens
labeled as being inside the entity.

I: Inside, representing the continuation of a non
single word entity (i.e., the middle tokens).

E: Ending, representing the last word in the case
of entities composed by more than one word.

N: Non-Continuous, which identifies all the
words that are between the beginning and the
end of an entity, but that do not belong to it.
This label specifically allows us to model the
in-between tokens of non-continuous entities.

O: Other, which is associated to all other words
that are not part of entities.

We developed a Java parser that converts the
biomedical text, provided to the participants, into
a tokenized format. This tokenized format, in the
case of the annotated texts, associates individual
tokens to their SBIEON or SBIEO tags, so that the
datasets can be used as input to train CRF models.

3.1 Concept Recognition Models

As we said, SBIEON tokenization differs from
SBIEO by the fact that the first one gives support
to non-continuous entities. Based on these two in-
put schemes, we generated two different models:

Only continuous entities: A 2nd-order CRF
model was trained based on the SBIOE entity en-
coding scheme, which only recognizes continuous
entities. Non-continuous and overlapping entities
will thus, in this case, only be partially modeled
(i.e., we only considered the initial span of text as-
sociated to the non-continuous entities).

Non-continuous entities: A 2nd-order CRF
model was trained based on the SBIOEN entity
encoding scheme, accepting continuous and non-
continuous entities, although still not supporting
the case of overlapping entities. In these last cases,
only the first entity in each of the overlapping
groups will be modeled correctly, while the oth-
ers will only be partially modeled (i.e., by only
considering the non-overlapping spans).

Our CRF models relied on a standard set of fea-
ture templates that includes (i) word tokens within
a window of size 2, (ii) the token shape (e.g., if it
is uppercased, capitalized, numeric, etc.), (iii) to-
ken prefixes and suffixes, (iv) token position (e.g.,
at the beginning or ending of a sentence), and (v)
conjunctions of the current token with the previ-
ous 2 tags. Besides these standard features, we
also considered (a) domain-specific lexicons, and
(b) word representations based on Brown clusters.
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3.2 Word Clusters

In addition to the annotated training dataset, par-
ticipants were also provided with 403876 non-
annotated texts, containing a total of 828509 to-
kens. We used this information to induce general-
ized cluster-based word representations.

Brown et al. proposed a greedy agglomera-
tive hierarchical clustering procedure that groups
words to maximize the mutual information of bi-
grams (Brown et al., 1992). According to Brown’s
clustering procedure, clusters are initialized as
consisting of a single word each, and are then
greedily merged according to a mutual informa-
tion criterion, based on bi-grams, to form a lower-
dimensional representation of a vocabulary that
can mitigate the feature sparseness problem. In
the context of named entity recognition studies,
several authors have previously noted that using
these types of cluster-based word representations
can indeed result in improvements (Turian et al.,
2009). The hierarchical nature of the clustering
allows words to be represented at different levels
in the hierarchy and, in our case, we considered
1000 different clusters of similar words.

We specifically used the set of training docu-
ments, together with the non-annotated documents
that were provided by the organizers, to induce
word representations based on Brown’s clustering
procedure, using an open-source implementation
that follows the description given by (Turian et al.,
2010). The word clusters are latter used as features
within the Stanford NER package, by considering
that each word can be replaced by the correspond-
ing cluster, this way adding some other back-off
features to the models (i.e., features that are less
sparse, in the sense that they will appear more fre-
quently associated to some of the instances).

4 Disambiguating Concepts

For mapping entities to concept IDs (Task B), we
used a heuristic method based on similarity search,
supported on Lucene indexes (MacCandless et al.,
2010). We look for SNOMED CT concepts that
have a high n-gram overlap with the entity name
occurring in the text, together with the information
content of each SNOMED CT concept.

In our implementation, we used Lucene to re-
trieve candidate SNOMED CT concepts according
to different string distance algorithms: the NGram
distance (Kondrak, 2005) first, then according to
the Jaro-Winkler distance (Winkler, 1990), and fi-

nally according to the Levenshtein distance. The
most similar candidate is chosen as the disam-
biguation. The specific order for the similar-
ity metrics was based on the intuition that met-
rics based on individual character-level matches
are probably not as informative as metrics based
on longer sequences of characters, although they
can be useful for dealing with spelling variations.
However, for future work, we plan to explore more
systematic approaches (e.g., based on learning to
rank) for combining multiple similarity metrics.

Additionally to the aforementioned similarity
metrics, a measure of the Information Content (IC)
of each SNOMED CT concept was also employed,
to further disambiguate the mappings (i.e., to se-
lect the SNOMED CT identifier that is more gen-
eral, and thus more likely to be associated to a par-
ticular concept descriptor). Notice that the IC of
a concept corresponds to a measure of its speci-
ficity, where higher values correspond to more
specific concepts, and lower values to more gen-
eral ones. Given the frequency freq(c) for each
concept c in a corpus (i.e., the same corpus that
was used to infer the word clusters), the informa-
tion content of this concept can be computed from
the ratio between its frequency (including its de-
scendants) and the maximum frequency of all con-
cepts (Resnik, 1995):

IC(c) = − log
(

freq(c)
maxFreq

)
In the formula, maxFreq represents the maximum
frequency of a concept, i.e. the frequency of the
root concept, when it exists. The frequency of a
concept can be computed using an extrinsic ap-
proach that counts the exact matches of the con-
cept names on a large text corpus.

5 Evaluation Experiments

We submitted three distinct runs to the SemEval
competition. These runs were as follows:

Run 1: A SBIOEN model was used to recog-
nize non-continuous entities. This model was
trained using only the annotated texts from
the provided training set. We also used some
domain specific lexicons like SNOMED CT,
or lists with names for drugs and diseases
retrieved from DBPedia. Finally, the recog-
nition model also used Brown clusters gen-
erated from the non-annotated datasets pro-
vided in the competition.
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For assigning a SNOMED CT identifier to
each entity, we used the disambiguation tech-
nique supported by Lucene indexes. In
this specific run we used all the considered
heuristics for similarity search.

Run 2: A simpler model based on the SBIOE
scheme was used in this case, which can only
recognize continuous entities. The same fea-
tures from Run 1 were used for training the
recognition model.

For assigning the SNOMED CT identifier to
each entity, we also used the same strategy
that was presented for Run 1.

Run 3: A similar SBIOE model to that from Run
2 was used for the recognition.

For assigning the corresponding SNOMED
CT identifier to each entity, we in this case
limited the heuristic rules that were used.
Instead of using the string similarity algo-
rithms, we used only exact matches, together
with the information content measure and the
neighboring terms for disambiguation.

6 Results and Discussion

We present our official results in Table 1, which
highlights our best results for each task.

Specifically in Task A, we achieved encourag-
ing results. Run 1 achieved an F-measure of 0.705
in the strict evaluation, and of 0.862 in the relaxed
evaluation. Since Runs 2 and 3 used the same
recognition strategy (i.e., models that attempted to
capture only the continuous entities), we obtained
the same results for Task A in both these runs. Ta-
ble 1 also shows that our performance in Task B
was significantly lower than in Task A.

As we can see in the table, our first run was the
one with the best results for Task A. The model
used on this run recognizes non-continuous enti-
ties, and this is perhaps the main reason for the
higher results (i.e., the other two runs used the
same features for the recognition models).

On what concerns the results of Task B, it is im-
portant to notice the distinct results from the first
and second runs, which used exactly the same dis-
ambiguation strategy. The differences in the re-
sults are a consequence from the use of a different
recognition model in Task A. We can see that the
ability to recognize non-continuous entities leads
to the generation of worse mappings, when con-
sidering our specific disambiguation strategy. Our

last run is the best in terms of the performance over
Task B, but the difference is subtle.

7 Conclusions and Future Work

This paper described our participation in Task 7 of
the SemEval 2014 competition, which was divided
into two subtasks, namely (i) the recognition of
continuous and non-continuous medical concepts,
and (ii) the mapping of each recognized concept to
a SNOMED CT identifier.

For the first task, we used the Stanford NER
software (Finkel et al., 2005), modified by us
to recognize not only continuous, but also non-
continuous entities. This was possible by intro-
ducing the SBIEON scheme, derived from the tra-
ditional SBIEO encoding. To increase the accu-
racy and precision of the recognition we have also
used domain specific lexicons and Brown clusters
inferred from non-annotated documents.

For the second task, we used a heuristic method
based on similarity search, for matching concepts
in the text against concepts from SNOMED CT,
together with a measure of information content
to disambiguate the cases of term polysemy in
SNOMED CT. We implemented our disambigua-
tion approach through the Lucene software frame-
work (MacCandless et al., 2010).

In the first task (Task A) we achieved some par-
ticularly encouraging results, showing that an off-
the-shelf NER system can be easily adapted to
the recognition of medical concepts in biomedi-
cal text. Our specific modifications to the Stanford
NER system, in order to support the recognition of
non-continuous entity names, indeed increased the
precision and recall on Task A. However, our ap-
proach for the disambiguation of the recognized
concepts (Task B) performed much worse, achiev-
ing an accuracy of 0.615 in the case of the relaxed
evaluation. Future developments will therefore fo-
cus on improving the component that addressed
the entity disambiguation subtask.

Specifically on what regards future work, we
plan to experiment with the usage of machine
learning methods for the disambiguation subtask,
instead of relying on a purely heuristic approach.
We are interested in experimenting with the us-
age of Learning to Rank (L2R) methods, similar to
those employed on the DNorm system (Leaman et
al., 2013), to optimally combine different heuris-
tics such as the ones that were used in our current
approach. A L2R model can be used to rank candi-
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Task A Task B
Strict Evaluation Relaxed Evaluation Strict Relaxed

Run Precision Recall F-measure Precision Recall F-measure Accuracy Accuracy
1 0.753 0.663 0.705 0.914 0.815 0.862 0.402 0.606
2 0.752 0.660 0.703 0.909 0.806 0.855 0.404 0.612
3 0.752 0.660 0.703 0.909 0.806 0.855 0.405 0.615

Table 1: Our official results for Tasks A and B of the SemEval challenge focusing on clinical text.

date disambiguations (e.g., retrieved through sim-
ilarity search with basis on Lucene) according to a
combination of multiple criteria, and we can then
choose the top candidate as the disambiguation.

Additionally, we plan to use ontology-based
similarity measures to validate and improve the
mappings (Couto and Pinto, 2013). For example,
by assuming that all entities in a given span of text
are semantically related with each other, we can
use ontology relations to filter likely misannota-
tions (Grego and Couto, 2013; Grego et al., 2013).
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Abstract 

In this paper we describe the 

specifications and results of 

UMCC_DLSI system, which was 

involved in Semeval-2014 addressing two 

subtasks of Semantic Textual Similarity 

(STS, Task 10, for English and Spanish), 

and one subtask of Cross-Level Semantic 

Similarity (Task 3). As a supervised 

system, it was provided by different types 

of lexical and semantic features to train a 

classifier which was used to decide the 

correct answers for distinct subtasks. 

These features were obtained applying the 

Hungarian algorithm over a semantic 

network to create semantic alignments 

among words. Regarding the Spanish 

subtask of Task 10 two runs were 

submitted, where our Run2 was the best 

ranked with a general correlation of 0.807. 

However, for English subtask our best run 

(Run1 of our 3 runs) reached 16th place of 

38 of the official ranking, obtaining a 

general correlation of 0.682. In terms of 

Task 3, only addressing Paragraph to 

Sentence subtask, our best run (Run1 of 2 

runs) obtained a correlation value of 0.760 

reaching 3rd place of 34. 

1 Introduction 

Many applications of language processing rely on 

measures of proximity or remoteness of various 

kinds of linguistic units (words, meanings, 

sentences, documents). Thus, issues such as 

disambiguation of meanings, detection of lexical 

chains, establishing relationships between 

documents, clustering, etc., require accurate 

similarity measures. 

The problem of formalizing and quantifying an 

intuitive notion of similarity has a long history in 

philosophy, psychology, artificial intelligence, 

and through the years has followed many different 

perspectives (Hirst, 2001). Recent research in the 

field of Computational Linguistics has 

emphasized the perspective of semantic relations 

between two lexemes in a lexical resource, or its 

inverse, semantic distance. The similarity of 

sentences is a confidence score that reflects the 

relationship between the meanings of two 

sentences. This similarity has been addressed in 

the literature with terminologies such as affinity, 

proximity, distance, difference and divergence 

(Jenhani, et al., 2007). The different applications 

of text similarity have been separated into a group 

of similarity tasks: between two long texts, for 

document classification; between a short text with 

a long text, for Web search; and between two short 

texts, for paraphrase recognition, automatic 

machine translation, etc. (Han, et al., 2013). 

At present, the calculation of the similarity 

between texts has been tackled from different 

points of views. Some have opted for a single 

measure to capture all the features of texts and 

other models have been trained with various 

measures to take text features separately. In this 

work, we addressed the combination of several 

measures using a Supervised Machine Learning 

(SVM) approach. Moreover, we intend to 

introduce a new approach to calculate textual 

similarities using a knowledge-based system, 

which is based on a set of cases composed by a 

vector with values of several measures. We also 

combined both approaches. 

This work is licensed under a Creative Commons 

Attribution 4.0 International Licence. Page numbers and 

proceedings footer are added by the organisers. Licence 

details: http://creativecommons.org/licenses/by/4.0/ 
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After this introduction, the rest of the paper is 

organized as follows. Section 2 shows the Pre-

processing stage. Subsequently, in Section 3 we 

show the different features used in our system. In 

Section 4 we describe our knowledge-based 

system. Tasks and runs are provided in Section 5. 

Finally, the conclusions and further work can be 

found in Section 6. 

2 Pre-processing 

Below are listed the pre-processing steps 

performed by our system. In bold we emphasize 

some cases which were used in different tasks. 

 All brackets were removed.  

 The abbreviations were expanded to their 

respective meanings. It was applied using a 

list of the most common abbreviations in 

English, with 819 and Spanish with 473. 

Phrases like “The G8” and “The Group of 

Eight” are detected as identical. 

 Deletion of hyphen to identify words 

forms. For example, “well-studied” was 

replaced by “well studied”. Example taken 

from line 13 of MSRpar corpus in test set 

of Semeval STS 2012 (Agirre, et al., 2012). 

 The sentences were tokenized and POS-

tagged using Freeling 3.0 (Padró and 

Stanilovsky, 2012). 

 All contractions were expanded. For 

example: n't, 'mand 's. In the case of 's was 

replaced with “is” or “of”, “Tom's bad” to 

“Tom is bad” and “Tom's child” by "Child 

of Tom". (Only for English tasks). 

 Punctuation marks were removed from the 

tokens except for the decimal point in 

numbers. 

 Stop words were removed. We used a list 

of the most common stop words. (28 for 

English and 48 for Spanish). 

 The words were mapped to the most 

common sense of WordNet 3.0. (Only for 

Spanish task). 

 A syntactic tree was built for every 

sentence using Freeling 3.0. 

                                                 
1 The windows is the number of intermediate words 

between two words. 
2 Dataset of high quality English paragraphs containing over 

three billion words and it is available in 

http://ebiquity.umbc.edu/resource/html/id/351 

3 Features Extraction 

Measures of semantic similarity have been 

traditionally used between words or concepts, and 

much less between text segments, (i.e. two or 

more words). The emphasis on word to word 

similarity is probably due to the availability of 

resources that specifically encode relations 

between words or concepts (e.g. WordNet) 

(Mihalcea, et al., 2006). Following we describe 

the similarity measures used in this approach. 

3.1 Semantic Similarity of Words 

A relatively large number of word to word 

similarity metrics have previously been proposed 

in the literature, ranging from distance-oriented 

measures computed on semantic networks, to 

metrics based on models of distributional 

similarity learned from large text collections 

(Mihalcea, et al., 2006). 

3.2 Corpus-based Measures 

Corpus-based measures of word semantic 

similarity try to identify the degree of similarity 

between words using information exclusively 

derived from large corpora (Mihalcea, et al., 

2006). We considered one metric named Latent 

Semantic Analysis (LSA) (Landauer, et al., 1998). 

Latent Semantic Analysis: The Latent 

semantic analysis (LSA) is a corpus/document 

based measure proposed by Landauer in 1998. In 

LSA term co-occurrences in a corpus are captured 

by means of a dimensionality reduction operated 

by singular value decomposition (SVD) on the 

term-by-document matrix 𝑇  representing the 

corpus (Mihalcea, et al., 2006). There is a 

variation of LSA called HAL (Hyperspace 

Analog to Language) (Burgess, et al., 1998) that 

is based on the co-occurrence of words in a 

common context. The variation consists of 

counting the number of occurrences in that two 

words appear at n1 distance (called windows). 

For the co-occurrence matrix of words we took 

as core the UMBC WebBase corpus2 (Han, et al., 

2013), which is derived from the Stanford 

WebBase project3 . For the calculation of HAL 

measure we used the Cosine Similarity between 

the vectors for each pair of words. 

3 Stanford WebBase 2001. http://bit.ly/WebBase.  
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3.3 Knowledge-based Measures 

There are many measures developed to quantify 

the degree of semantic relation between two 

words senses using semantic network 

information. For example: 

Leacock & Chodorow Similarity: The 

Leacock & Chodorow (LC) similarity is 

determined as follows: 

𝑆𝑖𝑚𝑙𝑐 = − log (
𝑙𝑒𝑛𝑔𝑡ℎ

2∗𝐷
)        (1) 

Where length is the length of the shortest path 

between senses using node-counting and D is the 

maximum depth of the taxonomy (Leacock and 

Chodorow, 1998) 

Wu and Palmer: The Wu and Palmer 

similarity metric (Wup) measures the depth of two 

given senses in the WordNet taxonomy, and the 

depth of the least common subsumer (LCS), and 

combine them into a similarity score (Wu and 

Palmer, 1994): 

𝑆𝑖𝑚𝑊𝑢𝑝 =
2∗𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆)

𝑑𝑒𝑝𝑡ℎ(𝑠𝑒𝑛𝑠𝑒1)+𝑑𝑒𝑝𝑡ℎ(𝑠𝑒𝑛𝑠𝑒2)
      (2) 

 

Resnik: The Resnik similarity (Res) returns 

the information content (IC) of the LCS of two 

senses: 

𝑆𝑖𝑚𝑅𝑒𝑠 = 𝐼𝐶(𝐿𝐶𝑆)      (3) 
 

Where IC is defined as: 

 

𝐼𝐶(𝑐) = − log 𝑃(𝑐)       (4) 
 

And P(c) is the probability of encountering an 

instance of sense c in a large corpus (Resnik, 

1995) (Mihalcea, et al., 2006). 

Lin: The Lin similarity builds on Resnik’s 

measure and adds a normalization factor 

consisting of the information content of the two 

inputs senses (Lin, 1998): 

 

𝑆𝑖𝑚𝐿𝑖𝑛 =
2∗𝐼𝐶(𝐿𝐶𝑆)

𝐼𝐶(𝑠𝑒𝑛𝑠𝑒)+𝐼𝐶(𝑠𝑒𝑛𝑠𝑒2)
   (5) 

 

Jiang & Conrath: The Jiang and Conrath 

similarity (JC) is defined as follows (Jiang and 

Conrath, 1997): 

𝑆𝑖𝑚𝑗𝑐 =
1

𝐼𝐶(𝑠𝑒𝑛𝑠𝑒1)+𝐼𝐶(𝑠𝑒𝑛𝑠𝑒2)−2∗𝐼𝐶(𝐿𝐶𝑆)
   (6) 

 

PathLen: The PathLen similarity (Len) 

involves the path lengths between two senses in 

the taxonomy (Pedersen, et al., 2004). 

                                                 
4 Copyright (c) 2006 by Chris Parkinson, available in 

http://sourceforge.net/projects/simmetrics/ 

 

𝑆𝑖𝑚𝑃𝑎𝑡ℎ = − log 𝑝𝑎𝑡ℎ𝑙𝑒𝑛(𝑠𝑒𝑛𝑠𝑒1, 𝑠𝑒𝑛𝑠𝑒1)(7) 
 

Where 𝑝𝑎𝑡ℎ𝑙𝑒𝑛(𝑠𝑒𝑛𝑠𝑒1, 𝑠𝑒𝑛𝑠𝑒1)  is the 

number of edges in the shortest path between 

𝑠𝑒𝑛𝑠𝑒1and 𝑠𝑒𝑛𝑠𝑒2. 

Word Similarity: In order to calculate the 

similarity between two words (WS) we used the 

following expression: 

 
𝑊𝑆(𝑤1, 𝑤2) = 𝑚𝑎𝑥𝑠1 ∈ 𝑠𝑒𝑛𝑠𝑒𝑠(𝑤1)

𝑠2 ∈ 𝑠𝑒𝑛𝑠𝑒𝑠(𝑤2)

𝑠𝑖𝑚(𝑠1, 𝑠2) 

(8) 
 

Where  𝑠𝑖𝑚(𝑠1, 𝑠2)  is one of the similarity 

metrics at sense level previously described. 

3.4 Lexical Features 

We used a well-known lexical attributes similarity 

measures based on distances between strings. 

Dice-Similarity, Euclidean-Distance, Jaccard-

Similarity, Jaro-Winkler, Levenstein Distance, 

Overlap-Coefficient, QGrams Distance, Smith-

Waterman, Smith-Waterman-Gotoh, Smith-

Waterman-Gotoh-Windowed-Affine. 

These metrics have been obtained from an API 

(Application Program Interface) SimMetrics 

library v1.5 for.NET4 2.0. 

3.5 Word Similarity Models 

With the purpose of calculating the similarity 

between two words, we developed two models 

involving the previous word similarity metrics. 

These were defined as: 

Max Word Similarity: The Max Word 

Similarity (MaxSim) is defined as follows: 

 

𝑀𝑎𝑥𝑆𝑖𝑚(𝑤1, 𝑤2) =         
                

{
1              𝑖𝑓𝑄𝐺𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤1, 𝑤2) = 1

𝑀𝑎𝑥 (𝑆𝑖𝑚𝐻𝑎𝑙(𝑤1, 𝑤2), 𝑆𝑖𝑚𝑊𝑢𝑝(𝑤1, 𝑤2))
 

(9) 
Where 𝑄𝐺𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤1, 𝑤2) is the QGram-

Distance between w1 and w2. 

Statistics and Weight Ratio: For calculating 

the weight ratio in this measure of similarity was 

used WordNet 3.0 and it was defined in (10): 

𝑆𝑡𝑎𝑊𝑒𝑖𝑅𝑎𝑡 (𝑤1, 𝑤2) =   

(𝑆𝑖𝑚𝐻𝑎𝑙(𝑤1, 𝑤2) + (
1

𝑊𝑒𝑖𝑅𝑎𝑡(𝑤1,𝑤2)
))

2
 

 

(10) 
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Where 𝑊𝑒𝑖𝑅𝑎𝑡(𝑤1, 𝑤2) takes a value based 

on the type of relationship between w1 and w2. 

The possible values are defined in Table 1. 

Value Relation between 𝑤1 and 𝑤2  

10 Antonym. 

1 Synonym. 

2 Direct Hypernym, Similar_To or 

Derivationally Related Form. 

3 Two-links indirect Hypernym, Similar_To 

or Derivationally Related Form. 

3 One word is often found in the gloss of the 

other. 

9 Otherwise. 

Table 1: Values of Weight Ratio. 

3.6 Sentence Alignment 

In the recognition of texts’ similarities, several 

methods of lexical alignment have been used and 

can be appreciated by different point of views 

(Brockett, 2007) (Dagan, et al., 2005). Glickman 

(2006) used the measurement of the overleap 

grade between bags of words as a form of 

sentence alignment. Rada et al. (2006) made 

reference to an all-for-all alignment, leaving open 

the possibility when the same word of a sentence 

is aligned with several sentences. For this task, we 

used the Hungarian assignment algorithm as a 

way to align two sentences (Kuhn, 1955). Using 

that, the alignment cost between the sentences was 

reduced. To increase the semantic possibilities we 

used all word similarity metrics (including the two 

word similarity models) as a function cost. 

3.7 N-Grams Alignment 

Using the Max Word Similarity model, we 

calculated three features based on 2-gram, 3-gram 

and 4-gram alignment with the Hungarian 

algorithm. 

4 Knowledge-based System 

For similarity calculation between two phrases, 

we developed a knowledge-based system using 

SemEval-2012, SemEval-2013 and SemEval-

2014 training corpus (Task 10 and Task 1 for the 

last one). For each training pair of phrases we 

obtained a vector with all measures explained 

above. Having it, we estimated the similarity 

value between two new phrases by applying the 

Euclidian distance between the new vector (made 

with the sentence pair we want to estimate the 

similarity value) and each vector in the training 

corpus. Then, the value of the instance with minor 

Euclidian Distance was assigned to the new pair 

of phrases. 

5 Tasks and runs 

Our system participated in Sentence to Phrase 

subtask of Task 3: “Cross-Level Semantic 

Similarity” (Jurgens, et al., 2014) and in two 

subtasks of Task 10: “Multilingual Semantic 

Textual Similarity” of SemEval-2014. It is 

important to remark that our system, using SVM 

approach, did not participate in Task 1: 

“Evaluation of compositional distributional 

semantic models on full sentences through 

semantic relatedness and textual entailment”, due 

to deadline issues. We compared our system 

results with the final ranking of Task 1 and we 

could have reached the 6th place of the ranking for 

Relatedness Subtask with a 0.781 of correlation 

coefficient, and the 9th place for Entailment 

Subtask with an accuracy of 77.41%. 

 

 

 

 

Task 

10 

Sp 

Task 10 

En 

Task 3 

Sentence 

to 

Phrase 

Features/Runs 1 2 1 2 3 1 2 

PathLenAlign x  x x  x x 

ResAlign x  x x  x x 

LcAlign x  x x  x x 

WupAlign x  x x  x x 

Res x  x x  x x 

Lc x  x x  x x 

DiceSimilarity x x x x  x x 

EuclideanDistance x x x x  x x 

JaccardSimilarity x x x x  x x 

JaroWinkler x x x x  x x 

Levenstein x x x x  x x 

Overlap- 

Coefficient 

x x x x  x x 

QGramsDistance x x x x  x x 

SmithWaterman x x x x  x x 

SmithWatermanGotoh x x x x  x x 

SmithWatermanGotoh- 

WindowedAffine 

x x x x  x x 

BiGramAlingHungMax x  x x  x x 

TriGramAlingHungMax x  x x  x x 

TetraGramAlingHungMax x  x x  x x 

WordAlingHungStatWeigthRatio x  x x  x x 

SentenceLengthPhrase1 x  x x  x x 

SentenceLengthPhrase2 x  x x  x x 

Table 2: Features and runs. Spanish (Sp) and 

English (En). 

In Table 2 is important to remark the 

following situations: 

 In Task 10 Spanish (two runs), we used the 

training corpus of Task 10 English. 
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 In Run2 of Task 10 English, the similarity 

score was replaced for the knowledge-

based system value if Euclidean Distance 

of the most similar case was less than 0.30.  

 Run3 of Task 10 English was a knowledge-

based system. 

 In Run1 of Sentence to Phrase of Task 3, 

we trained the SVM model using only the 

training corpus of this task. 

 In Run2 of Sentence to Phrase of Task 3, 

we trained the SVM model using the 

training corpus of this task and the training 

corpus of Task 10 English. 

6 Conclusion 

In this paper we introduced a new framework for 

recognizing Semantic Textual Similarity, 

involving feature extraction for SVM model and a 

knowledge-based system. We analyzed different 

ways to estimate textual similarities applying this 

framework. We can see in Table 3 that all runs 

obtained encouraging results. Our best run was 

first position of the ranking for task 10 (Spanish) 

and other important positions were reached in the 

others subtasks. According to our participation, 

we used a SVM which works with features 

extracted from six different strategies: String-

Based Similarity Measures, Semantic Similarity 

Measures, Lexical-Semantic Alignment, 

Statistical Similarity Measures and Semantic 

Alignment. Finally, we can conclude that our 

system achieved important results and it is able to 

be applied on different scenarios, such as task 10, 

task 3.1 and task 1. See Table 3 and the beginning 

of Section 5. 

Subtask Run 

SemEval-

2014 

Position 

Task 10-

Spanish 

Run1 4 

Run2 1 

Task 10-

English 

Run1 16 

Run2 18 

Run3 33 

Task-3 
Run1 3 

Run2 16 

Table 3: SemEval-2014 results. 

As further work, we plan to analyze the main 

differences between task 10 for Spanish and 

English in order to homogenise both system’s 

results. 

Acknowledgments 

This research work has been partially funded by 

the University of Alicante, Generalitat 

Valenciana, Spanish Government and the 

European Commission through the projects, 

"Tratamiento inteligente de la información para la 

ayuda a la toma de decisiones" (GRE12-44), 

ATTOS (TIN2012-38536-C03-03), LEGOLANG 

(TIN2012-31224), SAM (FP7-611312), FIRST 

(FP7-287607) and ACOMP/2013/067. 

Reference 

Eneko Agirre, Mona Diab, Daniel Cer and Aitor 

Gonzalez-Agirre, 2012. SemEval 2012 Task 6: A 

Pilot on Semantic Textual Similarity.. s.l., First 

Join Conference on Lexical and Computational 

Semantic (*SEM), Montréal, Canada. 2012., pp. 

385-393. 
Chris Brockett, 2007. Aligning the RTE 2006 Corpus. 

Microsoft Research, p. 14. 

Curt Burgess, Kay Livesay and Kevin Lund, 1998. 

Explorations in Context Space: Words, 

Sentences, Discourse. Discourse Processes, Issue 

25, pp. 211 - 257. 

Ido Dagan, Oren Glickman and Bernardo Magnini, 

2005. The PASCAL Recognising Textual 

Entailment Challenge. En: Proceedings of the 

PASCAL Challenges Workshop on Recognising 

Textual Entailment. 

Oren Glickman, Ido Dagan and Moshe Koppel, 2006. 

A Lexical Alignment Model for Probabilistic 

Textual Entailment. In: Proceedings of the First 

International Conference on Machine Learning 

Challenges: Evaluating Predictive Uncertainty 

Visual Object Classification, and Recognizing 

Textual Entailment. Southampton, UK: Springer-

Verlag, pp. 287--298. 

Lushan Han et al., 2013. UMBC_EBIQUITY-CORE: 

Semantic Textual Similarity Systems. s.l., s.n. 

Alexander B. Hirst and Graeme, 2001. Semantic 

distance in WordNet: An experimental, 

application-oriented evaluation of five measures. 

Ilyes Jenhani, Nahla Ben Amor and Zi Elouedi, 2007. 

Information Affinity: A New Similarity Measure 

for Possibilistic Uncertain Information. En: 

Symbolic and Quantitative Approaches to 

Reasoning with Uncertainty. s.l.:Springer Berlin 

Heidelberg, pp. 840-852. 

Jay Jiang and David Conrath, 1997. Semantic 

similarity based on corpus statistics and lexical 

taxonomy. s.l., Proceedings of the International 

Conference on Research in Computational 

Linguistics. 

David Jurgens, Mohammad Taher and Roberto 

Navigli, 2014. SemEval-2014 Task 3: Cross-

720



Level Semantic Similarity. Dublin, Ireland, In 

Proceedings of the 8th International Workshop on 

Semantic Evaluation., pp. 23-24. 

Harold W. Kuhn, 1955. The Hungarian Method for the 

assignment problem. Naval Research Logistics 

Quarterly. 

Thomas K. Landauer, Peter W. Foltz and Darrell 

Laham, 1998. Introduction to latent semantic 

analysis. Discourse Processes, Issue 25, pp. 259-

284. 

Claudia Leacock and Martin Chodorow, 1998. 

Combining local context and WordNet sense 

similarity for word sense identification. s.l.:s.n. 

Lin Dekang, 1998. An information-theoretic definition 

of similarity. s.l., Proceedings of the International 

Conf. on Machine Learning. 

Rada Mihalcea, Courtney Corley and Carlo 

Strapparava, 2006. Corpus-based and 

knowledge-based measures of text semantic 

similarity. In: IN AAAI’06. s.l.:21st National 

Conference on Artificial Intelligence, pp. 775--

780. 

Luís Padró and Evgeny Stanilovsky, 2012. FreeLing 

3.0: Towards Wider Multilinguality. Istanbul, 

Turkey, Proceedings of the Language Resources 

and Evaluation Conference (LREC 2012) ELRA. 

Ted Pedersen, Siddharth Patwardhan and Jason 

Michelizzi, 2004. WordNet::Similarity - 

Measuring the Relatedness of Concepts. 

American Association for Artificial Intelligence. 

Philip Resnik, 1995. Using information content to 

evaluate semantic similarity. s.l., Proceedings of 

the 14th International Joint Conference on 

Artificial Intelligence. 

Zhibiao Wu and Martha Palmer, 1994. Verb semantics 

and lexical selection. 

 

 

721



Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 722–726,
Dublin, Ireland, August 23-24, 2014.

UMCC_DLSI_Prob: A Probabilistic Automata for Aspect Based 

Sentiment Analysis

Yenier Castañeda 

 Armando Collazo 

 Elvis Crego 

Jorge L. Garcia 

Yoan Gutiérrez 

 David Tomás 

Andrés Montoyo 

 Rafael Muñoz

DI, University of Matanzas 

Matanzas, Cuba 

DLSI, University of Alicante 

Alicante, Spain

{yenier.castaneda, 

armando.collazo}@umcc.cu, 

elvis.crego@mtz.cu, 

jorge.garcia@infonet.umcc.cu 

{ygutierrez,dtomas,montoyo, 

rafael}@dlsi.ua.es 

 

Abstract 

This work introduces a new approach for 

aspect based sentiment analysis task. Its main 

purpose is to automatically assign the correct 

polarity for the aspect term in a phrase. It is a 

probabilistic automata where each state 

consists of all the nouns, adjectives, verbs and 

adverbs found in an annotated corpora. Each 

one of them contains the number of 

occurrences in the annotated corpora for the 

four required polarities (i.e. positive, negative, 

neutral and conflict). Also, the transitions 

between states have been taken into account. 

These values were used to assign the predicted 

polarity when a pattern was found in a 

sentence; if a pattern cannot be applied, the 

probabilities of the polarities between states 

were computed in order to predict the right 

polarity. The system achieved results around 

66% and 57% of recall for the restaurant and 

laptop domain respectively. 

1 Introduction 

Sentiment analysis is increasingly viewed as a 

vital task from both an academic and a 

commercial standpoint. Textual information has 

become one of the most important sources of data 

to extract useful and heterogeneous knowledge. 

“Texts can provide factual information, such as: 

descriptions, lists of characteristics, or even 

instructions to opinion-based information, which 

would include reviews, emotions, or feelings. 

These facts have motivated dealing with the 

identification and extraction of opinions and 

sentiments in texts that require special attention.” 

(Gutiérrez, et al., 2014). Sentiment Analysis or 

“Subjectivity Analysis” in (Liu, 2010) is defined 

as the computational treatment of opinions, 

sentiments and emotions expressed in a text. In 

order to automatically treat the subjectivity, we 

need lexical resources that allow the detection and 

evaluation of the affective/ subjective charges in 

texts, its polarity and intensity.  

Regarding research carried out for linguistic 

patterns identification and its polarity in texts, it is 

worth mentioning works on: adjectives 

(Hatzivassiloglou and McKeown, 1997) (Wiebe, 

2000); adjectives and verbs (Turney, 2002) 

(Wilson, et al., 2005) (Takamura, et al., 2007); 

and also verbs and names (Esuli and Sebastini, 

2006). WordNet (Fellbaum, 1998) has also been 

used for the collection of opinion adjectives and 

verbs (Kim and Hovy, 2005) to determine the 

semantic orientation of the terms depending on 

their notes (Esuli and Sebastiani, 2005), for the 

adjective extraction (Andreevskaia and Bergler, 

2006) or opinion mining (Esuli and Sebastiani, 

2007).  

Inspired on Hidden Markov models (Baum 

and Petrie, 1966) and following the idea that 

words combinations are finite in an evaluation 

text, we decided to create a finite automata in 

graph form to represent all these relations 

extracted from a training corpus. For the creation 

of this automata we utilised different resources, 

such as WordNet and OpinionFinder Subjectivity 

Lexicon. Also, different extracted patterns based 

on (Cazabón, 1973) were applied. 

This paper is structured as follows: In section 

1.1 is described the task 4 of SemEval2014 

(Pontiki, et al., 2014) where this system was 

presented. Section 2 presents the description of 

the automata and how it was built. The polarity 

assignation method using the trained automata is 

_________________________ 

This work is licensed under a Creative Commons 

Attribution 4.0 International Licence. Page numbers and 

proceedings footer are added by the organisers. Licence 

details: http://creativecommons.org/licenses/by/4.0/ 
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described in section 3. Finally, in section 4 and 5 

are shown the results and conclusions, 

respectively. 

1.1 Task Description 

The SemEval2014 task 4 (Pontiki, et al., 2014) 

was divided into four subtasks: 4.1 Aspect term 

extraction; 4.2 Aspect term polarity; 4.3 Aspect 

category detection; and 4.4 Aspect category 

polarity. 

This paper is focused on subtask 4.2 which is 

described as follows: 

Given one or more Aspect Terms within a 

sentence, it is necessary to determine whether the 

polarity of each Aspect Term is positive, negative, 

neutral or conflict (i.e., both positive and 

negative). For example: 

“I loved their fajitas” → 
“fajitas”: positive 

“I hated their fajitas, but 

their salads were great” → 

“fajitas”: negative, 

“salads”: positive 

“The fajitas are their first 

plate” → “fajitas”: neutral 

“The fajitas were great to 

taste, but not to see” → 

“fajitas”: conflict. 

Each participant was permitted to submit two 

kinds of runs for this task: 

Constrained: Using only the provided training 

data and other resources, such as lexicons. 

Unconstrained: Using additional data for 

training. Teams were asked to report what 

resources they used for each submitted run. 

The training dataset, provided by the organiser of 

the Task 4 challenge, consists of two domain-

specific datasets which contain over 6,500 

sentences with fine-grained aspect-level human-

authored annotations. These domains are: 

Restaurant reviews: This dataset consists of 

over 3000 English sentences from the restaurant 

reviews of (Ganu, et al., 2009) that were adapted 

to the task. 

Laptop reviews: This dataset consists of over 

3000 English sentences extracted from customer 

reviews of laptops. 

2 The automata 

The automata was represented as a graph 𝐺 =
 (𝑆, 𝑇) whose vertexes constitute the group of 

finite states 𝑆 =  [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛] while the 

                                                           
1http://alt.qcri.org/semeval2014/task4/ 

edges represent the transitions 𝑇 =
 [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛] of going from one state to 

another. 

Our finite automata involves the following 

features: 

1. Group of finite states: all the verbs, nouns, 

adverbs, adjectives that were extracted from 

the training dataset (see Section 2.1) using 

Freeling 3.1 language analyser (Atserias, et 

al., 2006), or Aspect Terms (that may be 

formed by several words). In every state the 

automata stores the occurrences 𝑊𝑖
𝑝
, where 

p is one of the following polarity classes: 

positive, negative, neutral, conflict or 

undefined, i being the index of the current 

state in the graph. 

2. Finite alphabet: a sentences set which 

contains one or more Aspect Terms to 

which should be assigned a polarity. 

3. Initial state: first word of the sentence. 

4. Transition state (𝑇𝑠𝑖,𝑗 and 𝑇𝑠𝑗,𝑖): each 

transition between two states contains 𝑊𝑖,𝑗
𝑝

  

and 𝑊𝑗,𝑖
𝑝

, where p is  positive, negative, 

neutral  or conflict, i is the current state, and 

j is the next state. 

5. End state: last word of the sentence. 

If we could not determine the polarity 

classification for a state or transition, then we set 

it as undefined polarity. 

2.1 Training the automata 

In order to create the automata the training dataset 

provided for the SemEval2014 taks 41 was used. 

In the automata, each word of a sentence forms 

a state which is connected to the following word. 

This connection forms a transition between the 

two words. This method is repeated until the last 

word of the sentence is reached. If the word 

already exists in the automata, both its state and 

all the transitions (from and to that word) are 

adjusted, increasing in one the 𝑊𝑖
𝑝
, 𝑊𝑖,𝑗

𝑝
and 𝑊𝑗,𝑖

𝑝
 

of the polarity value initially assigned in the 

corpus.  

The transitions from words to Aspect Terms 

with their respective polarities allow to go through 

those words with undefined polarities to the target 

Aspect Terms. This event is done for finding the 

most probably polarity according to the training 

discoveries. Same thing happens with transitions 

from an Aspect Term to a word, but in this case 

from the polarity of the Aspect Term to undefined 

polarity. 
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On the other hand, if the word is not an Aspect 

Term its state do not change at all, since the 

dataset only annotates the Aspect Terms, so we do 

not know the polarity of those words that are not 

an Aspect Term. 

To solve this issue we decided to make use of 

other resources to enhance the automata, so that 

the probability for finding a polarity for a word in 

the automata increases with the expansion of the 

dictionary. We used the Opinion Finder 

Subjectivity Lexicon (OFSL) (Wilson, et al., 

2005) to adjust the state and transitions of the 

words in the automata. To address the adjustment, 

for every word of OFSL (according to the 

classification of the sentiment polarity) that exists 

in the graph represented by automata, the 

respective value of polarity of 𝑊𝑖
𝑝

, 𝑊𝑖,𝑗
𝑝

and 𝑊𝑗,𝑖
𝑝

 is 

increased in one. We also used WordNet 3.0 to 

obtain the synonyms and antonyms of the words 

in the automata to form new states and transitions. 

Synonyms were given the same polarity as the 

related word, whereas antonyms took the opposite 

polarity. The subjectivity clues extracted by the 

patterns detected in the training dataset were used 

as well (See section 3.2). 

In Table 1 we show the terminology used for 

the patterns. 
Symbol Description 

[] Optional word 

/! Subjectivity clue 

/l Compare by lemma 

AT Aspect Term 

Table 1: Pattern symbols 

Examples: 
[DT] AT [PRP] [RB] be/l [VBG/!] 

RB/! [JJ/!] [RB/!] 

[RB/!] [DT] JJS/! [DT] [NN] AT [VB] 

[NN/!] 

[DT] JJ/! NN PRP VBD VB [DT] AT 

AT be/l [DT/!] JJ/! [PRP/!] [RB/!] 

Note the use of the POS tags such as DT, NN, 

VBD, and others were taken from the result of the 

pos-tagging process performed by Freeling 3.1. 

Using this tool the incoming texts were split into 

parts (sentences) for the following processes. 

For instance, in the sentence “This MacBook 

Pro is excellent” the subjectivity clue for the 

Aspect Term MacBook Pro is excellent; so its 

states and transitions get adjusted the same way as 

the Aspect Term. Figure 1 describes this example, 

where pi is 𝑊𝑖
𝑝

 , pij is 𝑊𝑖,𝑗
𝑝

and pji is 𝑊𝑗,𝑖
𝑝

 means the 

occurrence for positive polarity (negative, neutral 

and conflict polarities were omitted by lack of 

space). Both states and transitions are represented. 

 
Figure 1: Adjusting states and transitions after 

pattern analysis. 

3 Polarity Assignation 

Before predicting the polarity of the Aspect 

Terms, each sentence is divided by its connectors 

(conjunctions, prepositions and adverbs, extracted 

using Freeling), forming the corresponding 

phrases. For instance, the sentence “Where 

Gabriela personally greets you and recommends 

you what to eat” is divided into the phrase “Where 

Gabriela personally greets you” and the phrase 

“recommends you what to eat” by connector and. 

3.1 Selection criteria 

If only one polarity is found then that is the 

polarity for the Aspect Term. On the other hand, 

if more than one polarity is found, the polarity for 

the Aspect Term is the most repeated one.  

Note that if both positive and negative are the 

most repeated polarities we set conflict as the 

polarity for the Aspect Term. 

If no polarities are found at all, we assignee 

neutral to the Aspect Term. 

3.2 Assigning polarity using patterns 

We detected different patterns which allowed us 

to extract those words that influence on the Aspect 

Term polarity in the phrase (See section 2.1). 

For each phrase subjectivity clue i, we 

calculate the most probable polarity 

𝑃𝑝𝑖=𝑚𝑎𝑥𝑝(𝑊𝑖
𝑝

), if i has a state in the automata. 

After that, we apply our selection criteria 

described in section 3.1.  

If no polarities are found at all, we process the 

phrase in the next steps. 

3.3 Assigning polarity using the automata  

For each Aspect Term in the phrase we get the 

sentence it belongs to and we calculate 𝑃𝑡𝑖,𝑗= 

𝑊𝑖,𝑗
𝑝

∑ 𝑊𝑖,𝑗
𝑝  in that sentence, where 𝑃𝑡𝑖,𝑗 is the most 

probable polarity of 𝑇𝑠𝑖,𝑗 (j being the Aspect 

Term), if such a transition existed. If no polarity 
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is found, then we calculate 𝑃𝑡 𝑗,𝑖=
𝑊𝑗,𝑖

𝑝

∑ 𝑊𝑗,𝑖
𝑝  again if 

such a transition existed. 

In case of applying aforementioned processes 

without finding out a concrete polarity for the 

target Aspect Terms, we perform other steps to try 

to find one or more polarities for the Aspect Term. 

First, we verify whether the Aspect Term is 

part of a phrase which was matched to a pattern 

but no polarity was found as explained in section 

3.2, if so we get the subjectivity clues of the 

phrase and for each subjectivity clue we calculate 

𝑇𝑠𝑖,𝑗, where i is the Aspect Term index and j 

corresponds to the subjectivity clue index. If no 

polarity is found, then we calculate 𝑇𝑠𝑗,𝑖. 

If no polarities are found after this step, we 

proceed to do the same as above, but this time for 

each word in the sentence. 

Lastly, if no polarities are found, 𝑃𝑝𝑖 is 

obtained for each word i in the sentence if i has a 

state in the automata. 

After performing these steps we apply our 

selection criteria to assign the polarity to the 

Aspect Term in question. As can be seen, our 

proposal is focused on the application of an 

exhaustive exploration of the automata in order to 

classify Aspect Terms with the target polarities. 

4 Results and Discussion 

In order to evaluate the accuracy of the system 

several tests were run. Table 2 shows some of the 

tests using SemEval2014 task4 Baseline for the 

Restaurant reviews. We did the same evaluation 

for Laptop reviews and the results obtained were 

very similar to those shown in Table 2 for 

Restaurant. We used semeval_base.py2 script to 

split the dataset into a train and a test part using an 

80:20 ratio. Despite tests 1, 2 and 3 results do not 

vary much, it is evident that using the three 

training resources yields our best accuracy. 

 

Training Evaluation 

Test Patterns WordNet OFSL Pattern/Automata only Automata only Accuracy (%) 
1 X X X X  58.0 

2 X   X  57.9 
3 X  X X  57.9 

4 X X X  X 54.0 

Table 2: Evaluation over restaurant domain 

With test 4 it is evident that it is better to use 

two methods combined than only one of them, 

since the patterns indicate the words that assign 

polarity to the Aspect Term, making the automata 

more precise with this information at the time of 

assigning the correct polarity. Otherwise, if a 

pattern is not encountered we need to analyse the 

words that are closer to the Aspect Term 

determining the polarity according to the context. 

