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Welcome to SemEval-2014

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyse diverse semantic phenomena in text with the aim of extending the current state-
of-the-art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2014 is the eighth workshop in the series. The first three workshops, SensEval-1 (1998),
SensEval-2 (2001), and SensEval-3 (2004), focused on word sense disambiguation, each time growing
in the number of languages offered in the tasks and in the number of participating teams. In 2007, the
workshop was renamed as SemEval, and in the next four workshops SemEval-2007/2010/2012/2013 the
nature of the tasks evolved to include semantic analysis tasks outside of word sense disambiguation.
Starting in 2012, SemEval turned into a yearly event.

This volume contains papers accepted for presentation at the SemEval-2014 International Workshop on
Semantic Evaluation Exercises. SemEval-2014 was co-located with the 25th International Conference
on Computational Linguistics (COLING) in Dublin.

SemEval-2014 included the following 10 shared tasks:
1. Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic
Relatedness and Entailment
Grammar Induction for Spoken Dialogue Systems
Cross-Level Semantic Similarity
Aspect Based Sentiment Analysis
L2 Writing Assistant
Supervised Semantic Parsing of Spatial Robot Commands
Analysis of Clinical Text

Broad-Coverage Semantic Dependency Parsing

D A R R

Sentiment Analysis in Twitter

._
e

Multilingual Semantic Textual Similarity

About 185 teams submitted more than 500 systems for the 10 tasks of SemEval-2014. This volume
contains both Task Description papers that describe each of the above tasks and System Description
papers that describe the systems that participated in the above tasks. A total of 10 task description papers
and 139 system description papers are included in this volume.

We are grateful to all program committee members for their high quality, elaborate and thoughtful
reviews. The papers in this proceedings have surely benefited from this feedback. We also thank
the COLING’2014 conference organizers for the local organization and the forum. Finally, we most
gratefully acknowledge the support of our sponsor, the ACL Special Interest Group on the Lexicon
(SIGLEX).

Welcome to SemEval-2014,
Preslav Nakov and Torsten Zesch
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Abstract

This paper presents the task on the evalu-
ation of Compositional Distributional Se-
mantics Models on full sentences orga-
nized for the first time within SemEval-
2014. Participation was open to systems
based on any approach. Systems were pre-
sented with pairs of sentences and were
evaluated on their ability to predict hu-
man judgments on (i) semantic relatedness
and (ii) entailment. The task attracted 21
teams, most of which participated in both
subtasks. We received 17 submissions in
the relatedness subtask (for a total of 66
runs) and 18 in the entailment subtask (65
runs).

1 Introduction

Distributional Semantic Models (DSMs) approx-
imate the meaning of words with vectors sum-
marizing their patterns of co-occurrence in cor-
pora. Recently, several compositional extensions
of DSMs (CDSMs) have been proposed, with the
purpose of representing the meaning of phrases
and sentences by composing the distributional rep-
resentations of the words they contain (Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011; Mitchell and Lapata, 2010; Socher et al.,
2012). Despite the ever increasing interest in the
field, the development of adequate benchmarks for
CDSMs, especially at the sentence level, is still
lagging. Existing data sets, such as those intro-
duced by Mitchell and Lapata (2008) and Grefen-
stette and Sadrzadeh (2011), are limited to a few
hundred instances of very short sentences with a
fixed structure. In the last ten years, several large

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
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data sets have been developed for various com-
putational semantics tasks, such as Semantic Text
Similarity (STS)(Agirre et al., 2012) or Recogniz-
ing Textual Entailment (RTE) (Dagan et al., 2006).
Working with such data sets, however, requires
dealing with issues, such as identifying multiword
expressions, recognizing named entities or access-
ing encyclopedic knowledge, which have little to
do with compositionality per se. CDSMs should
instead be evaluated on data that are challenging
for reasons due to semantic compositionality (e.g.
context-cued synonymy resolution and other lexi-
cal variation phenomena, active/passive and other
syntactic alternations, impact of negation at vari-
ous levels, operator scope, and other effects linked
to the functional lexicon). These issues do not oc-
cur frequently in, e.g., the STS and RTE data sets.