In addition, not always is assigned a polarity to it 

in case of the pattern found in the context is 

empty. Table 3 shows the results of our system in 

comparison with the best of the challenge 

SemEval2014 subtask 4.2. 
Test Constrained 

Accuracy (%) 

Unconstrained 

Accuracy (%) Rest 66.5 66.8 

Laptop 56.1 57.0 

BRR 80.9 77.6 

BRL 70.4 66.6 

Table 3: Test subtask 4.2 (BRR: Best Ranked for 

Restaurant; BRL Best Ranked for Laptop) 

The system behaved the same as the training 

stage on the competition although the accuracy 

increased. 

                                                           
2 http://alt.qcri.org/semeval2014/task4/data/semeval14-absa-

base-eval-valid.zip 

5 Conclusions and future works 

This work introduces a new approach for aspect 

based sentiment analysis. For that, a probabilistic 

automata was created where the states are formed 

by the nouns, adjectives, verbs and adverbs found 

in the annotated corpora, based on their 

occurrence. The transitions between states are 

also taken into account. A set of patterns were 

defined in order to extract the words that influence 

on an Aspect Term, also known as subjectivity 

clues, and then we predicted their polarity using 

the automata’s probabilities. A system was 

developed following this approach to participate 

on SemEval2014 competition, obtaining an 

accuracy of 66% for restaurant reviews and 57% 

for laptop reviews. 

As future works we plan to deal with the fact 

that this automata only involves states represented 

by the words lack extracted from the training data. 

So, the previously unseen aspect terms which do 

not correspond to any state in the automata, are 

not recognised in many cases as far as the polarity 

is concerned. To address this issue we plan to 
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expand the aspect term dictionary using 

Wikipedia definitions. On the other hand, we plan 

to use a disambiguation method to select the exact 

WordNet synset and then to reduce the polysemy 

of the automata’s words. Finally, to smooth the 

probabilities it would be interesting to study 

different balances in order to get new 

improvements for the system. 
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University of Alicante/Spain
ygutierrez@dlsi.ua.es
montoyo@dlsi.ua.es
rafael@dlsi.ua.es

Abstract

This paper describes a system sub-
mitted to SemEval-2014 Task 4B:
Sentiment Analysis in Twitter, by the
team UMCC DLSI Sem integrated by
researchers of the University of Matanzas,
Cuba and the University of Alicante,
Spain. The system adopts a cascade
classification process that uses two classi-
fiers, K-NN using the lexical Levenshtein
metric and a Dagging model trained over
attributes extracted from annotated cor-
pora and sentiment lexicons. Phrases that
fit the distance thresholds were automat-
ically classified by the KNN model, the
others, were evaluated with the Dagging
model. This system achieved over 52.4%
of correctly classified instances in the
Twitter message-level subtask.

1 Introduction

Nowadays, one of the most important sources of
data to extract useful and heterogeneous knowl-
edge is Textual Information. Daily, millions
of Tweets, SMS and blog comments increase
the huge volume of information available for re-
searchers. Texts can provide factual information,
such as: descriptions, lists of characteristics, or
even instructions to opinion-based information,
which would include reviews, emotions, or feel-
ings (Gutiérrez et al., 2013). These facts have
motivated that dealing with the identification and
extraction of opinions and sentiments in texts re-
quires special attention. Applications of Senti-
ment Analysis are now more common than ever
in fields like politics and business. More than 50

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

systems participating in this task, clearly indicate
the increase of interest in the scientific community.

Twitter messages can be found among of the
most used corpora nowadays for Sentiment Anal-
ysis (SA). This kind of messages involves an evi-
dent informality which has been addressed in dif-
ferent ways. For example, there are some works
like (Gutiérrez et al., 2013) that apply normali-
sation textual tools to reduce the informality of
the twitter messages. Authors such as (Go et al.,
2009), (Gutiérrez et al., 2013), (Fernández et al.,
2013) and others are focused on the application
of preprocessing processes and feature reduction
to be able to standardise twitter messages and re-
duce different types of elements like hashtags, user
nicks, urls, etc.

In terms of those techniques that can be used
for SA, we can cite (Pang et al., 2002) who built
a lexicon with associated polarity value, starting
with a set of classified seed adjectives and using
conjunctions (and) disjunctions (or, but) to deduce
the orientation of new words in a corpus. This re-
search was based on machine learning techniques
to address Sentiment Classification. Other inter-
esting research is (Turney, 2002), which classi-
fies words according to their polarity based on
the idea that terms with similar orientation tend
to co-occur in documents. There are a large quan-
tity of approaches to deal with SA, and basically
most of them are based on word bags and/or an-
notated corpora as knowledge base. Based on this
information the SA systems are able to apply dif-
ferent types of evaluation techniques such as ma-
chine learning or statistic formulas to predict the
correct classification. As part of machine learn-
ing approaches we would like to mention those
works such as (Go et al., 2009), (Mohammad et
al., 2013) and others that were based on feature
vectors and which cover a wide range settings of
SA. As a starting point, we based this work on
the (Mohammad et al., 2013) approach, adding
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new features extracted from the sentiment repos-
itories Sentiment 140 1 and NRC-Hashtag Senti-
ment (Mohammad and Turney, 2013).

The remainder of this paper is structured as fol-
lows: section 2 describes in detail the approach
presented. In section 3 we explain the experiments
we carried out. Finally in section 4 conclusions
and future works are expounded.

2 System Description

In this section we present our system in detail
which is able to classify the polarity of tweets as
positive, negative, or neutral.

The system is structured in two main stages.
The first stage consists of classifying a given
tweet. For that, we first recovered all the tweets
from the training corpus that have a similarity
value greater than a fixed threshold T . The sec-
ond stage consists of classifying using the K-NN
rule (Coomans and Massart, 1982), considering as
K all tweets recovered. The process begins with
T = 0.9 decreasing it until T = 0.6. In section 3
we will explain how these values were determined.

As similarity metric we use the Levenshtein
(Levenshtein, 1966) lexical distance. In case that
we cannot find any tweet fulfilling the condition,
the tweet polarity is assigned using a second clas-
sifier trained using Dagging which combines sev-
eral Logistic classifiers set by WEKA as default.

2.1 Preprocessing
The first step in our system is to pre-process all
tweets. The following operations were applied in
the given order.

- Replacing emoticons: Each emoticon is
replaced by a word according to a
lexicon of emoticons. The mean-
ings of the emoticons were taken from
http://en.wikipedia.org/wiki/
List_of_emoticons.

- Replacing acronyms: Each acronym is re-
placed by its meaning. The meanings of the
acronyms were taken from http://www.
acronymfinder.com/.

- Cleaning text: Remove not alphanumeric char-
acters from the tweet.

- Replacing abbreviations: Each abbrevia-
tion is replaced by its respective words.

1http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip

The abbreviations were taken from
http://en.wikipedia.org/wiki/
Abbreviation.

- Lemmatising: Each word is replaced by its
lemma. We use Freeling 3.0 (Padró and
Stanilovsky, 2012) for this purpose. We only
retain lemmas corresponding to adjectives,
adverbs, interjections, nouns and verbs.

- Expanding contractions: Each contraction
is replaced by its respective word. The
contractions were taken from http://
www.softschools.com/language_
arts/grammar/contractions/
contractions_list/.

- Deleting punctuation marks.

- Deleting stop words. The stop words
were taken from http://www.ranks.
nl/stopwords.

2.2 Recovering tweets from similarity

As it was explained before, in a first step we tried
to classify tweets using the K-NN rule. To recover
the K similar tweets we used the Levenshtein met-
ric (Levenshtein, 1966). This measure allows to
compute the similarity of two strings of symbols
counting the minimum number of deletions, sub-
stitutions and insertions necessary to transform
one string into another. In our case, each word in
the string is considered as a symbol. In the future
we plan to improve this metric using Levenshtein
at word level and then at sentence level. This met-
ric is known as DLED (Double Levenshteins Edit
Distance) and will be taken from (Fernández et al.,
2012).

2.3 Features for Dagging classifier

We represented each tweet as a vector of features
based in (Mohammad et al., 2013) plus other new
ones. Also we used the lexicons Sentiment 140
and NRC-Hashtag Sentiment as it was defined
by Mohammad.

Also two new lexicons, named NRC Emotion
Lexicon 1.0 and NRC Emotion Lexicon 2.0 were
derived from the NRC Emotion Lexicon (Mo-
hammad and Turney, 2013). In the first case we
associated to each word just the values in the
columns positive and negative of NRC Emotion
Lexicon, thus, no sentiment score was computed.
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For the second lexicon, the positive score was cal-
culated as the sum of the values for the classifica-
tions positive, anticipation, joy, surprise and trust.
On the other hand, the negative score was com-
puted as the sum of the values for the classifica-
tions negative, anger, disgust, fear, sadness and
trust.

In each case we computed the following at-
tributes:

- Pos: Sum of the positive scores of each token
in the tweet over the number of tokens in the
tweet.

- Neg: Sum of the negative scores of each token
in the tweet over the number of tokens in the
tweet.

- PercentPos: 100∗Pos
Pos+Neg

- MissNGram: Percent of tokens in the tweet that
were not found in the lexicon.

For the Sentiment 140 and NRC-Hashtag Sen-
timent lexicons we also computed the feature:

- SSE: Sum of the sentiment score of each token
in the tweet over the number of tokens in the
tweet.

Based on the information involved into Senti-
ment 140 and NRC-Hashtag Sentiment lexicons,
unigrams, bigrams and pairs were tokenised in-
volving any non-contiguous combination of the
previous n-grams. With respect to the pairs extrac-
tion were considered the following possibilities:
unigram-unigram, unigram-bigram and bigram-
bigram. Similar to (Mohammad et al., 2013) dif-
ferent set of attributes were generated for each
type of token. As result an initial set of 50 at-
tributes were obtained.

In the case of the new lexicons (NRC Emotion
Lexicon 1.0 and NRC Emotion Lexicon 2.0), only
unigrams were considered. Moreover, the feature
SSE was not computed. So, another 8 features
were taken into account with respect to these lexi-
cons.

Finally we computed:

- NCL: Percent of tokens in capital letters.

- NoE: Number of emoticons in the tweet.

- NoA: Number of acronyms in the tweet.

In general the system works with a total of 61
attributes.

2.4 Classifier Design
As training set, we joined the preprocessed tweets
from both the train and development sets pro-
vided by the Task9B of Semeval-2014. The
Dagging classifier was trained using this set
with the following parameters -F 15 -S 1 -W
weka.classifiers.functions.Logistic – -R 1.0E-8 -
M -1 using a 10 fold cross-validation as evaluation
method.

3 Experiments

The experiments were evaluated over the training
dataset provided by Task 9: Sentiment Analysis in
Twitter, subtask B. Based on the explanation pro-
vided in section 2 according to the initialisation of
the threshold T to ensure that the K similar tweets
are in fact similar enough, we carried out an exper-
iment for different values of T . These experiments
refer an analysis to know how the variation of T
affects the classification results.

T % CCI
0.9 86.7
0.8 83.3
0.7 74.1
0.6 67.2
0.5 61.1
0.4 55.0
0.3 56.0

Table 1: Results of the K-NN classifier using Lev-
enshtein metric.

T % CCI
0.9 81.2
0.8 83.3
0.7 74.1
0.6 66.7
0.5 63.1
0.4 60.6
0.3 54.2

Table 2: Results of the K-NN classifier using
Matching Coefficient metric.

The first stage of the system was applied to
compute the number of instances which have at
least one instance with a similarity value greater
than T . We computed the percent of instances
correctly classified (%CCI). Table 1 shows the
behaviour of the system when T changes. Table
2 shows the results of the K-NN classifier using
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System LiveJournal2014 SMS2013 Twitter2013 Twitter2014 Twitter2014Sarcasm
Best result 74.8 70.3 72.1 71.0 58.2

Average result 63.5 55.6 59.8 60.6 45.4
UMCC-DLSI-Sem 53.1 50.0 52.0 55.4 42.8

Worse result 29.3 24.6 34.2 33.0 29.0

Table 3: Results in the SemEval-2014 Task 4B.

Matching Coefficient metric (http://www.
coli.uni-saarland.de/courses/LT1/
2011/slides/stringmetrics.pdf).
This metric counts the quantity of matched
symbols (words in this case) between two
sentences.

Furthermore, we repeated this experiment using
the Matching Coefficient similarity metric to bet-
ter tunning the algorithm and to evaluate if the re-
sults behave in a similar way when T changes. In
both cases, we use the implementation provided in
the SimMetrics library.

As those results shows, when T decrease the ac-
curacy decrease too. In practice, for the values of
T lower than 0.6 the results are worse than 61.4%
using the Dagging classifier in the 10 fold cross-
validation. For that reason, as was mentioned in 2,
we only tried to apply the first stage for values of
T ≥ 0.6 .

We evaluated our system in the challenge Task
4B: Sentiment Analysis in Twitter, using the pro-
vided training and test data of this challenge.
Based on the classifier obtained in the training pro-
cess we tested our system over the test dataset
achieving values of %CCI up to 55.4. Table 3
show detailed results for each of the 5 different
sources.

4 Conclusions and Future Works

Our system was based on an approach that follows
two stages to classify the polarity of tweets. Re-
gardless the fact that our system behaves worse
than the average, we consider that the approach is
suitable to deal with SA, since our results are close
to the average. As future works we will study
other approaches in order to encourage further de-
velopments of this proposal. Several issues could
be adjusted, for example, other distances should be
tested and evaluated such as DLED (Double Lev-
enshteins Edit Distance) (Fernández et al., 2012).
Also, features that encode information about the
presence of negation and opposition words could
be very useful.
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Col. Nueva Industrial Vallejo,
Mexico City, Mexico
www.gelbukh.com

Abstract

This paper describes our participation in
the SemEval-2014 tasks 1, 3 and 10. We
used an uniform approach for addressing
all the tasks using the soft cardinality for
extracting features from text pairs, and
machine learning for predicting the gold
standards. Our submitted systems ranked
among the top systems in all the task and
sub-tasks in which we participated. These
results confirm the results obtained in pre-
vious SemEval campaigns suggesting that
the soft cardinality is a simple and useful
tool for addressing a wide range of natural
language processing problems.

1 Introduction

The semantic textual similarity is a core prob-
lem in the computational linguistic field. Con-
sequently, the previous evaluation campaigns of
this task in SemEval have attracted the attention
of many research groups worldwide (Agirre et al.,
2012; Agirre et al., 2013).This year, 3 tasks related
to this problem have been proposed exploring dif-
ferent facets such as semantic relatedness, entail-
ment , multilingualism, lack of training data and
imbalance in the amount of information.

The soft cardinality (Jimenez et al., 2010) is a
simple concept that generalizes the classical set
cardinality by considering the similarities among
the elements in a collection for a more intuitive
quantification of the number of elements in that
collection. This approach can be applied to text
applications representing texts as collections of
words and providing a similarity function that
compares two words. Varying this word-to-word
similarity function the soft cardinality can reflect

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

notions of syntactic similarity, semantic related-
ness, among others. We (and others) have used
this approach to address with success the semantic
textual similarity and other tasks in previous Se-
mEval editions (Jimenez et al., 2012b; Jimenez et
al., 2012a; Jimenez et al., 2013a; Jimenez et al.,
2013b; Jimenez et al., 2013c; Croce et al., 2013).

In this paper we describe our participating sys-
tems in the SemEval-2014 tasks 1, 3, and 10,
which used the soft cardinality as core approach.

2 Features from Soft Cardinalities

The cardinality of a collection of elements is the
counting of non-repeated elements in it. This def-
inition is intrinsically associated with the notion
of set, which is a collection of non-repeated ele-
ments.Thus, the cardinality of a collection or set
A is denoted as |A|. Clearly, the cardinality of a
collection with repeated elements treats groups of
identical elements as a single instance contribut-
ing only with a unit (1) to the element counting.
Jimenez et al. (2010) proposed the soft cardinal-
ity that uses a notion of similarity among elements
for grouping not only identical elements but simi-
lar too. That notion of similarity among elements
is provided by a similarity function that compares
two elements ai and aj and returns a score in [0,1]
interval, having sim(ai, ai) = 1. Although, it
is not necessary that sim fulfills another metric
properties aside of identity, symmetry is also de-
sirable. Thus, the soft cardinality of a collection
A, whose elements a1, a2, . . . , a|A| are compara-
ble with a similarity function sim(ai, aj), is de-
noted as |A|sim. This soft cardinality is given by
the following expression:

|A|sim =
|A|∑
i=1

wai∑|A|
j=1 sim(ai, aj)p

(1)

It is trivial to see that |A| = |A|sim either if
p → ∞ or when the function sim is a crisp com-
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Basic Derived
|A| |A ∩B| = |A|+ |B| − |A ∪B|
|B| |A4B| = |A ∪B| − |A ∩B||
|A ∪B| |A \B| = |A| − |A ∩B|

|B \A| = |B| − |A ∩B|
Table 1: The 7 basic and derived cardinalities for
two sets comparison.

parator, i.e. one that returns 1 for identical ele-
ments and 0 otherwise. This property shows that
the soft cardinality generalizes the classical cardi-
nality and that the parameter p controls its degree
of “softness”, whose default value is 1. The values
wai are optional “importance” weights associated
with each element ai, by default those weights can
be assigned to 1.

For the tasks at hand, we represent each short
text (lets say A) as a collection of words ai and
the sim function can be any operator that com-
pares pairs of words. The motivation for using the
soft cardinality is that the sim function can reflect
any dimension of word similarity (e.g. syntactic,
semantic) and the soft cardinality projects that no-
tion at sentence level. For instance, if sim pro-
vides the degree of semantic relatedness between
two words using WordNet, two texts A and B
could be compared by computing |A|sim, |B|sim
and |A∪B|sim. Given that A∩B could be empty,
the soft cardinality of the intersection must be ap-
proximated by |A ∩ B|sim ≈ |A|sim + |B|sim −
|A ∪ B|sim instead of being computed directly
from A ∩ B using equation 1. Using that approx-
imation, the commonality (intersection) between
A and B is induced by the pair-wise similarities
provided by sim among the words in A and B.

Since more than a century when Jaccard (1901)
proposed his well-known index, the classical set
cardinality has been used to build similarity func-
tions for set comparison. Any binary-cardinality-
based similarity function is an algebraic combina-
tion of |A|, |B| and either |A ∩ B| or |A ∪ B|
(e.g. Jaccard, Dice, Tversky, overlap and cosine
indexes). These three cardinalities describes un-
ambiguously all the regions in the Venn’s diagram
when comparing two sets. Thus, in this scenario 4
possible cardinalities can be derived from these 3
basic cardinalities, see Table 1. Clearly, the same
set of cardinalities can be obtained for the soft car-
dinality.

When training data is available, which is the

# Feature expression
1 |A|/|A∪B|
2 |A|−|A∩B|/|A|
3 |A|−|A∩B|/|A∪B|
4 |B|/|A∪B|
5 |B|−|A∩B|/|B|
6 |B|−|A∩B|/|A∪B|
7 |A∩B|/|A|
8 |A∩B|/|B|
9 |A∩B|/|A∪B|
10 |A∪B|−|A∩B|/|A∩B|

Table 2: Extended set of 10 rational features.

case for tasks 1, 3 and 10 in SemEval 2014, it
is possible to think that instead of using an ad-
hoc expression (e.g. Jaccard, Dice) the similar-
ity function can be obtained using the cardinalities
in Table 1 as features for a machine-learning re-
gression algorithm. Our hypothesis is that such
learnt function should predict in a more accurate
way the gold standard variable than any other ad-
hoc function. However, these cardinality features
are intrinsically correlated with the length of the
texts where they were obtained. This correlation
makes that the performance of the learnt similar-
ity function could be dependent of the length of
the texts. For instance, if the function was trained
using long texts it is plausible to think that this
function would be more effective when tested with
long texts than with shorter ones. Having this in
mind, an extended set of rational features is pro-
posed, whose values are standardized in [0,1] in-
terval aiming to reduce the effect of the length of
the texts. These features are presented in Table 2.

The soft cardinality has proven to overcome
the classic cardinality in the semantic textual
similarity (STS) task in previous SemEval cam-
paigns (Jimenez et al., 2012b; Jimenez et al.,
2013a). Even using a simplistic function sim
based on q-grams of characters, the soft cardinal-
ity method ranked third among 89 participating
systems (Agirre et al., 2012). Thus, our participat-
ing systems in the SemEval 2014 campaign were
based on the previously described set of 17 fea-
tures, obtained from the soft cardinality with dif-
ferent sim functions for comparing pairs of words.
Each sim function produced a different set of fea-
tures, which were combined with a regression al-
gorithm for similarity and relatedness tasks. Sim-
ilarly, a classification algorithm was used for the
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entailment task.

3 Systems Description

In this section the different feature sets used for
each submitted system to the different task and
subtask are described. Besides, the data used for
training, parameters and other preprocessing de-
tails are described for each system.

3.1 Task 1: Textual Relatedness and
Entailment

The task 1 is based on the SICK (Sentences
Involving Compositional Knowledge) data set
(Marelli et al., 2014), which contains nearly
10,000 pairs of sentences manually labeled by re-
latedness and entailment. The relatedness gold la-
bels range from 1 to 5, having 1 the minimum level
of relatedness between the texts and 5 for the max-
imum. The entailment labels have three categori-
cal values: neutral, contradiction and entailment.
The two sub tasks consist of predicting the related-
ness and entailment gold standards using approxi-
mately the 50% of the text pairs as training and the
other part as test bed.

Our overall approach consists in extracting 4
different sets of features using the method pre-
sented in section 2 and training a machine learn-
ing algorithm for predicting the gold standard la-
bels in the test data. Each feature set is described
in the following 4 subsections and the subsection
3.1.6 provides details of the used combination of
features, machine learning algorithm and prepro-
cessing details.

3.1.1 String-Matching Features
First, all texts in the SICK data set where prepro-
cessed by lower casing, tokenizing and stop-word
removal (using the NLTK1). Then each word was
reduced to its stem using the Porter’s algorithm
(Porter, 1980) and a idf weight (Jones, 2004) was
associated to each stem (wai weights in eq. 1) us-
ing the very SICK data set as document collec-
tion. Next, for each instance in the data, which
is composed of two texts A and B, the 17 fea-
tures listed in Tables 1 and 2 where extracted using
eq.1. The used word-to-word similarity function
sim decomposes each word in bags of 3-grams
of characters, which are compared using the sym-
metrical Tversky’s index (Tversky, 1977; Jimenez
et al., 2013a). Thus, the similarity between two

1http://www.nltk.org/

pairs of words w1 and w2, represented each one as
a collection of 3-grams of characters, is given by
the following expression:

sim(w1, w2) =
|c|

β(α|wmin|+ (1− α)|wmax|) + |c|
(2)

|c| = |w1 ∩ w2|+ biassim,

|wmin| = min[|w1 \ w2|, |w2 \ w1|],
|wmax| = max[|w1 \ w2|, |w2 \ w1|].

The values used for the parameters were α =
1.9, β = 2.36, bias = −0.97, and p = 0.39
(where p corresponds to eq.1). The motivation and
justification for these parameters can be found in
(Jimenez et al., 2013a). These values were ob-
tained by building a text similarity function us-
ing the Dice’s coefficient and the soft cardinali-
ties plugging eq.2 in eq.1. Next, this text similar-
ity function is evaluated in the 5,000 training text
pairs and the obtained scores are compared against
the relatedness gold-standard using the Pearson’s
correlation.
waiare not training parameters, but they are

weights associated with the words. These weights
could have been obtained from a larger corpus,
but we use the training texts to obtain them. This
process is repeated iteratively exploring the search
space defined by these 4 parameters using a hill-
climbing approach until a maximum correlation is
reached. We observe that the optimal values of the
parameters p, α, β, and bias vary considerably be-
tween the data sets and for the different sim func-
tions of word-to-word similarity. We do not yet
understand from which factors of the data and the
sim functions depend on these parameters. This
issue will be the objective of further research.

Henceforth, the set of 17 string-based features
described in this subsection will be referred as
SM.

3.1.2 ESA Features
For this set of features we used the idea proposed
by Gabrilovich and Markovitch (2007) of enrich-
ing the representation of a text by representing
each word by its textual definition in a knowl-
edge base, i.e. explicit semantic analysis (ESA).
For that, we used as knowledge base the synset’s
textual definitions provided by WordNet. First,
in order to determine the textual definition asso-
ciated to each word, the texts were tagged using
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the maximum entropy POS tagger included in the
NLTK. Next, the adapted Lesk algorithm (Baner-
jee and Pedersen, 2002) for word sense disam-
biguation was applied in the texts disambiguating
one word at the time. The software package used
for this disambiguation process was pywsd2. The
arguments needed for the disambiguation of each
word are the POS tag of the target word and the
entire sentence as context. Once all the words are
disambiguated with their corresponding WordNet
synsets, each word is replaced by all the words in
their textual definition jointly with the same word
and its lemma. The final result of this stage is that
each text in the data set is replaced by a longer
text including the original text and some related
words. The motivation of this procedure is that the
extended versions of each pair of texts have more
chance of sharing common words that the original
texts.

The extended versions of these texts were used
to obtain another 17 features with the same proce-
dure described in the previous subsection (3.1.1).
This feature subset will henceforth be referred as
ESA.

3.1.3 Features for each part-of-speech
category

This set of features is motivated by the idea pro-
posed by Corley and Mihalcea (2005) of group-
ing words by their POS category before being
compared for semantic textual similarity. Our ap-
proach consist in provide a version of each text
pair in the data set for each POS category in-
cluding only the words belonging to that cate-
gory. For instance, the pair of texts {“A beauti-
ful girl is playing tennis”, “A nice and handsome
boy is playing football”} produce new pairs such
as: {“beautiful”, “nice handsome”} for the ADJ
tag, {“girl tennis”, “boy football”} for NOUN and
{“is playing”, “is playing”} for VERB.

Again, the POS tags were provided by the
NLTK’s max entropy tagger. The 28 POS cate-
gories were simplified to 9 categories in order to
avoid an excessive number of features and hence
sparseness; the used mapping is shown in Table 3.
Next, for each one of the 9 new POS categories a
set of 17 features (SM) is extracted reusing again
the method proposed in subsection 3.1.1. The only
difference with the method described in that sub-
section is that the stop-words were not removed

2https://github.com/alvations/pywsd

Reduced tag set NLTK’s POS tag set
ADJ JJ,JJR,JJS

NOUN NN,NNP,NNPS,NNS

ADV RB,RBR,RBS,WRB

VERB VB,VBD,VBG,VBN,VBP,VBZ

PRO WP,WP$,PRP,PRP$

PREP RP,IN

DET PDT,DT,WDT

EX EX

CC CC

Table 3: Mapping reduction of the POS tag set.

and the stemming process was not performed. The
motivation for generating this feature sets by POS
category is that the machine learning algorithms
could weight differently each category. The intu-
ition behind this is that it is reasonable that cat-
egories such as VERB and NOUN could play a
more important role for the task at hand than oth-
ers such as ADJ or PREP. Using these categorized
features, such discrimination among POS cate-
gories can be discovered from the training data.

Finally, the total number of features in this set is
153 (17 features× 9 POS categories). This feature
set will be referred as POS.

3.1.4 Features From Dependencies
The syntactic soft cardinality (Croce et al., 2012;
Croce et al., 2013) extend the soft cardinality
approach by representing texts as bags of de-
pendencies instead of bags of words. Each de-
pendency is a 3-tuple composed of two syntac-
tically related words and the type of their rela-
tionship. For instance, the sentence “The boy
plays football” can be represented with 3 depen-
dencies: [det,“boy”,“The”], [subj,“plays”,“boy”]
and [obj,“plays”,“football”]. Clearly, this repre-
sentation distinguish pairs of texts such as {“The
dog bites a boy”,“The boy bites a dog”}, which
are indistinguishable when they are represented as
bags of words. This representation can be obtained
automatically using the Stanford Parser (De Marn-
effe et al., 2006), which in addition provides a de-
pendency identifying the root word in a sentence.
We used the version 3.3.13 of that parser to obtain
such representation.

Once the texts are represented as bags of de-
pendencies, it is necessary to provide a similar-
ity function between two dependency tuples in or-

3http://nlp.stanford.edu/software/lex-parser.shtml
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der to use the soft cardinality (eq. 1) and hence
to obtain the 17 cardinality features in Tables 1
and 2. Such function can be obtained using the
sim function (eq. 2) for comparing the first and
second words between the dependencies and even
the labels of the dependency types. Let’s consider
two dependencies tuples d = [ddep, dw1 , dw2 ] and
p = [pdep, pw1 , pw2 ] where ddep and pdep are the
labels of the dependency type; dw1 and pw1 are
the first words on each dependency tuple; and dw2

and pw2 are the second words. The similarity func-
tion for comparing two dependency tuples can be a
linear combination of the sim scores between the
corresponding elements of the dependency tuples
by the following expression:

simdep(d, p) =

γsim(ddep, pdep) + δsim(dw1 , pw2) + λsim(dw2 , pw2)

Although, it is unusual to compare the depen-
dencies’ type labels ddep and pdep with a similar-
ity function designed for words, we observed ex-
perimentally that this approach yield better overall
performance in the relatedness task in comparison
with a simple crisp comparison. The optimal val-
ues for the parameters γ = −3, δ = 10 and λ = 3
were determined with the same methodology used
in subsection 3.1.1 for determining α, β and bias.
Clearly, the fact that δ > λ means that the first
words in the dependency tuples plays a more im-
portant role than the second ones for the task at
hand. However, the fact that γ < 0 is counter intu-
itive because it means that the lower the similarity
between the dependency type labels is, the larger
the similarity between the two dependencies. Up
to date we have been unable to find a plausible ex-
planation for this phenomenon. This set of 17 fea-
tures will be referred hereinafter as DEP.

3.1.5 Additional Features
In addition to the feature sets based in soft car-
dinality, we designed some features aimed to ad-
dress linguistic phenomena such as antonymy, hy-
pernymy and negation.

Antonymy: Consider the following text pair
from the test data {“A man is emptying a container
made of plastic”,“A man is filling a container
made of plastic” }, which is labeled as a contra-
diction with a relatedness score of 3.91. Clearly,
these labels are explained by the antonymy rela-
tion between “emptying” and “filling”. Given that
none of the features presented above address this
issue, a list of 11,028 pairs of antonym words was

gathered from several web sites (see Table 4) and
from the antonymy relationships in WordNet, in
order to detect these cases. That list was used to
count the number of occurrences of pairs antonym
words between pairs of texts and in each one of
the texts. Thus, for any pair of texts A and B (rep-
resented as sets of words), three features (referred
henceforth as ANT) were extracted:

antonym AB Counts the number of occurrences
of pairs of antonyms in A × B (Cartesian
product) or in B ×A .

antonym AA Counts the number of occurrences
of pairs of antonyms in A×A.

antonym BB Counts the number of occurrences
of pairs of antonyms in B ×B.

Hypernymy: Consider the following text pair
from the test data {“A man is sitting comfortably
at a table”,“A person is sitting comfortably at the
table” }, which is labeled as an entailment with
a relatedness score of 3.96. In this case, the en-
tailment is based on the hypernymy between “per-
son” and “man”. In order to capture this linguis-
tic factor 3 features similar to the previously de-
scribed antonym features were proposed. First,
word sense disambiguation was performed (as de-
scribed in subsection 3.1.2) for obtaining a synset
label for each word. Secondly, we build a bi-
nary function hyp(ss1, ss2) that takes two Word-
Net synsets as arguments and returns 1 if ss1 is
a hypernym of ss2 with a maximum depth in the
WordNet’s is-a hierarchy of 6 steps, and 0 oth-
erwise. This hypernymy function was build us-
ing the WordNet interface provided by the NLTK.
Next, based on that synset-to-synset function, a
text-to-text function that captures the degree or hy-
pernymy in a text or in a pair of texts was build us-
ing the Monge-Elkan measure (Monge and Elkan,
1996). Thus, for two texts A and B represented
as sets of synset labels, the following expression
measures their degree of hypernymy:

HY P (A,B) =
1
|A|

|A|∑
i=1

|B|
max
j=1

hyp(ai, bj)

Using the function HY P (∗, ∗), 3 features are
extracted from each pair of text (referred hence-
forth as HYP):

hypernym AB from HY P (A,B)
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http://www.myenglishpages.com/site php files/vocabulary-lesson-opposites-adjectives.php

http://www.allaboutspace.com/wordlist/opposites.shtml

http://www.michigan-proficiency-exams.com/antonym-list.html

http://examples.yourdictionary.com/examples-of-antonyms.html

http://www.synonyms-antonyms.com/antonyms.html

http://englishwilleasy.com/word-must-know/vocabulary/vocabulary-list-by-opposites-or-antonyms/

http://www.meridianschools.org/staff/districtcurriculum/moreresources/languagearts/all grades/antonyms.doc

http://mrsbrower.weebly.com/uploads/1/3/2/4/13243672/antonymlist.pdf

https://foxhugh.wordpress.com/word-lists/list-of-antonyms/

http://www.paulnoll.com/Books/Clear-English/English-antonyms-1.html

http://wordnet.princeton.edu/wordnet/download/

Table 4: URLs used for the list of 11,028 antonym pairs (accessed on March 20, 2014).

hypernym AA from HY P (A,A)

hypernym BB from HY P (B,B)

Negation: Negations play an important role in
the task at hand. For instance, consider this pair
of texts {“A person is rinsing a steak with wa-
ter”,“A man is not rinsing a large steak”} labeled
as a contradiction. In that example the negation of
the verb “rising” is the main factor of contradic-
tion. In order to capture this linguistic feature we
build a simple function that detects the occurrence
of a verb negation if the text contains one of the
following words: “not”, “n’t”, “nor”, “null”, “nei-
ther”, “either”, “barely”, “scarcely” and “hardly”.
Similarly, noun negation is detected looking for
the words: “no”, “none”, “nobody”, “nowhere”,
“nothing” and “never”. Thus, for two texts A and
B, 4 features are extracted (referred henceforth as
NEG):

verb neg A if verb negation is detected in A

verb neg B if verb negation is detected in B

noun neg A if noun negation is detected in A

noun neg B if noun negation is detected in B

3.1.6 Submitted Runs and Results
RUN1 (PRIMARY) This system produced pre-
dictions by extracting all the features described
previously (SM, ESA, POS, DEP, ANT,
HYP and NEG) from all the texts in the SICK
data set. Next, two machine learning models were
obtained (WEKA (Hall et al., 2009) was used
for that) using the training part of SICK, one for
regression (relatedness) and another for classifi-
cation (entailment). The regression model was

a reduced-error pruning tree (REPtree) (Quin-
lan, 1987) boosted with 20 iterations of bagging
(Breiman, 1996). The classification model was a
J48Graft tree also boosted with 20 bagging itera-
tions. These two models produced the predictions
for the test part of SICK.

RUN2 This system is similar to the one used
in RUN1, but it used only the feature sets SM and
NEG. Another difference is that a linear regres-
sion was used instead of the REPtree and no bag-
ging was performed.

RUN3 The same as RUN1, but again, linear
regression was used instead of the REPtree and no
bagging was performed.

RUN4 The same as RUN2, but the models
were boosted with 20 iterations of bagging.

RUN5 The same as RUN3, but 30 iterations of
bagging were used instead of 20.

The official results obtained by these systems
(prefixed UNAL-NLP) are shown in Table 5
jointly with those obtained by other 3 top sys-
tems among the 18 participating systems. Our
primary run (RUN1) obtained pretty competitive
results ranking 3th and 4th in the entailment and
relatedness tasks. The RUN4 obtained a remark-
able performance (it would be ranked 6th for en-
tailment and 8th for relatedness) in spite of the
fact that is a system purely based on string match-
ing. The comparison of our runs 1, 3 and 5, which
mainly differs by the use of bagging, shows that
this boosting method provides considerable im-
provements. In fact, comparing RUN3 (all fea-
tures, no bagging) and RUN4 (SM and NEG fea-
ture sets boosted with bagging), they performed
similarly in spite of the considerable larger num-
ber of features used in RUN3. Besides, the RUN5
slightly outperformed our primary run (RUN1) us-
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Entailment Relatedness
system accuracy official rank Pearson Spearman MSE official rank

UNAL-NLP run1 (primary) 83.05% 3rd/18 0.8043 0.7458 0.3593 4th/17

UNAL-NLP run2 79.81% - 0.7482 0.7033 0.4487 -

UNAL-NLP run3 80.15% - 0.7747 0.7286 0.4081 -

UNAL-NLP run4 80.21% - 0.7662 0.7142 0.4210 -

UNAL-NLP run5 83.24% - 0.8070 0.7489 0.3550 -

ECNU run1 83.64% 2nd/18 0.8280 0.7689 0.3250 1st/17

Stanford run5 74.49% 12th/18 0.8272 0.7559 0.3230 2nd/17

Illinois-LH run1 84.58% 1st/18 0.7993 0.7538 0.3692 5th/17

Table 5: Results for task 1.

ing 10 additional iterations of bagging.

3.1.7 Error Analysis
Our primary run for the task 1 failed in 835 pairs of
sentences out of 4,927 in the entailment subtask.
We wanted to understand in why our system failed
in these 835 instances, so we classified manually
these instances in 4 error categories (each instance
could be assigned to several categories).

Paraphrase not detected (NP): exam-
ple={“Two groups of people are playing football”,
“Two teams are competing in a football match”},
gold standard=entailment, prediction=neutral,
number of occurrences= 420 (50.3%). The system
failed to detect the paraphrase between “groups of
people” and “teams”.

Negation not detected (NN) : exam-
ple={“There is no one playing the guitar”,
“Someone is playing the guitar”}, gold stan-
dard=contradiction, prediction=neutral, number
of occurrences=94 (11.3%). The system failed to
detect that the contradiction is due to the negation
in the first text.

False similarity between words (NSS) : ex-
ample={“Two dogs are playing by a tree”,
“Two dogs are sleeping by a tree”}, gold stan-
dard=neutral, prediction=entailment, number of
occurrences=413 (49.5%). The only difference
between these 2 sentences is the gerund “playing”
vs. “sleeping”, which the system erroneously con-
sidered as similar.

Antonym not detected (NA): exam-
ple={“Three children are running down hill”,
“Three children are running up hill”}, gold
standard=contradiction, prediction=entailment,
number of occurrences=40 (4.8%). The only
difference between these 2 sentences is the
words “down” vs. “up”. In spite that this pair
of antonyms was included in the antonym list,

Error category NP NN NSS NA
NP 420 5 125 0

NN - 94 1 0

NSS - - 413 22

NA - - - 40

Table 6: Co-ocurrences of types of errors in RUN1
(task1).

the system failed to distinguish the contradiction
between the texts.

The matrix in Table 6 reports the number of
co-occurrences of error categories in the 835 in-
stances erroneously classified.

3.2 Task 3: Cross-level Semantic Similarity
The SemEval 2014 task 3 (cross-level semantic
similarity) (Jurgens et al., 2014) proposed the se-
mantic textual similarity task but across differ-
ent textual levels, namely paragraph-to-sentence,
sentence-to-phrase, phrase-to-word and word-to-
sense. As usual, the goal is to predict the gold sim-
ilarity scores for each pair of texts. For each one
of these cross-level comparison types there were
proposed a separated training and test data sets.
Basically, we addressed this task using the set of
features SM presented in subsection 3.1.1 in com-
bination with a text expansion approach similar to
the method presented in subsection 3.1.2.

3.2.1 Paragraph-to-sentence and
Sentence-to-phrase

For these two cross-level comparison types we
extracted the SM feature set using the pro-
vided texts. The model parameters obtained for
paragraph-to-sentence were α = 0.1, β = 1.75,
bias = −1.35, p = 1.55; and for sentence-to-
phrase were α = 0.68, β = 0.92, bias = −0.92,
p = 2.49.
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The system for the RUN2 used the SM fea-
ture set and a machine learning model build with
the provided training data for generating the simi-
larity score predictions for the test data. For the
paragraph-to-sentence data set the model was a
REPtree for regression boosted with 40 bagging it-
erations. Similarly, the model for the sentence-to-
phrase data set was a linear regressor also boosted
with 40 bagging iterations.

Unlike RUN2, RUN1 does not make use of any
machine learning algorithm. Instead, we used the
only the basic cardinalities (see Table 1) from the
SM feature set in combination with an ad-hoc re-
semblance coefficient, i.e. the Dice’s coefficient
2|A∩B|/|A|+|B| for the paragraph-to-sentence data
set. In turn, for sentence-to-phrase the overlap co-
efficient, i.e. |A∩B|/min[|A|,|B|], was used.

3.2.2 Phrase-to-word and Word-to-sense
Before applying the same procedure used in the
previous subsection, the texts in the phrase-to-
word and word-to-sense data sets were expanded
with a similar approach to that was used in subsec-
tion 3.1.2.

Phrase-to-word expansion: First, the “word”
was expanded finding its corresponding WordNet
synset using the adapted Lesk’s algorithm provid-
ing as context the “phrase”. Then, once the word’s
synset is obtained, the “word” text is extended
with the textual definition of the synset. Simi-
larity, this procedure is repeated for each word in
the “phase” obtaining and extended version of the
phrase. Finally, these two texts are used for ex-
tracting the SM feature set. The model param-
eters were α = 0.8, β = 1.9, bias = −0.8,
p = 1.5.

Word-to-sense expansion: First, the “sense”
(i.e. synset) is replaced by its textual definition
and its lemma. At this point the pair word-sense
becomes a pair word-sentence. Then, the synset
of the “word” is obtained performing the adapted
Lesk’s algorithm. Next, the “word” is extended
with textual definition of the synset. Finally, these
two texts are used for extracting the SM feature
set obtaining the following model parameters were
α = 0.59, β = 0.9, bias = −0.89, p = 3.91.

3.2.3 Results
The official results obtained by the two submitted
runs jointly with other 3 top systems are shown in
Table 7. Our submissions (prefixed with UNAL-
NLP) ranked 3rd and 5th among 38 participating

test data train data
OnWN (en) OnWN 2012/2013 test

headlines (en) headlines 2013 test

images (en) MSRvid 2012 train and test

deft-news (en) MSRpar 2013 train and test

deft-forum (en)
MSRvid 2012 train and test

OnWN 2012/2013 test

tweet-news (en)
SMTeuroparl 2012 test

SMTnews 2012 test

Wikipedia (es) SMTeuroparl 2012 train

news (es) SMTeuroparl 2012 train

Table 8: Training data used for the STS-2014 data
sets (task 10).

systems, showing that the SM (string-matching)
feature set is effective for the prediction of sim-
ilarity scores. Particularly, in the paragraph-to-
sentence data set, which has the longest text,
RUN2 obtained the best official score. In contrast,
the scores obtained for the phrase-to-word and
word-to-sense data sets were considerably lower
in comparison with the top system, but still com-
petitive against most of the other participating sys-
tems.

3.3 Task 10: Multilingual Semantic
Similarity

The SemEval-2014 task 10 (multilingual seman-
tic similarity) (Agirre et al., 2014) is the sequel of
the semantic textual similarity (STS) evaluations
at SemEval in the past two years (Agirre et al.,
2012; Agirre et al., 2013). This year 6 test data
sets were proposed in English and 2 data sets in
Spanish. Similarly to the 2013 campaign, there is
not explicit training data for each data set. Conse-
quently, different data sets from the previous STS
evaluations were selected to be used as training
data for the new data sets. The selection criterion
was the average character length and type of the
texts. The Table 8 shows the training data used for
each test data set.

3.3.1 English Subtask
The RUN1 for the English data sets was produced
with a parameterized similarity function based on
the SM feature set and the symmetrized Tversky’s
index (Tversky, 1977; Jimenez et al., 2013a). For
a detailed description of this function and its pa-
rameters, please refer to the STSsim feature in
the system description paper of the NTNU team
(Lynum et al., 2014). The parameters used in that
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System Para-2-Sent Sent-2-Phr Phr-2-Word Word-2-Sense Official Rank
SimCompass run1 0.811 0.742 0.415 0.356 1st/38

ECNU run1 0.834 0.771 0.315 0.269 2nd/38

UNAL-NLP run2 0.837 0.738 0.274 0.256 3rd/38

SemantiKLUE run1 0.817 0.754 0.215 0.314 4th/38

UNAL-NLP run1 0.817 0.739 0.252 0.249 5th/38

Table 7: Official results for task 3 (Pearson’s correlation).

Data α β bias p α′ β′ bias′

OnWN 0.53 -0.53 1.01 1.00 -4.89 0.52 0.46

headlines 0.36 -0.29 4.17 0.85 -4.50 0.43 0.19

images 1.12 -1.11 0.93 0.64 -0.98 0.50 0.11

deft-news 3.36 -0.64 1.37 0.44 2.36 0.72 0.02

deft-forum 1.01 -1.01 0.24 0.93 -2.71 0.42 1.63

tweet-news 0.13 0.14 2.80 0.01 2.66 1.74 0.45

Table 9: Optimal parameters used for task 10 in
English.

function are reported in Table 9. Unlike subsec-
tion 3.1.1 where the Dice’s coefficient was used as
the text similarity function, here the symmetrical
Tversky’s index (eq. 2) was reused generating the
three additional parameters marked with apostro-
phe (α′, β′ and bias′).

For the RUN2 the SM feature set was extracted
from all the data sets in English (en) listed in Table
8. Then, a REPtree (Quinlan, 1987) boosted with
50 bagging iterations (Breiman, 1996) was trained
using the training data sets selected for each test
data set. Finally, these machine learning models
produced the similarity score predictions for each
test data set.

The RUN3 was identical to the RUN2 but in-
cluded additional feature sets apart from SM,
namely: ESA, POS and WN. The WN feature
set is the same as SM, but replacing the word-to-
word similarity function in eq. 2 by the path mea-
sure from the WordNet::Similarity package (Ped-
ersen et al., 2004).

3.3.2 Spanish Subtask
The Spanish system was based entirely in the SM
feature set with some small changes for adapt-
ing the system to Spanish. Basically, the list of
English stop-words was replaced by the Spanish
stop-words provided by the NLTK. In addition,
the Porter stemmer was replaced by its Spanish
equivalent, i.e. the Snowball stemmer for Span-
ish. The RUN1 is equivalent to the RUN1 for the

data set run1 run2 run3
deft-forum 0.5043 0.3826 0.4607

deft-news 0.7205 0.7305 0.7216

headlines 0.7616 0.7645 0.7605

images 0.8071 0.7706 0.7782

OnWN 0.7823 0.8268 0.8426

tweet-news 0.6145 0.4028 0.6583

mean (en) 0.7113 0.6573 0.7209

official rank (en) 12th/38 22th/38 9th/38

Wikipedia 0.7804 0.7566 0.6894

news 0.8154 0.7829 0.7965

mean (es) 0.8013 0.7723 0.7533

official rank (es) 3rd/22 9th/22 12th/22

Table 10: Official results for the task 10 (Pearson’s
correlation).

English subtask described in the previous subsec-
tion. The parameters used for the text similarity
function were α = 1.16, β = 1.08, bias = 0.02,
p = 1.02, α′ = 1.54, β′ = 0.08 and bias′ = 1.37.
The description and meaning of these parameters
can be found in (Lynum et al., 2014) associated to
the STSsim feature.