With these considerations in mind, we devel-
oped SICK (Sentences Involving Compositional
Knowledge), a data set aimed at filling the void,
including a large number of sentence pairs that
are rich in the lexical, syntactic and semantic phe-
nomena that CDSMs are expected to account for,
but do not require dealing with other aspects of
existing sentential data sets that are not within
the scope of compositional distributional seman-
tics. Moreover, we distinguished between generic
semantic knowledge about general concept cate-
gories (such as knowledge that a couple is formed
by a bride and a groom) and encyclopedic knowl-
edge about specific instances of concepts (e.g.,
knowing the fact that the current president of the
US is Barack Obama). The SICK data set contains
many examples of the former, but none of the lat-
ter.

2 The Task

The Task involved two subtasks. (i) Relatedness:
predicting the degree of semantic similarity be-
tween two sentences, and (ii) Entailment: detect-
ing the entailment relation holding between them
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(see below for the exact definition). Sentence re-
latedness scores provide a direct way to evalu-
ate CDSMs, insofar as their outputs are able to
quantify the degree of semantic similarity between
sentences. On the other hand, starting from the
assumption that understanding a sentence means
knowing when it is true, being able to verify
whether an entailment is valid is a crucial chal-
lenge for semantic systems.

In the semantic relatedness subtask, given two
sentences, systems were required to produce a re-
latedness score (on a continuous scale) indicating
the extent to which the sentences were expressing
arelated meaning. Table 1 shows examples of sen-
tence pairs with different degrees of semantic re-
latedness; gold relatedness scores are expressed on
a 5-point rating scale.

In the entailment subtask, given two sentences
A and B, systems had to determine whether the
meaning of B was entailed by A. In particular, sys-
tems were required to assign to each pair either
the ENTAILMENT label (when A entails B, viz.,
B cannot be false when A is true), the CONTRA-
DICTION label (when A contradicted B, viz. B is
false whenever A is true), or the NEUTRAL label
(when the truth of B could not be determined on
the basis of A). Table 2 shows examples of sen-
tence pairs holding different entailment relations.

Participants were invited to submit up to five
system runs for one or both subtasks. Developers
of CDSMs were especially encouraged to partic-
ipate, but developers of other systems that could
tackle sentence relatedness or entailment tasks
were also welcome. Besides being of intrinsic in-
terest, the latter systems’ performance will serve
to situate CDSM performance within the broader
landscape of computational semantics.

3 The SICK Data Set

The SICK data set, consisting of about 10,000 En-
glish sentence pairs annotated for relatedness in
meaning and entailment, was used to evaluate the
systems participating in the task. The data set
creation methodology is outlined in the following
subsections, while all the details about data gen-
eration and annotation, quality control, and inter-
annotator agreement can be found in Marelli et al.
(2014).

3.1 Data Set Creation

SICK was built starting from two existing data
sets: the 8K ImageFlickr data set! and the
SemEval-2012 STS MSR-Video Descriptions data
set.> The 8K ImageFlickr dataset is a dataset of
images, where each image is associated with five
descriptions. To derive SICK sentence pairs we
randomly chose 750 images and we sampled two
descriptions from each of them. The SemEval-
2012 STS MSR-Video Descriptions data set is a
collection of sentence pairs sampled from the short
video snippets which compose the Microsoft Re-
search Video Description Corpus. A subset of 750
sentence pairs were randomly chosen from this
data set to be used in SICK.

In order to generate SICK data from the 1,500
sentence pairs taken from the source data sets, a 3-
step process was applied to each sentence compos-
ing the pair, namely (i) normalization, (ii) expan-
sion and (iii) pairing. Table 3 presents an example
of the output of each step in the process.

The normalization step was carried out on the
original sentences (S0) to exclude or simplify in-
stances that contained lexical, syntactic or seman-
tic phenomena (e.g., named entities, dates, num-
bers, multiword expressions) that CDSMs are cur-
rently not expected to account for.

The expansion step was applied to each of the
normalized sentences (S1) in order to create up to
three new sentences with specific characteristics
suitable to CDSM evaluation. In this step syntac-
tic and lexical transformations with predictable ef-
fects were applied to each normalized sentence, in
order to obtain (i) a sentence with a similar mean-
ing (S2), (ii) a sentence with a logically contradic-
tory or at least highly contrasting meaning (S3),
and (iii) a sentence that contains most of the same
lexical items, but has a different meaning (S4) (this
last step was carried out only where it could yield
a meaningful sentence; as a result, not all normal-
ized sentences have an (S4) expansion).

Finally, in the pairing step each normalized
sentence in the pair was combined with all the
sentences resulting from the expansion phase and
with the other normalized sentence in the pair.
Considering the example in Table 3, S/a and S1b
were paired. Then, S/a and S/b were each com-
bined with S2a, $2b,53a, S3b, S4a, and S4b, lead-

"http://nlp.cs.illinois.edu/HockenmaierGroup/data.html
Zhttp://www.cs.york.ac.uk/semeval-
2012/task6/index.php?id=data



Relatedness score Example

A: “A man is jumping into an empty pool”

1.
6 B: “There is no biker jumping in the air”
’9 A: “Two children are lying in the snow and are making snow angels”
' B: “Two angels are making snow on the lying children”
36 A: “The young boys are playing outdoors and the man is smiling nearby”
' B: “There is no boy playing outdoors and there is no man smiling”
49 A: “A person in a black jacket is doing tricks on a motorbike”
' B: “A man in a black jacket is doing tricks on a motorbike”

Table 1: Examples of sentence pairs with their gold relatedness scores (on a 5-point rating scale).

Entailment label Example

A: “Two teams are competing in a football match”

ENTAILMENT
N N B: “Two groups of people are playing football”
A: “The brown horse is near a red barrel at the rodeo”
TRADICTI
CON CTION B: “The brown horse is far from a red barrel at the rodeo”
NEUTRAL A: “A man in a black jacket is doing tricks on a motorbike

B: “A person is riding the bicycle on one wheel”

Table 2: Examples of sentence pairs with their gold entailment labels.

ing to a total of 13 different sentence pairs.

Furthermore, a number of pairs composed of
completely unrelated sentences were added to the
data set by randomly taking two sentences from
two different pairs.

The result is a set of about 10,000 new sen-
tence pairs, in which each sentence is contrasted
with either a (near) paraphrase, a contradictory or
strongly contrasting statement, another sentence
with very high lexical overlap but different mean-
ing, or a completely unrelated sentence. The ra-
tionale behind this approach was that of building
a data set which encouraged the use of a com-
positional semantics step in understanding when
two sentences have close meanings or entail each
other, hindering methods based on individual lex-
ical items, on the syntactic complexity of the two
sentences or on pure world knowledge.

3.2 Relatedness and Entailment Annotation

Each pair in the SICK dataset was annotated to
mark (i) the degree to which the two sentence
meanings are related (on a 5-point scale), and (ii)
whether one entails or contradicts the other (con-

sidering both directions). The ratings were col-
lected through a large crowdsourcing study, where
each pair was evaluated by 10 different subjects,
and the order of presentation of the sentences was
counterbalanced (i.e., 5 judgments were collected
for each presentation order). Swapping the order
of the sentences within each pair served a two-
fold purpose: (i) evaluating the entailment rela-
tion in both directions and (ii) controlling pos-
sible bias due to priming effects in the related-
ness task. Once all the annotations were collected,
the relatedness gold score was computed for each
pair as the average of the ten ratings assigned by
participants, whereas a majority vote scheme was
adopted for the entailment gold labels.