The RUN2 was obtained using the SM feature
set and a linear regressor for generating the simi-
larity score predictions. Similarity, RUN3 used the
same feature set SM in combination with a REP-
tree boosted with 30 bagging iterations.

3.3.3 Results

The results for the 3 submitted runs correspond-
ing to the 2 sub tasks (English and Spanish) are
shown in Table 10. It is important to note that
the RUN1 for the Wikipedia data set in Spanish
was the top system among 22 participating sys-
tems. This result is remarkable given that this sys-
tem was trained with a data set in English showing
the domain adaptation ability of the soft cardinal-
ity approach.
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4 Conclusions

We participated in the SemEval-2014 task 1, 3 and
10 with an uniform approach based on soft cardi-
nality features, obtaining pretty satisfactory results
in all data sets, tasks and sub tasks. This approach
has been used since SemEval-2012 in all versions
of the following tasks: semantic textual similar-
ity (Jimenez et al., 2012b; Jimenez et al., 2013a),
typed similarity (Croce et al., 2013), cross-lingual
textual entailment (Jimenez et al., 2012a; Jimenez
et al., 2013c), student response analysis (Jimenez
et al., 2013b), and multilingual semantic textual
similarity (Lynum et al., 2014). In the majority
of the cases, the systems based on soft cardinality,
built by us and other teams, have been among the
top systems. Given the uniformity of the approach,
the consistency of the results, the few computa-
tional resources required and the overall concep-
tual simplicity, the soft cardinality is established
as a useful tool for a wide spectrum of applications
in natural language processing.
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Abstract

In this paper we describe our participa-
tion in the SemEval 2014, Task 5, con-
sisting of the construction of a translation
assistance system that translates L1 frag-
ments, written in L2 context, to their cor-
rect L2 translation. Our approach con-
sists of a bilingual parallel corpus, a sys-
tem of syntactic features extraction and a
statistical memory-based classification al-
gorithm. Our system ranked 4th and 6th
among the 10 participating systems that
used the English-Spanish data set.

1 Introduction

An L2 writing assistant is a tool intended for lan-
guage learners who need to improve their writing
skills. This tool lets them write a text in L2, but fall
back to their native L1 whenever they are not sure
about a certain word or expression. In these cases,
the assistant automatically translates this text for
them (van Gompel et al., 2014).

Although at first glance this may be seen as
a classification problem, it might be better ful-
filled by a cross-lingual word sense disambigua-
tion (WSD) approach, which takes context into
account by means of contextual features used in
a machine learning setting. The main differences
between this and previous approaches to cross-
lingual WSD are the bilingual nature of the input
sentences (see section 2.3) and the annotation of
target phrases, rather than single words.

The remainder of this article is organized as fol-
lows. Section 2 describes the proposed method.
A description of the system we submitted, the ob-
tained results and an error analysis are discussed

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

in section 3. In section 4 we present a brief dis-
cussion about the results. Finally, in section 5 we
make some concluding remarks.

2 Method Description

The core of the proposed system uses techniques
from memory-based classification to find the most
appropriate translation of a target phrase in a
given context. It receives an input as in (1) and
yields an output as in (2).

(1) No creo que ella is coming.
(2) No creo que ella venga.

It does so on the basis of a syntactic selec-
tion of context features, a large bilingual parallel
corpus and a classifier built using the Tilburg
Memory-Based Learner, TiMBL (Daelemans et
al., 2010).

The proposed system consists of several stages.
First, a large bilingual corpus is aligned at word
and phrase level. Next, an index is built by each
phrase in the L1 side of the corpus to retrieve ef-
ficiently the occurrences of a particular L1 phrase
in the aligned corpus along with their translations
and contexts in L2 (subsection 2.1). Second, the
relevant contexts for each L1 phrase in the test set
(example sentences) are retrieved from the corpus
and a set of syntactic features are extracted from
each sentence (subsection 2.2). Third, a special
two-stage process is used to extract the same fea-
tures from the sentences in the test set to deal with
the fact that these sentences were written in two
languages (subsection 2.3). Finally, each target
phrase is translated using the IBL algorithm and
the translations were incorporated in the original
test sentences (subsection 2.4).

743



Input sentence Parallel example sentences
No creo que las necesidades
afectivas de las personas estén
necesariamente linked al
matrimonio.

He said Boyd already linked
him to Brendan.

Dijo que Boyd ya le había rela-
cionado con Brendan.

The three things are inextrica-
bly linked, and I have the for-
mula right here.

Las tres cosas están es-
trechamente vinculadas, y
tengo la fórmula aquí.

Table 1: An input sentence and 2 example sentences from Linguee.com.

2.1 Parallel Corpus Selection and
Preparation

As no training corpus was given prior to develop-
ing this system, finding and processing the most
suitable corpus for this task was paramount. As
the purpose of this system is to help language stu-
dents, the corpus needs to account for simple yet
correct everyday speech.

In an initial stage of development we opted
to use the 70-million sentences OpenSubtitles.org
corpus compiled by the Opus Project (Tiedemann,
2012), which includes many informal everyday ut-
terances, at the expense of a less accurate transla-
tion quality1. Although the use of this training cor-
pus yielded over 95% of recall on the trial corpus
given by the task organizers, only 80% of the trial
sentences had enough (>100) training examples in
order to produce a quality translation. To solve this
issue, an ad-hoc corpus compilation mechanism
was created by using the Linguee.com. Thus, a
set of parallel example sentences is retrieved from
Linguee.com by querying all the L1 target phrases
from the evaluation data (see an example in Table
1).

The corpus preparation procedure consisted of
several steps. The first step was to clean the cor-
pus with the Moses cleaning script (Koehn et al.,
2007). Next, the corpus was tokenized and PoS-
tagged using FreeLing (Padró and Stanilovsky,
2012) (HMM tagger was used). After that, the
corpus was word-aligned using Giza++ (Och and
Ney, 2003) over Moses (Koehn et al., 2007). The
resulting alignment was then combined with the
tagged version of the corpus. Finally, a phrase in-
dex was built using a SMT phrase extraction algo-
rithm (Ling et al., 2010) including for each phrase
pointers to all its occurrences in the corpus for fur-
ther retrieval.

1The EPPS corpus (Lambert et al., 2005) was very useful
as a training corpus in the developing stages of this system.
It was however not used in the final system training.

2.2 Syntactic Feature Extraction

The syntactic tags feature is a novel feature we are
introducing for the CLWSD problem (Lefever and
Hoste, 2013). They are linearizations of syntactic
dependency trees. These trees were built by Freel-
ing’s Txala Parser (Lloberes et al., 2010) and were
introduced as individual tags in a sentence analy-
sis by parsing the tree and mapping its leaves with
their corresponding order in the source sentence.
Then, each leaf’s label and parent number was ex-
tracted. For the root, the special parent tag ‘S’ was
used.

The WSD literature commonly distinguishes
between local and global context features (Mar-
tinez and Agirre, 2001). The former are extracted
from the neighboring words and the latter are ex-
tracted from words of the whole context provided
using some heuristic to select relevant. Unlike
global features, the relevance of the surrounding
words is not put into question or are weighted
by the degree of relevance according to their po-
sition in the sentence and lexicographic distance
from the target phrase (van Gompel, 2010). There
is a linguistic explanation as to why surrounding
words play a significant role in determining the
target’s translation. Often, these words have a di-
rect dependency relation with the target. Indeed,
physical closeness is an approximation of syntac-
tic relatedness. What we propose in this paper is
that the relevance of the context words for deter-
mining a correct translation is proportional to their
syntactic relatedness to the target, rather than their
physical closeness in the sentence. Unlike Mar-
tinez et al. (2002), what we propose here is to use
syntax as a feature selector, rather than as a feature
itself.

Instead of defining a local and a global set of
relevant words, we selected a single set of relevant
words according to their syntactic relation to the
target phrase. This set consisted of all the children
of the target words, and the parents of the main
target words. The main target words are the subset
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0 1 2 3 4 5 6
Forms Las tres cosas están estrechamente vinculadas .

Lemmas el 3 cosa estar estrechamente vincular .
PoS Tags DA0FP0 Z NCFP000 VAIP3P0 RG VMP00PF Fp
Syn Tags espec:1 espec:2 subj:3 co-v:7 espec:5 att:3 ?:7

Table 2: Tagging of the sentence “Las tres cosas están estrechamente vinculadas.”

of words with the highest number of (nested) chil-
dren within the target phrase. Table 3 features the
rules used for selecting the relevant words.

This Feature Extraction method uses the depen-
dency labels as a means of selecting only rele-
vant examples. Take for instance the example sen-
tences in Table 1. Given that the target word is an
attribute, the subject is included as a relevant fea-
ture, as per the last rule in Table 3. Any example
sentence in which there is no subject as the sib-
ling of the target word (as is the case for the first
example sentence in Table 1) will have an empty
feature, which increases its likelihood of not being
included in the training set of this sentence.

2.3 Test Data Pre-processing

The test data for this task is composed of bilin-
gual input sentences, making it impossible to ob-
tain a correct tagging or parsing. To overcome this
issue, a two-stage process wherein the first stage
obtains translations for the L1 portions was per-
formed. These plausible translations are obtained
by TiMBL using as features the neighboring words
of the target phrases. Once the sentences are in a
single language (L2) they are tagged and parsed
syntactically. Finally, the second stage consists in
applying the same feature selection algorithm pro-
posed in subsection 2.2.

2.4 Translation Selection

The processing of each sentence consists of sev-
eral steps. In the first step, the L1 target phrase
is searched for in the phrase index Given an L1
phrase, a binary search algorithm iterates through
the phrase index and returns an array of point-
ers2 to the corpus. Then, a multi-threaded subrou-
tine reads the word-aligned bilingual corpus and
extracts all the referenced sentences. Thus, for
each input sentence, a set of example bilingual
word-aligned sentences is extracted from the cor-
pus. Relevant features are extracted according to

2Given that line breaks are just regular characters, what is
actually referenced in the phrase index are byte offsets.

a syntactic analysis as explained in subsection 2.2,
and written to text files in the C4.5 format. The
features extracted from the example sentences, as
well as the L2 translations of the target phrases
in each sentence, are used as the training set for
TiMBL, while the features extracted from the in-
put sentence are used as its (singleton) test set.

The L2 translations of each target phrase in the
example sentences are used as the classes for the
training set, in order to turn a bilingual disam-
biguation problem into a machine learning clas-
sification problem. TiMBL learns how to classify
the training feature vectors into their correspond-
ing classes and then predicts the class for the test
set feature vector, i.e. its most likely translation
using an IBL algorithm (Aha et al., 1991), which
is a variation of the k-nearest neighbor classifier.

3 System Submissions

We submitted three result sets for the English-
Spanish language pair. Two of them were submit-
ted for the ‘Best’ evaluation type, and the other
one was submitted for the ‘out-of-five’ evaluation
type. The difference between these two evaluation
types is that out-of-five evaluation expects up to
five different translations for every target phrase,
while ‘best’ only accepts one. The evaluation met-
rics include accuracy and recall, and also a word-
based special type of accuracy, which takes into
account partially correct translations.

Of the two runs submitted in the ‘Best’ evalu-
ation type, Run1-best (see table 4) used our pro-
posed syntactic feature extraction method, while
Run2-best used a regular 2-word window around
the target phrase. For the Run1-oof we combined
the two methods mentioned above with different
values of k.

3.1 Results

The test data consisted in 500 sentences written in
Spanish, with target English phrases. The official
results obtained by our runs are shown in Table 4.

Our control run, Run2-best, yielded slightly
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Case Rule Example
One of the target words is a
subject.

Include any sibling which is an
auxiliary or modal verb.

Our cat quiere comerse la en-
salada.

The parent of one of the main
target words is a coordinative
conjunction.

Include its closest sibling. No quería ni eat, ni dormir.

The parent of one of the main
target words is a relative pro-
noun.

Include its grandparent. No creo que ella is coming.

One of the target words is an
attribute.

Include any sibling which is
subject.

Mis tías están very tired.

Table 3: Relevant word selection rules.

better results than our experimental run, Run1-
best. This means that our method of syntactic fea-
tures extraction did not improve translation qual-
ity.

3.2 Error Analysis

By analyzing our results, we detected three groups
of recurrent errors. The first group of errors is re-
lated to verb morphology, in which a single En-
glish verbal form corresponds to many Spanish
verbal forms. In these cases, our system often out-
puts an infinitive form or a past participle instead
of a finite verb.

The second group of errors we detected com-
prises incomplete translations. In these cases, a
single word in English has a multiword Spanish
translation, but our system often outputs a single-
word translation.

The third group of errors are related to English
words with multiple possible parts of speech, as
‘flood’, which can be a noun but also a verb. Our
system tends to output nouns instead of verbs and
vice versa.

4 Discussion

There are two main reasons as to why the syntac-
tic feature extraction method did not work. The
first reason is related to the nature of the task; the
second is related to the scope of the method.

The fact that this task involved analyzing sen-
tences partly written in two languages made syn-
tactic analysis extremely difficult as dependencies
span all over the bilingual sentence. The best solu-
tion we found for this was to divide the operation
of the system in two stages, where the first one did
not involve syntactic dependencies and provided a
working translation, and the second one used this

first translation to perform a syntactic analysis and
then rerun the classification step. This, however,
favored error propagation. Although translation
quality did improve between the two stages, there
were many cases in which a bad initial translation
involved a bad syntactic analysis, which in turn re-
sulted in a bad final translation.

A more sophisticated version of his method was
initially developed for the English-Spanish lan-
guage pair and involved several language-specific
rules. However, we decided to make this method
language-independent, so we simplified it to its ac-
tual version. This simplified version uses syntactic
dependencies as feature selectors, but the features
themselves are regular lemma/PoS combinations,
which is not always the best feature choice.

5 Conclusion

Syntactic dependency relations are an important
means of analyzing the internal structure of a sen-
tence and can successfully be used to improve the
feature selection process in WSD. However, syn-
tactic parsing is far away from optimal in Spanish,
a fortiori if it involves sentences written in two lan-
guages. For this kind of task, perhaps a statistical
language model of L2 would have yielded better
results.
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Abstract

This paper describes the UNIBA team
participation in the Cross-Level Semantic
Similarity task at SemEval 2014. We pro-
pose to combine the output of different se-
mantic similarity measures which exploit
Word Sense Disambiguation and Distribu-
tional Semantic Models, among other lex-
ical features. The integration of similar-
ity measures is performed by means of
two supervised methods based on Gaus-
sian Process and Support Vector Machine.
Our systems obtained very encouraging
results, with the best one ranked 6th out
of 38 submitted systems.

1 Introduction

Cross-Level Semantic Similarity (CLSS) is the
task of computing the similarity between two text
fragments of different sizes. The task focuses on
the comparison between texts at different lexical
levels, i.e. between a larger and a smaller text.
The task comprises four different levels: 1) para-
graph to sentence; 2) sentence to phrase; 3) phrase
to word; 4) word to sense. The task objective is
to provide a framework for evaluating general vs.
level-specialized methods.

Our general approach consists in combining
scores coming from different semantic similarity
algorithms. The combination is performed by a
supervised method using the training data pro-
vided by the task organizers. The data set com-
prises pairs of text fragments that can be rated with
a score between 0 and 4, where 4 indicates the
maximum level of similarity.

We select algorithms which provide similarities
at different levels of semantics: surface (or string-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

based), lexical (word sense disambiguation), and
distributional level. The idea is to combine in a
unique system the semantic aspects that pertain
text fragments.

The following section gives more details about
the similarity measures and their combination in a
unique score through supervised methods (Section
2). Section 3 describes the system set up for the
evaluation and comments on the reported results,
while Section 4 concludes the paper.

2 System Description

The idea behind our system is to combine the
output of several similarity measures/features by
means of a supervised algorithm. Those features
were grouped in three main categories. The fol-
lowing three sub-sections describe in detail each
feature exploited by the system.

2.1 Distributional Semantics Level

Distributional Semantic Models (DSM) are an
easy way for building geometrical spaces of con-
cepts, also known as Semantic (or Word) Spaces,
by skimming through huge corpora of text in or-
der to learn the context of word usage. In the re-
sulting space, semantic relatedness/similarity be-
tween two words is expressed by the opposite of
the distance between points that represent those
words. Thus, the semantic similarity can be com-
puted as the cosine of the angle between the two
vectors that represent the words. This concept
of similarity can be extended to whole sentences
by combining words through vector addition (+),
which corresponds to the point-wise sum of the
vector components. Our DSM measure (DSM)
is based on a SemanticSpace, represented by a
co-occurrences matrix M , built by analysing the
distribution of words in the British National Cor-
pus (BNC). Then, M is reduced using the Latent
Semantic Analysis (LSA) (Landauer and Dumais,
1997). Vector addition and cosine similarity are
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then used for building the vector representation of
each text fragment and computing their pairwise
similarity, respectively.

2.2 Lexical Semantics Level

Word Sense Disambiguation. Most of our
measures rely on the output of a Word Sense Dis-
ambiguation (WSD) algorithm. Our newest ap-
proach to WSD, recently presented in Basile et
al. (2014), is based on the simplified Lesk algo-
rithm (Vasilescu et al., 2004). Each word wi in
a sequence w1w2...wn is disambiguated individ-
ually by choosing the sense that maximizes the
similarity between the gloss and the context of wi

(i.e. the whole text where wi occurs). To boost
the overlap between the context and the gloss,
this last is expanded with glosses of related mean-
ings, following the approach described in Baner-
jee and Pedersen (2002). As sense inventory we
choose BabelNet 1.1, a huge multilingual seman-
tic network which comprises both WordNet and
Wikipedia (Navigli and Ponzetto, 2012). The al-
gorithm consists of the following steps:

1. Building the glosses. We retrieve all possible
word meanings for the target word wi that are
listed in BabelNet. BabelNet mixes senses
in WordNet and Wikipedia. First, senses
in WordNet are searched for; if no sense is
found (as often happens with named enti-
ties), senses for the target word are sought in
Wikipedia. We preferred that strategy rather
than retrieving senses from both sources at
once because this last approach produced
worse results when tuning the system. Once
the set of senses Si = {si1, si2, ..., sik} as-
sociated to the target word wi has been re-
trieved, gloss expansion occurs. For each
sense sij of wi, the algorithm builds the sense
extended gloss g∗ij by appending the glosses
of meanings related to sij to its original gloss
gij . The related meanings, with the exception
of “antonym” senses, are the output of the
BabelNet function “getRelatedMap”. More-
over, each word in g∗ij is weighted by a func-
tion inversely proportional to the distance be-
tween sij and its related meaning. The dis-
tance d is computed as the number of edges
linking two senses in the graph. The func-
tion takes also into account the frequencies
of the words in all the glosses giving more
emphasis to the most discriminative words;

this can be considered as a variation of the in-
verse document frequency (idf ) for retrieval
that we named inverse gloss frequency (igf ).
The igf for a word wk occurring gf∗k times in
the set of extended glosses for all the senses
in Si, the sense inventory of wi, is computed
as IGFk = 1 + log2

|Si|
gf∗k

. The final weight
for the word wk appearing h times in the ex-
tended gloss g∗ij is given by:

weight(wk, g
∗
ij) = h× IGFk × 1

1 + d
(1)

2. Building the context. The context C for the
word wi is represented by all the words that
occur in the text.

3. Building the vector representations. The con-
text C and each extended gloss g∗ij are repre-
sented as vectors in the SemanticSpace built
through the DSM described in Subsection
2.1.

4. Sense ranking. The algorithm computes the
cosine similarity between the vector repre-
sentation of each extended gloss g∗ij and that
of the context C. Then, the cosine similar-
ity is linearly combined with the probability
p(sij |wi), which takes into account the sense
distribution of sij given the word wi. The
sense distribution is computed as the num-
ber of times the word wi was tagged with
the sense sij in SemCor, a collection of 352
documents manually annotated with Word-
Net synsets. T he additive (Laplace) smooth-
ing prevents zero probabilities, which can oc-
cur when some synsets do not appear in Sem-
Cor. The probability is computed as follows:

p(sij |wi) =
t(wi, sij) + 1
#wi + |Si| (2)

The output of this step is a ranked list of
synsets.

The WSD measure (WSD) is computed on the top
of the output of the last step. For each text frag-
ment, we build a Bag-of-Synset (BoS) as the sum,
over the whole text, of the weighted synsets as-
sociated with each word. Then, we compute the
WSD similarity as the cosine similarity between
the two BoS.
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Graph. A sub-graph of BabelNet is built for
each text fragment starting from the synsets pro-
vided by the WSD algorithm. For each word the
synset with the highest score is selected, then this
initial set is expanded with the related synsets in
BabelNet. We apply the Personalized Page Rank
(Haveliwala, 2002) to each sub-graph where the
synset scores computed by the WSD algorithm are
exploited as prior probabilities. The weighted rank
of synsets provided by Page Rank is used to build
the BoS of the two text fragments, then the Person-
alized Page Rank (PPR) is computed as the cosine
similarity between them.

Synset Distributional Space. Generally, sim-
ilarity measures between synsets rely on the
synsets hierarchy in a semantic network (e.g.
WordNet). We define a new approach that is com-
pletely different, and represents synsets as points
in a geometric space that we call SDS (Synset Dis-
tributional Space). SDS is generated taking into
account the synset relationships, and similarity is
defined as the synsets closeness in the space. We
build a symmetric matrix S which contains synsets
on both rows and columns. Each cell in the matrix
is set to one if a semantic relation exists between
the corresponding synsets. The relationships are
extracted from BabelNet limiting synsets to those
occurring also in WordNet, while synsets coming
from Wikipedia are removed to reduce the size
of S. The method for building the matrix S re-
lies on Reflective Random Indexing (RRI) (Co-
hen et al., 2010), a variation of the Random In-
dexing technique for matrix reduction (Kanerva,
1988). RRI retains the advantages of RI which
incrementally builds a reduced space where dis-
tance between points is nearly preserved. More-
over, cyclical training, i.e. the retraining of a new
space exploiting the RI output as basis vectors,
makes indirect inference to emerge. Two differ-
ent similarity measures can be defined by exploit-
ing this space for representing synsets: WSD-SDS
and PPR-SDS, based on WSD and PPR respec-
tively. Each BoS is represented as the sum of the
synset vectors in the SDS space. Then, the simi-
larity is computed as the cosine similarity between
the two vector representations.

2.3 Surface Level
At the surface level, we compute the following
features:

EDIT The edit, or Levenshtein, distance between

the two texts;

MCS The most common subsequence between
the two texts;

2-gram, 3-gram For each text fragment, we
build the Bag-of-n-gram (with n varying in
{2, 3}); then we compute the cosine similar-
ity between the two Bag-of-n-gram repre-
sentations.

BOW For each tokenized text fragment, we build
its Bag-of-Word, and then compute the co-
sine similarity between the two BoW.

L1 The length in characters of the first text frag-
ment;

L2 The length in caracters of the second text frag-
ment;

DIFF The difference between L1 and L2.

2.4 Word to Sense

The word to sense level is different from the other
ones: in this case the similarity is computed be-
tween a word and a particular word meaning.
Since a word meaning is not a text fragment, this
level poses a new challenge with respect to the
classical text similarity task. In this case we de-
cide to consider the word on its own as the first
text fragment, while for the second text fragment
we build a dummy text using the BabelNet gloss
assigned to the word sense. In that way, the distri-
butional and the lexical measures (WSD, Graph,
and DSM) can be applied to both fragments. Ta-
ble 1 recaps the features used for each task.

3 Evaluation

Dataset Description. The SemEval-2014 Task 3
Cross-Level Semantic Similarity is designed for
evaluating systems on their ability to capture the
semantic similarity between lexical items of dif-
ferent length (Jurgens et al., 2014). To this ex-
tent, the organizers provide four different levels
of comparison which correspond to four different
datasets: 1) Paragraph to Sentence (Par2Sent); 2)
Sentence to Phrase (Sent2Ph); 3) Phrase to Word
(Ph2W); and 4) Word to Sense (W2Sense).

For each dataset, the organizer released trial,
training and test data. While the trial includes a
few examples (approximately 40), both training
and test data comprise 500 pairs of text fragments.
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Run Par2Sent Sent2Ph Ph2W W2Sense
Official

Rank
Spearman

Correlation

bestTrain .861 .793 .555 .420 - -
LCS .527 .562 .165 .109 - -
run1 .769 .729 .229 .165 7 10
run2 .784 .734 .255 .180 6 8
run3 .769 .729 .229 .165 8 11

Table 2: Task results.

Feature
Par2Sent
Sent2Ph
Ph2W

W2Sense

DSM
√ √

WSD
√ √

PPR
√ √

WSD-SDS
√ √

PPR-SDS
√ √

EDIT
√

-
MCS

√
-

2-gram
√

-
3-gram

√
-

BOW
√

-
L1

√
-

L2
√

-
DIFF

√
-

Table 1: Features per task.

Each pair is associated with a human-assigned
similarity score, which varies from 4 (very similar)
to 0 (unrelated). Organizers provide the normal-
ized Longest Common Substring (LCS) as base-
line. The evaluation is performed through the
Pearson (official rank) and the Spearman’s rank
correlation.

System setup. We develop our system in JAVA
relying on the following resources:

• Stanford CoreNLP to pre-process the text:
tokenization, lemmatization and PoS-tagging
are applied to the two text fragments;

• BabelNet 1.1 as knowledge-base in the WSD
algorithm;

• JAVA JUNG library for Personalized Page
Rank;

• British National Corpus (tokenized text with
stop word removal) and SVDLIB to build the
SemanticSpace described in Subsection 2.1;

• A proprietary implementation of Reflective
Random Indexing to build the distributional
space based on synsets (SDS) extracted from
BabelNet (we used two cycles of retraining);

• Weka for the supervised approach.

After a tuning step using both training and trial
data provided by organizers, we selected three dif-
ferent supervised systems: Gaussian Process with
Puk kernel (run1), Gaussian Process with RBF
kernel (run2), and Support Vector Machine Re-
gression with Puk kernel (run3). All the sys-
tems are implemented with the default parame-
ters set by Weka. We trained a different model on
each dataset. The DSM is built using the 100, 000
most frequent terms in the BNC, while the co-
occurrences are computed on a window size of 5
words. The vector dimension is set to 400, the
same value is adopted for building the SDS, where
the number of seeds (no zero components) gener-
ated in the random vectors is set to 10 with one
step of retraining. The total number of synset vec-
tors in the SDS is 576, 736. In the WSD algorithm,
we exploited the whole sentence as context. The
linear combination between the cosine similarity
and the probability p(sij |wi) is performed with a
factor of 0.5. The distance for expanding a synset
with its related meaning is set to one. The same
depth is used for building the graph in the PPR
method, where we fixed the maximum number of
iterations up to 50 and the dumpling factor to 0.85.

Results. Results of our three systems for
each similarity level are reported in Table 2 with
the baseline provided by the organizer (LCS).
Our three systems always outperform the LCS
baseline. Table 2 also shows the best results
(bestTrain) obtained on the training data by a
Gaussian Process with Puk kernel and a 10-fold
cross-validation. Support Vector Machine and
Gaussian Process with Puk kernel, run1 and run3
respectively, produce the same results. Comparing
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P ar2Sent .612 .697 -.580 .129 .129 .461 .44 .630 .478 .585 .002 .231 .116
Sent2Ph .540 .649 -.641 .110 .110 .526 .474 .376 .236 .584 .069 .357 .218
Ph2W .228 .095 -.094 .087 .087 .136 .120 - - .095 .079 .013 .071
W2Sense .147 .085 -.062 .084 .062

Table 3: Individual measures for each task.

these figures with those obtained on training data
(run1 and run3 vs. bestTrain), we can observe
that the Puk kernel tends to over-fit on training
data, while RBF kernel seems to be less sensitive
to this problem.

We analysed also the performance of each mea-
sure on its own; results in Table 3 are obtained by
training the best supervised system (run2) with
default parameters on each feature individually.
WSD obtains the best results in the first two lev-
els, while DSM is the best method in the last two
ones. This behaviour can be ascribed to the size
of the text fragments. In large text fragments the
WSD algorithm can rely on wider contexts to ob-
tain good performance; while in short texts infor-
mation about context is poor. At the W2Sense
level, the measure based on the Personalized Page
Rank obtains the worst results; however, we no-
ticed that the ablation of that feature causes a drop
in performance of the supervised systems.

After the submission deadline, we noticed that
sometimes PoS-tagging produced wrong results
on small texts. This incorrect behaviour influenced
negatively the correct retrieval of synsets from Ba-
belNet. Thus, we decided to exclude PoS-tagging
for text fragments with less than three words. In
such a case, all the synsets for a given word are
retrieved. Making this adjustment, we were able
to obtain the improvements (∆%) with respect to
the submitted runs reported on Table 4.

Run Ph2W ∆% W2Sense ∆%
run1 .263 +14.85 .242 +46.67
run2 .257 +00.78 .237 +31.67
run3 .263 +14.85 .242 +46.66

Table 4: Results after PoS-tagging removal for
short text (< 3 words).

4 Conclusions

We have reported the results of our participa-
tion in the cross-level semantic similarity task
of SemEval-2014. Our systems combine differ-
ent similarity measures based on string-matching,
word sense disambiguation and distributional se-
mantic models. Our best system ranks 6th out
of the 38 participants in the task with respect to
the Pearson correlation, while it ranks 8th when
Spearman was used. These results suggest that our
methods are robust with respect to the evaluation
measures.
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Abstract 

The paper describes our experiments ad-

dressing the SemEval 2014 task on the 

Analysis of Clinical text. Our approach 

consists in extending the techniques of 

NE recognition, based on sequence label-

ling, to address the special issues of this 

task, i.e. the presence of overlapping and 

discontiguous mentions and the require-

ment to map the mentions to unique iden-

tifiers. We explored using supervised 

methods in combination with word em-

beddings generated from unannotated da-

ta.  

1 Introduction 

Clinical records provide detailed information on 

examination and findings of a patient consulta-

tion expressed in a narrative style. Such records 

abound in mentions of clinical conditions, ana-

tomical sites, medications, and procedures, 

whose accurate identification is crucial for any 

further activity of text mining. Many different 

surface forms are used to represent the same 

concept and the mentions are interleaved with 

modifiers, e.g. adjectives, verb or adverbs, or are 

abbreviated involving implicit terms. 

For example, in 

Abdomen is soft, nontender, 

nondistended, negative bruits 

the mention occurrences are “Abdomen 

nontender” and “Abdomen bruits”, which 

refer to the disorders: “nontender abdomen” 

and “abdomininal bruit”, with only the sec-

ond having a corresponding UMLS Concept 

Unique Identifier (CUI). In this case the two 

mentions overlap and both are interleaved with 

other terms, not part of the mentions. 

Secondly, mentions can be nested, as in this 

example: 

left pleural and parenchymal 

calcifications 

where the mention calcifications is nested 

within pleural calcifications. 

Mentions of this kind are a considerable de-

parture from those dealt in typical Named Entity 

recognition, which are contiguous and non-

overlapping, and therefore they represents a new 

challenge for text analysis. 

The analysis of clinical records poses addi-

tional difficulties with respect to other biomedi-

cal NER tasks, which use corpora from the med-

ical literature. Clinical records are entered by 

medical personnel on the fly and so they contain 

misspellings and inconsistent use of capitaliza-

tion. 

The task 7 at SemEval 2014, Analysis of 

Clinical Text, addresses the problem of recogni-

tion of mentions of disorders and is divided in 

two parts: 

A. recognition of mentions of bio-medical 

concepts that belong to the UMLS se-

mantic group disorders;  

B. mapping of each disorder mention to a 

unique UMLS CUI (Concept Unique 

Identifiers). 

The challenge organizers provided the following 

resources: 

 A training corpus of clinical notes from 

MIMIC II database manually annotated 

for disorder mentions and normalized to 

an UMLS CUI, consisting of 9432 sen-

tences, with 5816 annotations. 

 A collection of unannotated notes, consist-

ing of 1,611,080 sentences. 

This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Page numbers and pro-

ceedings footer are added by the organisers. Licence details:   

http://creativecommons.org/licenses/by/4.0/ 
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We also had access to the UMLS ontology (Bo-

denreider, 2004). 

Our approach to portion A of the task was to 

adapt a sequence labeller, which provides good 

accuracy in Named Entity recognition in the 

newswire domain, to handle the peculiarities of 

the clinical domain. 

We performed mention recognition in two 

steps: 

1. identifying contiguous portions of a men-

tion; 

2. combining separated portions of mentions 

into a full mention. 

In order to use a traditional sequence tagger for 

the first step, we had to convert the input data 

into a suitable format, in particular, we dealt with 

nested mentions by transforming them into non-

overlapping sequences, through replication. 

For recombining discontiguous mentions, we 

employed a classifier, trained to recognize 

whether pairs of mentions belong to the same 

entity. The classifier was trained using also fea-

tures extracted from the dependency tree of a 

sentence, in particular the distance of terms along 

the tree path. Terms related by a dependency 

have distance 1 and terms having a common 

head have distance 2. By limiting the pairs
1
 to be 

considered for combination to those within dis-

tance 3, we both ensure that only plausible com-

binations are performed and reduce the cost of 

the algorithm. 

For dealing with portion B of the task, we ap-

ply fuzzy matching (Fraiser, 2011) between the 

extracted mentions and the textual description of 

entities present in selected sections of UMLS 

disorders. The CUI from the match with highest 

score is chosen. 

In the following sections, we describe how we 

carried out the experiments, starting with the pre-

processing of the data, then with the training of 

several versions of NE recognizer, the training of 

the classifier for mention combination. We then 

report on the results and discuss some error anal-

ysis on the results. 

2 Preprocessing of the annotated data 

The training data was pre-processed, in order to 

obtain corpora in a suitable format for: 

1. training a sequence tagger 

2. training the classifier for mention com-

bination. 

                                                 
1
 Not implemented in the submitted runs. 

Annotations in the training data adopt a pipe-

delimited stand-off character-offset format. The 

example in the introduction has these annota-

tions: 

00098-016139-

DISCHARGE_SUMMARY.txt || Dis-

ease_Disorder || C0221755 || 

1141 || 1148 || 1192 || 1198 

00098-016139-

DISCHARGE_SUMMARY.txt || Dis-

ease_Disorder || CUI-less || 

1141 || 1148 || 1158 || 1167 

The first annotation marks Disease_Disorder 

as annotation type, C0221755 as CUI, while the 

remaining pairs of numbers represent character 

offsets within the original text that correspond to 

spans of texts containing the mention, i.e. Abdo-

men nondistended. The second annotation is 

similar and refers to Abdomen bruits. 

In order to prepare the training corpus for a 

NE tagger, the data had to be transformed and 

converted into IOB
2
 notation. However a stand-

ard IOB notation does not convey information 

about overlapping or discontiguous mentions. 

In order to deal with overlapping mentions, as 

is the case for word “Abdomen” in our earlier 

example, multiple copies of the sentence are pro-

duced, each one annotated with disjoint men-

tions. If two mentions overlap, two versions are 

generated, one annotated with just the first men-

tion and one with the second. If several overlap-

ping mentions are present in a sentence, copies 

are generated for all possible combinations of 

non-overlapping mentions. 

For dealing with discontiguous mentions, each 

annotated entity is assigned an id, uniquely iden-

tifying the mention within the sentence. This id 

is added as an extra attribute to each token, rep-

resented as an extra column in the tab separated 

IOB file format for the NE tagger. 

We processed with the Tanl pipeline (Attardi 

et al., 2009; Attardi et al., 2010). We first ex-

tracted the text from the training corpus in XML 

format and added the mentions annotations as 

tags enclosing them, with spans and mentions id 

as attributes. We then applied sentence splitting, 

tokenization, PoS tagging and dependency pars-

ing using DeSR (Attardi, 2006). 

The tags were converted to IOB format.  

Here are two sample tokens in the resulting 

annotation, with attributes id, form, pos, head, 

deprel, entity, entity id: 

                                                 
2
 http://en.wikipedia.org/wiki/Inside_Outside_Beginning 
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1 Abdomen NNP 2 SBJ B-DISO 1 

… 

5 nontender NN 10 NMOD B-DISO 1 

3 Named Entity Tagging 

The core of our approach relies on an initial 

stage of Named Entity recognition. We per-

formed several experiments, using different NE 

taggers in different configurations and using both 

features from the training corpus and features 

obtained from the unannotated data. 

3.1 Tanl NER 

We performed several experiments using the 

Tanl NE Tagger (Attardi et al., 2009), a generic, 

customizable statistical sequence labeller, suita-

ble for many tasks of sequence labelling, such as 

POS tagging or Named Entity Recognition. 

The tagger implements a Conditional Markov 

Model and can be configured to use different 

classification algorithms and to specify feature 

templates for extracting features. In our experi-

ments we used a linear SVM classification algo-

rithm. 

We experimented with several configurations, 

all including a set of word shape features, as in 

(Attardi et al., 2009): (1) the previous word is 

capitalized; (2) the following word is capitalized; 

(3) the current word is in upper case; (4) the cur-

rent word is in mixed case; (5) the current word 

is a single uppercase character; (6) the current 

word is a uppercase character and a dot; (7) the 

current word contains digits; (8) the current word 

is two digits; (9) the current word is four digits; 

(10) the current word is made of digits and “/”; 

(11) the current word contains “$”; (12) the cur-

rent word contains “%”; (13) the current word 

contains an apostrophe; (14) the current word is 

made of digits and dots. 

A number of dictionary features were also 

used, including prefix and suffix dictionaries, 

bigrams, last words, first word and frequent 

words, all extracted from the training corpus. 

Additionally, a dictionary of disease terms was 

used, consisting of about 22,000 terms extracted 

from the preferred terms for CUIs belonging to 

the UMLS semantic type “Disease or Syn-

drome”. 

The first character of the POS tag was also 

used as feature, extracted from a window of to-

kens before and after the current token.  

Finally attribute features are extracted from 

attributes (Form, PoS, Lemma, NE, Disease) of 

surrounding tokens, denoted by their relative po-

sition to the current token. The best combination 

of Attribute features obtained with runs on the 

development set was the following: 

Feature Tokens 

POS[0] wi-2 wi–1 wi wi+1 

DISEASE wi wi+1 wi+2 

Table 1. Attribute features used in the runs. 

3.2 Word Embeddings 

We explored ways to use the unannotated data in 

NE recognition by exploiting word embeddings 

(Collobert et al, 2011). In a paper published after 

our submission, Tang et al. (2014) show that 

word embeddings are beneficial to Biomedical 

NER. 

We used the word embeddings for 100,000 

terms created through deep learning on the Eng-

lish Wikipedia by Al-Rfou et al. (2013). We then 

built, with the same procedure, embedding for 

terms from the supplied unlabelled data. The 

corpus was split, tokenized and normalized and a 

vocabulary was created with the most frequent 

words not already present among the Wikipedia 

word embeddings. Four versions of the embed-

dings were created, varying the size of the vo-

cabulary and the size of the context window, as 

described in Table 1. 

 

 Run1 Run2 Run3 Run4 

Vocabulary size 50,000 50,000 30,000 30,000 

Context     5 2 5 2 

Hidden Layers 32 32 32 32 

Learning Rate 0.1 0.1 0.1 0.1 

Embedding size 64 64 64 64 

Table 2. Word Embedding Parameters. 

We developed and trained a Deep Learning NE 

tagger (nlpnet, 2014) based on the SENNA archi-

tecture (SENNA, 2011) using these word em-

beddings. 

As an alternative to using the embeddings di-

rectly as features, we created clusters of word 

embeddings using the Dbscan algorithm (Ester et 

al., 1996) implemented in the sklearn library. We 

carried out several experiments, varying the pa-

rameters of the algorithm. The configuration that 

produced the largest number of clusters had 572 

clusters. The clusters turned out not to be much 

significant, since a single cluster had about 

29,000 words, another had 5,000 words, and the 

others had few, unusual words. 

We added the clusters as a dictionary feature 

to our NE tagger. Unfortunately, most of the 
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terms fell within 4 clusters, so the feature turned 

out to be little discriminative. 

3.3 Stanford NER 

We performed experiments also with a tagger 

based on a different statistical approach: the 

Stanford Named Entity Recognizer. This tagger 

is based on the Conditional Random Fields 

(CRF) statistical model and uses Gibbs sampling 

instead of other dynamic programming tech-

niques for inference on sequence models (Finkel 

et al., 2005). This tagger normally works well 

enough using just the form of tokens as feature 

and we applied it so. 

3.4 NER accuracy 

We report the accuracy of the various NE taggers 

we tested on the development set, using the scor-

er from the CoNLL Shared Task 2003 (Tjong 

Kim Sang and De Meulder, 2003). 

We include here also the results with 

CRFsuite, the CRF tagger used in (Tang et al., 

2014). 

 

NER Precision Recall F- score 

Tanl 80.41 65.08 71.94 

Tanl+clusters     80.43 64.48 71.58 

nlpnet 80.29 62.51 70.29 

Stanford 80.30 64.89 71.78 

CRFsuite 79.69 61.97 69.72 

Table 3. Accuracy of various NE taggers on the 

development set. 

Based on these results we chose the Tanl tagger 

and the Stanford NER for our submitted runs. 

All these taggers are known to be capable of 

achieving state of the art performance or close to 

it (89.57 F1) in the CoNLL 2003 shared task on 

the WSJ Penn Treebank. 

The accuracy on the current benchmark is 

much lower, despite the fact that there is only 

one category and the terminology for disorders is 

drawn from a restricted vocabulary. 

It has been noted by Dingare et al. (2005) that 

NER over biomedical texts achieves lower accu-

racy compared to other domains, quite within the 

range of the above results. Indeed, compared 

with the newswire domain or other domains, the 

entities in the biomedical domain tend to be more 

complex, without the distinctive shape features 

of the newswire categories. 

4 Discontiguous mentions 

Discontiguous mention detection can be formu-

lated as a problem of deciding whether two con-

tiguous mentions belong to the same mention. As 

such, it can be cast into a classification problem. 

A similar approach was used successfully for the 

coreference resolution task at SemEval 2010 (At-

tardi, Dei Rossi et al., 2010) 

 

4.1 Mentions  detection 

We trained a Maximum Entropy classifier 

(Ratnaparkhi, 1996) to recognize whether two 

terms belong to the same mention. 

The training instances for the pair-wise learner 

consist of each pair of terms within a sentence 

annotated as disorders. A positive instance is 

created if the terms belong to the same mention, 

negative otherwise. 

The classifier was trained using the following 

features, extracted for each pair of words for dis-

eases. 

Distance features 

 Token distance: quantized distance be-

tween the two words; 

 Ancestor distance: quantized distance be-

tween the words in the parse tree if one is 

the ancestor of the other 

Syntax features 

 Head: whether the two words have the 

same head; 

 DepPath: concatenation of the dependen-

cy relations of the two words to their 

common parent  

Dictionary features 

 UMLS: whether the two words are both 

present in an UMLS definition 

The last feature is motivated by the fact that, ac-

cording to the task description, most of the dis-

order mentions correspond to diseases in the 

SNOMED terminology. 

4.2 Merging of mentions 

The mentions detected in the first phase are 

merged using the following process. Sentence 

are parsed and then for each pair of words that 

are tagged as disorder, features are extracted and 

passed to the classifier. 

If the classifier assigns a probability greater 

than a given threshold the two words are com-

bined into a larger mention. The process is then 

repeated trying to further extend each mention 

757



with additional terms by combining mentions 

that share a word. 

 

5 Mapping entities to CUIs 

Task B requires mapping each recognized entity 

to a concept in the SNOMED-CT terminology, 

assigning to it a unique UMLS CUI, if possible, 

or else marking it as CUI-less. The CUIs are 

limited to those corresponding to SNOMED 

codes and belonging to the following UMLS se-

mantic types: “Acquired Abnormality" or “Con-

genital Abnormality", “Injury or Poisoning", 

"Pathologic Function", "Disease or Syndrome", 

"Mental or Behavioral Dysfunction", "Cell or 

Molecular Dysfunction", "Experimental Model 

of Disease" or "Anatomical Abnormality", “Ne-

oplastic Process" or "Sign or Symptom". 

In order to speed up search, we created two 

indices: an inverted index from words in the def-

inition of a CUI to the corresponding CUI and a 

forward index from a CUI to its definition. 

For assigning a CUI to a mention, we search 

in the dictionary of CUI preferred terms, first for 

an exact match, then for a normalized  mention 

and finally for a fuzzy match (Fraiser, 2011). 

Normalization entails dropping punctuation and 

stop words. Fuzzy matching is sometimes too 

liberal, for example it matches “chronic ob-

structive pulmonary” with “chronic ob-

structive lung disease”; so we also put a 

ceiling on the edit distance between the phrases. 

The effectiveness of the process is summa-

rized in these results on the development set: 

Exact 

matches 

Normalized 

matches 

Fuzzy 

matches 

No 

matches 

1352 868 304 5488 

Table 4. CUI identifications on the devel set. 

6 Experiments 

The training corpus for the submission consisted 

of the merge of the train and development sets. 

We submitted three runs, using different or 

differently configured NE tagger. 

Two runs were submitted using the Tanl tag-

ger using the features listed in Table 5, where 

DISEASE and CLUSTER meaning is explained 

earlier. 

Feature UniPI_run0 UniPI_ run1 

POS[0] wi-2 wi–1 wi wi+1 wi-2 wi–1 wi wi+1 

CLUSTER wi wi+1 wi wi+1 

DISEASE wi wi+1 wi+2  

Table 5. Attribute features used in the runs. 

Since the clustering produced few large clusters, 

the inclusion of this feature did not affect sub-

stantially the results. 

 

A third run (UniPi_run_2) was performed us-

ing the Stanford NER with default settings. 

7 Results 

The results obtained in the three submitted runs, 

are summarized in Table 6, in terms of accuracy, 

precision, recall and F-score. For comparison, 

also the results obtained by the best performing 

systems are included. 

Run Precision Recall F- score 

Task A 

Unipi_run0 0.539 0.684 0.602 

Unipi_run1     0.659 0.612 0.635 

Unipi_run2 0.712 0.601 0.652 

SemEval best 0.843 0.786 0813 

Task A relaxed 

Unipi_run0 0.778 0.885 0.828 

Unipi_run1 0.902 0.775 0.834 

Unipi_run2 0.897 0.766 0.826 

SemEval best 0.936 0.866 0.900 

Table 6. UniPI Task A results, compared to the 

best submission. 

Run Accuracy 

Task B 

Unipi_run0 0.467 

Unipi_run1     0.428 

Unipi_run2 0.417 

SemEval best 0.741 

Task B relaxed 

Unipi_run0 0.683 

Unipi_run1 0.699 

Unipi_run2 0.693 

SemEval best 0.873 

Table 7. UniPI Task B results, compared to the 

best submission. 

8 Error analysis 

Since the core step of our approach is the NE 

recognition, we tried to analyze possible causes 

of its errors. 

Some errors might be due to mistakes by the 

POS tagger. For example, often some words oc-

cur in full upper case, leading to classify adjec-

tives like ABDOMINAL as NNP instead of JJ. 