3.3 Data Set Statistics

For the purpose of the task, the data set was ran-
domly split into training and test set (50% and
50%), ensuring that each relatedness range and en-
tailment category was equally represented in both
sets. Table 4 shows the distribution of sentence
pairs considering the combination of relatedness
ranges and entailment labels. The “total” column



Original pair

S0a: A sea turtle is hunting for fish

SOb: The turtle followed the fish

Normalized pair

Sla: A sea turtle is hunting for fish

S1b: The turtle is following the fish

Expanded pairs

S2a: A sea turtle is hunting for food
S3a: A sea turtle is not hunting for fish

Sda: A fish is hunting for a turtle in the sea

S2b: The turtle is following the red fish
S3b: The turtle isn’t following the fish
Sdb: The fish is following the turtle

Table 3: Data set creation process.

indicates the total number of pairs in each range
of relatedness, while the “total” row contains the
total number of pairs in each entailment class.

SICK Training Set

relatedness | CONTRADICT ENTAIL NEUTRAL | TOTAL
1-2 range 0 (0%) 0 (0%) 471 (10%) 471
2-3 range 59 (1%) 20%)  638(13%) | 699
3-4 range 498 (10%) 71 (1%) 1344 (27%) 1913
4-5 range 155 (3%) 1344 27%)  352(7%) | 1851
TOTAL 712 1417 2805 4934
SICK Test Set
relatedness | CONTRADICT ENTAIL NEUTRAL | TOTAL
1-2 range 0 (0%) 1 (0%) 451 (9%) 452
2-3 range 59 (1%) 0 (0%) 615(13%) 674
3-4 range 496 (10%) 65 (1%) 1398 (28%) 1959
4-5 range 157 (3%) 1338 (27%) 326 (T%) 1821
TOTAL 712 1404 2790 4906

Table 4: Distribution of sentence pairs across the
Training and Test Sets.

4 Evaluation Metrics and Baselines

Both subtasks were evaluated using standard met-
rics. In particular, the results on entailment were
evaluated using accuracy, whereas the outputs on
relatedness were evaluated using Pearson correla-
tion, Spearman correlation, and Mean Squared Er-
ror (MSE). Pearson correlation was chosen as the
official measure to rank the participating systems.

Table 5 presents the performance of 4 base-
lines. The Majority baseline always assigns
the most common label in the training data
(NEUTRAL), whereas the Probability baseline
assigns labels randomly according to their rela-
tive frequency in the training set. The Overlap
baseline measures word overlap, again with
parameters (number of stop words and EN-
TAILMENT/NEUTRAL/CONTRADICTION
thresholds) estimated on the training part of the
data.

Baseline Relatedness Entailment
Chance 0 33.3%
Majority NA 56.7%
Probability NA 41.8%
Overlap 0.63 56.2%

Table 5: Performance of baselines. Figure of merit
is Pearson correlation for relatedness and accuracy
for entailment. NA = Not Applicable

5 Submitted Runs and Results

Overall, 21 teams participated in the task. Partici-
pants were allowed to submit up to 5 runs for each
subtask and had to choose the primary run to be in-
cluded in the comparative evaluation. We received
17 submissions to the relatedness subtask (for a
total of 66 runs) and 18 for the entailment subtask
(65 runs).

We asked participants to pre-specify a pri-
mary run to encourage commitment to a
theoretically-motivated approach, rather than
post-hoc performance-based assessment. Inter-
estingly, some participants used the non-primary
runs to explore the performance one could reach
by exploiting weaknesses in the data that are not
likely to hold in future tasks of the same kind
(for instance, run 3 submitted by The Meaning
Factory exploited sentence ID ordering informa-
tion, but it was not presented as a primary run).
Participants could also use non-primary runs to
test smart baselines. In the relatedness subtask
six non-primary runs slightly outperformed the
official winning primary entry,> while in the
entailment task all ECNU’s runs but run 4 were
better than ECNU’s primary run. Interestingly,
the differences between the ECNU’s runs were

3They were: The_Meaning_Factory’s run3 (Pearson
0.84170) ECNU’s runs2 (0.83893) run5 (0.83500) and Stan-
fordNLP’s run4 (0.83462) and run2 (0.83103).



due to the learning methods used.