Training our POS tagger on the GENIA corpus 

or using the GENIA POS tagger might have 

helped a little. Spelling errors like abdominla 
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instead of abdominal could also have been cor-

rected. 

Another choice that might have affected the 

NER accuracy was our decision to duplicate the 

sentences in order to remove mention overlaps. 

An alternative solution might have been to use 

two categories in the IOB annotation: one cate-

gory for full contiguous disorder mentions and 

another for partial disorder mentions. This might 

have reduced the confusion in the tagger, since 

isolated words like abdomen get tagged as dis-

order, having been so annotated in the training 

set. Distinguishing the two cases, abdomen 

would become a disorder mention in the step of 

mention merging. Counting the errors in the de-

velopment set we found that 939 out of the 1757 

errors were indeed individual words incorrectly 

identified as disorders. 

8.1 After submission experiments 

After the submission, we changed the algorithm 

for merging mentions, in order to avoid nested 

spans, retaining only the larger one. Tests on the 

development set show that this change leads to a 

small improvement in the strict evaluation: 

Run Precision Recall F- score 

Task A 

devel_run1 0.596 0.653 0.624 

devel run1_after 0.668 0.637 0.652 

Task A relaxed 

devel_run1 0.865 0.850 0.858 

devel run1_after 0.864 0.831 0.847 

Table 8. UniPI Task A post submission results. 

 

9 Conclusions 

We reported our participation to SemEval 2014 

on the Analysis of Clinical Text. Our approach is 

based on using a NER, for identifying contiguous 

mentions and on a Maximum Entropy classifier 

for merging discontiguous ones. 

The training data was transformed into a for-

mat suitable for a standard NE tagger, that does 

not accept discontiguous or nested mentions. Our 

measurements on the development set showed 

that different NE tagger reach a similar accuracy. 

We explored using word embeddings as fea-

tures, generated from the unsupervised data pro-

vided, but they did not improve the accuracy of 

the NE tagger. 

Acknowledgements 

Partial support for this work was provided by 

project RIS (POR RIS of the Regione Toscana, 

CUP n° 6408.30122011.026000160). 

References 

Rami Al-Rfou’, Bryan Perozzi, and Steven Skiena. 

2013. Polyglot: Distributed Word Representations 

for Multilingual NLP. In Proceedings of Confer-

ence on Computational Natural Language Learn-

ing, CoNLL ‘13,  pages 183-192, Sofia, Bulgaria. 

Giuseppe Attardi. 2006. Experiments with a Mul-

tilanguage Non-Projective Dependency Parser. In 

Proceedings of the Tenth Conference on Natural 

Language Learning, CoNLL ‘06, pages 166-170, 

New York, NY. 

Giuseppe Attardi et al., 2009. Tanl  (Text Analytics 

and Natural Language Processing). SemaWiki pro-

ject: http://medialab.di.unipi.it/wiki/SemaWiki. 

Giuseppe Attardi, Stefano Dei Rossi, Felice Dell'Or-

letta and Eva Maria Vecchi. 2009. The Tanl 

Named Entity Recognizer at Evalita 2009. In Pro-

ceedings of Workshop Evalita’09 - Evaluation of 

NLP and Speech Tools for Italian, Reggio Emilia, 

ISBN 978-88-903581-1-1. 

Giuseppe Attardi, Felice Dell'Orletta, Maria Simi and 

Joseph Turian. 2009. Accurate Dependency Pars-

ing with a Stacked Multilayer Perceptron. In Pro-

ceedings of Workshop Evalita’09 - Evaluation of 

NLP and Speech Tools for Italian, Reggio Emilia, 

ISBN 978-88-903581-1-1.  

Giuseppe Attardi, Stefano Dei Rossi and Maria Simi.  

2010. The Tanl Pipeline. In Proceedings of LREC 

Workshop on Web Services and Processing Pipe-

lines in HLT, WSPP, La Valletta, Malta, pages 14-

21 

Giuseppe Attardi, Stefano Dei Rossi and Maria Simi. 

2010. TANL-1: Coreference Resolution by Parse 

Analysis and Similarity Clustering. In Proceedings 

of the 5th International Workshop on Semantic 

Evaluation, SemEval 2010, Uppsala, Sweden, pag-

es 108-111 

Olivier Bodenreider. 2004. The Unified Medical Lan-

guage System (UMLS): integrating biomedical 

terminology. Nucleic Acids Research, vol. 32, no. 

supplement 1, pages D267–D270. 

Ronan Collobert et al. 2011. Natural Language Pro-

cessing (Almost) from Scratch. Journal of Machine 

Learning Research, 12, pages 2461–2505. 

Shipra Dingare, Malvina Nissim, Jenny Finkel, Chris-

topher Manning and Claire Grover. 2005. A Sys-

tem for Identifying Named Entities in Biomedical 

Text: how Results From two Evaluations Reflect 

on Both the System and the Evaluations. Comp 

Funct Genomics. Feb-Mar; 6(1-2): pages 77–85. 

759



Martin Ester, et al. 1996. A density-based algorithm 

for discovering clusters in large spatial databases 

with noise. In Proceedings of 2nd International 

Conference on Knowledge Discovery and Data Mi-

ing, KDD 96, pages 226–231. 

Jenny Rose Finkel, Trond Grenager and Christopher 

Manning 2005. Incorporating Non-local Infor-

mation into Information Extraction Systems by 

Gibbs Sampling. In Proceedings of the 43nd Annu-

al Meeting of the Association for Computational 

Linguistics, 2005, pages 363–370. 

Neil Fraser. 2011. Diff, Match and Patch libraries for 

Plain Text. (Based on Myer's diff algorithm). 

Adwait Ratnaparkhi. 1996. A Maximum Entropy 

Part-Of-Speech Tagger. In Proceedings of the Em-

pirical Methods in Natural Language Processing 

Conference, EMNLP ’96, pages 17-18. 

Buzhou Tang, Hongxin Cao, Xiaolong Wang, Qingcai 

Chen, and Hua Xu. 2014. Evaluating Word Repre-

sentation Features in Biomedical Named Entity 

Recognition Tasks. BioMed Research Internation-

al, Volume 2014, Article ID 240403. 

Erik F. Tjong Kim Sang and Fien De Meulder 2003. 

Introduction to the CoNLL ‘03 Shared Task: Lan-

guage-Independent Named Entity Recognition. In: 

Proceedings of CoNLL ‘03, Edmonton, Canada, 

pages 142-147. 

SENNA. 2011. http://ml.nec-labs.com/senna/ 

nlpnet. 2014. https://github.com/attardi/nlpnet 

760



Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 761–767,
Dublin, Ireland, August 23-24, 2014.

UNITOR: Aspect Based Sentiment Analysis with Structured Learning
Giuseppe Castellucci(†), Simone Filice(‡), Danilo Croce(?), Roberto Basili(?)

(†) Dept. of Electronic Engineering
(‡) Dept. of Civil Engineering and Computer Science Engineering

(?) Dept. of Enterprise Engineering
University of Roma, Tor Vergata, Italy

{castellucci,filice}@ing.uniroma2.it; {croce,basili}@info.uniroma2.it

Abstract

In this paper, the UNITOR system partici-
pating in the SemEval-2014 Aspect Based
Sentiment Analysis competition is pre-
sented. The task is tackled exploiting Ker-
nel Methods within the Support Vector
Machine framework. The Aspect Term
Extraction is modeled as a sequential tag-
ging task, tackled through SVMhmm. The
Aspect Term Polarity, Aspect Category
and Aspect Category Polarity detection are
tackled as a classification problem where
multiple kernels are linearly combined to
generalize several linguistic information.
In the challenge, UNITOR system achieves
good results, scoring in almost all rank-
ings between the 2nd and the 8th position
within about 30 competitors.

1 Introduction

In recent years, many websites started offering a
high level interaction with users, who are no more
a passive audience, but can actively produce new
contents. For instance, platforms like Amazon1 or
TripAdvisor2 allow people to express their opin-
ions on products, such as food, electronic items
or clothes. Obviously, companies are interested
in understanding what customers think about their
brands and products, in order to implement correc-
tive strategies on products themselves or on mar-
keting solutions. Performing an automatic analy-
sis of user opinions is then a very hot topic. The
automatic extraction of subjective information in
text materials is generally referred as Sentiment
Analysis or Opinion Mining and it is performed

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1
http://www.amazon.com

2
http://www.tripadvisor.com

via natural language processing, text analysis and
computational linguistics techniques. Task 4 in
SemEval 2014 edition3 (Pontiki et al., 2014) aims
at promoting research on Aspect Based Opinion
Mining (Liu, 2007), which is approached as a cas-
cade of 4 subtasks. For example, let us consider
the sentence:

The fried rice is amazing here. (1)

The Aspect Term Extraction (ATE) subtask aims
at finding words suggesting the presence of as-
pects on which an opinion is expressed, e.g.
fried rice in sentence 1. In the Aspect Term
Polarity (ATP) task the polarity evoked for each
aspect is recognized, i.e. a positive polarity is
expressed with respect to fried rice. In the
Aspect Category Detection (ACD) task the cate-
gory evoked in a sentence is identified, e.g. the
food category in sentence 1). In the Aspect Cat-
egory Polarity (ACP) task the polarity of each ex-
pressed category is recognized, e.g. a positive
category polarity is expressed in sentence 1.

Different strategies have been experimented in
recent years. Classical approaches are based on
machine learning techniques and rely on sim-
ple representation features, such as unigrams, bi-
grams, Part-Of-Speech (POS) tags (Pang et al.,
2002; Pang and Lee, 2008; Wiebe et al., 1999).
Other approaches adopt sentiment lexicons in or-
der to exploit some sort of prior knowledge about
the polar orientation of words. These resources are
usually semi-automatically compiled and provide
scores associating individual words to sentiments
or polarity orientation.

In this paper, the UNITOR system participat-
ing to the SemEval-2014 Aspect Based Sentiment
Analysis task (Pontiki et al., 2014) is presented.
The ATE task is modeled as a sequential labeling
problem. A sentence is considered as a sequence
of tokens: a Markovian algorithm is adopted in

3
http://alt.qcri.org/semeval2014/task4/
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order to decide what is an aspect term . All the
remaining tasks are modeled as multi-kernel clas-
sification problems based on Support Vector Ma-
chines (SVMs). Various representation have been
exploited using proper kernel functions (Shawe-
Taylor and Cristianini, 2004a). Tree Kernels
(Collins and Duffy, 2001; Moschitti et al., 2008;
Croce et al., 2011) are adopted in order to capture
structural sentence information derived from the
parse tree. Moreover, corpus-driven methods are
used in order to acquire meaning generalizations
in an unsupervised fashion (e.g. see (Pado and La-
pata, 2007)) through the analysis of distributions
of word occurrences in texts. It is obtained by the
construction of a Word Space (Sahlgren, 2006),
which provides a distributional model of lexical
semantics. Latent Semantic Kernel (Cristianini et
al., 2002) is thus applied within such space.

In the remaining, in Section 2 and 3 we will ex-
plain our approach in more depth. Section 4 dis-
cusses the results in the SemEval-2014 challenge.

2 Sequence Labeling for ATE

The Aspect Term Extraction (ATE) has been mod-
eled as a sequential tagging process. We con-
sider each token representing the beginning (B),
the inside (I) or the outside (O) of an argu-
ment. Following this IOB notation, the resulting
ATE representation of a sentence like “The [fried
rice]ASPECTTERM is amazing here” can be expressed
by labeling each word according to its relative po-
sition, i.e.: [The]O [fried]B [rice]I [is]O [amaz-
ing]O [here]O.

The ATE task is thus a labeling process that
determines the individual (correct IOB) class for
each token. The labeling algorithm used is
SVMhmm (Altun et al., 2003)4: it combines
both a discriminative approach to estimate the
probabilities in the model and a generative ap-
proach to retrieve the most likely sequence of
tags that explains a sequence. Given an input
sequence x = (x1 . . . xl) ∈ X of feature vec-
tors x1 . . . xl, the model predicts a tag sequence
y = (y1 . . . yl) ∈ Y after learning a linear dis-
criminant function F : X × Y → R over input-
output pairs. The labeling f(x) is thus defined as:
f(x) = arg maxy∈Y F (x,y; w) and it is obtained
by maximizing F over the response variable, y,
for a specific given input x. F is linear in some

4
www.cs.cornell.edu/People/tj/svm light/svm hmm.html

combined feature representation of inputs and out-
puts Φ(x,y), i.e. F (x,y; w) = 〈w,Φ(x,y)〉.

In SVMhmm the observations x1 . . . xl can be
naturally expressed in terms of feature vectors. In
particular, we modeled each word through a set of
lexical and syntactic features, as described in the
following section.

2.1 Modeling Features for ATE

In the discriminative view of SVMhmm, each
word is represented by a feature vector, describ-
ing its different observable properties. For in-
stance, the word rice in the example 1 is modeled
through the following features: Lexical features:
its lemma (rice) and POS tag (NN); Prefixes and
Suffixes: the first n and the last m characters of
the word (n = m = 3) (e.g. ric and ice); Con-
textual features: the left and right lexical contexts
represented by the 3 words before (BEGIN::BB
the::DT fried::JJ) and after (is::VBZ amazing::JJ
here::RB); the left and right syntactic contexts as
the POS bi-grams and tri-grams occurring before
(i.e. BB DT DT JJ BB DT JJ) and after (i.e.
VBZ JJ JJ RB VBZ JJ RB) the word; Gram-
matical features: features derived from the de-
pendency graph associated to the sentence, i.e.
boolean indicators that capture if the token is in-
volved in a Subj, Obj or Amod relation in the cor-
responding graph.

3 Multiple Kernel Approach for Polarity
and Category Detection

We approached the remaining three subtasks of the
pipeline as classification problems with multiple
kernels, in line with (Castellucci et al., 2013). We
used Support Vector Machines (SVMs) (Joachims,
1999), a maximum-margin classifier that realizes
a linear discriminative model. The kernelized ver-
sion of SVM learns from instances xi exploiting
rich similarity measures (i.e.the kernel functions)
K(xi, xj) = 〈φ(xi) · φ(xj)〉. In this way projec-
tion functions φ(·) can be implicitly used in order
to transform the initial feature space into a more
expressive one, where a hyperplane that separates
the data with the widest margin can be found.
Kernels can directly operate on variegate forms
of representation, such as feature vectors, trees,
sequences or graphs. Then, modeling instances
in different representations, specific kernels can
be defined in order to explore different linguis-
tic information. These variety of kernel functions
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K1 . . .Kn can be independently defined and the
combinations K1 + K2 + . . . of multiple func-
tions can be integrated into SVM as they are still
kernels. The next section describes the represen-
tations as well as the kernel functions.

3.1 Representing Lexical Information

The Bag of Word (BoW) is a simple repre-
sentation reflecting the lexical information of the
sentence. Each text is represented as a vector
whose dimensions correspond to different words,
i.e. they represent a boolean indicator of the pres-
ence or not of a word in the text. The resulting
kernel function is the cosine similarity (or linear
kernel) between vector pairs, i.e. linBoW. In line
with (Shawe-Taylor and Cristianini, 2004b) we in-
vestigated the contribution of the Polynomial Ker-
nel of degree 2, poly2

BoW as it defines an implicit
space where also feature pairs, i.e. words pairs,
are considered.

In the polarity detection tasks, several polarity
lexicons have been exploited in order to have use-
ful hints of the intrinsic polarity of words. We
adopted MPQA Subjectivity Lexicon5 (Wilson et
al., 2005) and NRC Emotion Lexicon (Moham-
mad and Turney, 2013): they are large collection
of words provided with the underlying emotion
they generally evoke. While the former consid-
ers only positive and negative sentiments, the lat-
ter considers also eight primary emotions, orga-
nized in four opposing pairs, joy-sadness, anger-
fear, trust-disgust, and anticipation-surprise. We
define the Lexicon Based (LB) vectors as follows.
For each lexicon, let E = {e1, ..., e|E|} be the
emotion vocabulary defined in it. Let w ∈ s be
a word occurring in sentence s, with I(w, i) be-
ing the indicator function whose output is 1 if w
is associated to the emotion label ei, or 0 other-
wise. Then, given a sentence s, each ei, i.e. a di-
mension of the emotional vocabularyE, receives a
score si =

∑
w∈s I(w, i). Each sentence produces

a vector ~s ∈ R|E|, for each lexicon, on which a lin-
ear kernel linLB is applied.

3.2 Generalizing Lexical Information

Another representation is used to generalize the
lexical information of each text, without exploit-
ing any manually coded resource. Basic lexical
information is obtained by a co-occurrence Word
Space (WS) built accordingly to the methodology

5
http://mpqa.cs.pitt.edu/lexicons/subj lexicon

described in (Sahlgren, 2006) and (Croce and Pre-
vitali, 2010). A word-by-context matrix M is ob-
tained through a large scale corpus analysis. Then
the Latent Semantic Analysis (Landauer and Du-
mais, 1997) technique is applied as follows. The
matrix M is decomposed through Singular Value
Decomposition (SVD) (Golub and Kahan, 1965)
into the product of three new matrices: U , S, and
V so that S is diagonal and M = USV T . M
is then approximated by Mk = UkSkV

T
k , where

only the first k columns of U and V are used,
corresponding to the first k greatest singular val-
ues. This approximation supplies a way to project
a generic wordwi into the k-dimensional space us-
ing W = UkS

1/2
k , where each row corresponds to

the representation vector ~wi. The result is that ev-
ery word is projected in the reduced Word Space
and a sentence is represented by applying an addi-
tive model as an unbiased linear combination. We
adopted these vector representations using a linear
kernel, as in (Cristianini et al., 2002), i.e. linWS
and a Radial Basis Function Kernel rbfWS.

In Aspect Category Detection, and more gen-
erally in topic classification tasks, some specific
words can be an effective indicator of the under-
lying topic. For instance, in the restaurant do-
main, the word tasty may refer to the quality of
food. These kind of word-topic relationships can
be automatically captured by a Bag-of-Word ap-
proach, but with some limitations. As an exam-
ple, a BoW representation may not capture syn-
onyms or semantically related terms. This lack
of word generalization is partially compensated
by the already discussed Word Space. However,
this last representation aims at capturing the sense
of an overall sentence, and no particular rele-
vance is given to individual words, even if they
can be strong topic indicators. To apply a model-
ing more focused on topics, we manually selected
m seed words {σ1, . . . , σm} that we consider re-
liable topic-indicators, for example spaghetti for
food. Notice that for every seed σi, as well as for
every word w the similarity function sim(σi, w)
can be derived from the Word Space represen-
tations ~σi and ~w, respectively. What we need
is a specific seed-based representation reflecting
the similarity between topic indicators and sen-
tences s. Given the words w occurring in s, the
Seed-Oriented (SO) representation of s is an m-
dimensional vector ~so(s) whose components are:
soi(s) = maxw∈s sim(σi, w). Alternatively, as
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seeds σ refer to a set of evoked topics (i.e. as-
pect categories such as food) Σ1, ...,Σt, we can
define a t-dimensional vector ~to(s) called Topic-
Oriented (TO) representation for s, whose fea-
tures are: toi(s) = maxw∈s,σk∈Σi sim(σk, w).

The adopted word similarity function sim(·, ·)
over ~so(s) and ~to(s) depends on the experiments.
In the unconstrained setting, i.e. the Word Space
Topic Oriented WSTO system, sim(·, ·) consists
in the dot product over the Word Space represen-
tations ~σi and ~w. In the constrained case sim(·, ·)
corresponds to the Wu & Palmer similarity based
on WordNet (Wu and Palmer, 1994), in the so
called WordNet Seed Oriented WNSO system.
The Radial Basis Function (RBF) kernel is then
applied onto the resulting feature vectors ~to(s) and
~so(s) in the rbfWSTO and rbfWNSO, respectively.

3.3 Generalizing Syntactic Information

In order to exploit the syntactic information, Tree
Kernel functions proposed in (Collins and Duffy,
2001) are adopted. Tree kernels exploit syntactic
similarity through the idea of convolutions among
syntactic tree substructures. Any tree kernel evalu-
ates the number of common substructures between
two trees T1 and T2 without explicitly considering
the whole fragment space. Many tree represen-
tations can be derived to represent the syntactic
information, according to different syntactic theo-
ries. For this experiment, dependency formalism
of parse trees is employed to capture sentences
syntactic information. As proposed in (Croce et
al., 2011), the kernel function is applied to ex-
amples modeled according the Grammatical Rela-
tion Centered Tree representation from the orig-
inal dependency parse structures, shown in Fig.
1: non-terminal nodes reflect syntactic relations,
such as NSUBJ, pre-terminals are the Part-Of-
Speech tags, such as nouns, and leaves are lex-
emes, such as rice::n and amazing::j6. In each ex-
ample, the aspect terms and the covering nodes are
enriched with a a suffix and all lexical nodes are
duplicated by the node asp in order to reduce data
sparseness. Moreover, prior information derived
by the lexicon can be injected in the tree, by du-
plicating all lexical nodes annotated in the MPQA
Subjectivity Lexicon, e.g. the adjective amazing,
with a node expressing the polarity (pos).

Given two tree structures T1 and T2, the

6Each word is lemmatized to reduce data sparseness, but
they are enriched with POS tags.

ROOT

ADVM

RB

here::r

JJ

posamazing::j

COP

VBZ

be::v

NSUBJa

NNa

asprice::n

AMODa

VBNa

aspfry::v

DET

DT

the::d

Figure 1: Tree representation of the sentence 1.

Tree Kernel formulation is reported hereafter:
TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2)
where NT1 and NT2 are the sets of the T1’s and
T2’s nodes, respectively and ∆(n1, n2) is equal to
the number of common fragments rooted in the n1

and n2 nodes. The function ∆ determines the na-
ture of the kernel space. In the constrained case the
Partial Tree Kernel formulation (Moschitti, 2006)
is used, i.e. ptkGRCT. In the unconstrained set-
ting the Smoothed Partial Tree Kernel formulation
(Croce et al., 2011) is adopted to emphasizes the
lexicon in the Word Space, i.e. the sptkGRCT. It
computes the similarity between lexical nodes as
the similarity between words in the Word Space.
So, this kernel allows a generalization both from a
syntactic and lexical point of view.

4 Results

In this Section the experimental results of the
UNITOR system in the four different subtasks of
Semeval 2014 competition are discussed. Teams
were allowed to submit two different outcomes for
each task: constrained submissions (expressed by
the suffix C in all the tables) are intended to mea-
sure systems ability to learn sentiment analysis
models only over the provided data; unconstrained
(expressed by the suffix U in all the tables) sub-
missions allows teams to exploit additional train-
ing data. The first two tasks, i.e. ATE and ATP,
are defined on the laptop and restaurant domains,
while the last two tasks, i.e. ACD and ACP, are
defined for the restaurant dataset only.

The unconstrained versions are derived by ex-
ploiting word vectors derived in an unsupervised
fashion through the analysis of large scale cor-
pora. All words in a corpus occurring more than
100 times (i.e. the targets) are represented through
vectors. The original space dimensions are gen-
erated from the set of the 20,000 most frequent
words (i.e. features) in the corpus. One dimension
describes the Point-wise Mutual Information score
between one feature, as it occurs on a left or right
window of 3 tokens around a target. Left contexts
of targets are distinguished from the right ones, in
order to capture asymmetric syntactic behaviors
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(e.g., useful for verbs): 40,000 dimensional vec-
tors are thus derived for each target. The Singular
Value Decomposition is applied and the space di-
mensionality is reduced to k = 250. Two corpora
are used for generating two different Word Spaces,
one for the laptop and one for the restaurant do-
main. The Opinosis dataset (Ganesan et al., 2010)
is used to build the electronic domain Word Space,
while the restaurant domain corpus adopted is the
TripAdvisor dataset7. Both provided data and in-
domain data are first pre-processed through the
Stanford Parser (Klein and Manning, 2003) in or-
der to obtain POS tags or Dependency Trees.

A modified version of LibSVM has been
adopted to implement Tree Kernel. Parameters
such as the SVM regularization coefficient C, the
kernel parameters (for instance the degree of the
polynomial kernel) have been selected after a tun-
ing stage based on a 5-fold cross validation.

4.1 Aspect Term Extraction

The Aspect Term Extraction task is modeled as a
sequential labeling problem. The feature represen-
tation described in Section 2.1, where each token
is associated to a specific target class according to
the IOB notation, is used in the SVMhmm learn-
ing algorithm. In the constrained version of the
UNITOR system only the training data are used
to derive features. In the unconstrained case the
UNITOR system exploits lexical vectors derived
from a Word Space. Each token feature repre-
sentation is, in this sense, augmented through dis-
tributional vectors derived from the Word Spaces
described above. Obviously, the Opinosis Word
Space is used in the laptop subtask, while the Tri-
pAdvisor Word Space is used in the restaurant sub-
task. These allow the system to generalize the lex-
ical information, enabling a smoother match be-
tween words during training and test phases, hope-
fully capturing similarity phenomena such as the
relation between screen and monitor.

In Table 1 results in the laptop case are reported.
Our system performed quite well, and ranked in
6th and 10th position over 28 submitted systems.
In this case, the use of the Word Space is effec-
tive, as noticed by the 4 position gain in the final
ranking (almost 2 points in F1-measure). In Table
2 results in the restaurant case are reported. Here,
the use of Word Space does not give an improve-
ment in the final performance.

7
http://sifaka.cs.uiuc.edu/˜wang296/Data/index.html

Table 1: Aspect Term Extraction Results - Laptop.
System (Rank) P R F1
UNITOR-C (10/28) .7741 .5764 .6608
UNITOR-U (6/28) .7575 .6162 .6795
Best-System-C (1/28) .8479 .6651 .7455
Best-System-U (2/28) .8251 .6712 .7403

Table 2: Aspect Term Extraction - Restaurants.
System (Rank) P R F1
UNITOR-C (5/29) .8244 .7786 .8009
UNITOR-U (6/29) .8131 .7865 .7996
Best-System-C (2/29) .8624 .8183 .8398
Best-System-U (1/29) .8535 .8271 .8401

In both cases, we observed that most of the
errors were associated to aspect terms composed
by multiple words. For example, in the sen-
tence The portions of the food that came out were
mediocre the gold aspect term is portions of
the food while our system was able only to re-
trieve food as aspect term. The system is mainly
able to recognize single word aspect terms and, in
most of the cases, double words aspect terms.

4.2 Aspect Term Polarity

The Aspect Term Polarity subtask has been mod-
eled as a multi-class classification problem: for
a given set of aspect terms within a sentence, it
aims at determining whether the polarity of each
aspect term is positive, negative, neutral or con-
flict. It has been tackled using multi-kernel SVMs
in a One-vs-All Schema. In the constrained set-
ting, the linear combination of the following ker-
nel functions have been used: ptkGRCT , poly2

BoW

that consider all the lemmatized terms in the sen-
tence, a poly2

BoW that considers only the aspect
terms, poly2

BoW of the terms around the aspect
terms in a window of size 5, linLB derived from
the Emolex lexicon. In the unconstrained setting
the sptkGRCT replaces the ptk counterpart and
the rbfWS is added by linearly combining Word
Space vectors for verbs, nouns adjective and ad-
verbs. Results in Table 3 show that the proposed
kernel combination allows to achieve the 8th posi-
tion with the unconstrained system in the restau-
rant domain. The differences with the constrained
setting demonstrate the contribution of the Word
Space acquired from the TripAdvisor corpus. Un-
fortunately, it is not true in the laptop domain, as
shown in Table 4. The use of the Opinosis corpus
lets to a performance drop of the unconstrained
setting. An error analysis shows that the main lim-
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itation of the proposed model is the inability to
capture deep semantic phenomena such as irony,
as in the negative sentence “the two waitress’s
looked like they had been sucking on lemons”.

Table 3: Aspect Term Polarity Results - Restau-
rant.

System (Rank) Accuracy
UNITOR-C (12/36) .7248
UNITOR-U (8/36) .7495
Best-System-C (1/36) .8095
Best-System-U (5/36) .7768

Table 4: Aspect Term Polarity Results - Laptop.
System (Rank) Accuracy
UNITOR-C (10/32) .6299
UNITOR-U (17/32) .5856
Best-System-C (1/32) .7048
Best-System-U (5/32) .6666

4.3 Aspect Category Detection
The Aspect Category Detection has been mod-
eled as a multi-label classification task where 5
categories (ambience, service, food, price, anec-
dotes/miscellaneous) must be recognized. In the
constrained version, each class has been tack-
led using a binary multi-kernel SVM equipped
with a linear combination of poly2

BoW and
rbfWNSO. A category is assigned if the SVM
classifiers provides a positive prediction. The
anecdotes/miscellaneous acceptance threshold has
been set to 0.3 (it has been estimated over a de-
velopment set) due to its poor precision observed
during the tuning phase. Moreover, considering
each sentence is always associated to at least one
category, if no label has been assigned, then the
sentence is labelled with the category associated
to the highest prediction.

In the unconstrained case, each class has been
tackled using an ensemble of a two binary SVM-
based classifiers. The first classifier is a multi-
kernel SVM operating on a linear combination of
rbfWS and poly2

BoW . The second classifier is a
SVM equipped with a rbfWSTO. A sentence is la-
belled with a category if at least one of the two cor-
responding classifiers predicts that label. The first
classifier assigns a label if the corresponding pre-
diction is positive. A more conservative strategy
is applied to the second classifier, and a category
is selected if its corresponding prediction is higher
than 0.3; again this threshold has been estimated
over a development set. As in the constrained ver-
sion, we observed a poor precision in the anec-

dotes/miscellaneous category, so we increased the
first classifier acceptance threshold to 0.3, while
the second classifier output is completely ignored.
Finally, if no label has been assigned, the sentence
is labelled with the category associated to the high-
est prediction of the first classifier.

Table 5: Aspect Category Detection Results.
System (Rank) P R F1
UNITOR-C (6/21) .8368 .7804 .8076
UNITOR-U (2/21) .8498 .8556 .8526
Best-System-C (1/21) .9104 .8624 .8857
Best-System-U (4/21) .8435 .7892 .8155

Table 5 reports the achieved results. Consider-
ing the simplicity of the proposed approach, the
results are impressive. The ensemble schema,
adopted in the unconstrained version, is very use-
ful in improving the recall and allows the system
to achieve the second position in the competition.

4.4 Aspect Category Polarity

The Aspect Category Polarity subtask has been
modeled as a multi-class classification problem:
given a set of pre-identified aspect categories for a
sentence, it aims at determining the polarity (pos-
itive, negative, neutral or conflict) of each cate-
gory. It has been tackled using multi-kernel SVMs
in a One-vs-All Schema. In the constrained set-
ting, the linear combination of the following ker-
nel functions has been used: ptkGRCT , poly2

BoW

that consider all the lemmatized terms in the sen-
tence, a poly2

BoW that considers only verbs, nouns
adjective and adverbs in the sentence, linLB de-
rived from the MPQA sentiment lexicon. In the
unconstrained case the sptkGRCT replaces the ptk
counterpart and the rbfWS is added by linearly
combining Word Space vectors for verbs, nouns
adjective and adverbs.

Again, results shown in Table 6 suggest the pos-
itive contribution of the lexical generalization pro-
vided by the Word Space (in the sptkGRCT and
rbfWS) allows to achieve a good rank, i.e. the
4th position with the unconstrained system in the
restaurant domain. The error analysis underlines
that the proposed features do not capture irony.

Table 6: Aspect Category Polarity Results.
System (Rank) Accuracy
UNITOR-C (7/25) .7307
UNITOR-U (4/25) .7629
Best-System-C (1/25) .8292
Best-System-U (9/25) .7278
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Abstract

We give a brief overview of our system,
SentiAdaptron, a domain-sensitive and do-
main adaptable system for twitter analy-
sis in tweets, and discuss performance on
SemEval (in both the constrained and un-
constrained scenarios), as well as implica-
tions arising from comparing the intra- and
inter- domain performance on our twitter
corpus.

1 Introduction

A domain is broadly defined as a set of documents
demonstrating a similar distribution of words and
linguistic patterns. Task 9 of SemEval treats Twit-
ter as a single domain with respect to sentiment
analysis. However previous research has argued
for the topic-specific treatment of sentiment given
domain-specific nuances and the over-generality
of current sentiment analysis systems with respect
to applications in the social sciences (Thelwall and
Buckley, 2013). Thelwal’s method - manually ex-
tending a sentiment lexicon for a particular topic
or domain - highlights that expression of senti-
ment varies from one domain to another. Rather
than relying on the manual extension of lexica, we
developed an approach to Twitter sentiment clas-
sification that is domain sensitive. To this effect
we gathered tweets from three primary domains -
financial news, political opinion, technology com-
panies and their products - and trained our system
on one domain while adapting to the other. Us-
ing this methodology we obtained both intrinsic
as well as extrinsic evaluation of the system on
real world applications with promising results. As
our approach to sentiment analysis has been influ-
enced by the task description of SemEval 2013 we

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

Positive Negative Neutral Objective
SemEval 11610 6332 905 189887
Our corpus 10725 17837 3514 36904

(a) Contextual polarity.

Positive Negative Neutral Objective
SemEval 4215 1798 4082 1243
Our corpus 1090 1711 1191 -

(b) Message polarity.

Table 1: The distribution of sentiment classes be-
tween SemEval and our corpus at word and tweet
level.

decided to also evaluate the system on SemEval’s
data, since it provides a well established bench-
mark. In the following we briefly describe our
system and corpus and discuss our approach for
the SemEval submission.

2 A Corpus of Three Domains: Source of
Unconstrained Data

Our goal in developing SentiAdaptron was domain
adaptive tweet-level classification. We decided to
follow SemEval 2013 and collect both word-level
as well as message level annotations. We prepared
a corpus of 4000 tweets with a balanced cover-
age of financial, political and technology related
tweets. Tweets were collected using keywords
from domain-specific websites: the final list was
chosen after evaluating each candidate keyword’s
popularity using a third-party service1. Each tweet
is tagged with multiple candidate domains, based
on a hierarchy of terms generated from the original
keyword list and tweets are filtered using a clus-
tering methodology based on the DBSCAN clus-
tering algorithm to remove robotic and repetitive
tweets. We performed domain disambiguation for
annotation through keyword filtering and also by
picking a number of synsets from WordNet and
computing the tweet’s mean semantic distance us-
ing the NLTK toolkit. Tweets which didn’t contain

1http://topsy.com
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any words associated with a score of less than 0.3
in SentiWordNet were removed, in a manner sim-
ilar to Nakov et al (2013). After further manual
relevance checks, the remaining tweets were sub-
mitted to Amazon’s Mechanical Turk service for
message and phrase-level annotation. We initially
used the form demonstrated by Nakov et al., al-
though we later redesigned it with a dramatic im-
provement in annotator performance and annota-
tion quality. Each tweet was annotated by four
workers and annotation sparsity at the phrase level
was addressed by taking the majority of annota-
tions following the precedence neutral > pos >
neg > other. This is in contrast to the approach
used by Nakov et al. for SemEval which intersects
annotations. Annotations at the tweet level were
aggregated using a majority vote. We found that
using the proportion of positive, negative and neu-
tral words in a tweet is a surprisingly robust fea-
ture for cross-domain classification, and boosted
our performance when using bigrams.

3 Subjectivity Detection and Contextual
Polarity Disambiguation (Subtask A)

Sentiment lexicons such as SentiWordNet (Esuli
and Sebastiani, 2006), the NRC emotions lexicon
(Mohammad and Turney, 2010), the MPQA lex-
icon (Wilson et al., 2005) and the Bing Liu Lex-
icon (Hu and Liu, 2004) have been used for de-
termining whether a phrase should be labelled as
positive, negative or neutral within a tweet or sen-
tence (contextual polarity). However, lexical re-
sources are by nature non-contextual and may not
have good coverage over a given domain. We in-
stead considered how to infer contextual polarity
purely from the data available.

To address the problem of class imbalance in
the tweets, we break the problem of contextual po-
larity detection into two stages: (i) we first deter-
mine whether a given word should be assigned a
positive, negative or neutral annotation (subjectiv-
ity detection) and (ii) distinguish subjective tweets
into positive, negative neutral.

3.1 Contextual Subjectivity Detection

Task A asks participants to predict the contextual
subjectivity annotation of a text span at a given
offset: our extrinsic applications don’t have this
fundamental structure, so we considered whether
it was possible to automatically separate the con-
tent of input documents into those regions which

should be assigned an annotation and those which
should not. We considered a unigram and a bigram
baseline using a naive Bayes classifier, which gave
an F1 score of 0.640 and 0.520 respectively on our
in domain data (under 10-fold cross-validation).
We followed a number of approaches to subjec-
tivity detection to try and improve on the baseline
including sequential modelling using linear-chain
Conditional Random Fields (CRFs) with CRF-
suite (Okazaki, 2007) and lexical inference us-
ing semantically disambiguated WordNet (Miller,
1995) synsets in conjunction with their occurrence
in a subjective context.

We found that the observed subjective pro-
portion of a given word alongside its successor
and predecessor2 was a viable feature engineer-
ing scheme, which we call neighbouring subjec-
tivity proportions. This gave the best subjectivity
performance on our in-domain data when fed to a
voted perceptron (Freund and Schapire, 1999), an
ensemble approach which assigns particularly pre-
dictive iterations of an incrementally trained per-
ceptron a greater weight when deciding the final
classification, and offers wide-margin classifica-
tion akin to support vector machines whilst also
requiring less parameter exploration. We used the
implementation provided by the WEKA machine-
learning environment (Hall et al., 2009), which
achieved an F1-score of 0.740 (again under 10-
fold cross validation) for our in-domain data, but
performance dropped to an F1-score of 0.323 on
the SemEval 2013 training and development data.
Table 1 indicates that the proportion of objective
features in SemEval is much greater than that seen
within our own corpus, likely due to the differ-
ences in the way we processed annotations (out-
lined in Section 2).

3.2 Contextual Polarity

We considered a naive Bayes unigram baseline,
(similar approaches have proven popular with Se-
mEval 2013 participants for Task A) and achieved
an F1-measure of 0.662 when training using Se-
mEval’s 2014 training and development data and
evaluating on SemEval’s 2013 gold-standard an-
notations. However we could not detect the neu-
tral class, and the test did not consider the objec-
tive class.

2As an example, if we observe 14 total occurrences of the
word “heartbreaking”, and 13 of them appear with a positive,
negative or neutral label, the subjective proportion computed
would be 13/14.
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F1-score Precision Recall
P N E Overall P N E P N E

Task A (constrained) 85.5 49.0 9.84 67.3 91.1 41.4 3.8 80.6 60.2 16.7
Task A (unconstrained) 85.1 49.2 12.2 67.2 89.8 43.4 8.0 80.9 59.8 25.9
Finance 78.0 83.1 51.2 78.0 77.3 81.7 58.7 78.7 45.5 84.6
Politics 67.3 83.3 42.1 74.3 70.9 79.7 50.3 64.1 87.2 36.3
Technology 75.1 85.6 47.4 77.8 77.8 81.8 56.7 89.8 89.8 40.7

(a) Performance on word-level contextual annotation tasks.

F1-score Precision Recall
P N E Overall P N E P N E

Task B (constrained) 57.1 34.0 57.0 45.6 46.1 42.6 68.8 75.0 28.3 48.7
Task B (unconstrained) 57.2 33.0 57.7 45.1 46.2 36.1 72.1 74.9 30.4 47.9
Finance 78.7 78.9 64.6 73.8 77.9 79.5 64.8 78.3 79.5 64.5
Politics 80.8 75.0 61.9 72.3 78.4 74.8 63.7 83.3 75.1 60.2
Technology 73.2 78.2 58.0 70.1 69.7 76.3 62.9 76.9 80.2 53.7

(b) Performance on document-level annotation tasks.

Table 2: Classifier metrics obtained from 4-fold intra-domain cross-validation (using reference annota-
tions) and results for subtasks A and B of SemEval task 9 (computed using reference scorer).

Tech Politics Finance
Unigrams 0.53 0.35 0.53

Bigrams 0.38 0.31 0.52
Bigrams + SP 0.77 0.65 0.78

Unigrams + SP 0.68 0.62 0.76

Table 3: F1-scores achieved for each domain on
our corpus (naive Bayes, 10-fold cross valida-
tion) using reference annotations with and without
subjective (positive, negative, neutral) proportions
(SP).

We improved on this baseline by combining un-
igrams with information from the wider context of
the tweet. The algorithm first runs subjectivity de-
tection on the entire document and then, for each
word we need to classify (or otherwise each word
detected as subjective), effectively generates two
bags of words consisting of the subjective words
before and after that word (we also included any
adverbs as annotated by the Gimpel tagger (2011)
in this bag to improve robustness). We output the
word itself as a further feature, and use a random
forest classifier (10 trees, log2 N + 1 features) to
generate the annotation. We found this approach
outperformed the other approaches we tried (in-
cluding Naive Bayes and OneR) and also gave us
better F1-scores on the neutral class. Results from
this approach for our in-domain data and the Se-
mEval 2014 data can be seen in Table 2a. The
drop in performance from our in-domain data to
SemEval 2014 can be explained by the different
class distribution observed in SemEval (Table 1).
Subjectivity detection was used to generate fea-
tures for subtask B, but not subtask A, where the
target subjective phrases are already given.

4 Message Polarity Classification
(Subtask B)

We tried various different combinations of fea-
tures to discover the best intra-domain classifica-
tion approach for our corpus and found that the
proportion of positive, negative and neutral words
within a tweet boosted performance using bigram
binary features (Table 3). This involves first run-
ning the contextual polarity detection component
as described in Section 3 and feeding in the results
as features (together with bigrams) into a naive
Bayes classifier for tweet level sentiment detec-
tion. However, one of our hypotheses was that do-
main adaptation could help improve performance
when moving from one domain to another, effec-
tively allowing us to port our classifier from our
own corpus to SemEval.

4.1 Cross-Domain Adaptation

Our research in domain adaptation uses and ex-
tends the technique described by Blitzer and
Pereira (2007) called Structural Correspondence
Learning (SCL), which derives a relationship (or
correspondence) between features from two dif-
ferent domains. This is done via pivot features se-
lected from the intersection of features from both
domains which have been ranked according to mu-
tual information. The technique then uses N pivot
features from both the seen and unseen domains
to learn a set of binary problems corresponding to
whether a given pivot exists in a target document.
A perceptron is then used to train each of the bi-
nary problems, giving a matrix of weights (where
a weight represents covariance of non pivot fea-
tures with pivot features). We extended Blitzer’s
technique to encompass the neutral class and gave
a wider notion of domain than previously found in
the literature. As an example Liu et al. (2013) use
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Training domains Test Accuracy Precision Recall F-measure
Tech & Finance Politics 0.76 0.52 0.40 0.45
Tech & Politics Finance 0.69 0.51 0.78 0.61

Finance & Politics Tech 0.63 0.53 0.58 0.55

Table 4: Binary class metrics with structural correspondence learning on our own corpus.

F-measure Precision Recall
Train Test Accuracy

(SP)
SP Baseline(Bigrams) Loss SP Baseline (Bigrams) Loss SP Baseline (Bigrams) Loss

Tech Politics 69.74% 0.67 0.24 0.43 0.64 0.19 0.45 0.71 0.33 0.38
Tech Finance 72.28% 0.78 0.20 0.58 0.74 0.15 0.59 0.83 0.33 0.50
Politics Tech 72.40% 0.76 0.21 0.55 0.71 0.25 0.46 0.82 0.33 0.49
Politics Finance 73.06% 0.79 0.22 0.57 0.77 0.16 0.61 0.82 0.33 0.49
Finance Politics 68.39% 0.66 0.23 0.43 0.67 0.18 0.49 0.66 0.33 0.33
Finance Tech 71.92% 0.76 0.22 0.54 0.71 0.16 0.55 0.82 0.33 0.49
Tech & Finance Politics 69.17% 0.63 0.23 0.40 0.61 0.18 0.43 0.67 0.33 0.34
Tech & Politics Finance 70.49% 0.63 0.20 0.43 0.61 0.15 0.46 0.64 0.33 0.31
Finance & Politics Tech 72.88% 0.77 0.22 0.55 0.72 0.16 0.56 0.84 0.33 0.51

Table 5: Classifier metrics from training and testing on different domains, with and without proportions
of positive, negative and neutral phrases from the source domain (Subjective Proportions SP).

an SVM-derived technique to adapt on domains
containing terms relevant to Google and Twitter,
which are both considered part of the technology
domain in our corpus, whereas we attempted to
adapt from technology topics to financial news and
political opinions.

We found that the amount of mutual informa-
tion in our three domains was very low and was
practically zero for the three class version of our
problem. The results for the binary version of the
classifier generated poorer results (Table 4) than
those produced by our back-up classifier (based
on the naive Bayes bigrams and subjective phrase
proportions from the source domain, see Table
5, last three rows). Therefore we generated our
submission to SemEval 2014 based on bigrams
and subjective proportions rather than SCL, since
we found that the proportion of pos/neg/neutral
phrases is a robust feature across domains (as long
as it can be reliably predicted during the contex-
tual polarity prediction stage, which was the case
for our data). Our results for SemEval task B us-
ing the subjective phrase proportions can be found
in Table 2b. Our unconstrained performance in-
dicates that whilst this classifier provides reason-
able cross domain performance for our own data
(Table 5), it is very sensitive to the performance
of subjectivity and contextual polarity detection,
which is lower for SemEval than it is for our own
corpus. Presumably the reason for this is the dif-
ferent assumptions in annotations in the two cases
and the differences in the class distributions be-
tween SemEval and our own data. This meant that
our performance was lower than systems that had
specifically trained on the SemEval data.

5 Conclusions

Our goal was to demonstrate the potential of do-
main sensitivity and domain adaptability for senti-
ment analysis in tweets - a task which brings chal-
lenges defying the use of fixed lexica. We found
that the proportions of positive, negative and neu-
tral tweets are quite robust cross-domain features,
although we do think that domain adaptation tech-
niques such as Structural Correspondence Learn-
ing merit further investigation in the context of
sentiment analysis for Twitter.

Access to the source code of this
submission

The source code of the applications used to
gather and prepare our corpus, conduct CRF-
suite and structural correspondence learning,
and the Java-based environment used to gen-
erate our final submission are available at
https://github.com/Sentimentron/
Nebraska-public3 and https://
github.com/Sentimentron/PRJ90814.
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Abstract

In this paper we present our contribution to
SemEval-2014 Task 4: Aspect Based Sen-
timent Analysis (Pontiki et al., 2014), Sub-
task 2: Aspect Term Polarity for Laptop
domain. The most outstanding feature in
this contribution is the automatic building
of a domain-depended sentiment resource
using Latent Semantic Analysis. We in-
duce, for each term, two real scores that in-
dicate its use in positive and negative con-
texts in the domain of interest. The aspect
term polarity classification is carried out
in two phases: opinion words extraction
and polarity classification. The opinion
words related with an aspect are obtained
using dependency relations. These rela-
tions are provided by the Stanford Parser1.
Finally, the polarity of the feature, in a
given review, is determined from the pos-
itive and negative scores of each word re-
lated to it. The results obtained by our ap-
proach are encouraging if we consider that
the construction of the polarity lexicon is
performed fully automatically.