We present the results achieved by primary runs
against the Entailment and Relatedness subtasks in
Table 6 and Table 7, respectively.* We witnessed
a very close finish in both subtasks, with 4 more
systems within 3 percentage points of the winner
in both cases. 4 of these 5 top systems were the
same across the two subtasks. Most systems per-
formed well above the best baselines from Table
5.

The overall performance pattern suggests that,
owing perhaps to the more controlled nature of
the sentences, as well as to the purely linguistic
nature of the challenges it presents, SICK entail-
ment is “easier” than RTE. Considering the first
five RTE challenges (Bentivogli et al., 2009), the
median values ranged from 56.20% to 61.75%,
whereas the average values ranged from 56.45%
to 61.97%. The entailment scores obtained on
the SICK data set are considerably higher, being
77.06% for the median system and 75.36% for
the average system. On the other hand, the re-
latedness task is more challenging than the one
run on MSRvid (one of our data sources) at STS
2012, where the top Pearson correlation was (.88
(Agirre et al., 2012).

6 Approaches

A summary of the approaches used by the sys-
tems to address the task is presented in Table 8.
In the table, systems in bold are those for which
the authors submitted a paper (Ferrone and Zan-
zotto, 2014; Bjerva et al., 2014; Beltagy et al.,
2014; Lai and Hockenmaier, 2014; Alves et al.,
2014; Leodn et al., 2014; Bestgen, 2014; Zhao et
al., 2014; Vo et al., 2014; Bicici and Way, 2014;
Lien and Kouylekov, 2014; Jimenez et al., 2014;
Proisl and Evert, 2014; Gupta et al., 2014). For the
others, we used the brief description sent with the
system’s results, double-checking the information
with the authors. In the table, “E” and “R” refer
to the entailment and relatedness task respectively,
and “B” to both.

Almost all systems combine several kinds of
features. To highlight the role played by com-
position, we draw a distinction between compo-
sitional and non-compositional features, and di-
vide the former into ‘fully compositional’ (sys-

*ITTK’s primary run could not be evaluated due to tech-
nical problems with the submission. The best ITTK’s non-
primary run scored 78,2% accuracy in the entailment task and
0.76 r in the relatedness task.

ID Compose ACCURACY
Mlinois-LH_runl P/S 84.6
ECNU_runl S 83.6
UNAL-NLP runl 83.1
SemantiKLUE runl 82.3
The_Meaning_Factory_runl S 81.6
CECL_ALL _runl 80.0
BUAP _runl P 79.7
UoW_runl 78.5
Uedinburgh_runl S 77.1
UIO-Lien_runl 77.0
FBK-TR _run3 P 75.4
StanfordNLP_run5 S 74.5
UTexas_runl P/S 73.2
Yamraj_runl 70.7
asjai_run5 S 69.8
haLF_run2 S 69.4
RTM-DCU_runl 67.2
UANLPCourse_run2 S 48.7

Table 6: Primary run results for the entailment
subtask. The table also shows whether a sys-
tem exploits composition information at either the
phrase (P) or sentence (S) level.

tems that compositionally computed the meaning
of the full sentences, though not necessarily by as-
signing meanings to intermediate syntactic con-
stituents) and ‘partially compositional’ (systems
that stop the composition at the level of phrases).
As the table shows, thirteen systems used compo-
sition in at least one of the tasks; ten used compo-
sition for full sentences and six for phrases, only.
The best systems are among these thirteen sys-
tems.