1 Introduction

Hundreds of millions of people and thousands
of companies around the world, actively use So-
cial Media2. Every day are more amazing web-
sites and applications (Facebook, Twitter, MyS-
pace, Amazon, etc.) that allow the easy sharing
of information in near real time. For this rea-
son, at present, the Web is flooded with subjec-
tive, personal and affective data. Mining this huge

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1http://nlp.stanford.edu:8080/parser/
2http://en.wikipedia.org/wiki/Social media

volume of information offer both interesting chal-
lenges and useful intelligent applications such as
recommendation systems (Dong et al., 2013; Sun
et al., 2009) and customer’s reviews summariza-
tion (Bafna and Toshniwal, 2013; Balahur and
Montoyo, 2008).

Nowadays, companies have redirected their
marketing strategies toward the Web. Each one
of them advertises that their products are the best,
amazing, easy to use, long lasting and cheap. But
are these advertisements really true? Obviously,
not everything is true. The companies usually ex-
aggerate the product’s quality and in many cases
tend not to advertise the limitations of their prod-
ucts. Therefore, taking a rational decision about
which product is the best among the variety of ex-
isting options can be very stressful.

To avoid this situation, frequently we trust in
the experiences gained by others who have pur-
chased the product of our interest, or one similar.
The existence of websites like Ciao3, Epinions4

and Cnet5 make possible to the customers to inter-
change their experiences about a specific product,
and to future clients avoid products advertising

However, the existence of a large volume of re-
views entails that it is impossible to conduct an
effective exploration before making a final deci-
sion. The most important benefit of having that
amount of user-generated content on hand, specif-
ically product’s reviews, is that, these data can be
explored by a computer system to obtain informa-
tion about products and their features.

The task of aspect-based sentiment analysis
(Liu, 2012) is a fine-grained level of Sentiment
Analysis (Pang and Lee, 2008). This aim to iden-
tify the aspects (e.g., battery, screen, food, ser-
vice, size, weight, time-life) of given target entities

3www.ciao.com
4www.epinions.com
5www.cnet.com
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(e.g., laptops, restaurants, camera) and the senti-
ment expressed towards each aspect (e.g., positive,
negative, neutral). This are composed by two ba-
sic phases: feature extraction and feature polarity
classification.

In this paper we present our contribution for
SemEval-2014 Task 4: Aspect Based Sentiment
Analysis (Pontiki et al., 2014), Subtask 2: Aspect
Term Polarity. In this approach we only focus on
the polarity classification problem. For this, we
induce a domain-dependent sentiment lexicon ap-
plying Latent Semantic Analysis (LSA) on prod-
uct reviews corpus, gathered from Ciao. The clas-
sification phase is carried out as follow: the opin-
ion words related with the product aspect are draw
out using the dependency relations provided by
Stanford Parser, then the polarity of the extracted
words are combined to obtain overall aspect polar-
ity.

The paper is organized as follows. Section 2 de-
scribes our approach. Further on, in Section 3, we
discuss the results obtained in the SemEval 2014
Task No. 4 subtask 2. Finally, section 4 provides
concluding remarks.

2 UO UA System

One of major challenge in sentiment analysis into
product reviews, is dealing with a quite domain de-
pendence. For instance, the word “unpredictable”
can be considered as positive in Movie domain,
however it is very negative in Airplane domain.
For this reason, we propose to create a specific
sentiment lexicon for addressing aspect based sen-
timent analysis in reviews.

Our proposal is divided in two main phases. The
first one aims to build a domain-dependent senti-
ment resource for Laptop domain applying LSA.
The second phase obtains the words related by
means of some dependency relation with the as-
pect, and later, the polarity of these words are
obtained from induced polarity lexicon and com-
bined for computing overall aspect polarity.

2.1 Domain-Dependent Polarity Lexicon

The use of sentiment resource has been proven
to be useful to build, train, and evaluate systems
for sentiment analysis (Gutiérrez et al., 2013; Bal-
ahur, 2011). In order to build sentiment resource,
several approach has been presented. In one of
the first works, presented by (Hatzivassiloglou and
McKeown, 1997), was proposed to take into ac-

count if adjectives are linked by adversative or
copulative conjunctions for detecting its polarity.
In (Turney and Littman, 2003) the authors exposed
a method for inferring the semantic orientation of
a word from its statistical association with a set
of positive and negative paradigm words, mea-
sured by point-wise mutual information (PMI). In
(2004), Hu and Liu suggested a technique to ex-
pand the lexicon using the relations of synonymy
and antonym provided by WordNet (Fellbaum,
1998). In (2009), Cruz et al., created a sentiment
resource based on a graph, constructed from con-
junctive expressions between pairs of adjectives,
observed in a review corpus. PageRank algorithm
(Page et al., 1999) was adapted to be used on
graphs with positive and negative edges, in order
to obtain the semantic orientation of words.

Despite the wide range of existing proposals
for resources construction, the results achieved
with them are far from expected. As we have
already seen, in aspect based sentiment analy-
sis, the polarity of a word is heavily dependent
on the domain; and general propose sentiment
resource such as General Inquirer (Stone et al.,
1966), WordNet-Affect(Strapparava and Valitutti,
2004), SentiWordNet(Baccianella et al., 2010) or
HowNet (Dong et al., 2010) do not capture this
dependency. On the other hand, the human anno-
tators can not create specific sentiment resources
for each new product launched to market. There-
fore, propose methods to create these resources is
a challenging task.

In this paper we address this task, presenting a
framework for building domain-dependent senti-
ment resource. Our proposal is compounded of
four phases. (See figure 1).

Firstly, review pages about the product of in-
terest can be retrieved from different websites, for
instance, Ciao, Epinions and Cnet (in this work
we only use reviews from Ciao). This reviews
are parsed and cleaned (this time we use Python
XML Parser6). For each page we extract: pros,
cons, title, full review and rating. In this work we
have only focus on the pros and cons attributes be-
cause they are usually very brief, consist of short
phrases or sentence segments and give a positive
and negative evaluation about the product aspects.
Each pros and cons in remainder paper will be
considered as positive and negative samples, re-
spectively.

6https://docs.python.org/2/library/xml.html
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Figure 1: Building domain-dependent sentiment
resource.

Subsequently, the samples are preprocessed,
applying a POS-Tagging tool (Padró and
Stanilovsky, 2012) to convert all words in lem-
mas. After that, the stopwords are removed
from text. Afterward each sample is represented
using the classic vector space model (Salton et
al., 1975). Intending to measure the association
between term and class we add a special term to
the vectors. In positive samples the term tpos is
added whereas in the negative samples the term
tneg is aggregated.

Later, we apply a Latent Semantic Analysis
(this time we use, Gensim python package) to cal-
culate the strength of the semantic association be-
tween words and classes. LSA uses the Singular
Value Decomposition (SVD) to analyze the statis-
tical relationships among words in a corpus.

The first step is construct a matrix Mn×m, in
which the row vectors vi represent lemmas and the
column vectors si the positive and negative sample
(pros and cons). In each cell tij , we have the TF
score (Term Frequency) of the ith lemma in jth

sample. The next step is apply Singular Value De-
composition to matrix Mn×m to decompose it into
a product of three matrices UΣV T , then, we select
the k largest singular values, and their correspond-
ing singular vectors from U and V , obtained an
approximation M̂ = UkΣkV

T
k of rank k to orig-

inal matrix Mn×m. After LSA is performed, we
use the new matrix M̂ to measure the association
between lemmas li and lj computing the cosine
measure between vectors vi and vj , with the equa-
tion 1.

LSAscore(li, lj) =
< vi, vj >

‖ vi ‖ · ‖ vj ‖ (1)

Finally, the polarity lexicon contains lemmas
li and its positive and negative scores. This val-
ues are computed using LSAscore(li, tpos) and
LSAscore(li, tneg) respectively. The table 1 show
some top positive and negative words computed
with this strategy.

Positive Score Negative Score
sturdy 0.8249 prone 0.8322
superb 0.7293 weak 0.8189
durable 0.7074 disaster 0.8120
sexy 0.6893 erm 0.8118
powerfull 0.6700 ill 0.8107
robust 0.6686 uncomfortable 0.8084
affordable 0.6630 noisy 0.7917
suuupeerrr 0.6550 overwhelm 0.7514
lighweight 0.6550 unsturdy 0.7491
unbreakable 0.6542 lousy 0.7143

Table 1: Examples of positive and negative words.

With aim to do our contribution to SemEval-
2014, Task 4: Aspect Based Sentiment Analysis
(Pontiki et al., 2014), Subtask 2: Aspect Term Po-
larity, we gathered 3010 Laptop Reviews, from
Ciao and create a corpus with 6020 samples, 3010
positives (Pros) and 3010 negatives (Cons). This
corpus was used as input in the developed frame-
work (See figure 1). In this time we utilize Freel-
ing7 as POS-Tagging tool and Gensim Python
Packages8 to perform LSA (only the most 100
most significant eigenvalue are used). After that,
a domain-dependent sentiment resource (DLSR)
with 4482 term was created for Laptop reviews.

2.2 Aspect Polarity Classification

In order to exploit our domain-dependent senti-
ment resource building for Laptop domain, we de-
velop an unsupervised method based on language
rule to classify the product aspect. The basic rules
are used to find dependency relation between as-
pect and their attributes. The figure 2 show the
architecture of our proposal.

The proposed method receive as input a tuple
(Pfeature, R), where Pfeature represent the aspect
to evaluate, and R is the context (review) in it ap-
pears.

7http://nlp.lsi.upc.edu/freeling/
8https://pypi.python.org/pypi/gensim
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Figure 2: Apect polarity classification.

The dependency parsed is applied to review R,
using Stanford Parser. Following that, we extract
a set of tuples W , each tuple is represented as a
pair (Att, Mod) where Att is a word related with
the aspect Pfeature through some dependency re-
lations shown in Table 2, and Mod is a integer
value indicating if Att is modified by a valence
shifter (Polanyi and Zaenen, 2004), (we only con-
sider negation words, e.g., never, no, not, don’t,
nothing, etc.) , and default value of 0 is assign, in
case that, the Att is modified by a valence shifter,
we assign value of -1.

Dependency relations
mod subj nsubj
amod csub csubpass
advmod obj dobj
vmod iobj pobj
rcmod npadvmod nn
subj xcomp advcl

Table 2: Stanford Parser dependency relations.

Once, the set of pairs W was obtained, the po-
larity of the feature Pfeature is determined from
the scores of the attributes (related words) that de-
scribe it. To sum up, for each pair (Att, Mod) ∈
W , the positive Pos((Att, Mod)) and negative
Neg((Att, Mod)) scores are calculated as:

Neg((Att, Mod)) =

{
−N(Att) if Mod < 0

N(Att) otherwise
(2)

Pos((Att, Mod)) =

{
−P (Att) if Mod < 0

P (Att) otherwise
(3)

Where P (Att) and N(Att) are the positive and
negative score for Att in domain-dependent senti-
ment resource DLSR.

Finally, the global positive and negative scores
(SOpos, SOneg) are calculated as:

SOpos(Pfeature) =
∑

w∈W

Pos(w) (4)

SOneg(Pfeature) =
∑

w∈W

Neg(w) (5)

If SOpos is greater than SOneg then the aspect is
considered as positive. On the contrary, if SOpos

is less than SOneg the aspect is negative. Finally,
if SOpos is equal to SOneg the aspect is considered
as neutral.

3 Results

In this section we present the evaluation of our
system in the context of SemEval-2014, Task 4:
Aspect Based Sentiment Analysis (Pontiki et al.,
2014), Subtask 2: Aspect Term Polarity. For
evaluating the participant’s system two unlabeled
domain-specific datasets for laptops and restau-
rants were distributed. For each dataset two runs
can be submitted, the first (constrained), the sys-
tem can only be used the provided training data
and other resources such as lexicons. In the sec-
ond (unconstrained), the system can use additional
data for training. We send one run for laptop
dataset and it only use external data retrieved from
Ciao website (the training data was not used) (un-
constrained).

The results achieve by our method are illustrate
in Table 3. As may be observed, the accuracy

Label Pr Rc F1
conflict 0.0 0.0 0.0
negative 0,5234 0,3764 0,4379
neutral 0,4556 0,4074 0,4302
positive 0,6364 0,7561 0,6911
Accuracy 0.55198777

Table 3: Results in aspect polarity classification
for laptop dataset.

achieve by UA OU was 0.55, and F1 measure for
negative, neutral and positive were 0,4379, 0,4302
and 0,6911 respectively. In case of conflict polar-
ity we reached a 0.0 F1 value because our system
not handle this situation. For this subtask (Laptop
domain) a total of 32 runs was submitted by all

776



systems participant’s and our run was ranked as
25th. The results despite not achieving expected,
are encouraging. These evidence the feasibility of
building resources from data available on the web,
for aspect-based sentiment analysis.

4 Conclusions

In this article, we presented and evaluated the
approach considered for our participation in
SemEval-2014 Task 4: Aspect Based Sentiment
Analysis (Pontiki et al., 2014), Subtask 2: Aspect
Term Polarity, specifically for Laptop Domain.
We present a framework for building domain-
dependent sentiment resources applying Latent
Semantic Analysis and build a special resource for
polarity classification in Laptop domain. This re-
source was combined into unsupervised method to
compute the polarity associated to different aspect
in reviews. The results obtained by our approach
are encouraging if we consider that the construc-
tion of the polarity lexicon is performed fully au-
tomatically.
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Camara. 2013. UMCC DLSI-(SA): Using a rank-
ing algorithm and informal features to solve senti-
ment analysis in Twitter. Atlanta, Georgia, USA,
page 443.

Vasileios Hatzivassiloglou and Kathleen McKeown.
1997. Predicting the semantic orientation of adjec-
tives. In Proceedings of the Joint ACL/EACL Con-
ference, pages 174–181.

Minqing Hu and Bing Liu. 2004. Mining opinion fea-
tures in customer reviews. In Proceedings of AAAI,
pages 755–760.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Synthesis Lectures on Human Language Tech-
nologies, 5(1):1–167.
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Abstract

We report results obtained by the UoW
method in SemEval-2014’s Task 10 – Mul-
tilingual Semantic Textual Similarity. We
propose to model Semantic Textual Simi-
larity in the context of Multi-task Learning
in order to deal with inherent challenges of
the task such as unbalanced performance
across domains and the lack of training
data for some domains (i.e. unknown
domains). We show that the Multi-task
Learning approach outperforms previous
work on the 2012 dataset, achieves a ro-
bust performance on the 2013 dataset and
competitive results on the 2014 dataset.
We highlight the importance of the chal-
lenge of unknown domains, as it affects
overall performance substantially.

1 Introduction

The task of Semantic Textual Similarity (STS)
(Agirre et al., 2012) is aimed at measuring the
degree of semantic equivalence between a pair of
texts. Natural Language Processing (NLP) ap-
plications such as Question Answering (Lin and
Pantel, 2001), Text Summarisation (Lin and Hovy,
2003) and Information Retrieval (Park et al., 2005)
rely heavily on the ability to measure semantic
similarity between pairs of texts. The STS eval-
uation campaign provides datasets that consist of
pairs of sentences from different NLP domains
such as paraphrasing, video paraphrasing, and ma-
chine translation (MT) evaluation. The participat-
ing systems are required to predict a graded simi-
larity score from 0 to 5, where a score of 0 means
that the two sentences are on different topics and

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

a score of 5 means that the two sentences have ex-
actly the same meaning.

Methods for STS are commonly based on com-
puting various types of similarity metrics between
the pair of sentences, where the similarity scores
are used as features to train regression algorithms.
Bär et al. (2012) use similarity metrics of vary-
ing complexity. The range of features goes from
simple string similarity metrics to complex vector
space models. The method yielded the best av-
erage results based on the official evaluation met-
rics, despite not having achieved the best results
in all individual domains. Šarić et al. (2012) use a
similar set up, extracting features from similarity
metrics, where these features are based on word-
overlap and syntax similarity. The method was
among the best for domains related to paraphras-
ing. It also achieved a high correlation between
the training and test data. In contrast, for the ma-
chine translation data the performance in the test
set was lower than the one over the training data.
A possible reason for the poor results on this do-
main is the difference in length between the train-
ing and test sentences, as in the test data the pairs
tend to be short and share similar words. Šarić et
al. (2012) claim that these differences show that
the MT training data is not representative of the
test set given their choice of features.

Most of the participating systems in the STS
challenges achieve good results on certain do-
mains (i.e. STS datasets), but poor results on oth-
ers. Even the most robust methods still show a big
gap in performances for different datasets. In the
second evaluation campaign of STS a new chal-
lenge was proposed: domains for which no train-
ing sets are provided, but only test sets. Heilman
and Madnani (2013) propose to incorporate do-
main adaptation techniques (Daumé et al., 2010)
for STS to generalise models to new domains.
They add new features into the model, where the
feature set contains domain specific features plus
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general task features. The machine learning al-
gorithm infers the extra weights of each specific
domain and of the general domain. When an in-
stance of a specific domain is to be predicted, only
the copy of the features of that domain will be ac-
tive; if the domain is unknown, the general fea-
tures will be active. Severyn et al. (2013) pro-
pose to use meta-classification to cope with do-
main adaptation. They merge each pair into a sin-
gle text and extract meta-features such as bag-of-
words and syntactic similarity scores. The meta-
classification model predicts, for each instance, its
most likely domain based on these features.

A possible solution to alleviate unbalanced per-
formances on different domains is to model STS
in the context of Multi-task Learning (MTL). The
motivation behind MTL is that by learning multi-
ple related tasks simultaneously the model perfor-
mance may improve compared to the case where
the tasks are learnt separately. MTL is based on
the assumption that related tasks can be clustered
and inter-task correlations between tasks within
the same cluster can be transferred.

We propose to model STS using MTL based
on a state-of-the-art STS feature set (Šarić et al.,
2012). As algorithm we use a non-parametric
Bayesian approach, namely Gaussian Processes
(GP) (Rasmussen, 2006). We show that the MTL
model outperforms previous work on the 2012
datasets and leads to robust performance on the
2013 datasets. On the STS 2014 challenge, our
method shows competitive results.

2 Experimental Setting

We apply MTL to cope with the challenge of un-
balanced performances across domains and un-
known domains present in the STS datasets.

2.1 TakeLab Features
We use the features from one the top perform-
ing system in STS 2012: the TakeLab1 system,
which is publicly available. It extracts the follow-
ing types of features:

N-gram overlap is the harmonic mean of the de-
gree of matching between the first and second
texts, and vice-versa. The overlap is com-
puted for unigrams, bigrams, and trigrams.

WordNet-augmented word overlap is the par-
tial WordNet path length similarity score as-

1http://takelab.fer.hr/sts/

signed to words that are not common to both
texts.

Vector space sentence similarity is the repre-
sentation of each text as a distributional vec-
tor by summing the distributional (i.e., LSA)
vectors of each word in the text and taking the
cosine distance between these texts vectors.

Shallow NE similarity is the matching between
Named Entities (NE) that indicates whether
they were found in both texts.

Numbers overlap is an heuristic that penalises
differences between numbers in texts.

Altogether, these features make up a vector of 21
similarity scores.

2.2 Multi-task Gaussian Processes
Gaussian Processes (Rasmussen, 2006) is a
Bayesian non-parametric machine learning frame-
work based on kernels for regression and classifi-
cation. In GP regression, for the inputs x we want
to learn a function f that is inferred from a GP
prior:

f(x) ∼ GP (m(x), k(x, x′)), (1)

where m(x) defines a 0 mean and k(x, x′) defines
the covariance or kernel functions. In the single
output case, the random variables are associated
to a process f evaluated at different values of the
input x. In the multiple output case, the random
variables are associated to different processes and
evaluated at different values of x.

We are interested in the intrinsic coregionaliza-
tion model for GP. A coregionalization model is
a heterotopic MTL model in which each output is
associated with a different set of inputs. In our
case the different set of inputs are the STS do-
mains (i.e. datasets). The intrinsic coregionaliza-
tion model (i.e. MTL-GP) is based on a separable
multi-task kernel (Álvarez et al., 2012) of the form

K(X, X) = B ⊗ k(X, X), (2)

where k(X, X) is a standard kernel over the in-
put points and B is a positive semi-definite ma-
trix encoding task covariances, called coregion-
alization matrix. B is built from other matrices
B = WW> + diag(k), where W is a matrix that
determines the correlations between the different
outputs and k is a matrix which allows the outputs
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(i.e. tasks) to behave independently. The repre-
sentation of data points is augmented with task ids
and given the id of a pair of data points the co-
variance from the standard kernel between them
is multiplied by a corresponding covariance from
B, which modifies the data points’ covariance de-
pending on whether they belong to the same task
or different tasks.

The coregionalization matrix B allows us to
control the amount of inter and intra task transfer
of learning among tasks. Cohn and Specia (2013)
propose different types of B matrices to model
the problem of predicting the quality of machine
translations. They developed B matrices that rep-
resent an explicit intra-task transfer to be a part of
the parameterised kernel function. We use a de-
fault B where the weights of the matrix are learnt
along with the hyper-parameters by the GP tool.

For training our method we use the GPy toolkit2

with a combination of RBF and coregionalization
kernels. The parameters used to build the core-
gionalization matrix are the number of outputs to
coregionalize and the rank of W . For example,
in the 2012 training set, the number of outputs
to coregionalize is 3, given that we have three
tasks/domains. The B matrix and the RBF kernel
hyper-parameters are jointly optimised. Each in-
stance of the training data is then augmented with
the id of their corresponding task. During test-
ing a new instance has to be matched to a specific
task/domain id from the training data. In the case
of an unknown test domain, we match it to a train-
ing domain which is similar, given the description
of the test dataset.

For the STS 2014 dataset, given the large num-
ber of training instances, we train a sparse GP
model within GPy. The main limitation of the GP
model is the that memory demands grow O(n2),
and the computational demands grow O(n3), with
n equals the number of training instances. Sparse
methods (e.g. (Titsias, 2009)) try to overcome this
limitation by constructing an approximation of the
full model on a smaller set of m support or induc-
ing instances that allow the reduction of compu-
tational demands to O(nm2). For the sparse GP
we use the same combination of kernels as the full
model, where we chose empirically the number of
inducing instances m and the GP tool randomly
selects the instances from the training data.

2https://github.com/SheffieldML/GPy

3 Results and Discussion

In what follows we show a comparison with previ-
ous work on the STS 2012 and 2013 datasets, and
the official results for English and Spanish STS
2014 datasets.

3.1 STS 2012 and STS 2013

For training we use the STS 2012 training datasets
and we compare the results on the STS 2012 with
publicly available systems and with the official
Baseline, which is based on the cosine metric com-
puted over word overlaps. The official evaluation
metric is Pearson’s correlation. We match the un-
known domain OnWN to MSRpar given that the
domain of paraphrasing is that of news from the
web, which potentially contains a broad enough
vocabulary to cover OnWN.

Table 3.1 shows a comparison of the MTL-GP
with previous work on the STS 2012 data, where
our method outperforms them for most of the do-
mains. Our method improves the results of Take-
Lab with the same feature set. In other words,
the transfer learning improves over (Šarić et al.,
2012), which is trained with a separate Support
Vector Regression model for each domain. We
note that we can only compare our method against
the simpler version of TakeLab that is available.
A different version using syntactic features was
also proposed, where most results do not show a
significant variation, except for an improvement
of r=0.4683 in the SMTnews dataset. For the
complete alternative results we refer the reader to
(Šarić et al., 2012).

On the STS 2013 dataset, we compare our
method with work based on domain adaptation
and the official baseline. We use the 2012 data for
training as no additional training data is provided
in 2013. Table 3.1 shows all the possible match-
ing combinations between the STS 2013 test sets
and STS 2012 training sets. The best results are
given by matching the STS 2013 test sets with the
MSRvid domain, where all 2013 sets achieve their
best results.

In Table 3.1, we show the comparison with
previous work on the 2013 datasets, where we
use the best matching result from Table 3.1
(MSRvid). Our method shows very competitive
results but only with the correct matching of do-
mains, whereas the worst performed matching
(SMTeuroparl, Table 3.1) shows results that are
closer to the official Baseline. In previous work
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Method MSRpar MSRvid SMTeuroparl SMTnews OnWN
Šarić et al. (2012) 0.7343 0.8803 0.4771 0.3989 0.6797
Bär et al. (2012) 0.68 0.8739 0.5280 0.4937 0.6641

MTL-GP 0.7324 0.8877 0.5615 0.6053 0.7256
Baseline 0.4334 0.2996 0.4542 0.3908 0.5864

Table 1: Comparison with previous work on the STS 2012 test datasets.

(Heilman and Madnani, 2013), domain adaptation
is performed with the addition of extra features
and the subsequent extra parameters to the model,
where in the MTL-GP the transfer learning is done
with the coregionalization matrix and does not de-
pend on large amounts of data.

3.2 English STS 2014

The training dataset consists of the combination of
each English training and test STS datasets from
2012 and 2013, which results in 7 domains. For
testing, in our first run we matched similar do-
mains with each other and the unknown domain
with MSRpar. For our second run, we matched
the unknown domains with a similar one. The
domain matching (test/training) was done as fol-
lows: deft-forum/MSRpar, deft-news/SMTnews,
tweet-news/SMTnews and images/MSRvid. For
our third run, the difference in matching is for deft-
news/headlines and tweet-news/headlines, where
the other domains remain with the same match-
ing. Table 3.2 shows the official STS 2014 results
where our best method (i.e. run3) achieves rank
10.

In Table 3.2, we show the comparison of the
MTL-GP and the sparse MTL-GP with the best
2014 system (DLSCU run2). For both MTL meth-
ods we match the 2014 domains with the train-
ing domain headlines. For the sparse MTL-GP,
we chose empirically a number m of 500 ran-
domly induced points. For reference, the corre-
lation of sparse MTL-GP with 50 points on deft-
forum is r=0.4691 obtained in 0.23 hours, with
100 points, r=0.4895, with 500 points, r=0.4912,
and with 1000 points, r=0.4911. The sparse MTL-

Test
Train MSRvid MSRpar SMTeuroparl

Headlines 0.6666 0.6595 0.5693

OnWN 0.6516 0.4635 0.4113

FNWN 0.4062 0.3217 0.2344

Table 2: Matching of new 2013 domains with
2012 training data.

GP with 500 points runs in 1.38 hours, compared
to 2.39 hours for the full MTL-GP3. Addition-
ally, the sparse version achieves similar results to
the full model and very competitive performance
compared to the best STS 2014 system. However,
the result for OnWN is substantially lower than the
best system. This result can be highly improved
(r=0.7990) if the test set is matched with the cor-
respondent training domain.

3.3 Spanish STS 2014

For the Spanish STS subtask we use both sim-
ple and state-of-the-art (SoA) features to train the
MTL-GP. The simple features are similarity scores
from string metrics such as Levenshtein, Gotoh,
Jaro, etc.4 The SoA similarity features come again
from TakeLab. The training dataset consists of the
combination of each English STS domains from
2012 and 2013 and the Spanish trial dataset with
task-id matching each instance to a given domain.
We represent the feature vectors with sparse fea-
tures for the English and Spanish training datasets,
where in English the pairs have simple and SoA
features, and for Spanish, only the simple features.
In other words, the feature vectors have the same
number of features (34): 13 simple features and 21
SoA features. However, for Spanish the SoA fea-
tures are set to 0 in training and testing. The moti-
vation to use SoA and simple features in English is
that the extra information will improve the transfer
learning on the English domains and discriminate
between the English domains and the Spanish do-
main, which only contains simple features. For
testing we only extracted the simple features; the
SoA features were set to 0. For the coregionaliza-
tion matrix we set the number of domains to be the
English STS domains from 2012 and 2013, plus
the Spanish trial, where the Spanish is treated as an
additional domain, which results in 8 domains. In
the first run of testing, we matched the test datasets
to the Spanish domain, and in the second run we
matched the datasets to the English MSRpar do-

3Intel Xeon(R) at 2.67GHz with 24 cores
4https://github.com/Simmetrics/simmetrics
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Method Headlines OnWN FNWN
Heilman and Madnani (2013) 0.7601 0.4631 0.3516

Severyn et al. (2013) 0.7465 0.5572 0.3875
MTL-GP 0.6666 0.6516 0.4062
Baseline 0.5399 0.2828 0.2146

Table 3: Comparison between best matching MTL-GP (MSRvid) and previous work on the STS 2013
test datasets.

Run deft-forum deft-news headlines images OnWN tweet-news Weighted mean rank
UoW run1 0.3419 0.7512 0.7535 0.7763 0.7990 0.7368 0.7143 11
UoW run2 0.3419 0.5875 0.7535 0.7877 0.7990 0.6281 0.6817 17
UoW run3 0.3419 0.7634 0.7535 0.7877 0.7990 0.7529 0.7207 10

Table 4: Official English STS 2014 results.

main. Table 3.3 shows the official results for the
Spanish subtask, where our method achieves com-
petitive performance, placed 7 in the systems rank-
ing. We only show the results for the first run as
both runs achieved the same performance.

Run Wikipedia News Weighted
mean

rank

UoW 0.7483 0.8001 0.7792 7

Table 6: Official Spanish STS 2014 results.

Table 3.3 shows the comparison of the best
Spanish STS 2014 system (UMCC DLSI run2)
against two different sparse MTL-GP matched
with the Spanish trial with 500 inducing points.
Sparse MTL-GP run1 uses the sparse features de-
scribed above, while run2 uses a modification of
the feature set consisting in specific features for
each type of domain. For the English domains
the simple features are set to 0, and for Spanish
the SoA are still set to 0. The difference between
sparse MTL-GP models is very small, where the
use of all the features on the English domains im-
proves the results. However, the performance of
both models is still substantially lower than that of
the best system.

Run Wikipedia News
UMCC DLSI run2 0.7802 0.8254

Sparse MTL-GP run1 0.7468 0.7959
Sparse MTL-GP run2 0.7380 0.7878

Table 7: Comparison of best system against sparse
MTL-GP STS 2014 results.

4 Conclusions

We propose the use of MTL for STS. We show
that MTL improves the results of one of the best
STS systems, TakeLab. However, the match-

ing of an unknown domain during testing proved
a key challenge that affects performance signifi-
cantly. Given the results of STS 2013 and 2014,
our method tends to achieve best results when
known/unknown domains are matched to the same
training domains (i.e. MSRpar for 2013 and head-
lines for 2014). The sparse MTL-GP shows sim-
ilar performance to the full GP model, but takes
half the time to be trained. In the Spanish subtask,
we train our method with English datasets and the
Spanish trial data as an additional domain. For
this subtask our method also shows competitive re-
sults. Future work involves the automatic match-
ing of unknown domains at test time via meta-
classification (Severyn et al., 2013).
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Abstract

This paper presents the system submit-
ted by University of Wolverhampton for
SemEval-2014 task 1. We proposed a ma-
chine learning approach which is based
on features extracted using Typed Depen-
dencies, Paraphrasing, Machine Transla-
tion evaluation metrics, Quality Estima-
tion metrics and Corpus Pattern Analysis.
Our system performed satisfactorily and
obtained 0.711 Pearson correlation for the
semantic relatedness task and 78.52% ac-
curacy for the textual entailment task.

1 Introduction

The SemEval task 1 (Marelli et al., 2014a) in-
volves two subtasks: predicting the degree of re-
latedness between two sentences and detecting the
entailment relation holding between them. The
task uses SICK dataset (Marelli et al., 2014b),
consisting of 10000 pairs, each annotated with re-
latedness in meaning and entailment relationship
holding between them. Similarity measures be-
tween sentences are required in a wide variety of
NLP applications. In applications like Informa-
tion Retrieval (IR), measuring similarity is a vi-
tal step in order to determine the best result for
a related query. Other applications such as Para-
phrasing and Translation Memory (TM) rely on
similarity measures to weight results. However,
computing semantic similarity between sentences
is a complex and difficult task, due to the fact that
the same meaning can be expressed in a variety of
ways. For this reason it is necessary to have more
than a surface-form comparison.

We present a method based on machine learning
which exploits available NLP technology. Our ap-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

proach relies on features inspired by deep seman-
tics (such as parsing and paraphrasing), machine
translation quality estimation, machine translation
evaluation and Corpus Pattern Analysis (CPA1).

We use the same features to measure both se-
mantic relatedness and textual entailment. Our hy-
pothesis is that each feature covers a particular as-
pect of implicit similarity and entailment informa-
tion contained within the pair of sentences. Train-
ing is performed in a regression framework for se-
mantic relatedness and in a classification frame-
work for textual entailment.

The remainder of the paper is structured as fol-
lows. In Section 2, we review the work related
to our study and the existing NLP technologies
used to measure sentence similarity. In Sections 3
and 4, we describe our approach and the similarity
measures we used. In Section 5, we present the re-
sults and an analysis of our runs based on the test
and training data provided by the SemEval-2014
task. Finally, our work is summed up in Section 6
with perspectives for future work we would like to
explore.

2 Related Work

The areas of semantic relatedness and entailment
have received extensive interest from the research
community in the last decade. Earlier work in
relatedness (Banerjee and Pedersen, 2003; Li et
al., 2006) exploited WordNet in various ways to
extract the semantic relatedness. Banerjee and
Pedersen (2003) presented a measure using ex-
tended gloss overlap. This measure takes two
WordNet synsets as input and uses the overlap
of their WordNet glosses to compute their degree
of semantic relatedness. Li et al. (2006) pre-
sented a semantic similarity metric based on the
semantic similarity of words in a sentence. Re-
cently, Wang and Cer (2012) presented an ap-

1http://pdev.org.uk
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proach that uses probabilistic edit-distance to mea-
sure semantic similarity. The approach uses prob-
abilistic finite state and pushdown automata to
model weighted edit-distance where state transi-
tions correspond to edit-operations. In some as-
pects, our work is similar to Bär et al. (2012),
who presented an approach which combines var-
ious text similarity measures using a log-linear re-
gression model.

Entailment has been modelled using various ap-
proaches. The main approaches are based on
logic inferencing (Moldovan et al., 2003), ma-
chine learning (Hickl et al., 2006; Castillo, 2010)
and tree edit-distance (Kouylekov and Magnini,
2005). Most of the recent approaches employ var-
ious syntactic or tree edit models (Heilman and
Smith, 2010; Mai et al., 2011; Rios and Gelbukh,
2012; Alabbas and Ramsay, 2013). Recently, Al-
abbas and Ramsay (2013) presented a modified
tree edit distance approach, which extends tree
edit distance to the level of subtrees. The ap-
proach extends Zhang-Shasha’s algorithm (Zhang
and Shasha, 1989).

3 Features

Our system uses the same 31 features for both sub-
tasks. This section explains them and the code
which implements most of them can be found on
GitHub2.

3.1 Language Technology Features

We used existing language processing tools to ex-
tract features. Stanford CoreNLP3 toolkit provides
lemma, parts of speech (POS), named entities, de-
pendencies relations of words in each sentence.

We calculated Jaccard similarity on surface
form, lemma, dependencies relations, POS and
named entities to get the feature values. The Jac-
card similarity computes sentence similarity by di-
viding the overlap of words on the total number of
words of both sentences.

Sim(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2| (1)

where in equation (1), Sim(s1, s2) is the Jaccard
similarity between sets of words s1 and s2.

We used the same toolkit to identify corefer-
ence relations and determine clusters of corefer-
ential entities. The coreference feature value was

2https://github.com/rohitguptacs/wlvsimilarity
3http://nlp.stanford.edu/software/corenlp.shtml

calculated using clusters of coreferential entities.
The intuition is that sentences containing corefer-
ential entities should have some semantic related-
ness. In order to extract clusters of coreferential
entities, the pair of sentences was treated as a doc-
ument. The coreference feature value using these
clusters was calculated as follows:

V aluecoref =
CC

TC
(2)

where CC is the number of clusters formed by the
participation of entities (at least one entity from
each sentence of the pair) in both sentences and
TC is the total number of clusters.

We calculated two separate feature values for
dependency relations: the first feature concate-
nated the words involved in a dependency relation
and the second used grammatical relation tags. For
example, for the sentence pair “the kids are play-
ing outdoors” and “the students are playing out-
doors” the Jaccard similarity is calculated based
on concatenated words “kids::the, playing::kids,
playing::are, ROOT::playing, playing::outdoors”
and “students::the, playing::students, playing::are,
ROOT::playing, playing::outdoors” to get the
value for the first feature and “det, nsubj, aux, root,
dobj” and “det, nsubj, aux, root, dobj” to get the
value for the second feature.

These language technology features try to cap-
ture the token based similarity and grammatical
similarity between a pair of sentences.

3.2 Paraphrasing Features
We used the PPDB paraphrase database (Ganitke-
vitch et al., 2013) to get the paraphrases. We used
lexical and phrasal paraphrases of “L” size. For
each sentence of the pair, we created two sets of
bags of n-grams (1 ≤ n ≤ length of the sentence).
We extended each set with paraphrases for each n-
gram available from paraphrase database. We then
calculated the Jaccard similarity (see Section 3.1)
between these extended bag of n-grams to get the
feature value. This feature capture the cases where
one sentence is a paraphrase of the other.

3.3 Negation Feature
Our system does not attempt to model similar-
ity with negation, but since negation is an impor-
tant feature for contradiction in textual entailment,
we designed a non-similarity feature. The system
checks for the presence of a negation word such as
‘no’, ‘never’ and ‘not’ in the pair of sentences and
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returns “1” (“0” otherwise) if both or none of the
sentences contain any of these words.

3.4 Machine Translation Quality Estimation
Features

Seventeen of the features consist of Machine
Translation Quality Estimation (QE) features,
based on the work of (Specia et al., 2009) and used
as a baseline in recent QE tasks (such as (Callison-
Burch et al., 2012)). We extracted these features
by treating the first set of sentences as the Machine
Translation (MT) “source”, and the second set of
sentences as the MT “target”. In Machine Trans-
lation, these features are used to access the quality
of MT “target”. The QE features include shallow
surface features such as the number of punctua-
tion marks, the average length of words, the num-
ber of words. Furthermore, these features include
n-gram frequencies and language model probabil-
ities. A full list of the QE features is provided in
the documentation of the QE system4 (Specia et
al., 2009).

QE features relate to well-formedness and syn-
tax, and are not usually used to compute seman-
tic relatedness between sentences. We have used
them in the hope that the surface features at least
will show us some structural similarity between
sentences.

3.5 Machine Translation Evaluation Features
Additionally, we used BLEU (Papineni et al.,
2002), a very popular machine translation evalu-
ation metric, as a feature. BLEU is based on n-
gram counts. It is meant to capture the similarity
between translated text and references for machine
translation evaluation. The BLEU score over sur-
face, lemma and POS was calculated to get three
feature values. In a pair of sentences, one side was
treated as a translation and another as a reference.
We applied it at the sentence level to capture the
similarity between two sentences.

3.6 Corpus Pattern Analysis Features
Corpus Pattern Analysis (CPA) (Hanks, 2013) is
a procedure in corpus linguistics that associates
word meaning with word use by means of seman-
tic patterns. CPA is a new technique for map-
ping meaning onto words in text. It is currently
being used to build a “Pattern Dictionary of En-
glish Verbs”(PDEV5). It is based on the Theory of

4https://github.com/lspecia/quest
5http://pdev.org.uk

Norms and Exploitations (Hanks, 2013).
There are two features extracted from PDEV.

They both make use of a derived resource called
the CPA network (Bradbury and El Maarouf,
2013). The CPA network links verbs according
to similar semantic patterns (e.g. both ‘pour’ and
‘trickle’ share an intransitive use where the subject
is “liquid”).

The first feature value compares the main verbs
in both sentences. When both verbs share a pat-
tern, the system returns a value of “1” (otherwise
“0”). The second feature extends the CPA network
to compute the probability of a PDEV pattern,
given a word. This probability is computed over
the portion of the British National Corpus which is
manually tagged with PDEV patterns. The prob-
ability of a pattern given each word of a sentence
of the dataset is obtained by the product of those
probabilities. The feature value is the (normalised)
number of common patterns from the three most
probable patterns in each sentence. These features
try to capture similarity based on semantic pat-
terns.

4 Predicting Through Machine Learning

4.1 Model Description

We used a support vector machine in order to build
a regression model to predict semantic relatedness
and a classification model to predict textual entail-
ment. For the actual implementation we used Lib-
SVM6 (Chang and Lin, 2011).

We used a regression model for the related-
ness task that estimates a continuous score be-
tween 1 and 5 for each sentence. For the entail-
ment task, we trained a classification model which
assigns one of three different labels (ENTAIL-
MENT, CONTRADICTION, NEUTRAL) to each
sentence pair. We trained both systems on the
4500 sentence training set, augmented with the
500 sentence trial data. The values of C and γ
have been optimised through a grid-search which
uses a 5-fold cross-validation method.

The RBF kernel proved to be the best for both
tasks.

5 Results and Analysis

We submitted 4 runs of our system (Run-1 to Run-
4). Run-1 was submitted as primary run. Run-2,
Run-3 and Run-4 systems were identical except

6http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Run-1 Run-2 Run-3 Run-4
C 8 8 2 2
γ 0.0441 0.0441 0.125 0.125

Pearson 0.7111 0.7166 0.6968 0.6975

Table 1: Results: Relatedness.

for some parameter differences for SVM train-
ing and the replacement of the values which were
outside the boundaries (1-5). If relatedness val-
ues predicted by the system were less than 1 or
greater than 5, these values were replaced by 1
and 5 respectively for Run-1, Run-2 and Run-4
and 1.5 and 4.5 respectively for Run-3. Our pri-
mary run also used one extra feature for related-
ness, which was obtained by considering entail-
ment judgement as a feature. Our hypothesis was
that entailment judgement may help in measur-
ing relatedness. In the actual test this feature was
not helpful and we obtained Pearson correlation of
0.711 for the primary run, compared to 0.716 for
Run-2. The details of runs are given in Table 1 and
2.

After training both models, we ran a feature
selection algorithm to determine which features
yielded the highest accuracy, and therefore had the
highest impact on our system. Perhaps unsurpris-
ingly, the QE features were not very useful in pre-
dicting semantic similarity or entailment. How-
ever, despite their focus on fluency rather than se-
mantic correctness, the QE features still managed
to contribute to some improvements in the textual
entailment task (increasing accuracy by 1%), and
the semantic relatedness task (0.027 increase in
Pearson correlation).

In the entailment (classification) task, the
strongest feature proved to be the negation fea-
ture with 70% accuracy (on the training set) when
training on this feature only. This suggests that
some measure of negation is crucial in determin-
ing whether a sentence contradicts or entails an-
other sentence. Other strong features were lemma,
paraphrasing and dependencies.

In the relatedness (regression) task, the lemma,
surface, paraphrasing, dependencies, PDEV fea-
tures were the strongest contributors to accuracy.

Run-1 Run-2 Run-3 Run-4
C 16 16 8 8
γ 0.0625 0.0625 0.5 0.5

Accuracy 78.526 78.526 78.343 78.343

Table 2: Results: Entailment.

6 Conclusion and Future Work

We have presented an efficient approach to calcu-
late semantic relatedness and textual entailment.
One noticeable point of our approach is that we
have used the same features for both tasks and
our system performed well in each of these tasks.
Therefore, our system captures reasonably good
models to compute semantic relatedness and tex-
tual entailment.

In the future we would like to explore more fea-
tures and particularly those based on tree edit dis-
tance, WordNet and PDEV. Our intuition suggests
that tree edit distance seems to be more helpful for
entailment, whereas WordNet and PDEV seem to
be more helpful for similarity measurement. Ad-
ditionally, we would like to combine our tech-
niques for measuring relatedness and entailment
with MT evaluation techniques. We would fur-
ther like to apply these techniques cross-lingually,
moving into other areas like machine translation
evaluation and quality estimation.
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Abstract

This paper describes the systems submit-
ted by the University of San Francisco
(USF) to Semeval-2014 Task 4, Aspect
Based Sentiment Analysis (ABSA), which
provides labeled data in two domains, lap-
tops and restaurants. For the constrained
condition of both the aspect term extrac-
tion and aspect term polarity tasks, we take
a supervised machine learning approach
using a combination of lexical, syntactic,
and baseline sentiment features. Our ex-
traction approach is inspired by a chunk-
ing approach, based on its strong past re-
sults on related tasks. Our system per-
formed slightly below average compared
to other submissions, possibly because we
use a simpler classification model than
prior work. Our polarity labeling ap-
proach uses two baseline hand-built sen-
timent classifiers as features in addition
to lexical and syntactic features, and per-
formed in the top ten of other constrained
systems on both domains.

1 Introduction

As stated in the call for participation for this Se-
meval task, sentiment analysis focusing on overall
polarity of a document, sentence, or similar con-
text has been well studied in recent years (Liu,
2010; Pang and Lee, 2008; Tsytsarau and Pal-
panas, 2012). However, there is less prior work
examining finer levels of granularity associated
with individual entities and their characteristics
or attributes, which the organizers for this task
call aspects. The aspect based sentiment analysis

This work is licenced under a Creative Commons At-
tribution 4.0 International License. Page numbers and pro-
ceedings footer are added by the organizers. License de-
tails: http://creativecommons.org/licenses/
by/4.0/

task (ABSA) has the goal of identifying aspects
of stated or implied target entities and the senti-
ment expressed towards each aspect. This prob-
lem has not been deeply studied in prior literature
due to the lack, until now, of a large gold standard
dataset. This Semeval task has provided two such
datasets, in the domains of laptops and restaurants.
A full description of the task and data is presented
with this volume (Pontiki et al., 2014).

In this paper, we discuss our approach to the
first two subtasks of the Semeval ABSA Task,
those of aspect term extraction and aspect term
polarity. In aspect term extraction the domain
(restaurants or laptops) is known and the goal is
to identify terms in a sentence that are features
commonly associated with that domain, such as
service and staff in the case of restaurants or size
and speed in the case of laptops. In the polarity
subtask, the aspect terms for a given sentence are
already identified and the sentiment polarity (pos-
itive, negative, conflict, or neutral) must be as-
signed.

We approach both subtasks using supervised
machine learning with background knowledge of
sentiment lexicons and syntax included in our fea-
ture set. Our goal was to investigate whether tech-
niques that have been successful in similar tasks
would perform well on this newly created data
set. We did not use additional corpus-based re-
sources, so qualified for the constrained (versus
unconstrained) version of the task. The remain-
der of the paper details related work, our approach,
and experiments and the results we obtained.

2 Related Work

We divide related work into two areas: research re-
lated to aspect and aspect term identification, and
research related to sentiment classification for as-
pect terms. We note that aspects have also been
called topics and features in prior work. Un-
til more recently, the community lacked a corpus
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of gold-standard labeled data that focuses on as-
pect terms, rather than more general expressions
of subjectivity or other private states. Thus, early
work focused on learning or identifying aspects
in an unsupervised (Hu and Liu, 2004) or semi-
supervised setting (Moghaddam and Ester, 2010;
Zhai et al., 2011). The earliest work on aspect
detection focused on identifying frequently oc-
curring noun phrases using information extraction
(IE) techniques (Hu and Liu, 2004). Unsupervised
techniques include clustering (Fahrni and Klenner,
2008; Popescu and Etzioni, 2005) and topic mod-
els (Titov and McDonald, 2008).