Let us focus on such compositional methods.
Concerning the relatedness task, the fine-grained
analyses reported for several systems (Illinois-
LH, The Meaning Factory and ECNU) shows that
purely compositional systems currently reach per-
formance above 0.7 r. In particular, ECNU’s
compositional feature gives 0.75 r, The Meaning
Factory’s logic-based composition model 0.73 r,
and Illinois-LH compositional features combined
with Word Overlap 0.75 r. While competitive,
these scores are lower than the one of the best



ID Compose T p MSE
ECNU_runl N 0.828 0.769 0.325
StanfordNLP_run5 S 0.827 0.756 0.323
The_Meaning_Factory runl S 0.827 0.772 0.322
UNAL-NLP_runl 0.804 0.746 0.359
Tlinois-LH_run1 P/S 0.799 0.754 0.369
CECL_ALL runl 0.780 0.732 0.398
SemantiKLUE _runl 0.780 0.736 0.403
RTM-DCU_runl 0.764 0.688 0.429
UTexas_runl P/S 0.714 0.674 0.499
UoW _runl 0.711 0.679 0.511
FBK-TR_run3 P 0.709 0.644 0.591
BUAP_runl P 0.697 0.645 0.528
UANLPCourse_run2 S 0.693 0.603 0.542
UQeResearch_runl 0.642 0.626 0.822
ASAP_runl P 0.628 0.597 0.662
Yamraj_runl 0.535 0.536 2.665
asjai_run5 S 0.479 0.461 1.104

Table 7: Primary run results for the relatedness
subtask (r for Pearson and p for Spearman corre-
lation). The table also shows whether a system ex-
ploits composition information at either the phrase
(P) or sentence (S) level.

purely non-compositional system (UNAL-NLP)
which reaches the 4th position (0.80 r UNAL-NLP
vs. 0.82 r obtained by the best system). UNAL-
NLP however exploits an ad-hoc “negation” fea-
ture discussed below.

In the entailment task, the best non-
compositional model (again UNAL-NLP)
reaches the 3rd position, within close reach of the
best system (83% UNAL-NLP vs. 84.5% obtained
by the best system). Again, purely compositional
models have lower performance. halLF CDSM
reaches 69.42% accuracy, Illinois-LH Word
Overlap combined with a compositional feature
reaches 71.8%. The fine-grained analysis reported
by Ilinois-LH (Lai and Hockenmaier, 2014)
shows that a full compositional system (based
on point-wise multiplication) fails to capture
contradiction. It is better than partial phrase-based
compositional models in recognizing entailment
pairs, but worse than them on recognizing neutral
pairs.

Given our more general interest in the distri-
butional approaches, in Table 8 we also classify
the different DSMs used as ‘Vector Space Mod-

els’, “Topic Models’ and ‘Neural Language Mod-
els’. Due to the impact shown by learning methods
(see ECNU’s results), we also report the different
learning approaches used.

Several participating systems deliberately ex-
ploit ad-hoc features that, while not helping a true
understanding of sentence meaning, exploit some
systematic characteristics of SICK that should be
controlled for in future releases of the data set.
In particular, the Textual Entailment subtask has
been shown to rely too much on negative words
and antonyms. The Illinois-LH team reports that,
just by checking the presence of negative words
(the Negation Feature in the table), one can detect
86.4% of the contradiction pairs, and by combin-
ing Word Overlap and antonyms one can detect
83.6% of neutral pairs and 82.6% of entailment
pairs. This approach, however, is obviously very
brittle (it would not have been successful, for in-
stance, if negation had been optionally combined
with word-rearranging in the creation of S4 sen-
tences, see Section 3.1 above).

Finally, Table 8 reports about the use of external
resources in the task. One of the reasons we cre-
ated SICK was to have a compositional semantics
benchmark that would not require too many ex-
ternal tools and resources (e.g., named-entity rec-
ognizers, gazetteers, ontologies). By looking at
what the participants chose to use, we think we
succeeded, as only standard NLP pre-processing
tools (tokenizers, PoS taggers and parsers) and rel-
atively few knowledge resources (mostly, Word-
Net and paraphrase corpora) were used.