The benchmark corpus for sentiment analysis
from Wiebe et al. (2005) inspired much work on
learning subjective phrases in a supervised set-
ting. The nature of the data and annotation differ
from the data for this Semeval task, as it focuses
on news articles and identifying an entire opinion
phrase, including the source of the opinion, and
only recently added aspect annotations. However,
the techniques used by others to learn to extract
this data and the associated polarity inspired our
own approach. These include extraction-like ap-
proaches, usually using sequence modeling (Breck
et al., 2007; Jin et al., 2009; Johansson and
Moschitti, 2013; Li et al., 2010; Mitchell et al.,
2013; Yang and Cardie, 2013) and semantic de-
pendency or semantic parsing approaches (Kim
and Hovy, 2006; Kobayashi et al., 2007; Wu et
al., 2009) sometimes using background knowl-
edge from sentiment lexicons (Zhang et al., 2009).
The main differences between our approach and
that of Breck et al. (2007) and Mitchell et al.
(2013) are the classifier used and some of the fea-
tures; they both use CRFs versus our Maximum
entropy classifier, and they used a wider range of
syntactic and dictionary-based features.

A second related corpus which includes more
aspect information is that developed by Kim and
Hovy (2006). This corpus also focuses on news
articles rather than reviews, but does expand the
types of aspects identified. The main focus of that
work is on the identification, using FrameNet role
labels, of the holder and target of an opinion, while
the opinion itself is provided to the system.

The restaurant reviews used in this Semeval task
are a 3000-plus sentence subset of those harvested
by Ganu et al. (2009), plus newly annotated sen-
tences used for test data. The original corpus con-
tains over 50,000 structured restaurant reviews in-

cluding restaurant information and a star rating.
The original star rating was not made available for
the Semeval tasks, and the aspect term annotations
and their associated sentiment were added for this
task; the original sentence-level sentiment annota-
tions were not provided. Most of the work explor-
ing this corpus to date uses unsupervised (Brody
and Elhadad, 2010) or semi-supervised (Mukher-
jee and Liu, 2012) approaches.

As there has been an explosion of research in
sentiment classification, it is impossible to review
all of the related work. See Tsytsarau and Palpanas
(2012) for a recent survey. We will note that our
approach follows a somewhat standard machine
learning approach inspired by that of Wilson et al.
(2005), but with a different feature set. We did
not thoroughly explore as many classifiers as this
work and others have done. Finally, we note that
some work has investigated the joint task of iden-
tifying opinion phrases or targets simultaneously
with polarity (Choi and Cardie, 2009; Johansson
and Moschitti, 2013; Mitchell et al., 2013).

3 Approach

For both subtasks, we take a supervised ma-
chine learning approach, examining several classi-
fiers and their variants, and converging on feature
sets which performed best in small-scale cross-
validation experiments. After the official com-
petition ended, we continued to examine differ-
ent variants and discuss alternative approaches and
their accuracy in the experimental results section.
For all tasks we use the Maximum Entropy clas-
sifier, “iib” variant from the Natural Language
Toolkit (NLTK) in Python (Bird et al., 2009). We
experimented with several other classifiers from
NLTK and found that Maximum Entropy per-
formed best on a hold out set of data. We had orig-
inally planned to use a Conditional Random Field
(CRF) model (Lafferty et al., 2001) because of its
strong performance on similar tasks, but met with
time limitations when converting the data to the
appropriate format (there is no CRF provided with
NLTK at this time). We had also planned to try
classifiers from the scikit-learn toolkit (Pedregosa
et al., 2011), but again met with time constraints
due to the necessity to manually convert the fea-
tures to a binary representation.

We first preprocess the data using NLTK’s tok-
enization and part-of-speech tagging modules and
align the results with the aspect terms in the data,
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as detailed further below. The sentiment lexicon
we use as the basis of all sentiment features dis-
cussed below combines two standard lexicons (Liu
et al., 2005; Wilson et al., 2005).

3.1 Aspect Term Extraction
While it is difficult to give a precise definition of
aspect, it can be roughly thought of as a charac-
teristic of a target concept such as a restaurant or
laptop. Examples include the italicized terms in
the following:

• I liked the service and the staff, but not the
food.

• The hard disk is very noisy.

We use a sequence labeling approach, which
can also be thought of as a tagging or chunking
approach, to identify the aspect terms in each sen-
tence. Specifically, and similar to Breck et al.
(2007) and Mitchell et al. (2013), as the target
class for each token, we use the IOB2 sequence
labeling scheme (Tjong et al., 2000), where the
aspect terms are considered as the chunks to be la-
beled. Using this approach, each token is tagged
as either Beginning an aspect term, being In an as-
pect term, or being Outside an aspect term. We
also experimented with an IO labeling scheme as
discussed in the experimental results section, in
which each token is tagged as being either In or
Outside an aspect term. Here is an example of a
sentence with its IOB tags:

• The-O pizza-B is-O the-O best-O if-O you-O
like-O thin-B crusted-I pizza-I .-O

Of course, unlike an HMM or CRF, a standard
classifier such as Maximum entropy does not la-
bel entire sequences. Therefore, each example
presented to our classifier represents a single to-
ken from the sentence being labeled, and the tar-
get label is the IOB tag of that token. Further,
we present the tokens of a given sentence in order
from the first word in the sentence to the last.

The features used for each token are derived
from the token, the prior token, and the next token
in the sentence (thus using a three-token window).
In addition, we include the IOB tag of the prior to-
ken, using the gold standard at training time and
the classifier’s output at testing time, even if it is
incorrect. For each token we extract the word,
its stem, its part-of-speech (POS) tag, its polar-
ity from the sentiment dictionary, and whether the

word is objective or subjective, from the same sen-
timent dictionary. We use dummy values for the
prior and next words of the first and last token in
a sentence, respectively. All feature-value pairs
are converted to binary features automatically by
NLTK.

Because we believed that the data would prove
to be sparse and that new words would appear in
the testing data, we also include an unknown word
feature, replacing the 50% least frequent words
in the training data with the “UNK” token, and
doing the same for both these words and unseen
words in the test set. However, we later found that
we should have used cross-validation to support
our hypothesis, and that using the full vocabulary
would have improved our results, as shown in the
experimental results section.

3.2 Polarity

In the polarity subtask, the aspect terms are pro-
vided, and the goal is to classify them as posi-
tive, negative, conflict, or neutral. In this case,
we use a simple classification approach that in-
cludes features of the aspect term and surround-
ing tokens (again in a three-token window), and
also some simple baseline sentiment classification
features. First, we use similar features as for the
aspect term extraction task, with changes to incor-
porate the fact that aspect terms are occasionally
phrases, not single words. In fact, we hypothesize
that features of the words before and after an as-
pect phrase could be more useful than the words
prior to and after a particular word in the phrase.

Thus, instead of using features from the three-
token window including the current token, we use
features from the words on each side of the as-
pect phrase, and use the head of the aspect phrase
and its features as the middle of the window. This
approach is similar to that of Johansson and Mos-
chitti (2013), who use features from the words be-
fore and after opinion expressions. In our case,
these features are again the word, its POS tag, its
sentiment polarity and objectivity, and its IOB tag.
Note that in this case we use the IOB tag from all
terms in the window, since the aspect term extrac-
tion task is treated as a prerequisite to the polarity
classification task.

In addition to these word-based features, we
add four higher-level features. The first is an in-
dicator of the number of aspect terms in the en-
tire sentence, since this might indicate a more de-
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tailed sentence, and we believe that more specific
sentences might correlate with positive sentiment.
The other three features are baselines connected to
the estimated sentiment of the sentence or phrase.
First, we apply a hand-built sentence level senti-
ment classifier that follows a now standard base-
line approach (Zhu et al., 2009): using a senti-
ment lexicon (Liu’s), it counts the number of posi-
tive and negative sentiment words in the sentence,
flipping polarity when negation words are encoun-
tered, and discontinuing the polarity flip when
punctuation is encountered. This results in a “high
level sentiment” feature consisting of the number
of positive sentiment words minus the number of
negative sentiment words.

Our other two sentiment features provide finer
granularity information, based on the sentiment
of the “chunks” in which an aspect term appears.
First, we use the punctuation within the sentence
to divide it into punctuation-separated chunks.
Then, we calculate the number of positive and neg-
ative sentiment words within each chunk, again
flipping polarity after the presence of a negation
word. The positive and negative counts associated
with the chunk within which an aspect phrase ap-
pears are then used as features when classifying
the phrase. We also experimented with using con-
junctions (and, or, but, etc.) as chunk boundaries,
but preliminary results indicated that this resulted
in reduced accuracy.

4 Experimental Results & Analysis

In this section we report our results and some ad-
ditional analysis for the ABSA subtasks 1 and 2.
Please refer to Pontiki et al. (2014) for details on
the tasks, corpora, and evaluation criteria. We
chose the constrained condition, which allows the
use of sentiment lexicons in addition to the train-
ing data provided, but no additional data such as
other reviews.

Aspect term extraction is evaluated using Pre-
cision, Recall, and F-measure on an unseen set of
sentences. Table 1 shows our results1 on both do-
mains, the top results,2 and the mean score of all
constrained submissions (21 entries). Note that for
Restaurants, COMMIT-P1WP3 had the best Preci-
sion, at 0.909, but XRCE had the best F-measure,
so we show their three scores. Our results were
close to the mean for both corpora and quite a

1Rank averaged over P, R, and F for USF
2We abbreviate IHS RD Belarus as Belarus.

System P R F1 Rank

L
ap

Belarus 0.848 0.665 0.746 1
mean 0.760 0.503 0.562 11
USF 0.754 0.404 0.526 14.7

baseline 0.443 0.298 0.356

R
es

t XRCE 0.862 0.818 0.840 1
mean 0.770 0.649 0.693 11
USF 0.783 0.645 0.707 14.3

baseline 0.525 0.428 0.472

Table 1: Aspect Term Extraction Results, Con-
strained.

Approach P R F1

L
ap

FV-No-Snt 0.724 0.622 0.669
Full Voc. 0.733 0.601 0.660
Original 0.715 0.493 0.583

IO 0.696 0.501 0.582

R
es

t Full Voc. 0.792 0.704 0.746
FV-No-Snt 0.784 0.710 0.745

Original 0.777 0.657 0.711
IO 0.769 0.660 0.710

Table 2: Aspect Term Extraction Cross-Validation
Results.

bit above the lowest scoring submissions and the
baseline provided by the organizers; the latter is
also shown in the Table.

After the submission deadline, we continued to
experiment with alternative approaches using 5-
fold cross validation on the training set, shown in
Table 2. We found that using the full vocabulary
was better than our original approach of only us-
ing the top 50% occurring words, even with 28%
unseen words in the restaurant test set and 21% in
laptops. We also found that leaving out the polar-
ity feature while using all vocabulary words (FV-
No-Snt) improved our F-measure score to 0.669
for laptops but reduced it slightly to 0.745 for
restaurants. Finally, using IO versus IOB tag-
ging did not influence the F-measure significantly.
About 25% of the aspect terms in the restaurant
training set have length greater than one, and 37%
of the laptop terms.

Aspect term polarity is evaluated on accuracy
over all labels: positive, negative, neutral, or con-
flict. Table 3 shows our results on both domains,
the top results, the mean score of all constrained
submissions (24 entries for laptops, 28 for restau-
rants), and the baseline accuracy. In this case our
scores are above average in all cases.
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System Acc Rank

Lap
NRC-Canada 0.705 1

USF 0.645 6
mean 0.604 12.5

baseline 0.514

Rest
DCU 0.810 1
USF 0.732 9
mean 0.702 14.5

baseline 0.643

Table 3: Aspect Term Polarity Results, Con-
strained.

5 Conclusions

In conclusion, we show that a chunking approach
to supervised learning works fairly well in the
aspect term extraction task, and that local sen-
tence features and a baseline sentiment classifier
work well for aspect term polarity classification.
Our systems for both tasks performed reasonably
well considering the relatively simple classifica-
tion techniques and features incorporated. In fu-
ture work, we plan to apply more sophisticated
classifiers which have shown to be accurate on re-
lated tasks, including CRFs and Support Vector
Machines. We also would like to experiment with
variants of the features used here, such as the ex-
ploration of smaller or larger context windows, or
the usefulness of stemming compared to the orig-
inal tokens. We also believe that more sophisti-
cated syntactic or semantic features, or topic mod-
els, could improve results on one or both tasks.

We thank the organizers for the provision of this
interesting dataset.
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Abstract

We represent natural language semantics
by combining logical and distributional in-
formation in probabilistic logic. We use
Markov Logic Networks (MLN) for the
RTE task, and Probabilistic Soft Logic
(PSL) for the STS task. The system is
evaluated on the SICK dataset. Our best
system achieves 73% accuracy on the RTE
task, and a Pearson’s correlation of 0.71 on
the STS task.

1 Introduction

Textual Entailment systems based on logical infer-
ence excel in correct reasoning, but are often brit-
tle due to their inability to handle soft logical in-
ferences. Systems based on distributional seman-
tics excel in lexical and soft reasoning, but are un-
able to handle phenomena like negation and quan-
tifiers. We present a system which takes the best
of both approaches by combining distributional se-
mantics with probabilistic logical inference.

Our system builds on our prior work (Belt-
agy et al., 2013; Beltagy et al., 2014a; Beltagy
and Mooney, 2014; Beltagy et al., 2014b). We
use Boxer (Bos, 2008), a wide-coverage semantic
analysis tool to map natural sentences to logical
form. Then, distributional information is encoded
in the form of inference rules. We generate lexical
and phrasal rules, and experiment with symmetric
and asymmetric similarity measures. Finally, we
use probabilistic logic frameworks to perform in-
ference, Markov Logic Networks (MLN) for RTE,
and Probabilistic Soft Logic (PSL) for STS.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

2 Background

2.1 Logical Semantics

Logic-based representations of meaning have a
long tradition (Montague, 1970; Kamp and Reyle,
1993). They handle many complex semantic phe-
nomena such as relational propositions, logical
operators, and quantifiers; however, they can not
handle “graded” aspects of meaning in language
because they are binary by nature.

2.2 Distributional Semantics

Distributional models use statistics of word co-
occurrences to predict semantic similarity of
words and phrases (Turney and Pantel, 2010;
Mitchell and Lapata, 2010), based on the obser-
vation that semantically similar words occur in
similar contexts. Words are represented as vec-
tors in high dimensional spaces generated from
their contexts. Also, it is possible to compute vec-
tor representations for larger phrases composition-
ally from their parts (Mitchell and Lapata, 2008;
Mitchell and Lapata, 2010; Baroni and Zampar-
elli, 2010). Distributional similarity is usually a
mixture of semantic relations, but particular asym-
metric similarity measures can, to a certain ex-
tent, predict hypernymy and lexical entailment
distributionally (Kotlerman et al., 2010; Lenci and
Benotto, 2012; Roller et al., 2014). Distribu-
tional models capture the graded nature of mean-
ing, but do not adequately capture logical struc-
ture (Grefenstette, 2013).

2.3 Markov Logic Network

Markov Logic Networks (MLN) (Richardson and
Domingos, 2006) are a framework for probabilis-
tic logic that employ weighted formulas in first-
order logic to compactly encode complex undi-
rected probabilistic graphical models (i.e., Markov
networks). Weighting the rules is a way of soft-
ening them compared to hard logical constraints.

796



MLNs define a probability distribution over pos-
sible worlds, where the probability of a world in-
creases exponentially with the total weight of the
logical clauses that it satisfies. A variety of in-
ference methods for MLNs have been developed,
however, computational overhead is still an issue.

2.4 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is another recently
proposed framework for probabilistic logic (Kim-
mig et al., 2012). It uses logical representations to
compactly define large graphical models with con-
tinuous variables, and includes methods for per-
forming efficient probabilistic inference for the re-
sulting models. A key distinguishing feature of
PSL is that ground atoms (i.e., atoms without vari-
ables) have soft, continuous truth values on the
interval [0, 1] rather than binary truth values as
used in MLNs and most other probabilistic logics.
Given a set of weighted inference rules, and with
the help of Lukasiewicz’s relaxation of the logical
operators, PSL builds a graphical model defining a
probability distribution over the continuous space
of values of the random variables in the model
(Kimmig et al., 2012). Then, PSL’s MPE infer-
ence (Most Probable Explanation) finds the overall
interpretation with the maximum probability given
a set of evidence. This optimization problem is a
second-order cone program (SOCP) (Kimmig et
al., 2012) and can be solved in polynomial time.

2.5 Recognizing Textual Entailment

Recognizing Textual Entailment (RTE) is the task
of determining whether one natural language text,
the premise, Entails, Contradicts, or is not related
(Neutral) to another, the hypothesis.

2.6 Semantic Textual Similarity

Semantic Textual Similarity (STS) is the task of
judging the similarity of a pair of sentences on
a scale from 1 to 5 (Agirre et al., 2012). Gold
standard scores are averaged over multiple human
annotations and systems are evaluated using the
Pearson correlation between a system’s output and
gold standard scores.

3 Approach

3.1 Logical Representation

The first component in the system is Boxer (Bos,
2008), which maps the input sentences into logical

form, in which the predicates are words in the sen-
tence. For example, the sentence “A man is driving
a car” in logical form is:
∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧

patient(y, z) ∧ car(z)

3.2 Distributional Representation

Next, distributional information is encoded in
the form of weighted inference rules connecting
words and phrases of the input sentences T and H .
For example, for sentences T : “A man is driving
a car”, and H: “A guy is driving a vehicle”, we
would like to generate rules like ∀x. man(x) ⇒
guy(x) |w1, ∀x.car(x)⇒ vehicle(x) |w2, where
w1 and w2 are weights indicating the similarity of
the antecedent and consequent of each rule.

Inferences rules are generated as in Beltagy et
al. (2013). Given two input sentences T and H ,
for all pairs (a, b), where a and b are words or
phrases of T and H respectively, generate an infer-
ence rule: a → b | w, where the rule weight w is
a function of sim(−→a ,

−→
b ), and sim is a similarity

measure of the distributional vectors −→a ,
−→
b . We

experimented with the symmetric similarity mea-
sure cosine, and asym, the supervised, asymmet-
ric similarity measure of Roller et al. (2014).

The asym measure uses the vector difference
(−→a − −→b ) as features in a logistic regression clas-
sifier for distinguishing between four different
word relations: hypernymy, cohyponymy, meron-
omy, and no relation. The model is trained us-
ing the noun-noun subset of the BLESS data set
(Baroni and Lenci, 2011). The final similarity
weight is given by the model’s estimated probabil-
ity that the word relationship is either hypernymy
or meronomy: asym(−→a ,

−→
b ) = P (hyper(a, b))+

P (mero(a, b)).
Distributional representations for words are de-

rived by counting co-occurrences in the ukWaC,
WaCkypedia, BNC and Gigaword corpora. We
use the 2000 most frequent content words as ba-
sis dimensions, and count co-occurrences within
a two word context window. The vector space is
weighted using Positive Pointwise Mutual Infor-
mation.

Phrases are defined in terms of Boxer’s output
to be more than one unary atom sharing the same
variable like “a little kid” (little(k) ∧ kid(k)),
or two unary atoms connected by a relation like
“a man is driving” (man(m) ∧ agent(d, m) ∧
drive(d)). We compute vector representations of
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phrases using vector addition across the compo-
nent predicates. We also tried computing phrase
vectors using component-wise vector multiplica-
tion (Mitchell and Lapata, 2010), but found it per-
formed marginally worse than addition.

3.3 Probabilistic Logical Inference

The last component is probabilistic logical infer-
ence. Given the logical form of the input sen-
tences, and the weighted inference rules, we use
them to build a probabilistic logic program whose
solution is the answer to the target task. A proba-
bilistic logic program consists of the evidence set
E, the set of weighted first order logical expres-
sions (rule base RB), and a query Q. Inference is
the process of calculating Pr(Q|E,RB).

3.4 Task 1: RTE using MLNs

MLNs are the probabilistic logic framework we
use for the RTE task (we do not use PSL here as
it shares the problems of fuzzy logic with proba-
bilistic reasoning). The RTE classification prob-
lem for the relation between T and H can be
split into two inference tasks. The first is test-
ing if T entails H , Pr(H|T, RB). The second
is testing if the negation of the text ¬T entails H ,
Pr(H|¬T, RB). In case Pr(H|T, RB) is high,
while Pr(H|¬T, RB) is low, this indicates En-
tails. In case it is the other way around, this in-
dicates Contradicts. If both values are close, this
means T does not affect the probability of H and
indicative of Neutral. We train an SVM classifier
with LibSVM’s default parameters to map the two
probabilities to the final decision.

The MLN implementation we use is
Alchemy (Kok et al., 2005). Queries in Alchemy
can only be ground atoms. However, in our
case the query is a complex formula (H). We
extended Alchemy to calculate probabilities of
queries (Beltagy and Mooney, 2014). Probability
of a formula Q given an MLN K equals the ratio
between the partition function Z of the ground
network of K with and without Q added as a hard
rule (Gogate and Domingos, 2011)

P (Q | K) =
Z(K ∪ {(Q,∞)})

Z(K)
(1)

We estimate Z of the ground networks using Sam-
pleSearch (Gogate and Dechter, 2011), an ad-
vanced importance sampling algorithm that is suit-
able for ground networks generated by MLNs.

A general problem with MLN inference is
its computational overhead, especially for the
complex logical formulae generated by our ap-
proach. To make inference faster, we reduce the
size of the ground network through an automatic
type-checking technique proposed in Beltagy and
Mooney (2014). For example, consider the ev-
idence ground atom man(M) denoting that the
constant M is of type man. Then, consider an-
other predicate like car(x). In case there are no in-
ference rule connecting man(x) and car(x), then
we know that M which we know is a man cannot
be a car, so we remove the ground atom car(M)
from the ground network. This technique reduces
the size of the ground network dramatically and
makes inference tractable.

Another problem with MLN inference is that
quantifiers sometimes behave in an undesir-
able way, due to the Domain Closure Assump-
tion (Richardson and Domingos, 2006) that MLNs
make. For example, consider the text-hypothesis
pair: “There is a black bird” and “All birds are
black”, which in logic are T : bird(B)∧black(B)
and H : ∀x. bird(x) ⇒ black(x). Because of
the Domain Closure Assumption, MLNs conclude
that T entails H because H is true for all constants
in the domain (in this example, the single constant
B). We solve this problem by introducing extra
constants and evidence in the domain. In the ex-
ample above, we introduce evidence of a new bird
bird(D), which prevents the hypothesis from be-
ing true. The full details of the technique of deal-
ing with the domain closure is beyond the scope of
this paper.

3.5 Task 2: STS using PSL

PSL is the probabilistic logic we use for the STS
task since it has been shown to be an effective
approach for computing similarity between struc-
tured objects. We showed in Beltagy et al. (2014a)
how to perform the STS task using PSL. PSL
does not work “out of the box” for STS, be-
cause Lukasiewicz’s equation for the conjunction
is very restrictive. We address this by replacing
Lukasiewicz’s equation for conjunction with an
averaging equation, then change the optimization
problem and grounding technique accordingly.

For each STS pair of sentences S1, S2, we run
PSL twice, once where E = S1, Q = S2 and an-
other where E = S2, Q = S1, and output the two
scores. The final similarity score is produced from
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an Additive Regression model with WEKA’s de-
fault parameters trained to map the two PSL scores
to the overall similarity score (Friedman, 1999;
Hall et al., 2009).

3.6 Task 3: RTE and STS using Vector
Spaces and Keyword Counts

As a baseline, we also attempt both the RTE and
STS tasks using only vector representations and
unigram counts. This baseline model uses a super-
vised regressor with features based on vector sim-
ilarity and keyword counts. The same input fea-
tures are used for performing RTE and STS, but a
SVM classifier and Additive Regression model is
trained separately for each task. This baseline is
meant to establish whether the task truly requires
the sophisticated logical inference of MLNs and
PSL, or if merely checking for logical keywords
and textual similarity is sufficient.

The first two features are simply the cosine and
asym similarities between the text and hypothesis,
using vector addition of the unigrams to compute
a single vector for the entire sentence.

We also compute vectors for both the text and
hypothesis using vector addition of the mutually
exclusive unigrams (MEUs). The MEUs are de-
fined as the unigrams of the premise and hypoth-
esis with common unigrams removed. For exam-
ple, if the premise is “A dog chased a cat” and the
hypothesis is “A dog watched a mouse”, the MEUs
are “chased cat” and “watched mouse.” We com-
pute vector addition of the MEUs, and compute
similarity using both the cosine and asym mea-
sures. These form two features for the regressor.

The last feature of the model is a keyword
count. We count how many times 13 different
keywords appear in either the text or the hypoth-
esis. These keywords include negation (no, not,
nobody, etc.) and quantifiers (a, the, some, etc.)
The counts of each keyword form the last 13 fea-
tures as input to the regressor. In total, there are
17 features used in this baseline system.

4 Evaluation

The dataset used for evaluation is SICK:
Sentences Involving Compositional Knowledge
dataset, a task for SemEval 2014 (Marelli et al.,
2014a; Marelli et al., 2014b). The dataset is
10,000 pairs of sentences, 5000 training and 5000
for testing. Sentences are annotated for both tasks.

SICK-RTE SICK-STS
Baseline 70.0 71.1
MLN/PSL + Cosine 72.8 68.6
MLN/PSL + Asym 73.2 68.9
Ensemble 73.2 71.5

Table 1: Test RTE accuracy and STS Correlation.

4.1 Systems Compared

We compare multiple configurations of our proba-
bilistic logic system.

• Baseline: Vector- and keyword-only baseline
described in Section 3.6;
• MLN/PSL + Cosine: MLN and PSL based

methods described in Sections 3.4 and 3.5,
using cosine as a similarity measure;
• MLN/PSL + Asym: MLN and PSL based

methods described in Sections 3.4 and 3.5,
using asym as a similarity measure;
• Ensemble: An ensemble method which uses

all of the features in the above methods as in-
puts for the RTE and STS classifiers.

4.2 Results and Discussion

Table 1 shows our results on the held-out test set
for SemEval 2014 Task 1.

On the RTE task, we see that both the MLN +
Cosine and MLN + Asym models outperformed
the Baseline, indicating that textual entailment re-
quires real inference to handle negation and quan-
tifiers. The MLN + Asym and Ensemble sys-
tems perform identically on RTE, further suggest-
ing that the logical inference subsumes keyword
detection.

The MLN + Asym system outperforms the
MLN + Cosine system, emphasizing the impor-
tance of asymmetric measures for predicting lex-
ical entailment. Intuitively, this makes perfect
sense: dog entails animal, but not vice versa.

In an error analysis performed on a development
set, we found our RTE system was extremely con-
servative: we rarely confused the Entails and Con-
tradicts classes, indicating we correctly predict the
direction of entailment, but frequently misclassify
examples as Neutral. An examination of these ex-
amples showed the errors were mostly due to miss-
ing or weakly-weighted distributional rules.

On STS, our vector space baseline outperforms
both PSL-based systems, but the ensemble outper-
forms any of its components. This is a testament to
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the power of distributional models in their ability
to predict word and sentence similarity. Surpris-
ingly, we see that the PSL + Asym system slightly
outperforms the PSL + Cosine system. This may
indicate that even in STS, some notion of asymme-
try plays a role, or that annotators may have been
biased by simultaneously annotating both tasks.
As with RTE, the major bottleneck of our system
appears to be the knowledge base, which is built
solely using distributional inference rules.

Results also show that our system’s perfor-
mance is close to the baseline system. One of
the reasons behind that could be that sentences are
not exploiting the full power of logical represen-
tations. On RTE for example, most of the con-
tradicting pairs are two similar sentences with one
of them being negated. This way, the existence
of any negation cue in one of the two sentences is
a strong signal for contradiction, which what the
baseline system does without deeply representing
the semantics of the negation.

5 Conclusion & Future Work

We showed how to combine logical and distribu-
tional semantics using probabilistic logic, and how
to perform the RTE and STS tasks using it. The
system is tested on the SICK dataset.

The distributional side can be extended in many
directions. We would like to use longer phrases,
more sophisticated compositionality techniques,
and contextualized vectors of word meaning. We
also believe inference rules could be dramatically
improved by integrating from paraphrases collec-
tions like PPDB (Ganitkevitch et al., 2013).

Finally, MLN inference could be made more ef-
ficient by exploiting the similarities between the
two ground networks (the one with Q and the one
without). PLS inference could be enhanced by us-
ing a learned, weighted average of rules, rather
than the simple mean.
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Abstract 

This work describes the participation of the 
University of Texas Health Science Center at 
Houston (UTHealth) team on the SemEval 2014 
– Task 7 analysis of clinical text challenge. The 
task consisted of two subtasks: (1) disorder entity 
recognition,  recognizing mentions of disorder 
concepts; (2) disorder entity encoding, mapping 
each mention to a unique Concept Unique 
Identifier (CUI) defined in Unified Medical 
Language System (UMLS). We developed three 
ensemble learning approaches for recognizing 
disorder entities and a Vector Space Model based 
method for encoding. Our approaches achieved 
top rank in both subtasks, with the best F 
measure of 0.813 for entity recognition and the 
best accuracy of 74.1% for encoding, indicating 
the proposed approaches are promising. 
 

1 Introduction 

 
In recent years, clinical natural language 
processing (NLP) has received great attention for 
its critical role in unlocking information 
embedded in clinical documents. Leveraging 
such information can facilitate the secondary1 use 
of electronic health record (EHR) data to 
                                                
     This work is licensed under a Creative Commons 
Attribution 4.0 International Licence. Page numbers and 
proceedings footer are added by the organisers. Licence 
details:http://creativecommons.org/licenses/by/4.0/ 

promote clinical and translational research.  
Clinical entity recognition, which recognizes 
mentions of clinically relevant concepts (e.g., 
disorders, procedures, drugs etc.) in narratives,  
 and clinical entity encoding, which maps the 
recognized entities to concepts in standard 
vocabularies (e.g., UMLS CUI (Bodenreider, 
2004)), are among the fundamental tasks in 
clinical NLP research. 

Many systems have been developed to extract 
clinical concepts from various types of clinical 
notes in last two decades, ranging from early 
symbolic NLP systems heavily dependent on 
domain knowledge to machine learning 
algorithm based systems driven by increasingly 
available annotated clinical corpora. The 
representative systems include MedLEE 
(Friedman et al., 1994), MetaMap (Aronson and 
Lang, 2010), KnowledgeMap (Denny et al., 
2003), cTAKES (Savova et al., 2010), etc. 
Clinical NLP challenges organized by the Center 
for Informatics for Integrating Biology & the 
Beside (i2b2) have promoted research using 
machine learning algorithms to recognize clinical 
entities (Uzuner et al., 2010; Uzuner et al., 2011).  

Unlike the previous i2b2 challenges, the 
ShARe/CLEF challenge of clinical disorder 
extraction and encoding held in 2013 took the 
initiative to recognize disjoint entities, in 
addition to entities made up of consecutive words 
(Chapman et al., 2013). ShARe/CLEF challenge 
also required encoding of the disorder entities to 
Systematized Nomenclature Of Medicine 
Clinical Terms (SNOMED-CT) (using UMLS 
CUIs).  
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In this paper, we describe our system for Task 
7 of SemEval 2014, which followed the 
requirements of 2013 ShARe/CLEF challenge. 
Our system employed ensemble learning based 
approaches for disorder entity recognition and a 
Vector Space Model (VSM) based method for 
mapping extracted entities to CUIs of SNOMED-
CT concepts. Our system was top-ranked among 
all participating teams according to evaluation by 
the organizer. 

2 Method 

Our end-to-end system for Task 7 of SemEval 
2014 consists of two components: disorder entity 
recognition and encoding. The raw clinical notes 
first went through the pre-processing modules for 
rule-based sentence boundary detection and 
tokenization. Extracted features were then used 
to train two machine learning algorithm-based 
entity recognition models, Conditional Random 
Fields (CRFs) (Lafferty et al., 2001) and 
Structural Support Vector Machines (SSVMs) 
(Tsochantaridis et al., 2005), respectively. These 
two models were ensembled with MetaMap, a 
symbolic biomedical NLP system, by three 
different approaches. Recognized entities were 
mapped to SNOWMED-CT CUIs in the 
encoding component. Detailed information of the 
components are presented in the following 
sections.  

2.1 Dataset 

The training and test sets of 2013 
ShARe/CLEF challenge were used as the 
training and development sets respectively for 
system development in SemEval 2014 Task 7. 
The training set consists of 199 notes and the 
development set has 99 notes, both of which 
were collected from four types of clinical notes 
including discharge summaries (DIS), radiology 
reports (RAD), and ECG/ECHO reports. Based 
on a pre-defined guideline, disorder entities were 
annotated for each note and then mapped to 
UMLS CUIs of SNOMED-CT concepts. 
Disorder entities not found in SNOMED-CT 
were marked as “CUI-less”. The training set 
contained 5811 disorder entities which were 
mapped to 1007 unique CUIs or CUI-less. The 
development set contained 5340 disorder entities 
mapped to 795 CUIs or CUI-less. The test set 
contained 133 notes, all of which were discharge 
summaries. As the gold-standard annotation of 
the test set is not released by the organizer, the 
detailed annotation information of the test set is 

not available. Table 1 shows the total counts of 
notes, entities and CUIs in the three datasets.  
 
Dataset Type Note Entity CUI CUI-

less 
Train ALL 199 5816 4177 1639 

ECHO 42 828 662 166 
RAD 42 555 392 163 
DIS 61 3589 2646 943 
ECG 54 193 103 90 

Dev ALL 99 5340 3619 1721 
ECHO 12 338 241 97 
RAD 12 162 126 36 
DIS 75 4840 3252 1588 
ECG 0 0 0  

Test ALL 133 - -  
DIS 133 - -  

 
Table 1. Statistics of the dataset.  

2.2 Disorder entity recognition 

The disorder entity recognition component 
consists of two modules: 1) the machine learning 
(e.g., CRF and SSVM) based named entity 
recognition (NER) module and 2) the   ensemble 
learning module. For the challenge of this year, 
we mainly focused on the second ensemble 
learning module. 

Machine learning based NER Module. This 
module was built based on our previous 
challenge participation in the 2013 ShARe/CLEF 
challenge (Tang et al., 2013). Annotated data 
were typically converted into a BIO format in 
machine learning-based NER systems. Each 
word was assigned one of the three labels: B for 
beginning of an entity, I for inside an entity, and 
O for outside of an entity. A unique challenge of 
this task is the high frequency (>10%) of disjoint 
disorders. For example, in the sentence “the left 
atrium is not moderately dilated”, the 
discontinuous phrase “left atrium…dilated” is 
defined as a disjoint disorder. Such entities could 
not be directly represented using the traditional 
BIO approach. Therefore, in addition to 
traditional BIO tags used for labeling words in 
the consecutive disorder entities, two sets of tags 
were created for disjoint entities: (1) D{B, I} was 
used to label disjoint entity words that are not 
shared by multiple concepts; and (2) H{B, I} was 
used to label head words that belonged to more 
than two disjoint concepts. Ultimately, we 
assigned one of the seven labels {B, I, O, DB, 
DI, HB, HI} to each word. A few simple rules 
were then defined to convert labeled words to 
entities (Tang et al., 2013).  
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We exploited two state-of-the-art machine 
learning algorithms for disorder entity 
recognition, namely CRF (Lafferty et al., 2001) 
and SSVM (Tsochantaridis et al., 2005). 
CRFsuite and SVMhmm were used to implement 
CRF and SSVM respectively. 

For features, we used bag-of-word, part-of-
speech from Stanford tagger, type of notes, 
section information, word representation from 
Brown clustering (Brown et al., 1992), random 
indexing (Lund and Burgess, 1996) and semantic 
categories of words based on UMLS lookup, 
MetaMap, and cTAKES outputs. More detailed 
information of this module can be found in our 
paper for 2013 ShARe/CLEF challenge (Tang et 
al., 2013).  

One thing to note is that for word 
representation features like Brown clustering and 
random indexing, we only use the combination 
of traning and development and test datasets for 
feature extraction. The non-annotated corpus 
provided by the SemEval organizers was not 
employed currently. We do plan to pre-generate 
word clusters and random indexing using the 
provided corpus in the near future. 

Ensemble Learning Module. Three 
approaches were employed to consolidate the 
CRF-model, SSVM-model and the MetaMap 
outputs, namely machine learning classifier 
based ensemble (ensembleML), majortiy voting 
based ensemble (ensembleMV) and direct merging 
of the entity recognition results from the three 
models (ensembleDM). 

In the ensembleML approach, a binary classifier 
was trained to determine if the entities 
recognized by the CRF-model, SSVM-model and 
MetaMap were true positives. A new set of 
features were then extracted for each candidate 
entity, that included the specific models 
recognizing the entity, the entity itself, n-gram 
and word shape features of the first/last word of 
the entity. A sliding window based feature was 
extracted to check whether there was any 
recognized entity within 20 characters before the 
first and after the last word. Some features 
extracted from the first module were also 
employed. We used the open source toolkit 
Liblinear (Fan et al., 2008), to build the binary 
classifier for ensembleML. 

 

2.3 Disorder Entity Encoding 

We developed a Vector Space Model (VSM) 
based approach to find the most suitable CUI for 
a given disorder entity. The disorder entity was 

used as query and all the UMLS terms were 
treated as documents. We used the cosine-
similarity score to rank the candidate terms. For 
post-processing, if the top-ranked CUI was not a 
disorder CUI, it was replaced with ‘CUI-less’.  
‘CUI-less’ was also assigned to entities without 
any retrieved candidate CUI. 

2.4 Experiments and Evaluation 

Our system was developed and trained using 
the enlarged training set by merging the 199 
notes in the training set and the 99 notes in the 
development set. All parameters of CRF, SSVM 
and Liblinear were optimized by 10-fold cross-
validation on the enlarged training dataset. The 
performance of disorder entity recognition was 
evaluated by precision, recall and F-measure, 
which were measured in both “strict” and “re-
laxed” modes. The “strict” mode was defined as 
follows: a concept is correctly recognized if and 
only if it can be matched exactly to a disorder 
mention in the gold standard, and the “relaxed” 
mode means that a disorder mention is correctly 
recognized if it overlaps with any disorder men-
tion in the gold standard. For entity encoding, all 
participating systems were evaluated using accu-
racy, in “strict” and “relaxed” modes, as defined 
in (Suominen et al., 2013). 

3 Results 

Table 2 and Table 3 show the best performance 
of our systems in the SemEval 2014 Task 7 as 
reported by the organizers, where “P”, “R”, “F” 
denote precision, recall and F-measure 
respectively. For disorder entity recognition, the 
ensembleML based system outperformed the other 
two ensemble approaches, achieving the best F-
measure of 0.813 under “strict” criterion and was 
ranked first in the challenge. For encoding, our 
system achieved an accuracy of 0.741 by 
ensembleDM under “strict” criterion and was 
again ranked first in the challenge. 

 
 Strict Relaxed 

P R F P R F 
ensembleML 84.3 78.6 81.3 93.6 86.6 90.0 
Table 2. The disorder recognition performance 

of our system for the SemEval 2014 task 7 (%). 
 

 Accuracy 
Strict Relaxed 

ensembleDM 0.741 0.873 
Table 3. The SNOMED encoding performance 

of our system for the SemEval 2014 task 7. 
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4 Discussion 

In this study, we developed an ensemble 
learning-based approach to recognize disorder 
entities and a vector space model-based method 
to encode disorders to UMLS CUIs.  Our system 
was top-ranked among all participating teams. 
However, there are still expectations for further 
improvement.  

For disorder entity recognition, directly 
merging the entity recognition results of the three 
models (ensembleDM) achieved the highest 
encoding accuracy of 0.741. This shows the great 
potential of performance enhancement by 
combining different models. However, the 
precision of ensembleDM was much lower than 
the current machine learning-based ensemble 
approach ensembleML. ensembleML improved the 
precision to 84.3%, with the lowest recall of 
78.6% among the three ensemble approaches. 
Further investigations for balancing and 
enhancing both precision and recall 
simultaneously by combining different models 
will be pursued in the follow-up studies. 

For encoding, when a disorder entity can be 
labelled with multiple CUIs in different contexts, 
a more effective disambiguation model could be 
exploited. Further, query expansion techniques 
may be helpful and worth investigating. The 
above methods should be potentially helpful to 
address the problems caused by synonyms or 
spelling variants.  

5 Conclusion 

We developed a clinical disorder recognition and 
encoding system that consists of a ensemble 
learning-based approach to recognize disorder 
entities and a vector space model-based method 
to encode the identified disorders to UMLS CUIs 
of SNOMED-CT concepts. The performance of 
our system was top-ranked in the SemEval 2014 
Task 7, indicating that our approaches are 
promising. However, further improvements are 
needed in order to enhance performance on 
concept extraction and encoding in clinical text. 
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Abstract

In this paper we present our system par-
ticipating in the SemEval-2014 Task 7
in both subtasks A and B, aiming at
recognizing and normalizing disease and
symptom mentions from electronic medi-
cal records respectively. In subtask A, we
used an existing NER system, NERsuite,
with our own feature set tailored for this
task. For subtask B, we combined word
vector representations and supervised ma-
chine learning to map the recognized men-
tions to the corresponding UMLS con-
cepts. Our system was placed 2nd and 5th
out of 21 participants on subtasks A and B
respectively showing competitive perfor-
mance.

1 Introduction

The SemEval 2014 task 7 aims to advance the de-
velopment of tools for analyzing clinical text. The
task is organized by providing the researchers an-
notated clinical records to develop systems that
can detect the mentions of diseases and symptoms
in medical records. In particular, the SemEval task
7 comprises two subtasks, recognizing the men-
tions of diseases and symptoms (task A) and map-
ping the mentions to unique concept identifiers
that belong to the semantic group of disorders in
the Unified Medical Language System (UMLS).

Our team participated in both of these sub-
tasks. In subtask A, we used an existing named
entity recognition (NER) system, NERsuite, sup-
plemented with UMLS dictionary and normaliza-
tion similarity features. In subtask B, we com-
bined compositional word vector representations

∗These authors contributed equally.
This work is licensed under a Creative Commons At-

tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

with supervised machine learning to map the rec-
ognized mentions from task A to the UMLS con-
cepts. Our best systems, evaluated on strict match-
ing criteria, achieved F-score of 76.6% for the sub-
task A and accuracy of 60.1% for the subtask B,
showing competitive performance in both tasks.

2 Task A: Named Entity Recognition
with NERSuite

The ML approach based on conditional random
fields (CRFs) has shown to have state-of-the-art
performance in recognizing the biological entities.
We thus performed task A by using NERsuite,
an existing NER toolkit with competitive perfor-
mance on biological entity recognition (Campos
et al., 2013).

NERsuite is a NER system that is built on
top of the CRFsuite (Okazaki, 2007). It con-
sists of three language processing modules: a to-
kenizer, a modified version of the GENIA tagger
and a named entity recognizer. NERsuite allows
user-implemented features in addition to dictio-
nary matching and features shown to benefit the
systems such as raw token, lemma, part-of-speech
(POS) and text chunk.

Prior to detecting the disease mentions by the
recognizer module of NERsuite, the clinical text
is split into sentences by using GENIA Sentence
Splitter, a supervised ML system that is known to
be well optimized for biomedical texts (Sætre et
al., 2007). The sentences are subsequently tok-
enized and POS tagged.

To represent the positive entities, the “BIO”
model was used in our system. The first tokens
of positive mentions are labeled with “B” and the
rest with “I”. Negative examples, non-entities, are
thus labeled with “O”. This model was used for
both contiguous and discontiguous entities.

The features include the normalization similar-
ity (see Section 3.3), types of medical records (dis-
charge, echo, radiology and ecg), and UMLS dic-
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Trained Model Precision Recall F-score
train + positive samples 77.3% 72.4% 74.8%
train + development 76.7 % 76.5% 76.6%

Table 1: The results of our different NERsuite
models, announced by the organizers.

tionary matching in addition to NERsuite’s own
feature generation.

The UMLS dictionary is prepared by extract-
ing the UMLS database for the semantic types de-
manded by the task. In addition to those 11 seman-
tic types, “Finding” was also included in our dic-
tionary since, according to its definition, the con-
cept is also deemed relevant for the task. Due to
the common use of acronyms, which are not ex-
tensively provided by UMLS, we also extended
the coverage of our prepared UMLS dictionary
by extracting medical acronyms from the UMLS
database using regular expression.

We assessed the effect of dictionary matching
by training the models with and without the com-
piled UMLS dictionary and evaluating against the
development set. The model trained with dictio-
nary features outperformed the one without. The
best model was obtained by training the NERsuite
with UMLS dictionary in case-number-symbol
normalization mode. In this mode, all letters,
numbers and symbols are converted to lower case,
zero (0) and underscore ( ) respectively.

The regularization parameter (C2) was selected
by using development set to evaluate the best
model. The default parameter (C2 = 1.0) gave
the best performing system and thus was used
throughout the work.

Finally, for the NER task, we submitted two
models. The first model was trained with the orig-
inal training data and duplicates of sentences with
at least one entity mention. The second model
was trained by using the combination of the first
model’s training data and development set.

2.1 Results and Discussions

Our NER system from both submissions benefited
from the increased number of training examples
while the more diverse training data set gave a bet-
ter performance. The official results are shown in
table 1.

The analysis of our best performing NER sys-
tem is not possible since the gold standard of the
test data is not publicly available. We thus simply
analyze our second NER system based on the eval-

uation on the development data. The F-score of the
system was 75.1% and 88.0% for the strict and re-
laxed evaluation criteria respectively. Among all
the mistakes made by the system, the discontigu-
ous entities were the most challenging ones for the
NERsuite. In development data, the discontiguous
entities contribute about 10% of all entities, how-
ever, only 2% were recognized correctly. On the
contrary, the system did well for the other types as
73% were correctly recognized under strict crite-
ria. This demonstrates that the “BIO” model has
limitations in representing the discontiguous enti-
ties. Improving the model to better represent the
discontiguous entities can possibly boost the per-
formance of the NER system significantly.

3 Task B: Normalization with
Compositional Vector Representations

Our normalization approach is based on con-
tinuous distributed word vector representations,
namely the state-of-the-art method word2vec
(Mikolov et al., 2013a). Our word2vec model
was trained on a subset of abstracts and full ar-
ticles from the PubMed and PubMed Central re-
sources. This data was used as it was readily
available to us from the EVEX resource (Van Lan-
deghem et al., 2013). Before training, all non-
alphanumeric characters were removed and all to-
kens were lower-cased. Even though a set of unan-
notated clinical reports was provided in the task
to support unsupervised learning methods, our ex-
periments on the development set showed better
performance with the model trained with PubMed
articles. This might be due to the size of the cor-
pora, as the PubMed data included billions of to-
kens whereas the provided clinical reports totaled
in over 200 million tokens.

The dimensionality of the word vectors was set
to 300 and we used the continuous skip-gram ap-
proach. For other word2vec parameters default
values were used.

One interesting feature demonstrated by
Mikolov et al. (2013b; 2013c) is that the vectors
conserve some of the semantic characteristics in
element-wise addition and subtraction. In this task
we used the same approach of simply summing
the word-level vectors to create compositional
vectors for multi-word entities and concepts, i.e.
we looked up the vectors for every token appear-
ing in a concept name or entity and summed them
to form a vector to represent the whole phrase.

808



We then formed a lexicon including all preferred
terms and synonyms of all the concepts in the
subset of UMLS defined in the task guidelines.
This lexicon is a mapping from the compositional
vector representations of the concept names into
the corresponding UMLS identifiers. To select the
best concept for a recognized entity we calculated
cosine similarity between the vector representa-
tion of the given entity and all the concept vectors
in the lexicon and the concept with the highest
similarity was chosen.

Word2vec is generally able to relate different
forms of the same word to each other, but we no-
ticed a small improvement in accuracy when pos-
sessive suffixes were removed and all tokens were
lemmatized.

3.1 Detecting CUI-less Mentions

As some of the mentions in the training data do not
have corresponding concepts in the semantic cat-
egories listed in the task guidelines, they are an-
notated as “CUI-less”. However, our normaliza-
tion approach will always find the nearest match-
ing concept, thus getting penalized for wrong pre-
dictions in the official evaluation. To overcome
this problem, we implemented three separate steps
for detecting the “CUI-less” mentions. As the
simplest approach we set a fixed cosine similarity
threshold and if the maximal similarity falls below
it, the mention is normalized to “CUI-less”. The
threshold value was selected using a grid search to
optimize the performance on the official develop-
ment set. Although this method resulted in decent
performance, it is not capable of coping with cases
where the mention has very high similarity or even
exact match with a concept name. For instance
our system normalized “aspiration” mentions into
UMLS concept “Pulmonary aspiration” which has
a synonym “Aspiration”, thus resulting in an exact
match. To resolve this kind of cases, we used sim-
ilar approach as in the DNorm system (Leaman et
al., 2013b), where the “CUI-less” mentions occur-
ring several times in the training data were added
to the concept lexicon with concept ID “CUI-less”.
As the final step we trained a binary SVM classi-
fier to distinguish the “CUI-less” mentions. The
classifier utilized bag-of-word features as well as
the compositional vectors. The performance im-
provement provided by each of these steps is pre-
sented in table 2. This evaluation shows that each
step increases the performance considerably, but

Method Strict accuracy
B 43.6
T 48.4
T + L 53.5
T + L + C 55.4
O 59.3

Table 2: Evaluation of the different approaches
to detect CUI-less entities on the official develop-
ment set compared to a baseline without CUI-less
detection and an oracle method with perfect de-
tection. This evaluation was done with the entities
recognized by our NER system instead of the gold
standard entities. B = baseline without CUI-less
detection, T = similarity threshold, L = Lexicon-
based method, C = classifier, O = Oracle.

the overall performance is still 3.9pp below per-
fect detection.

3.2 Acronym Resolution

Abbreviations, especially acronyms, form a con-
siderable portion of the entity mentions in clini-
cal reports. One of the problems in normalizing
the acronyms is disambiguation as one acronym
can be associated with multiple diseases. Previ-
ous normalization systems (Leaman et al., 2013b)
handle this by selecting the matching concept with
most occurrences in the training data. However,
this approach does not resolve the problem of
non-standard acronyms, i.e. acronyms that are not
known in the UMLS vocabulary or in other medi-
cal acronym dictionaries. Our goal was to resolve
both of these problems by looking at the other enti-
ties found in the same document instead of match-
ing the acronym against the concept lexicon. With
this approach for instance entity mention “CP”
was on multiple occasions correctly normalized
into the concept “Chest Pain”, even though UMLS
is not aware of this acronym for the given concept
and in fact associates it with several other con-
cepts such as “Chronic Pancreatitis” and “Cerebral
Palsy”. However, the overall gain in accuracy ob-
tained from this method was only minor.

3.3 Normalization Feedback to Named
Entity Recognition

While basic exact match dictionary features pro-
vide usually a large improvement in NER perfor-
mance, they are prone to bias the system to high
precision and low recall. As both noun and ad-
jective forms of medical concepts, e.g. “atrium”
and “atrial”, are commonly used in clinical texts,
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the entities may not have exact dictionary matches.
Moreover the different forms of medical terms
may not share a common morphological root dis-
covered by simple stemming methods, thus com-
plicating approximate matching. In this task we
tried to boost the recall of our entity recognition by
feeding back the normalization similarity informa-
tion as features. These features included the max-
imum similarity between the token and the UMLS
concepts as a numerical value as well as a boolean
feature describing whether the similarity exceeded
a certain threshold.

In addition we experimented by calculating the
similarities for bigrams and trigrams in a slid-
ing window around the tokens, but these features
did not provide any further performance improve-
ments.

3.4 Other Directions Explored

The DNorm system utilizes TF-IDF vectors to rep-
resent the entities and concepts but instead of cal-
culating cosine similarity, the system trains a rank-
ing algorithm to measure the maximal similarity
(Leaman et al., 2013a). Their evaluation, carried
out on the NCBI disease corpus (Doğan et al.,
2014), showed a notable improvement in perfor-
mance compared to cosine similarity. In our anal-
ysis we noticed that in 39% of the false predic-
tions made by our normalization system, the cor-
rect concept was in the top 10 most similar con-
cepts. This strongly suggested that a similar rank-
ing method might be beneficial with our system as
well. To test this we trained a linear SVM to rerank
the top 10 concepts with highest cosine similarity,
but we were not able to increase the overall per-
formance of the system. However, due to the strict
time constraints of the task, we cannot conclude
whether this approach is feasible or not.

As our compositional vectors are formed by
summing the word vectors, each word has an equal
weight in the sum. Due to this our system made
various errors where the entity was a single word
matching closely to several concepts with longer
names. For instance entity “hypertensive” was
falsely normalized to concept “Hypertensive car-
diopathy” whereas the correct concept was “Hy-
pertensive disorder”. These mistakes could have
been prevented to some extent if the more impor-
tant words had had a larger weight in the sum, e.g.
word “disorder” is of low significance when try-
ing to distinguish different disorders. However,

Team Strict accuracy Relaxed accuracy
UTH CCB 74.1 87.3
UWM 66.0 90.9
RelAgent 63.9 91.2
IxaMed 60.4 86.2
UTU 60.1 78.3

Table 3: Official evaluation results for the top 5
teams in the normalization task.

weighting the word vectors with their IDF values,
document in this case being an UMLS concept, did
not improve the performance.

3.5 Results

The official results for the normalization task are
shown in table 3. Our system achieved accuracy
of 60.1% when evaluated with the official strict
evaluation metric. This result suggests that com-
positional vector representations are a competitive
approach for entity normalization. However, the
best performing team surpassed our performance
by 14.0pp, showing that there is plenty of room for
other teams to improve. It is worth noting though
that their recall in the NER task tops ours by 8.2pp
thus drastically influencing the normalization re-
sults as well. To evaluate the normalization sys-
tems in isolation from the NER task, a separate
evaluation set with gold standard entities should
be provided.

4 Conclusions

Overall, our NER system can perform well with
the same default settings of NERsuite for gene
name recognition. The performance improves
when relevant features, such as UMLS dictionary
matching and word2vec similarity are added. We
speculated that representing the nature of the data
with more suitable model can improve the system
performance further. As a part of a combined sys-
tem, the improvement on NER system can result
in the increased performance of normalization sys-
tem.

Our normalization system showed competitive
results as well, indicating that word2vec-based
vector representations are a feasible way of solv-
ing the normalization task. As future work we
would like to explore different methods for cre-
ating the compositional vectors and reassess the
applicability of the reranking approach described
in section 3.4.

810



Acknowledgements

Computational resources were provided by CSC
— IT Center for Science Ltd, Espoo, Finland. This
work was supported by the Academy of Finland.

References
David Campos, Sérgio Matos, and José Luı́s Oliveira.
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Abstract

This paper describes a deep-parsing ap-

proach to SemEval-2014 Task 6, a novel

context-informed supervised parsing and

semantic analysis problem in a controlled

domain. The system comprises a hand-

built rule-based solution based on a pre-

existing broad coverage deep grammar of

English, backed up by a off-the-shelf data-

driven PCFG parser, and achieves the best

score reported among the task participants.

1 Introduction

SemEval-2014 Task 6 involves automatic transla-

tion of natural language commands for a robotic

arm into structured “robot control language”

(RCL) instructions (Dukes, 2013a). Statements of

RCL are trees, with a fixed vocabulary of content

words like prism at the leaves, and markup like

action: or destination: at the nonterminals.

The yield of the tree largely aligns with the words

in the command, but there are frequently substitu-

tions, insertions, and deletions.

A unique and interesting property of this task

is the availability of highly relevant machine-

readable descriptions of the spatial context of each

command. Given a candidate RCL fragment de-

scribing an object to be manipulated, a spatial

planner provided by the task organizers can auto-

matically enumerate the set of task-world objects

that match the description. This information can

be used to resolve some of the ambiguity inherent

in natural language.

The commands come from the Robot Com-

mands Treebank (Dukes, 2013a), a crowdsourced

corpus built using a game with a purpose (von

Ahn, 2006). Style varies considerably, with miss-

ing determiners, missing or unexpected punc-

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organizers. Licence details:
http://creativecommons.org/licenses/by/4.0/

tuation, and missing capitalization all common

(Dukes, 2013b). Examples (1) and (2) show typi-

cal commands from the dataset.

(1) drop the blue cube

(2) Pick yellow cube and drop it on top of blue cube

Although the natural language commands vary

in their degree of conformance to what might be

called standard English, the hand-built gold stan-

dard RCL annotations provided with them (e.g.

Figure 1) are commendable in their uniformity and

accuracy, in part because they have been automat-

ically verified against the formal before and after

scene descriptions using the spatial planner.

(event: (action: drop)

(entity: (color: blue)

(type: cube))

Figure 1: RCL corresponding to Example (1).

2 Related Work

Automatic interpretation of natural language is

a difficult and long-standing research problem.

Some approaches have taken a relatively shal-

low view; for instance, ELIZA (Weizenbaum,

1966) used pattern matching to somewhat con-

vincingly participate in an English conversation.

Approaches taking a deeper view tend to parse

utterances into structured representations. These

are usually abstract and general-purpose in na-

ture, e.g. the syntax trees produced by main-

stream PCFG parsers and the DRS produced by

the Boxer system (Bos, 2008). As a notable ex-

ception, Dukes (2014) presents a novel method to

produce RCL output directly.

The English Resource Grammar (ERG;

Flickinger, 2000) employed as a component in

the present work is a broad-coverage precision

hand-written unification grammar of English,

following the Head-driven Phrase Structure

Grammar theory of syntax (Pollard & Sag, 1994).

The ERG produces Minimal Recursion Semantics
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(MRS; Copestake et al., 2005) analyses, which

are flat structures that explicitly encode predicate

argument relations (and other data). A simplified

MRS structure is shown in Figure 2. With minor

modifications to allow determinerless NPs and

some unexpected measure noun lexemes (as in

“two squares to the left”, etc), the ERG yields

analyses for 99% of the commands in the training

portion of the Robot Command Treebank.(
INDEX = e,

{
pron(x), cube n(y),

drop v cause(e, x, y), blue a( , y)
})

Figure 2: Highly simplified view of the MRS pro-

duced by the ERG for Example (1).

3 ERG-based RCL Synthesis

This section outlines the method my sys-

tem employs to synthesize RCL outputs from

the MRS analyses produced by the ERG.

The ERG provides a ranked list of candidate

MRS analyses for each input. As a first step,

grossly inappropriate analyses are ruled out, e.g.

those proposing non-imperative main verbs or

domain-inappropriate parts of speech (“block” as

a verb). An attempt is made to convert each re-

maining analysis into a candidate RCL statement.

If conversion is successful, the result is tested for

coherence with respect to the known world state,

using the supplied spatial planner. An RCL state-

ment is incoherent if it involves picking up or mov-

ing an entity which does not exist, or if its com-

mand type (take, move, drop) is incompatible

with the current state of the robot arm, e.g. drop

is incoherent when the robot arm is not holding

anything. Processing stops as soon as a coherent

result is found.1

3.1 From MRS to RCL

Given an individual (imperative) MRS structure,

the first step in conversion to RCL is to iden-

tify the sequence of top-level verbal predications.

The INDEX property of the MRS provides an en-

try point. In a simple command like Example (1),

the INDEX will point to a single verbal predica-

tion, whereas in a compound command such as

1Practically speaking, conversion from MRS to RCL is
accomplished by a relatively short C program embodying
these rules and steps (about 1500 lines in the final version):
http://sweaglesw.org/svn/semeval-2014-task6/tags/dublin

Example (2), the INDEX will point to a coordina-

tion predication, which itself will have left and

right arguments which must be visited recursively.

Each verbal predication visited in this manner gen-

erates an event: RCL statement whose action:

property is determined by a looking up the ver-

bal predicate in a short hand-written table (e.g.

drop v cause maps to action: drop). If the

predicate is not found in the table, the most com-

mon action move is guessed.

Every RCL event: element must have an

entity: subelement, representing the object to

be moved by the action. Although in princi-

ple MRS makes no guarantees about the gener-

alizability of the semantic interpretation of argu-

ment roles across different predicates, in prac-

tice the third argument of every verbal predicate

relevant to this domain represents the object to

be moved; hence, synthesis of an event: pro-

ceeds by inspecting the third argument of the

MRS predicate which gave rise to it. Some types

of event: also involve a destination: subele-

ment, which encodes the location where the en-

tity should come to rest. When present, a verbal

predicate’s fourth argument almost always iden-

tifies a prepositional predication holding this in-

formation, although there are exceptions (e.g. for

move v from-to rel it is the fifth). When no such

resultative role is present, the first prepositional

modifier (if any) of the verbal event variable is

used for the destination: subelement.

Synthesis of an entity: element from a

referential index like y in Figure 2 or a

spatial-relation: element from a preposi-

tional predication proceeds in much the same way:

the RCL type: or relation: is determined by

a simple table lookup, and subelements are built

based on connections indicated in the MRS. One

salient difference is the treatment of predicates

that are not found in their respective lookup ta-

bles. Whereas unknown command predicates de-

fault to the most common action move, unknown

modifying spatial relations are simply dropped,2

and unknown entity types cause conversion to fail,

on the theory that an incorrect parse is likely. Pru-

dent rejection of suspect parses only rarely elim-

inates all available analyses, and generally helps

to find the most appropriate one. On development

data, the first analysis produced by the ERG was

2If the spatial relation is part of a mandatory
destination: element, this can then cause conversion to fail.
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convertible for 87% of commands, and the first

RCL hypothesis was spatially coherent for 96% of

commands. These numbers indicate that the parse

ranking component of the ERG works quite well.

3.2 Polishing the Rules

I split the 2500 task-supplied annotated commands

into a randomly-divided training set (2000 com-

mands) and development set (500 commands).

Throughout this work, the development set was

only used for estimating performance on unseen

data and tuning system combination settings; the

contents of the development set were never in-

spected for rule writing or error analysis pur-

poses. Although the conversion architecture out-

lined above constitutes an effective framework,

there were quite a few details to be worked

through, such as the construction of the lookup ta-

bles, identification of cases requiring special han-

dling, elimination of undesirable parses, modest

extension of the ERG, etc. An error-analysis

tool which performed a fine-grained comparison

of the synthesized RCL statements with the gold-

standard ones and agglomerated common error

types proved invaluable when writing rules. 3 Pol-

ishing the system in this manner took about two

weeks of part-time effort; I maintained a log giv-

ing a short summary of each tweak (e.g. “map

center n of rel to type: region”). These

tweaks required varying amounts of time to imple-

ment, from a few seconds up to perhaps an hour;

system accuracy as a function of the number of

such tweaks is shown in Figure 3.

3.3 Anaphora and Ellipsis

Some commands use anaphora to evoke the iden-

tity or type of previously mentioned entities. Typ-

ically, the pronoun “it” refers to a specific entity

while the pronoun “one” refers to the type of an

entity (e.g. “Put the red cube on the blue one.”).

Empirically, the antecedent is nearly always the

first entity: element in the RCL statement, and

this heuristic works well in the system. A small

fraction of commands (< 0.5% of the training

data) elide the pronoun, in commands like “Take

the blue tetrahedron and place in front left corner.”

In principle these could be detected and accommo-

dated through the addition of a simple mal-rule to

3The error-analysis tool walks the system and gold
RCL trees in tandem, recording differences and printing the
most common mismatches. It consists of about 100 lines of
Python and shell script, and took perhaps an hour to build.
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Figure 3: Tuning the MRS-to-RCL conversion

system by tweaking/adding rules. Development-

set accuracy was only checked occasionally during

rule-writing to avoid over-fitting.

the ERG (Bender et al., 2004), but for simplicity

my system ignores this problem, leading to errors.

4 Robustness Strategies

If none of the analyses produced by the ERG result

in coherent RCL statements, the system produces

no output. On the one hand this results in quite a

high precision: on the training data, 96.75% of the

RCL statements produced are exactly correct. On

the other hand, in some scenarios a lower precision

result may be preferable to no result. The ERG-

based system fails to produce any output for 3.1%
of the training data inputs, a number that should be

expected to increase for unseen data (since conver-

sion can sometimes fail when the MRS contains

unrecognized predicates).

In order to produce a best-guess answer for

these remaining items, I employed the Berkeley

parser (Petrov et al., 2006), a state-of-the-art data-

driven system that induces a PCFG from a user-

supplied corpus of strings annotated with parse

trees. The RCL treebank is not directly suitable as

training material for the Berkeley parser, since the

yield of an RCL tree is not identical to (or even

in 1-to-1 correspondence with) the words of the

input utterance. In the interest of keeping things

simple, I produced a phrase structure translation

of the RCL treebank by simply discarding the el-

ements of the RCL trees that did not correspond

to any input, and inserting (X word) nodes for in-

put words that were not aligned to any RCL frag-

ment. The question of where in the tree to insert

these X nodes is presumably of considerable im-

portance, but again in the interest of simplicity I

simply clustered them together with the first RCL-
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S

event:

✟✟✟✟
❍❍❍❍

action:

drop

drop

entity:

✟✟✟ ❍❍❍
color:

✟✟ ❍❍
X

the

blue

blue

type:

cube

cube

Figure 4: Automatic phrase structure tree transla-

tion of the RCL statement shown in Figure 1.

aligned word appearing after them. Unaligned in-

put tokens at the end of the sentence were added

as siblings of the root node. Figure 4 shows the

phrase structure tree resulting from the translation

of the RCL statement shown in Figure 1.

Using this phrase structure treebank, the Berke-

ley parser tools make it possible to automatically

derive a similar phrase structure tree for any input

string, and indeed when the input string is a com-

mand such as the ones of interest in this work, the

resulting tree is quite close to an RCL statement.

Deletion of the X nodes yields a robust system

that frequently produces the exact correct RCL,

at least for those items where only input-aligned

RCL leaves are required. The most common type

of non-input-aligned RCL fragment is the id: el-

ement, identifying the antecedent of an anaphor.

As with the ERG-based system, a heuristic select-

ing the first entity as the antecedent whenever an

anaphor is present works quite well.

Improving the output of the statistical system

via tweaks of the type used in the ERG-based sys-

tem was much more challenging, due to the rel-

ative impoverishedness of the information made

available by the parser. Accurately detecting situ-

ations to improve without causing collateral dam-

age proved difficult. However, the base accu-

racy of the statistical system was quite good, and

when used as a back-off it improved overall sys-

tem scores considerably, as shown in Table 5.

5 Results and Discussion

The combined system performs best on both por-

tions of the data. Over the development data, the

MRS-based system performs considerably better

than the statistical system, in part due to the use

of spatial planning in the MRS-based system (time

did not permit adding spatial planning to the statis-

Dev Eval
System P R P R

MRS-only (−SP) 90.7 88.0 92.1 80.3
MRS-only (+SP) 95.4 92.2 96.1 82.4

Robust-only (−SP) 88.2 88.2 81.5 81.5
Combined (−SP) 90.8 90.8 90.5 90.5
Combined (+SP) 95.0 95.0 92.5 92.5

ERG coverage 98.6 91.0

Figure 5: Evaluation results. ±SP indicates

whether or not spatial planning was used. The ro-

bust and combined systems always returned a re-

sult, so P = R.

tical system). The statistical system has a slightly

higher recall than the MRS-only system without

spatial planning, but the MRS-only system has a

higher precision — markedly so on the evalua-

tion data. This is consistent with previous find-

ings combining precision grammars with statisti-

cal systems (Packard et al., 2014).

ERG coverage dropped precipitously from

roughly 99% on the development data to 91%

on the evaluation data. This is likely the major

cause of the 10% absolute drop in the recall of the

MRS-only system. The fact that the robust sta-

tistical system encounters a comparable drop on

the evaluation data suggests that the text is qual-

itatively different from the (also held-out) devel-

opment data. One possible explanation is that

whereas the development data was randomly se-

lected from the 2500 task-provided training com-

mands, the evaluation data was taken as the se-

quentially following segment of the treebank, re-

sulting in the same distribution of game-with-a-

purpose participants (and hence writing styles) be-

tween the training and development sets but a dif-

ferent distribution for the evaluation data. 4

Dukes (2014) reports an accuracy of 96.53%,

which appears to be superior to the present system;

however, that system appears to have used more

training data than was available for the shared task,

and averaged scores over the entire treebank, mak-

ing direct comparison difficult.
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Abstract

This paper describes our system partici-
pating in the aspect-based sentiment anal-
ysis task of Semeval 2014. The goal
was to identify the aspects of given tar-
get entities and the sentiment expressed to-
wards each aspect. We firstly introduce
a system based on supervised machine
learning, which is strictly constrained and
uses the training data as the only source
of information. This system is then ex-
tended by unsupervised methods for latent
semantics discovery (LDA and semantic
spaces) as well as the approach based on
sentiment vocabularies. The evaluation
was done on two domains, restaurants and
laptops. We show that our approach leads
to very promising results.

1 Introduction

The majority of current sentiment analysis ap-
proaches tries to detect the overall polarity of a
sentence (or a document) regardless of the target
entities (e.g. restaurants) and their aspects (e.g.
food, price). By contrast, the ABSA (aspect based
sentiment analysis) task is concerned with identi-
fying the aspects of given target entities and esti-
mating the sentiment polarity for each mentioned
aspect.

The aspect scenario can be decomposed into
two tasks: aspect extraction and aspect sentiment
classification (Liu, 2012).

The task of aspect extraction is to recognize
aspects of the entity and more generally can be
seen as an information extraction task. The ba-
sic approach is finding frequent nouns and noun

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence de-
tails: http://creativecommons.org/licenses/
by/4.0/

phrases (Liu et al., 2005; Blair-Goldensohn et
al., 2008; Moghaddam and Ester, 2010; Long et
al., 2010). Aspect extraction can be also seen as
a special case of the general information extrac-
tion problem. The most dominant methods are
based on sequential learning (e.g. HMM – Hidden
Markov Models (Rabiner, 2010) or CRF – Condi-
tional Random Fields (Lafferty et al., 2001)). An-
other group of methods use topic models (Mei et
al., 2007; Titov and McDonald, 2008; Blei et al.,
2003).

Aspect sentiment classification determines
whether the opinions on different aspects are
positive, negative, or neutral. While lexicon-based
approaches use a list of aspect-related sentiment
phrases as the core resource (Ding et al., 2008; Hu
and Liu, 2004), the key issue for learning methods
is to determine the scope of each sentiment
expression, i.e., whether it covers the aspect in
the sentence (Jiang et al., 2011; Boiy and Moens,
2009).

The most of the research in aspect-level senti-
ment analysis has been done in English, however,
there were some attempts to tackle the aspect-level
task in other languages (e.g. in Czech (Steinberger
et al., 2014)).

The rest of the article is organized as follows.
In Section 2, we summarize the ABSA shared task
(Pontiki et al., 2014). Then, we give a description
of our participating system (Section 3). In Section
4, we discuss our results in the task. We partic-
ipated with both the constrained and the uncon-
strained variants of the system.

2 The ABSA task

Datasets consisting of customer reviews with
human-authored annotations identifying the men-
tioned aspects of the target entities and the senti-
ment polarity of each aspect were provided. The
experiments were run in two domains: restaurant
and laptop reviews.
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Each team could submit two versions of sys-
tems – constrained and unconstrained. The con-
strained system uses only the training data and
other resources (such as lexicons) for training. The
unconstrained system can use additional data.

We use another definition of these types, which
is not against the rules. Our constrained systems
are based purely on ABSA training data, with-
out any external knowledge such as dictionaries or
rules. Our unconstrained systems use additional
dictionaries, rule-based extensions and unlabeled
data. From our point of view, hand-crafted dictio-
naries and rules are external knowledge and thus it
is the same as adding external data.

The task consists of the four subtasks.

2.1 Subtask 1: Aspect term extraction

Given a set of sentences with pre-identified enti-
ties (restaurants or laptops), the task is to identify
the aspect terms present in the sentence and return
a list containing all the distinct aspect terms.

I liked the service and the staff, but not the food.
→ {service, staff, food}

2.2 Subtask 2: Aspect term polarity

For a given set of aspect terms within a sentence,
the task is to determine the polarity of each aspect
term: positive, negative, neutral or conflict (i.e.,
both positive and negative).

I hated their fajitas, but their salads were great.
→ {fajitas: negative, salads: positive}

2.3 Subtask 3: Aspect category detection

Given a predefined set of aspect categories, the
task is to identify the aspect categories discussed
in a given sentence. Aspect categories are typi-
cally coarser than the aspect terms of Subtask 1,
and they do not necessarily occur as terms in the
given sentence.

For example, the following categories were de-
fined for the restaurants’ domain: food, service,
price, ambience and anecdotes/miscellaneous.

The restaurant was expensive, but the menu was
great. → {price, food}

2.4 Subtask 4: Aspect category polarity

Given a set of pre-identified aspect categories, the
task is to determine the polarity (positive, nega-
tive, neutral or conflict) of each aspect category.

The restaurant was expensive, but the menu was
great. → {price: negative, food: positive}

3 System description

We use machine learning approach to all subtasks.
For aspect term extraction we use CRF. For the
other three tasks we use the Maximum Entropy
classifier. We use the Brainy (Konkol, 2014) im-
plementation of these algorithms.

During the data preprocessing, we use simple
word tokenizer based on regular expressions. All
tokens are lowercased for tasks 2 and 4.

We will firstly describe all the features used in
this paper because the tasks share some of them.
These features are then referenced in the descrip-
tions of individual subtasks.

Words (W) – Word occurrence on a given posi-
tion in the context window.

Bag of Words (BoW) – Occurrence of a word in
a sentence (or context window).

Bigrams (B) – Bigram occurrence on a given po-
sition in the context window.

Bag of Bigrams (BoB) – Occurrence of a bigram
in a sentence (or context window).

Tf-idf – Term frequency–inverse document fre-
quency for all tokens in the sentence.

Learned Dictionary (LD) – Dictionary of terms
based on training data.

Suffixes (S) – Suffix of a word (2-4 characters).

Sentiment Dictionary (SD) – Dictionary created
using semi-automatic triangulation method
(Steinberger et al., 2012). The score is nor-
malized.

Senti Wordnet (SW) – See (Baccianella et al.,
2010).

LDA – See Section 3.1.

Word Clusters (WC) – See Section 3.2. Cluster
occurrence on a given position in the context
window.

Bag of Clusters (BoC) – Same as word clusters,
but without information about position.
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We use two features that are not in common
use in similar tasks – Latent Dirichlet Allocation
and word clusters based on semantic spaces. Both
these features use large amount of unlabeled data
to discover latent semantics. We downloaded the
restaurant reviews from http://opentable.
com. This corpus consists of 409,665 reviews
(documents) with about 27 million words. The
opentable corpus is used as the training data for
these features. Unfortunately, we did not find any
large corpus for laptop domain, thus presented un-
supervised features are used in restaurant domain
only.

We devote the following two subsections to de-
scribe these features. Then we introduce our ap-
proach to the individual tasks.

3.1 Latent Dirichlet Allocation
The Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) is a topic model that is assumed to provide
useful information for particular subtasks. We use
LDA implementation from the MALLET (McCal-
lum, 2002) software package. For each experi-
ment we always train the 400 topics LDA (no sig-
nificant difference was observed between different
numbers of topics) with 1,000 iterations of Gibbs
sampling. The hyperparameters of Dirichlet dis-
tributions were initially set to α = 50/K, where
K is the number of topics and β = 0.1. This set-
ting is recommended by (Griffiths and Steyvers,
2004). The topic probabilities are directly used as
new features to the classifier.

3.2 Word clusters
We use same approach as presented in (Brychcı́n
and Konopı́k, 2014), where word clusters derived
from semantic spaces improved language model-
ing. As recommended by these authors, we use
COALS (Correlated Occurrence Analogue to Lex-
ical Semantics) (Rohde et al., 2004) and HAL
(Hyperspace Analogue to Language) (Lund and
Burgess, 1996) for representing the word mean-
ing and the Repeated Bisection algorithm for clus-
tering. Similar approach has been already used
for sentiment analysis in (Habernal and Brychcı́n,
2013) and (Brychcı́n and Habernal, 2013).

The parameters of semantic spaces are set as
follows. For both semantic spaces we use a four-
word context window (in both directions). HAL
uses a matrix consisting of 50,000 columns, which
keeps the largest amount of information. COALS
uses a matrix with only 14,000 columns (as rec-

ommended by the authors of the algorithm). The
SVD reduction was not used in our experiments.

Implementation of the HAL, COALS algo-
rithms is available in an open source package S-
Space (Jurgens and Stevens, 2010). For cluster-
ing, we use the implementation from the CLUTO
software package (Karypis, 2003). As a measure
of the similarity between two words, we use the
cosine similarity of word vectors.

For both semantic spaces the word vectors are
clustered into four different depths: 100, 500,
1,000, and 5,000 clusters (i.e. eight different clus-
ter sets). The occurrences of particular clusters
represent additional features to the classifiers.

3.3 Aspect term extraction
Our approach for aspect term extraction is based
on Conditional Random Fields (CRF). The choice
was based on similarity with the named entity
recognition task, where CRF are regarded as the
current state of the art (Konkol and Konopı́k,
2013). We use the BIO model for representing as-
pect terms (Ramshaw and Marcus, 1999).

The constrained feature set consists of: W, BoW,
B, LD, S. It is extended by WC for the uncon-
strained case.

3.4 Aspect term polarity
During the detection of the aspect term polarities,
the words affecting the sentiment of the aspect
term are assumed to be close in most of cases.
Thus we use a context window of 10 words in both
directions around the target aspect term. We as-
sume the further the word or bigram is from the
target aspect term, the lower impact it has on the
polarity label. To model this assumption we use
a weight for each word and bigram feature taken
from the Gaussian distribution according to the
distance from the aspect term. The mean is set
to 0 and the variance is optimized on training data.

As a feature set for the constrained approach we
use only BoW, BoB and for the unconstrained ap-
proach we use BoC, SD, SW above that.

3.5 Aspect category detection
Aspect category detection is based on a set of bi-
nary Maximum Entropy classifiers, one for each
class. The final decision is simply assembled from
decisions of individual classifiers.

For this task we use BoW, Tf-Idf for the con-
strained approach and add LDA, BoC for uncon-
strained approach.
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Team Const. Rank P [%] R[%] F1[%] Rank ACC[%]

A
sp

ec
tt

er
m

s

R
es

ta
ur

an
ts Best – 1. 85.35 82.71 84.01 1. 80.95

UWB U 7. 82.70 76.28 79.36 4. 77.69
UWB C 12. 83.28 70.28 76.23 12. 72.13

Average – 14-15. 76.74 67.26 70.78 18. 69.15
Semeval Baseline – – – – 47.15 – 64.28

L
ap

to
ps

Best – 1. 84.80 66.51 74.55 1. 70.49
UWB U – – – – 4. 66.67
UWB C 14. 77.33 49.54 60.39 10. 62.54

Average – 14. 68.97 50.45 56.20 16. 59.01
Semeval Baseline – – – – 35.64 – 51.07

A
sp

ec
t

ca
te

go
ri

es

Best – 1. 91.04 86.24 87.58 1. 82.92
UWB U 4. 84.36 78.93 81.55 8. 72.78
UWB C 5. 85.09 77.37 81.04 9. 72.78

Average – 11. 76.00 72.26 73.79 12-13. 69.51
Semeval Baseline – – – – 63.89 – 65.66

Table 1: Comparison of our constrained (C) and unconstrained (U) system with Semeval baseline, best
and average results. P , R, and F1 denote the precision, recall and F-measure, respectively, used for
measuring aspect term and category detection. ACC denotes the accuracy, used for measuring aspect
term and category sentiment polarity detection.

3.6 Aspect category polarity

For this task we always take the whole sentence
into account. We cannot take a limited window
as we do not know where exactly the category is
mentioned in the sentence. Moreover, it can be at
several positions. To distinguish between differ-
ent categories we again use standalone Maximum
Entropy classifier for each category.

The constrained feature set consists of: BoW,
BoB, Tf-Idf. It is extended by BoC, LDA, SD, SW
for the unconstrained case.

4 Results

The ABSA task was a competition between re-
search teams from around the world. There were
21 to 32 submitted systems for individual tasks.

We have submitted both constrained (no ex-
ternal knowledge, dictionaries or rules) and un-
constrained systems for all tasks, except uncon-
strained system for aspect term extraction in the
laptops domain.

Table 1 shows results of our systems (UWB)
and compares them with the best and average sys-
tems as well as with the Semeval baseline. The
average system is not any particular system. It is
represented by average rank and metrics (metrics
are averaged separately).

Our systems performed quite well. In all

tasks, we outperform the Semeval baseline sys-
tem. Moreover, we are always above average (F-
measure and accuracy) in all tasks. We were three
times in the fourth place and our unconstrained
systems were always in top ten.

Table 2 presents the 10-fold cross-validation re-
sults on restaurant training data. We can clearly
see, that any of our extension (LDA, clusters, sen-
timent vocabularies) brings at least some improve-
ment.

5 Conclusion

This paper covers our participation in the ABSA
task of Semeval 2014. The ABSA task consists
of 4 subtasks. For each subtask we propose both
constrained (no external knowledge) and uncon-
strained approach. The constrained versions of
our system are based purely on machine learning
techniques. The unconstrained versions extend the
constrained feature set by LDA, semantic spaces
and sentiment dictionaries.

The proposed approaches achieved very good
results. The constrained versions were always
above average, often by a large margin. The un-
constrained versions were ranked among the best
systems.
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P [%] R[%] F1[%]
Constrained 68.72 82.14 74.83

Constrained + WC 76.77 82.51 79.53

(a) Aspect term extraction

ACC[%]
Constrained 65.91

Constrained+BoC 70.05
Constrained+SD+SW 68.13

All 71.02

(b) Aspect term polarity

P [%] R[%] F1[%]
Constrained 74.56 80.69 77.51

Constrained + LDA 75.96 81.94 78.84
Constrained + BoC 77.01 81.42 79.16

All 77.28 81.62 79.39

(c) Aspect category extraction

ACC[%]
Constrained 66.69

Constrained+LDA 67.85
Constrained+BoC 68.61

Constrained+SD+SW 69.28
All 70.20

(d) Aspect category polarity

Table 2: 10 fold cross-validation results on the restaurants training data for individual features. P , R,
and F1 denote the precision, recall and F-measure, respectively, used for measuring aspect term and
category detection. ACC denotes the accuracy, used for measuring aspect term and category sentiment
polarity detection.
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Abstract

This paper describes Team UWM’s sys-
tem for the Task 6 of SemEval 2014
for doing supervised semantic parsing of
robotic spatial commands. An existing
semantic parser, KRISP, was trained us-
ing the provided training data of natural
language robotic spatial commands paired
with their meaning representations in the
formal robot command language. The en-
tire process required very little manual ef-
fort. Without using the additional annota-
tions of word-aligned semantic trees, the
trained parser was able to exactly parse
new commands into their meaning repre-
sentations with 51.18% best F-measure at
72.67% precision and 39.49% recall. Re-
sults show that the parser was particularly
accurate for short sentences.

1 Introduction

Semantic parsing is the task of converting natu-
ral language utterances into their complete formal
meaning representations which are executable for
some application. Example applications of seman-
tic parsing include giving natural language com-
mands to robots and querying databases in natu-
ral language. Some old semantic parsers were de-
veloped manually to work for specific applications
(Woods, 1977; Warren and Pereira, 1982). How-
ever, such semantic parsers were generally brittle
and building them required a lot of manual effort.
In addition, these parsers could not be ported to
any other application without again putting signif-
icant manual effort.

More recently, several semantic parsers have
been developed using machine learning (Zelle and

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

Mooney, 1996; Ge and Mooney, 2005; Zettle-
moyer and Collins, 2005; Wong and Mooney,
2006; Kate and Mooney, 2006; Lu et al., 2008;
Kwiatkowski et al., 2011). In this approach, train-
ing data is first created for the domain of inter-
est. Then using one of the many machine learn-
ing methods and semantic parsing frameworks, a
semantic parser is automatically learned from the
training data (Mooney, 2007). The trained seman-
tic parser is then capable of parsing new natu-
ral language utterances into their meaning repre-
sentations. Semantic parsers built using machine
learning tend to be more robust and can be easily
ported to other application domains with appropri-
ate domain-specific training data.

The Task 6 of SemEval 2014 provided a new ap-
plication domain for semantic parsing along with
training and test data. The domain involved giv-
ing natural language commands to a robotic arm
which would then move blocks on a board (Dukes,
2013). The domain was inspired from the classic
AI system SHRDLU (Winograd, 1972). The train-
ing data contained 2500 examples of sentences
paired with their meaning representations in the
Robot Command Language (RCL) which was de-
signed for this domain (Dukes, 2013). The test
data contained 909 such example pairs.

We trained an existing and freely available1 se-
mantic parser KRISP (Kate and Mooney, 2006)
using the training data for this domain. Besides
changing the format of the data for running KRISP

and writing a context-free grammar for the mean-
ing representation language RCL, the entire pro-
cess required minimal manual effort. The author
spent less than a week’s time for participating in
the Task 6, and most of it was spent in running
the experiments. This demonstrates that train-
able semantic parsers like KRISP can be rapidly
adopted to new domains. In the Results section
we show different precisions and recalls it ob-

1http://www.cs.utexas.edu/users/ml/krisp/
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tained at different confidence levels in the form of
a precision-recall curve. The results also show that
the parser was particularly accurate on shorter sen-
tences. Two major reasons that prevented KRISP

from performing better on this domain were - its
high computational demand for memory which
prevented it from being trained beyond 1500 train-
ing examples, and some variability in the mean-
ing representation language RCL that negatively
affected training as well as evaluation.

2 Background: KRISP Semantic Parser

KRISP (Kernel-based Robust Interpretation for Se-
mantic Parsing) is a trainable semantic parser
(Kate and Mooney, 2006) that uses Support Vector
Machines (SVMs) (Cristianini and Shawe-Taylor,
2000) as the machine learning method with string-
subsequence kernel (Lodhi et al., 2002). It takes
natural language utterances and their correspond-
ing formal meaning representation as the training
data along with the context-free grammar of the
meaning representation language (MRL). The key
idea in KRISP is that every production of the MRL
is treated as a semantic concept. For every MRL
production, an SVM classifier is trained so that it
can give for any input natural language substring
of words the probability that it expresses the corre-
sponding semantic concept. Once these classifiers
are trained, parsing a sentence reduces to finding
the most probable semantic derivation of the sen-
tence in which different productions cover differ-
ent parts of the sentence and together form a com-
plete meaning representation. Figure 1 shows an
example semantic derivation of a robotic spatial
command. Productions of RCL grammar (Table 1)
are shown at tree nodes depicting different parts of
the sentence they cover.

Since the training data is not in the form of such
semantic derivations, an EM-like iterative algo-
rithm is used to collect appropriate positive and
negative examples in order to train the classifiers
(Kate and Mooney, 2006). Positive examples are
collected from correct semantic derivations de-
rived by the parser learned in the previous itera-
tion, and negative examples are collected from the
incorrect semantic derivations.

KRISP was shown to work well on the US geog-
raphy database query domain (Tang and Mooney,
2001) as well as on the RoboCup Coach Lan-
guage (CLang) domain (Kate et al., 2005). It was
also shown to be particularly robust to noise in

Figure 1: Semantic derivation of the robotic spatial com-
mand “pick up the turquoise pyramid” obtained by KRISP
during testing which gives the correct RCL representation
(event: (action: take) (entity: (color: cyan) (type: prism))).

the natural language utterances (Kate and Mooney,
2006). KRISP was later extended to do semi-
supervised semantic parsing (Kate and Mooney,
2007b), to learn from ambiguous supervision in
which multiple sentences could be paired with a
single meaning representation in the training data
(Kate and Mooney, 2007a), and to transform the
MRL grammar to improve semantic parsing (Kate,
2008).

3 Methods
In order to apply KRISP to the Task 6 of SemEval
2014, the format of the provided data was first
changed to the XML-type format that KRISP ac-
cepts. The data contained several instances of
co-references which was also part of RCL, but
KRISP was not designed to handle co-references
and expects them to be pre-resolved. We ob-
served that almost all co-references in the mean-
ing representations, indicated by “reference-id”
token, resolved to the first occurrence of an “en-
tity” element in the meaning representation. This
was found to be true for more than 99% of the
cases. We used this observation to resolve co-
references during semantic parsing in the follow-
ing way. As a pre-processing step, we first remove
from the meaning representations all the “id:” to-
kens (these resolve the references) but keep the
“reference-id:” tokens (these encode presence of
co-references). The natural language sentences
are not modified in any way and the parser learns
from the training data to relate words like “it”
and “one” to the RCL token “reference-id”. After
KRISP generates a meaning representation during
testing, as a post-processing step, “id: 1” is added
to the first “entity” element in the meaning repre-
sentation if it contains the “reference-id:” token.

The context-free grammar for RCL was not pro-
vided by the Task organizers. There are multi-
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ple ways to write a context-free grammar for a
meaning representation language and those that
conform better to natural language work better
for semantic parsing (Kate, 2008). We manu-
ally wrote grammar for RCL which mostly fol-
lowed the structure of the meaning representa-
tions as they already conformed highly to natural
language commands and hence writing the gram-
mar was straightforward. KRISP runs faster if
there are fewer non-terminals on the right-hand-
side (RHS) of the grammar because that makes
the search for the most probable semantic deriva-
tion faster. Hence we kept non-terminals on RHS
as few as possible while writing the grammar.
Table 1 shows the entire grammar for RCL that
we wrote which was given to KRISP. The non-
terminals are indicated with a “*” in their front.
We point out that KRISP needs grammar only for
the meaning representation language (an applica-
tion will need it anyway if the statements are to be
executed) and not for the natural language.

KRISP’s training algorithm could be aided by
providing it with information about which natu-
ral language words are usually used to express the
concept of a production. For example, word “red”
usually expresses “*color: → ( color: red )”. The
data provided with the Task 6 came with the word-
aligned semantic trees which indicated which nat-
ural language words corresponded to which mean-
ing representation components. This information
could have been used to aid KRISP, however, we
found many inconsistencies and errors in the pro-
vided word-aligned semantic trees and chose not
to use them. In addition, KRISP seemed to learn
most of that information on its own anyway.

The Task 6 also included integrating semantic
parsing with spatial planning. This meant that if
the semantic parser generates an RCL representa-
tion that does not make sense for the given block
configuration on the board, then it could be dis-
missed and the next best RCL representation could
be considered. Besides generating the best mean-
ing representation for a natural language utterance,
KRISP is also capable of generating multiple pos-
sible meaning representations sorted by their prob-
abilities. We could have used this capability to
output only the best RCL representation that is
valid for the given board configuration. Unfortu-
nately, unfamiliarity with the provided Java API
for the spatial planner and lack of time prevented
us from doing this.

*action:→ ( action: move )
*action:→ ( action: drop )
*action:→ ( action: take )
*cardinal:→ ( cardinal: 1 )
*cardinal:→ ( cardinal: 2 )
*cardinal:→ ( cardinal: 3 )
*cardinal:→ ( cardinal: 4 )
*color:→ ( color: magenta )
*color:→ ( color: red )
*color:→ ( color: white )
*color:→ ( color: cyan )
*color:→ ( color: green )
*color:→ ( color: yellow )
*color:→ ( color: blue )
*color:→ ( color: gray )
*indicator:→ ( indicator: rightmost )
*indicator:→ ( indicator: back )
*indicator:→ ( indicator: center )
*indicator:→ ( indicator: right )
*indicator:→ ( indicator: leftmost )
*indicator:→ ( indicator: individual )
*indicator:→ ( indicator: nearest )
*indicator:→ ( indicator: front )
*indicator:→ ( indicator: left )
*reference-id:→ ( reference-id: 1 )
*relation:→ ( relation: right )
*relation:→ ( relation: forward )
*relation:→ ( relation: within )
*relation:→ ( relation: above )
*relation:→ ( relation: nearest )
*relation:→ ( relation: adjacent )
*relation:→ ( relation: front )
*relation:→ ( relation: left )
*relation:→ ( relation: backward )
*type:→ ( type: type-reference-group )
*type:→ ( type: board )
*type:→ ( type: prism )
*type:→ ( type: cube )
*type:→ ( type: type-reference )
*type:→ ( type: cube-group )
*type:→ ( type: corner )
*type:→ ( type: robot )
*type:→ ( type: stack )
*type:→ ( type: edge )
*type:→ ( type: region )
*type:→ ( type: tile )
*type:→ ( type: reference )
*indicator:→ *indicator: *indicator:
*color:→ *color: *color:
*ct:→ *color: *type:
*ict:→ *indicator: *ct:
*ctr:→ *ct: *reference-id:
*cct:→ *cardinal: *ct:
*ed:→ *entity: ( destination: *spatial-relation: )
*entity:→ ( entity: *type: )
*entity:→ ( entity: *type: *reference-id: )
*entity:→ ( entity: *type: *spatial-relation: )
*entity:→ ( entity: *ct: )
*entity:→ ( entity: *indicator: *type: )
*entity:→ ( entity: *ict: )
*entity:→ ( entity: *ict: *spatial-relation: )
*entity:→ ( entity: *cardinal: *type: )
*entity:→ ( entity: *cct: )
*entity:→ ( entity: *cct: *spatial-relation: )
*entity:→ ( entity: *ctr: )
*entity:→ ( entity: *ct: *spatial-relation: )
*entity:→ ( entity: *ctr: *spatial-relation: )
*measure:→ ( measure: *entity: )
*mr:→ *measure: *relation:
*spatial-relation:→ ( spatial-relation: *relation: *entity: )
*spatial-relation:→ ( spatial-relation: *mr: )
*spatial-relation:→ ( spatial-relation: *mr: *entity: )
*S→ ( sequence: *S *S )
*S→ ( event: *action: *ed: )
*S→ ( event: *action: *entity: )

Table 1: Grammar for the Robot Command Lan-
guage (RCL) given to KRISP for semantic parsing.
The non-terminals are indicated with a “*” in their
front. The start symbol is *S.
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Figure 2: Precision-recall curve for the semantic
parsing output on test sentences.

4 Results
We found that KRISP could not be trained beyond
1500 examples in this domain because the num-
ber of negative examples that are generated during
the training process would become too large for
the available memory size. This is something that
could be fixed in the future by suitably sampling
negative examples. Using the first 1500 train-
ing examples, we evaluated KRISP’s performance
on the provided 909 test examples. A generated
RCL representation is considered correct only if
it exactly matches the correct answer; no partial
credit is given. In order to avoid generating incor-
rect meaning representations when it is not confi-
dent, KRISP uses a threshold and if the confidence
(probability) of the best semantic derivation is be-
low this threshold, it does not generate any mean-
ing representation. This threshold was set to 0.05
as was previously done for other domains.

Performance was measured in terms of preci-
sion (the percentage of generated meaning repre-
sentations that were correct) and recall (the per-
centage of all sentences for which correct meaning
representations were obtained). Given that KRISP

also gives confidences with its output meaning
representations, we can compute precisions and
recalls at various confidence levels. Figure 2
shows the entire precision-recall curve thus ob-
tained. The best F-measure (harmonic mean of
precision and recall) on this curve is 51.18% pdf
at 72.67% precision and 39.49% recall. The pre-
cision at the highest recall was 45.98% which we
had reported as our official evaluation result for
the SemEval Task 6.

We further analyzed the results according to the
lengths of the sentences and found that KRISP was

Sentence length Accuracy (Correct/Total)
1-3 100.00% (15/15)
4-7 71.20% (136/191)
8-11 51.76% (147/284)

12-15 41.80% (79/189)
16-19 22.22% (28/126)
20-23 15.71% (11/70)
24-27 3.23% (1/31)
28-31 33.33% (1/3)

All 45.98% (418/909)

Table 2: Accuracy of semantic parsing across test
sentences of varying lengths.

very accurate with shorter sentences and became
progressively less accurate as the lengths of the
sentences increase. Table 2 shows these results.
This could be simply because the longer the sen-
tence, the more the likelihood of making an error,
and since no partial credit is given, the entire out-
put meaning representation is deemed incorrect.

On further error analysis we observed that there
was some variability in the meaning representa-
tions. The “move” and “drop” actions seemed
to mean the same thing and were used alterna-
tively. For example in the training data, the ut-
terance “place the red block on single blue block”
had “(action: drop)” in the corresponding mean-
ing representation, while “place red cube on grey
cube” had “(action: move)”, but there is no ap-
parent difference between the two cases. There
were many such instances. This was confusing
KRISP’s training algorithm because it would col-
lect the same phrase sometimes as a positive ex-
ample and sometimes as a negative example. This
also affected the evaluation, because KRISP would
generate “move” which won’t match “drop”, or
vice-versa, and the evaluator will call it an error.

5 Conclusions
We participated in the SemEval 2014 Task 6 of su-
pervised semantic parsing of robotic spatial com-
mands. We used an existing semantic parser
learner, KRISP, and trained it on this domain
which required minimum time and effort from our
side. The trained parser was able to map natu-
ral language robotic spatial commands into their
formal robotic command language representations
with good accuracy, particularly for shorter sen-
tences.
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Abstract

This paper describes Team UWM’s sys-
tem for the Task 7 of SemEval 2014 that
does disorder mention extraction and nor-
malization from clinical text. For the dis-
order mention extraction (Task A), the sys-
tem was trained using Conditional Ran-
dom Fields with features based on words,
their POS tags and semantic types, as well
as features based on MetaMap matches.
For the disorder mention normalization
(Task B), variations of disorder mentions
were considered whenever exact matches
were not found in the training data or in
the UMLS. Suitable types of variations
for disorder mentions were automatically
learned using a new method based on edit
distance patterns. Among nineteen partic-
ipating teams, UWM ranked third in Task
A with 0.755 strict F-measure and second
in Task B with 0.66 strict accuracy.

1 Introduction

Entity mention extraction is an important task in
processing natural language clinical text. Disor-
ders, medications, anatomical sites, clinical pro-
cedures etc. are among the entity types that pre-
dominantly occur in clinical text. Out of these,
the Task 7 of SemEval 2014 concentrated on ex-
tracting (Task A) and normalizing (Task B) dis-
order mentions. Disorder mention extraction is
particularly challenging because disorders are fre-
quently found as discontinuous phrases in clinical
sentences. The extracted mentions were then to be
normalized by mapping them to their UMLS CUIs
if they were in the SNOMED-CT part of UMLS

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

and belonged to the “disorder” UMLS seman-
tic group, otherwise they were to be declared as
“CUI-less”. This normalization task is challeng-
ing because disorder names are frequently men-
tioned in modified forms which prevents their ex-
act matching with concept descriptions in UMLS.

Our team, UWM, participated in both Task
A and Task B. We modelled disorder mention
extraction as a standard sequence labeling task.
The model was trained using Conditional Ran-
dom Fields (Lafferty et al., 2001) with various
types of lexical and semantic features that in-
cluded MetaMap (Aronson, 2001) matches. The
model was also inherently capable of extracting
discontinuous disorder mentions. To normalize
disorder mentions, our system first looked for ex-
act matches with disorder mentions in the train-
ing data and in the UMLS. If no exact match
was found, then suitable variations of the disorder
mentions were generated based on the commonly
used variations of disorder mentions learned from
the training data as well as from the UMLS syn-
onyms. We developed a novel method to automat-
ically learn such variations based on edit distances
(Levenshtein, 1966) which is described in the next
section.

Our Team ranked third on Task A and second on
Task B in the official SemEval 2014 Task 7 evalua-
tion (considering only the best run for each team).
We also present results of ablation studies we did
on the development data in order to determine the
contributions of various features and components
of our system.

2 Methods
2.1 Task A: Disorder Mention Extraction
We modelled disorder mention extraction as a se-
quence labeling task with the standard “BIO” (Be-
gin, Inside, Outside) scheme of output labels for
sentence tokens. The tokens labelled “I” follow-
ing the latest “B” token are extracted together as
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a disorder. For example, in the following labelled
sequence “the/O left/B atrium/I is/O moderately/O
dilated/I”, “left atrium dilated” will be extracted
as a disorder. The labeling scheme thus natu-
rally models discontinuously mentioned disorders
which is one challenging aspect of the disorder
mention extraction task.

The sequence labeling model is trained using
Condition Random Fields (CRFs) (Lafferty et al.,
2001) using the five group of features shown in Ta-
ble 1. The clinical reports are first pre-processed
using Stanford CoreNLP1 for tokenization, sen-
tence segmentation and part-of-speech (POS) tag-
ging which help in obtaining the lexical features
(Group 1). The semantic features (Group 2) are
obtained by matching the tokens, along with bi-
grams and trigrams in UMLS. For the first three
features in Group 2, only the eleven semantic
types under the “disorder” semantic group are con-
sidered.2 If a token is a concept in UMLS with
“disorder” semantic group then its feature is as-
signed the value of its semantic type (for example
“congenital abnormality”, “Neoplastic process”,
etc.) otherwise it is assigned the value “Null”. The
next three features in Group 2 take Boolean values
depending upon whether the bigram or trigram is
present in UMLS as a concept or not. The last fea-
ture in Group 2 takes CUI as its value if the word
is a concept in UMLS otherwise it takes “Null” as
the value.

The features in Group 3 are obtained by running
MetaMap (Aronson, 2001). The lemmatized ver-
sion of word obtained using Stanford CoreNLP is
used as an additional feature in Group 4. Finally,
if the word is an abbreviation according to a list
of clinical abbreviations3 then its full-form is ob-
tained.4 The full-form, whether it is in UMLS,
and its semantic type (out of “disorder group”) are
used as features under Group 5. We used the CRF-
suite (Okazaki, 2007) implementation of CRFs.

2.2 Task B: Disorder Mention Normalization
The extracted disease mentions from Task A are
normalized in Task B as follows. As a first step,

1http://nlp.stanford.edu/software/
corenlp.shtml

2We found that using all semantic groups negatively af-
fected the performance.

3http://en.wikipedia.org/wiki/List_of_
medical_abbreviations

4If multiple full-forms were present then only the first one
was used. In the future, one could improve this through ab-
breviation disambiguation (Xu et al., 2012).

Group 1: Lexical
Word
Next word
Previous word
POS tag of word
POS tag of next word
POS tag of previous word
Next to next word
Previous to previous word
Length of the word
Group 2: Semantic
UMLS semantic type of word
UMLS semantic type of next word
UMLS semantic type of previous word
Bigram with next word is in UMLS
Reverse bigram with next word is in UMLS
Trigram with next two words is in UMLS
CUI of the word
Group 3: MetaMap
Word tagged as disorder by MetaMap
Next word tagged as disorder by MetaMap
Previous word tagged as disorder by MetaMap
Group 4: Lemmatization
Lemmatized version of the word
Group 5: Abbreviation
Full-form
Full-form is in UMLS
UMLS semantic type of full-form

Table 1: Features used to train the CRF model for disorder
mention extraction.

our system tries to exactly match the disease men-
tions in the training data. If they match, then the
corresponding CUI or CUI-less is the output. If
no match is found in the training data, then the
system tries to exactly match names of concepts
in UMLS including their listed synonyms.5 If a
match is found then the corresponding CUI is the
output. If the mention does not match either in the
training data or in the UMLS and if it is an ab-
breviation according to the abbreviation list (same
as used in Task A), then its full-form is used to
exactly match in the training data and in UMLS.
However, what makes the normalization task chal-
lenging is that exact matching frequently fails. We
employed a novel method that learns to do approx-
imate matching for this task.

We found that most failures in exact matching
were because of minor typographical variations
due to morphology, alternate spellings or typos.
In order to automatically learn such variations, we
developed a new method based on edit distance
which is a measure of typographical similarity be-
tween two terms. We used a particular type of
well-known edit distance called Levenshtein dis-

5In accordance to the task definition, only the concepts
listed in SNOMED-CT and of the UMLS semantic group
“disorder” are considered in this step.
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Learned Edit Distance Pattern Comments
SAME o INSERT u SAME r Change American spelling to British
INSERT s SAME space Pluralize by adding “s” before space
DELETE i DELETE e SUBSTITUTE s/y Example: “Z-plasties”→ “Z-plasty”
START SAME h INSERT a SAME e SAME m SAME o Variation: “hemo...”→ “haemo...”
DELETE space DELETE n DELETE o DELETE s END Drop “ nos” in the end
SAME s SUBSTITUTE i/e SAME s Example: “metastasis”→ “metastases”

Table 2: A few illustrative edit distance patterns that were automatically learned from UMLS and the training data.

Data used for training Task A Task B
Strict Relaxed Strict Relaxed

P R F P R F Accuracy Accuracy
Training + Development 0.787 0.726 0.755 0.911 0.856 0.883 0.660 0.909
Training 0.775 0.679 0.724 0.909 0.812 0.858 0.617 0.908

Table 3: SemEval 2014 Task 7 evaluation results for our system. Precision (P), recall (R) and F-measure (F) were measured
for Task A while accuracy was measured for Task B.

tance (Levenshtein, 1966) which is defined as the
minimum number of edits needed to convert one
term into another. The edits are in the form of in-
sertions, deletions and substitution of characters.
For example, the term “cyanotic” can be converted
into “cyanosis” in minimum two steps by substi-
tuting “t” for “s” and “c” for “s”, hence the Lev-
enshtein edit distance between these terms is two.
There is a fast dynamic programming based algo-
rithm to compute this. The algorithm also gives
the steps to change one term into another, which
for the above example will be “START SAME c
SAME y SAME a SAME n SAME o SUBSTI-
TUTE t/s SAME i SUBSTITUTE c/s END”. We
will call such a sequence of steps as an edit dis-
tance pattern.

Our method first computes edit distance pat-
terns between all synonyms of the disorder con-
cepts is UMLS6 as well as between their men-
tions in the training data and the corresponding
tagged concepts in UMLS. But these patterns are
very specific to the terms they are derived from
and will not directly apply to other terms. Hence
these patterns are generalized next. We define gen-
eralization of two edit distance patterns as their
largest contiguous common part that includes all
the edit operations of insertions, deletions and sub-
stitutions (i.e. generalization can only remove
“SAME”, “START” and “END” steps). For exam-
ple, the generalized edit distance pattern of “cyan-
otic → cyanosis” and “thrombotic → thrombo-
sis” will be “SAME o SUBSTITUTE t/s SAME i
SUBSTITUTE c/s END”, essentially meaning that
a term that ends with “otic” can be changed to end

6Due to the large size of UMLS, we restricted to the sec-
ond of the two concept files in the 2013 UMLS distribution.

with “osis”. Our method generalizes every pair of
edit distance patterns as well as repeatedly further
generalizes every pair of generalization patterns.

Not all generalization patterns may be good be-
cause some may change the meaning of terms
when applied. Hence our method also evaluates
the goodness of these patterns by counting the
number of positives and negatives. When a pat-
tern is applied to a UMLS term and the resultant
term has the same CUI then it is counted as a pos-
itive. But if the resultant term has a different CUI
then it is counted as a negative. Our system heuris-
tically only retains patterns that have the number
of positives more than the number of negatives and
have at least five positives. Our method learned to-
tal 554 edit distance patterns, Table 2 shows a few
illustrative ones.

These patterns are used as follows to normalize
disease mentions. When exact matching for a dis-
ease mention in the training data and the UMLS
fails, then our system generates its variations by
applying the learned edit distance patterns. These
variations are then searched for exact matching in
the UMLS. If even the variations fail to match then
the variations of possible full-forms (according to
the abbreviation list) are tried, otherwise the men-
tion is declared CUI-less. Note that while our
method learns variations only for disorder men-
tions, it is general and could be used to learn vari-
ations for terms of other types. Finally, because it
is a learning method and it also learns variations
used in the training data, it is capable of learning
variations that are specific to the style or genre of
the clinical notes that constitute the training data.
We note that the problem of matching variations
is analogous to the duplicate detection problem
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in database records (Bilenko and Mooney, 2003).
But to the our best knowledge, no one has used an
approach to learn patterns of variations based on
edit distances. We used the edit-distance patterns
only for Task B in this work, in future we plan to
also use them in Task A for the features that in-
volve matching with UMLS.

3 Results
The organizers of the SemEval 2014 Task 7 pro-
vided the training, the development and the test
data containing 199, 99 and 133 clinical notes
respectively that included de-identified discharge
summaries, electrocardiogram, echocardiogram
and radiology reports (Pradhan et al., 2013). The
extraction performance in Task A was evaluated
in terms of precision, recall and F-measure for
strict (exact boundaries) and relaxed (overlapping
boundaries) settings. The normalization perfor-
mance in Task B was evaluated in terms of strict
accuracy (fraction of correct normalizations out
of all gold-standard disease mentions) and relaxed
accuracy (fraction of correct normalizations out of
the correct disease mentions extracted in Task A).
Note that a system’s strict accuracy in Task B de-
pends on its performance in Task A because if it
misses to extract a disease mention in Task A then
it will get zero score for its normalization.

Table 3 shows the performance of our system
as determined through the official evaluation by
the organizers. The systems were evaluated on the
test data when trained using both the training and
the development data as well as when trained us-
ing just the training data. When trained using both
the training and the development data, our team
ranked third in Task A and second in Task B con-
sidering the best run of each team if they submit-
ted multiple runs. The ranking was according to
the strict F-measure for Task A and according to
the strict accuracy for Task B. When trained using
just the training data, our team ranked second in
Task A and first in Task B.

We also performed ablation study to determine
the contribution of different components of our
system towards its performance. Since the gold-
standard annotations for the test data were not
made available to the participants, we used the de-
velopment data for testing for the ablation study.
Table 4 shows the results (strict) for Task A when
various groups of features (shown in Table 1) are
excluded one at a time. It can be noted that lex-
ical group of features were most important with-

Features P R F
All 0.829 0.673 0.743
All - Lexical 0.779 0.569 0.658
All - Semantic 0.824 0.669 0.738
All - MetaMap 0.810 0.648 0.720
All - Lemmatization 0.825 0.666 0.737
All - Abbreviations 0.828 0.668 0.740

Table 4: Ablation study results for Task A showing how the
performance is affected by excluding various feature groups
(shown in Table 1). Development data was used for testing.
Only strict precision (P), recall (R) and F-measure (F) are
shown.

Component Accuracy
Training 78.1
UMLS 83.8
Training + UMLS 88.8
Training + Patterns 86.3
UMLS + Patterns 85.2
Training + UMLS + Patterns 89.5

Table 5: Performance on Task B obtained by combinations
of exactly matching the mentions in the training data, exactly
matching in the UMLS and using learned edit distance pat-
terns for approximately matching in the UMLS. Development
data was used for testing with gold-standard disease men-
tions.

out which the performance drops significantly.
MetaMap matches were the next most important
group of features. Each of the remaining feature
groups improves the performance by only small
amount.

Table 5 shows the performance on Task B when
disease mentions are exactly matched in the train-
ing data, exactly matched in the UMLS and ap-
proximately matched in the UMLS using edit dis-
tance patterns, as well as their combinations. In
order to evaluate the performance of our system
on Task B independent of its performance on Task
A, we used gold-standard disease mentions in the
development data as input for Task B in which
case the strict and relaxed accuracies are equal. It
may be noted that adding edit distance patterns im-
proves the performance in each case.

4 Conclusions
We participated in the SemEval 2014 Task 7
of disorder mention extraction and normalization
from clinical text. Our system used conditional
random fields as the learning method for the ex-
traction task with various lexical, semantic and
MetaMap based features. We introduced a new
method to do approximate matching for normal-
ization that learns general patterns of variations
using edit distances. Our system performed com-
petitively on both the tasks.
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Abstract

This paper presents V3, an unsupervised
system for aspect-based Sentiment Analy-
sis when evaluated on the SemEval 2014
Task 4. V3 focuses on generating a list
of aspect terms for a new domain using a
collection of raw texts from the domain.
We also implement a very basic approach
to classify the aspect terms into categories
and assign polarities to them.

1 Introduction

The automatic analysis of opinions, within the
framework of opinion mining or sentiment anal-
ysis, has gained a huge importance during the last
decade due to the amount of review web sites,
blogs and social networks producing everyday a
massive amount of new content (Pang and Lee,
2008; Liu, 2012; Zhang and Liu, 2014). This con-
tent usually contains opinions about different enti-
ties, products or services. Trying to cope with this
large amounts of textual data is unfeasible with-
out the help of automatic Opinion Mining tools
which try to detect, identify, classify, aggregate
and summarize the opinions expressed about dif-
ferent topics (Hu and Liu, 2004) (Popescu and Et-
zioni, 2005) (Wu et al., 2009) (Zhang et al., 2010).
In this framework, aspect based opinion mining
systems aim to detect the sentiment at “aspect”
level (i.e. the precise feature being opinionated in
a clause or sentence).

In this paper we describe our system presented
in the SemEval 2014 task 41 Aspect Based Senti-
ment Analysis (Pontiki et al., 2014), which focuses
on detecting opinionated aspect terms (e.g. wine

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/

1http://alt.qcri.org/semeval2014/
task4/

list and menu in restaurant domain, and hard disk
and battery life in laptop domain), their categories
and polarities in customer review sentences.

The task provides two training datasets, one of
restaurant reviews and other of laptop reviews.
The restaurant review dataset consists of over
3,000 English sentences from restaurant reviews
borrowed from (Ganu et al., 2009). The laptop
review dataset consists of over 3,000 English sen-
tences extracted from customer reviews. The task
is divided in four different subtasks: subtask 1 as-
pect term extraction, subtask 2 aspect term polar-
ity detection, subtask 3 aspect category detection,
subtask 4 aspect category polarity detection. Our
system mainly focused on subtask 1, but we have
also participated in the other subtasks.

The paper is organized as follows: section 2
presents our approach, section 3 details the im-
provement methods used for the aspects term se-
lection and section 4 focus on category and polar-
ity tagging. Finally section 5 presents the results
obtained and section 6 draws the conclusions and
future work.

2 Our approach

We have adapted the double-propagation tech-
nique described in (Qiu et al., 2009; Qiu et al.,
2011). This method consists of using a minimal
seed list of aspect terms and opinion words and
propagate them through an unlabelled domain-
related corpus using a set of propagation rules.
The goal is to obtain an extended aspect term and
opinion word lists. (Qiu et al., 2009) define opin-
ion words as words that convey some positive or
negative sentiment polarities. They only extract
nouns as aspect terms and adjectives as opinion
words, and we assume the same restriction.

The propagation rules have the form of depen-
dency relations and some part-of-speech restric-
tions. Some rules extract new aspect terms, and
others extract new opinion words. Table 1 shows
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the rules used in our approach, similar to those de-
tailed in (Qiu et al., 2011) with some modifica-
tions. In this table, T stands for aspect term (i.e.
a word already in the aspect terms set) and O for
opinion word (i.e. a word already in the opinion
words set). W means any word. The dependency
types used are amod, dobj, subj and conj, which
stand for adjectival modifier, direct object, subject
and conjunction respectively. Additional restric-
tions on the Part-Of-Speech (POS) of the words
present in the rule are shown in the third column
of the table. The last column indicates to which
set (aspect terms or opinion words) the new word
is added.

To obtain the dependency trees and word lem-
mas and POS tags, we use the Stanford NLP tools2

(De Marneffe et al., 2006). Our initial seed words
are just the adjectives good and bad, which are
added to the initial opinion words set. The ini-
tial aspect terms set starts empty. Each sentence
in the dataset is analysed to obtain its dependency
tree and the rules are checked sequentially. If rule
is triggered, then the word indicated by that rule
is added to the corresponding set (aspect terms
or opinion words, depending on the rule). These
new words can be then used to trigger the propa-
gation rules later. After the last sentence the pro-
cess starts from the beginning to check the rules
with the newly added words. The process stops
when no more words have been added during a
full dataset iteration.

3 Selecting aspect term candidates

The double-propagation process populates both
sets of domain aspect terms and domain opinion
words, but we focus our attention in the aspect
terms set. Due to the nature of the process it tends
to generate hundreds of different potential aspect
terms, many of them being incorrect. We apply
some additional processes to improve the list.

3.1 Ranking the aspect terms

One way to reduce the undesired terms is to rank
them, pushing the incorrect aspect terms to the
bottom of the list and using only a certain subset
of top ranked terms. In order to rank this list we
have modelled the double-propagation process as
a undirected graph population process. Each new
aspect term or opinion word discovered by apply-

2http://nlp.stanford.edu/software/
lex-parser.shtml

ing a propagation rule is added as a vertex to the
graph. The rule used to extract the new word is
added as an edge to the graph, connecting the orig-
inal word and the newly discovered word.

We have applied the well-known PageRank al-
gorithm (Brin and Page, 1998) to score the vertices
of the graph. To calculate the PageRank scores
we have used the JUNG framework3 (OMadad-
hain et al., 2005), a set of Java libraries to work
with graphs. The value of the alpha parameter that
represents the probability of a random jump to any
node of the graph has been left at 0.15 (in the lit-
erature it is recommended an alpha value between
0.1 and 0.2). The aspect terms are then ordered us-
ing their associated score, being the most relevant
aspect term, the one with the highest score. Then
the list can be trimmed to a certain amount of top
ranked terms, trying to balance the precision and
recall of the resulting list.

3.2 Filtering undesired words

The double-propagation method always intro-
duces many undesired words. Some of these un-
desired words appear very frequently and are com-
bined with a large number of words. So, they tend
to also appear in high positions in the ranking.
Many of these words are easy to identify, and they
are not likely to be useful aspect terms in any do-
main. Examples of these words are: nothing, ev-
erything, thing, anyone, someone, somebody, etc.
In this work we use a domain agnostic stop word
list to deal with this kind of words. The authors
of the original double-propagation approach use
some clause and frequency based heuristics that
we do not employ here.

3.3 Detecting multiword terms

Many aspect terms are not just single words, but
compounds and multiword terms (e.g. wine list,
hard disk drive, battery life, etc.). In the origi-
nal double-propagation paper, the authors consider
adjacent nouns to a given aspect term as multiword
terms and perform an a posteriori pruning based
on the frequency of the combination. We have
tried to add multiword terms without increasing
the amount of noise in the resulting list. One of the
approaches included in the system exploits Word-
Net 4 (Fellbaum, 1999), and the following simple
rules:

3http://jung.sourceforge.net
4http://wordnet.princeton.edu/
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Rule Observations Constraints Action
R11 O→ amod→W W is a noun W→T
R12 O→dobj→W1←subj←W2 W2 is a noun W2→T
R21 T← amod←W W is an adjective W→O
R22 T→ subj→W1← dobj←W2 W2 is an adjective W2→ O
R31 T→ conj→W W is a noun W→ T
R32 T→ subj→W1← dobj←W2 W2 is a noun W→ T
R41 O→ conj→W W is an adjective W→ O
R42 O→ Dep1→W1← Dep2←W2 Dep1==Dep2, W2 is an adjective W2→ O

Table 1: Propagation rules.

• If word N and word N+1 are nouns, and the
combination is an entry in WordNet (or in
Wikipedia, see below). E.g.: battery life

• If word N is an adjective and word N+1 is
a noun, and the combination is an entry in
WordNet. E.g.: hot dog, happy hour

• If word N is an adjective, word N+1 is a noun,
and word n is a relational adjective in Word-
Net (lexical file 01). E.g.: Thai food

In order to improve the coverage of the Word-
Net approach, we also check if a combination of
two consecutive nouns appears as a Wikipedia ar-
ticle title. Wikipedia articles refer to real word
concepts and entities, so if a combination of words
is a title of a Wikipedia article it is very likely
that this word combination is also meaningful (e.g.
DVD player, USB port, goat cheese, pepperoni
pizza). We limit the lookup in Wikipedia titles just
to combination of nouns to avoid the inclusion of
incorrect aspect terms.

4 Assigning categories and polarities

Despite we have focused our attention on acquir-
ing aspect terms from a domain, we have also par-
ticipated in the rest of subtasks: grouping aspect
terms into a fixed set of categories, and assigning
polarities to both aspect terms and categories.

To group the aspect terms into categories, we
have employed WordNet similarities. The idea
is to compare the detected aspect terms against a
term or group of terms representative of the tar-
get categories. In this case the categories (only
for restaurants) were food, service, price, ambi-
ence and anecdotes/miscellaneous.

Initially, the representative word for each cate-
gory (except for the anecdotes/miscellaneous) was
the name of the category itself. We use the similar-
ity measure described by (Wu and Palmer, 1994).
Detected aspect terms are compared to the set of

representative words on each category, and they
are assigned to the category with a higher similar-
ity result. For example using this approach, the
similarity between food and cheese is 0.8, while
similarity between service and cheese is 0.25, and
between price and cheese is 0.266. Thus, in this
case cheese is assigned to the category food.

If the similarity does not surpass a given min-
imum threshold (manually set to 0.7), the current
aspect term is not assigned to the category to avoid
assigning a wrong category just because the other
were even less similar. After classifying the as-
pect terms of a given sentence into categories, we
assign those categories to the sentence. If no cat-
egory has been assigned, then we use the anec-
dotes/miscellaneous category as the default one.

This approach is quite naive and it has many
limitations. It works quite well for the category
food, classifying ingredients and meals, but it fails
when the category or the aspect terms are more
vague or abstract. In addition, we do not perform
any kind of word sense disambiguation or sense
pruning, which probably would discard unrelated
senses.

For detecting the polarity we have used the
SentiWords (Guerini et al., 2013; Warriner et al.,
2013) as a polarity lexicon. Using direct depen-
dency relations between aspect terms and polarity
bearing words we assign the polarity value from
the lexicon to the aspect term. We make a simple
count of the polarities of the aspect terms classi-
fied under a certain category to assign the polarity
of that category in a particular sentence.

5 Evaluation

The run submitted to the SemEval task 4 compe-
tition was based on 25k unlabelled sentences ex-
tracted from domain related reviews (for restau-
rants and laptops) obtained by scraping different
websites. We used these unlabelled sentences to
execute our unsupervised system to generate and
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Restaur. aspect terms Precision Recall F-score
SemEval Baseline 0.525 0.427 0.471

V3 (S) 0.656 0.562 0.605
V3 (W) 0.571 0.641 0.604

V3 (W+S) 0.575 0.645 0.608

Table 2: Results on the restaurant review test set.

Laptops aspect terms Precision Recall F-score
SemEval Baseline 0.443 0.298 0.356

V3 (S) 0.265 0.276 0.271
V3 (W) 0.321 0.425 0.366

V3 (W+S) 0.279 0.444 0.343

Table 3: Results on the laptop review test set.

rank the aspect term lists. Then we used those
aspect term lists to annotate the sentences using
a simple lemma matching approach between the
words. The generated aspect term lists were lim-
ited to the first ranked 550 items after some initial
experiments with the SemEval training sets.

The SemEval test datasets (restaurants and lap-
tops) contain about 800 sentences each. The
restaurant dataset contains 1,134 labelled gold as-
pect term spans, and the laptop dataset contains
634 labelled gold aspect term spans. We compare
the results against the SemEval baseline which is
calculated using the scripts provided by the Se-
mEval organizers. This baseline splits the dataset
into train and test subsets, and uses all the labelled
aspect terms in the train subset to build a dictio-
nary of aspect terms. Then it simply uses that dic-
tionary to label the test subset for evaluation.

Tables 2 and 3 show the performance of our sys-
tem with respect to the baselines in both datasets.
”V3 (S)” stands for our system only using the Se-
mEval test data (as our approach is unsupervised
it learns from the available texts for the task). (W)
refers to the results using our own dataset scraped
from the Web. Finally (W+S) refers to the results
using both SemEval and our Web dataset mixed
together. The best results are highlighted in bold.
For subtask 1, although our system outperforms
the baseline in terms of F-score in both datasets, in
the competition our system obtained quite modest
results ranking 24th and 26th out of 29 participants

Restaur. categories Precision Recall F-score
SemEval Baseline 0.671 0.602 0.638

V3 0.638 0.569 0.602

Table 4: Results on restaurant category detection
using the test set.

Polarity detection accuracy Baseline V3
Restaur. aspect terms 0.642 0.597
Restaur. categories 0.656 0.472
Laptop aspect terms 0.510 0.538

Table 5: Results for the polarity classification sub-
tasks (subtasks 2 and 4).

for restaurants and laptops respectively.
One of the most important source of errors are

the multiword aspect term detection. In the Se-
mEval datasets, about the 25% of the gold aspect
terms are multiword terms. In both datasets we
find a large number of names of recipes and meals,
composed by two, three or even more words,
which cannot appear in our aspect term lists be-
cause we limit the multiword length up to two
words.

As mentioned in the introduction our approach
focuses mainly in the aspects so the approach for
detecting categories and polarities needs more at-
tention. Table 4 presents our results on category
detection and table 5 our results on polarities. The
results are quite poor so we do not comment on
them here. We will address these subtasks in fu-
ture work.

6 Conclusions and future work

In this paper we propose a simple and unsuper-
vised system able to bootstrap and rank a list
of domain aspect terms from a set of unlabelled
domain texts. We use a double-propagation ap-
proach, and we model the obtained terms and their
relations as a graph. Then, we apply the PageRank
algorithm to score the obtained terms. Despite the
modest results, our unsupervised system for de-
tecting aspect terms performs better than the su-
pervised baseline. In our future work we will try
to improve the way we deal with multiword terms
to reduce the amount of incorrect aspect terms and
generate a better ranking. We also plan to try
different methods for the category grouping, and
explore knowledge-based word sense disambigua-
tion methods for improving the current system.
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Abstract

In this paper, we present the system we
have developed for the SemEval-2014
Task 4 dedicated to Aspect-Based Senti-
ment Analysis. The system is based on
a robust parser that provides information
to feed different classifiers with linguis-
tic features dedicated to aspect categories
and aspect categories polarity classifica-
tion. We mainly present the work which
has been done on the restaurant domain1

for the four subtasks, aspect term and cat-
egory detection and aspect term and cate-
gory polarity.

1 Introduction

Aspect Based Sentiment Analysis aims at discov-
ering the opinions or sentiments expressed by a
user on the different aspects of a given entity ((Hu
and Liu, 2004); (Liu, 2012)). A wide range of
methods and techniques have been proposed to ad-
dress this task, among which systems that use syn-
tactic dependencies to link source and target of the
opinion, such as in (Kim and Hovy, 2004), (Bloom
et al., 2007), or (Wu et al., 2009). We have devel-
oped a system that belongs to this family, (Brun,
2011), as we believe that syntactic processing of
complex phenomena (negation, comparison, ...)
is a crucial step to perform aspect-based opinion
mining. In this paper, we describe the adaptations
we have made to this system for SemEval, and the
way it is applied to category and polarity classifi-
cation.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

1We have not performed any domain adapation for the
laptop corpus and only submitted a run for the subtask 1, term
detection.

2 Description of the System

In this section, we describe the different compo-
nents of the system.

2.1 Existing System
In order to tackle the Semeval’14 Task 4, (Pon-
tiki et al., 2014), we used our existing aspect-
based opinion detection system. The opinion de-
tection system we built relies on a robust deep
syntactic parser, (Ait-Mokhtar et al., 2001), as a
fundamental component, from which semantic re-
lations of opinion are calculated. Parsing here
includes tokenization, morpho-syntactic analysis,
tagging which is performed via a combination of
hand-written rules and HMM, Named Entity De-
tection, chunking and finally, extraction of depen-
dency relations between lexical nodes. These re-
lations are labeled with deep syntactic functions.
More precisely, a predicate (verbal or nominal) is
linked with what we call its deep subject (SUBJ-
N), its deep object (OBJ-N), and modifiers. In
addition, the parser calculates more sophisticated
and complex relations using derivational morpho-
logic properties, deep syntactic properties (subject
and object of infinitives in the context of control
verbs), and some limited lexical semantic coding.

Syntactic relations already extracted by a
general dependency grammar, lexical information
about word polarities, sub categorization informa-
tion and syntactic dependencies are all combined
within our robust parser to extract the semantic
relations. The polarity lexicon has been built
using existing resources and also by applying
classification techniques over large corpora, while
the semantic extraction rules are handcrafted, see
(Brun, 2011) and (Brun, 2012) for the complete
description of these different components. The
system outputs a semantic dependency called
SENTIMENT which can be binary, i.e. linking
opinionated terms and their targets, or unary,
i.e. just the polar term in case the target of the
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opinion hasn’t been detected. For example, when
parsing I was highly disappointed by their service
and food., the systems outputs the following
dependencies:

SUBJ N(disappointed,food)
SUBJ N(disappointed,service)
OBJ N(disappointed,I)
MANNER PRE(disappointed,highly)
SENTIMENT NEGATIVE(disappointed,service)
SENTIMENT NEGATIVE(disappointed,food)

In this system, aspects terms are not explic-
itly extracted, however all non-polar arguments of
the SENTIMENT dependency are potential aspect
terms. Moreover, this system considers only posi-
tive and negative opinions, but does not cover the
neutral and conflict polarities.

2.2 System Adaptation
The opinion detection system described in the
previous section has been adapted for the Se-
mEval2014 Task4, in two ways: some lexical ac-
quisition has been performed in order to detect the
terms of the domain, and some rules have been de-
veloped to detect multi-word terms and to output
semantic dependencies associating their polarity
to terms and categories.

2.2.1 Lexical Enrichment and Term
Detection

As said before, the existing system encodes a rea-
sonable amount of polar vocabulary. However, as
the task implies domain knowledge to detect the
terms, we have first extracted the terms from the
training corpus and encoded their words into our
lexicons, assigning to them the semantic features
food, service, ambiance and price. We have then
extended the list with Wordnet synonyms. To im-
prove coverage, we have also extracted and fil-
tered food term lists from Wikipedia pages and en-
coded them. More precisely, the list of food terms
has been extracted from the Wikipedia ”Food Por-
tal”, from the category ”Lists of foods”2. At the
end of this process, our lexicon has the following
coverage: Polar words: 1265 negative, 1082 posi-
tive and Domain words: 761 food words, 31 price
words, 105 ambiance words, 42 service words.

In order to detect the terms, some local grammar
rules (based on regular expressions) have been de-
veloped taking into account the lexical semantic

2http://en.wikipedia.org/wiki/Category:Lists of foods

information encoded in the previous step. These
rules detect the multi-words terms, e.g. pas-
trami sandwiches, group them under the appropri-
ate syntactic category (noun, verb) and associate
them with the corresponding lexical semantic fea-
ture, food, service, ambiance, price. In addition to
this, in order to prepare the aspect category clas-
sification (c.f. section 2.3.3), a layer of semantic
dependencies has been added to the grammar: If
a domain term is detected in a sentence, a unary
dependency corresponding to its category (FOOD,
SERVICE, PRICE, AMBIANCE) is built.

2.2.2 Grammar Adaptation for Polarity
Detection

The English grammar, which had been previously
developed to detect sentiments, has also been
adapted in order to extract the opinions associated
to the terms and categories detected at the previous
step.

If an aspect term is the second argument of a
SENTIMENT relation, 2 dependencies, one for the
term (OPINION ON TERM) and one for the corre-
sponding category (OPINION ON CATEGORY) are
built. They inherit the polarity (positive or nega-
tive) of the SENTIMENT dependency. If these de-
pendencies target the same term and category and
if they have opposite polarity, they are modified in
order to bear the feature ”conflict”.

Then, if a sentence contains a term and
if no SENTIMENT dependency has been de-
tected, the OPINION ON TERM and OPIN-
ION ON CATEGORY are created with the polarity
”neutral”. Finally, if no terms have been de-
tected in a sentence, there are two cases: (1)
a SENTIMENT dependency has been detected
somewhere in the sentence, the dependency
OPINION ON CATEGORY(anecdote/misc), is
created with the corresponding polarity (positive
or negative); (2) no SENTIMENT dependency
has been detected, the dependency OPIN-
ION ON CATEGORY(anecdote/misc), is created
with polarity ”neutral”.

The dependency OPINION ON TERM links the
terms to their polarities in the sentences and serves
as input for the subtasks 1 and 3.

2.3 Classification
2.3.1 KiF (Knowledge in Frame)
The whole system, training and prediction, has
been implemented in KiF (Knowledge in Frame),
a script language that has been implemented into
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the very fabric of the rule-based Xerox Incremen-
tal Parser (XIP). KiF offers a very simple way to
hybridize a rule-based parser with machine learn-
ing technique. For instance, a KiF function, which
evaluates a set a features to predict a class, can be
called from a rule, which could then be fired along
the output of that function. KiF is a multi-threaded
programming language, which is available for all
platforms (Windows, Mac OS, Linux). It pro-
vides all the necessary objects (strings, containers
or classes) and many encapsulations of dynamic
libraries from different C programs such as classi-
fiers (liblinear and libsvm), database (SQLite), or
XML (libxml2), which can be loaded on the fly.
All internal XIP linguistic structures are wrapped
up into KiF objects. For example, linguistic fea-
tures are available as maps, which can be modi-
fied and re-injected into their own syntactic nodes.
The language syntax is a mix between Java (types
are static) and Python (in the way containers are
handled), but provides many implicit conversions
to avoid code overloading with too many func-
tions. KiF allows for an efficient integration of
all aspects of linguistic analysis into a very sim-
ple framework, where XML documents can be an-
alyzed and modified both with linguistic parsing
and classifiers into a few hundred lines of code.

2.3.2 General Methodology
We focus on four main tasks: detecting the as-
pect terms and aspect categories and their corre-
sponding polarities. While the detection of aspect
terms and their corresponding polarities occurs at
the grammar level, for the detection of aspect cate-
gories and their corresponding polarities we make
use of the liblinear library (Fan et al., 2008) to
train our models. We train one classifier for detect-
ing the categories and further, for each category
we train a separate classifier for detecting the po-
larities corresponding to that particular category.
For both settings, we use 10-fold cross-validation.
The two modules for aspect category classification
and aspect category polarity classification are de-
scribed in details further.

2.3.3 Aspect Category Classification
The sentence classification module is used to as-
sign aspect categories to sentences. For each sen-
tence, the module takes as input features the bag
of words in the sentence as well as the information
provided by the syntactic parser. The output con-
sists of a list of categories corresponding to each

sentence.
In the pre-processing stage stop words are re-

moved (determinants, conjunctions). Further, we
use the L2-regularized logistic regression solver
from the liblinear library to train a model. The
features considered are the word lemmas from the
sentence along with their frequencies (term fre-
quency). Apart from this, the information pro-
vided by the rule based component is also taken
into account to increase the term frequency for
terms belonging to the detected categories.

Such information can consist of: dependencies
denoting the category to which a detected aspect
term belongs (Food, Service, Price, Ambiance)
and dependencies denoting the opinions on the
detected aspect terms and categories (OPIN-
ION ON CATEGORY, OPINION ON TERM). For
example for the following sentence: “Fab-
ulous service, fantastic food, and a chilled
out atmosphere and environment”, the salient
dependencies produced by the syntactic parser are:

FOOD(food), AMBIANCE(atmosphere),
SERVICE(service), AMBIANCE(environment),
OPINION ON CATEGORY POSITIVE(food),
OPINION ON CATEGORY POSITIVE(service),
OPINION ON CATEGORY POSITIVE(ambiance),
OPINION ON TERM POSITIVE(food),
OPINION ON TERM POSITIVE(service),
OPINION ON TERM POSITIVE(atmosphere).

This yields the following features having an
increase in their frequencies: food (+3), service
(+3), atmosphere (+2), environment (+1), am-
biance (+1).

Once the logistic regression is performed, each
category is predicted with a certain probability.
Since in one sentence there may be entities that re-
fer to different categories, we set a threshold with
respect to the probability values to be taken into
account. We have tried different approaches to set
this threshold. The best results on the training and
trial data were obtained with a threshold of 0.25,
(i.e. we kept only the categories with a probability
over 0.25).

2.3.4 Aspect Category Polarity Classification
The approach to predict the polarity for each cate-
gory is similar to the one predicting the categories
for each sentence, with some differences as will
be further detailed. The classification uses for fea-
tures, the bag of words (term frequency), but also
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the polarity provided by XIP by the following de-
pendencies: OPINION ON CATEGORY and SEN-
TIMENT. Whenever these dependencies are de-
tected, a feature is added to the classification of
the form polarity category. Thus for the previ-
ous example sentence: Fabulous service, fantastic
food, and a chilled out atmosphere and environ-
ment, the additional dependencies considered are
SENTIMENT POSITIVE(atmosphere, chilled out),
SENTIMENT POSITIVE(food, fantastic), SENTI-
MENT POSITIVE(service, Fabulous). After map-
ping back the terms to their corresponding cate-
gories, the added features are: positive ambiance,
positive food and positive service. Since the de-
pendency OPINION ON CATEGORY is also de-
tected by the parser for these categories, each
of the above mentioned features will have a fre-
quency of 2 in this case. Moreover, the polarity
alone is also added as a feature. The training is
performed using the L2-regularized L2-loss sup-
port vector classification solver from the same li-
brary (liblinear) and a model is generated for each
category. Thus, depending on the categories de-
tected within a certain sentence, the correspond-
ing model is used to make the prediction regarding
their polarities. The classifier’s output represents
the predicted polarity for one given category.

3 Evaluation

The corpus used for evaluating the system con-
tains 800 sentences, 1134 aspect term occurrences,
1025 aspect category occurrences, 5 different as-
pect categories and 555 distinct aspect terms. All
these belong to the restaurant domain.

3.1 Terms and Category Detection

When evaluating aspect terms and aspect cate-
gories detection, three measures were taken into
account: precision, recall and the f1-measure.

For both aspect term extraction and aspect cat-
egory detection, the baseline methodologies are
presented in (Pontiki et al., 2014). Table 1 shows
the results obtained using our approach as com-
pared to the baseline for aspect term detection,
whereas Table 2 outlines the results regarding as-
pect category detection in terms of the previously
mentioned measures.

Furthermore, it is interesting to notice the in-
crease in performance obtained by combining the
bag-of-words features with the output of the parser
as opposed to just using the bag-of words. These

Method Precision Recall F-Measure
Baseline 0.627329 0.376866 0.470862
XRCE 0.862453 0.818342 0.839818

Table 1: Aspect term detection.

Method Precision Recall F-Measure
Baseline 0.637500 0.483412 0.549865

BOW 0.77337 0.799024 0.785988
XRCE 0.832335 0.813658 0.822890

Table 2: Aspect category detection.

differences are outlined for aspect category detec-
tion in Table 2, where BOW denotes the system
using the same settings, but just the bag-of-words
features and XRCE denotes the submitted system
where the bag-of-words features are augmented
with parser output features.

For both tasks of aspect term and aspect cate-
gory detection, our system clearly outperforms the
baseline, resulting in being ranked among the first
3 in the competition for the restaurant corpus.

3.2 Terms and Category Polarity Detection

Similarly, Table 3 shows the results in terms of
accuracy on aspect term polarity detection and on
aspect category polarity detection. Here, baseline
methodologies are similar to the ones used for as-
pect category detection and also described in (Pon-
tiki et al., 2014). Again, our system ranks high in
the competition, achieving an overall accuracy of
0.77 for aspect term polarity detection and 0.78 for
aspect category polarity detection. Furthermore, a
comparison is also made between the current sys-
tem and one that, using the same settings, would
not take into account the features provided by the
parser (BOW). The results emphasize the impor-
tance of using the merged version.

Method Task Accuracy
Baseline Term polarity 0.552239
XRCE Term polarity 0.776895

Baseline Category polarity 0.563981
BOW Category polarity 0.681951
XRCE Category polarity 0.781463

Table 3: Aspect term and aspect category polarity.
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Label Precision Recall F-measure
conflict NaN 0 NaN
negative 0.7857 0.7296 0.7566
neutral 0.5833 0.3214 0.4145
positive 0.7998 0.9272 0.8588

Table 4: Aspect term polarity (2).

Label Precision Recall F-measure
conflict 0.5333 0.1538 0.2388
negative 0.726 0.6802 0.7023
neutral 0.5119 0.4574 0.4831
positive 0.8343 0.9117 0.8713

Table 5: Aspect category polarity (2).

3.3 Error Analysis

The results obtained with our system are unar-
guably competitive, but some remarks can be
made regarding the most frequent causes of er-
rors. In the task of aspect category classification,
the choice of the threshold (0.25) may have con-
stituted a factor impacting the performance. In
the task of aspect term detection, the lexical cov-
erage is one of the factors to explain the difference
in performance between training/trial data and test
data.

Table 4 contains the results obtained in terms
of precision, recall and F-measure for each of the
possible polarities for terms (positive, negative,
neutral and conflict) and similarly does Table 5
for category polarities. In both cases we notice a
clear decrease for these measures when predicting
the conflict and neutral classes, with a higher de-
crease in the case of aspect term polarity detection.
This can be explained by the fact that the syntactic
parser was primarily customized to detect the neg-
ative and positive labels. This obviously had an
impact on the final results as the information from
the parser constituted some of the input features
for the classification.

4 Conclusion

The combination of a symbolic parser, customized
with specialized lexicons, with SVM classifiers
proved to be an interesting platform to implement
a category/polarity detection system. The sym-
bolic parser on the one hand provides a versatile
architecture to add lexical and multi-words infor-
mation, augmented with specific rules, in order to
feed classifiers with high quality features. How-

ever, some work will be needed to improve per-
formances on the neutral and conflict polarities,
which rely less on specific words, than on a more
global interpretation of the content.
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