7 Conclusion

We presented the results of the first task on the
evaluation of compositional distributional seman-
tic models and other semantic systems on full sen-
tences, organized within SemEval-2014. Two sub-
tasks were offered: (i) predicting the degree of re-
latedness between two sentences, and (ii) detect-
ing the entailment relation holding between them.
The task has raised noticeable attention in the
community: 17 and 18 submissions for the relat-
edness and entailment subtasks, respectively, for a
total of 21 participating teams. Participation was
not limited to compositional models but the major-
ity of systems (13/21) used composition in at least
one of the subtasks. Moreover, the top-ranking
systems in both tasks use compositional features.
However, it must be noted that all systems also ex-
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IASAP R R R R R R R R R

IASJAL B B B B B B B B E B R B

|BUAP B B B B E B E B

UEdinburgh B B B B B E R B

ICECL B B B B B B

ECNU B B B B B B B B B B B B

|;BK-TR R R R B E E B R E R R E

|h_aLF E E E E

IITK B B B B B B B B B

Illinois-LH B B B B B B B B B B B|B

RTM-DCU B B B B B

ISemantiKLUE B B|B|B B B B B

StandfordNLP B R R R B E

The Meaning Factory | R R R R R B E R E B|B R

UANLPCourse B B|B B B

UIO-Lien E E

UNAL-NLP B B B B R|B B

UoW B B B B B B

UQeRsearch RIRJRIR R R|R

UTexas B B B B B B

lYamarj B B B

Table 8: Summary of the main characteristics of the participating systems on R(elatedness), E(ntailment)

or B(oth)

ploit non-compositional features and most of them
use external resources, especially WordNet. Al-
most all the participating systems outperformed
the proposed baselines in both tasks. Further anal-
yses carried out by some participants in the task
show that purely compositional approaches reach
accuracy above 70% in entailment and 0.70 r for
relatedness. These scores are comparable with the
average results obtained in the task.
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Abstract

In this paper we present the SemEval-
2014 Task 2 on spoken dialogue gram-
mar induction. The task is to classify
a lexical fragment to the appropriate se-
mantic category (grammar rule) in order
to construct a grammar for spoken dia-
logue systems. We describe four sub-
tasks covering two languages, English and
Greek, and three speech application do-
mains, travel reservation, tourism and fi-
nance. The classification results are com-
pared against the groundtruth. Weighted
and unweighted precision, recall and f-
measure are reported. Three sites partic-
ipated in the task with five systems, em-
ploying a variety of features and in some
cases using external resources for training.
The submissions manage to significantly
beat the baseline, achieving a f-measure of
0.69 in comparison to 0.56 for the base-
line, averaged across all subtasks.

1 Introduction

This task aims to foster the application of com-
putational models of lexical semantics to the field
of spoken dialogue systems (SDS) for the problem
of grammar induction. Grammars constitute a vi-
tal component of SDS representing the semantics
of the domain of interest and allowing the system
to correctly respond to a user’s utterance.

The task has been developed in tight collabo-
ration between the research community and com-
mercial SDS grammar developers, under the aus-
pices of the EU-IST PortDial project!. Among the

This work is licensed under a Creative Commons Attribution

4.0 International Licence. Page numbers and proceedings
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project aims is to help automate the grammar de-
velopment and localization process. Unlike previ-
ous approaches (Wang and Acero, 2006; Cramer,
2007) that have focused on full automation, Port-
Dial adopts a human-in-the-loop approach were
a developer bootstraps each grammar rule or re-
quest type with a few examples (use cases) and
then machine learning algorithms are used to pro-
pose grammar rule enhancements to the developer.
The enhancements are post-edited by the devel-
oper and new grammar rule suggestions are pro-
posed by the system, in an iterative fashion un-
til a grammar of sufficient quality is achieved. In
this task, we focus on a snapshot of this process,
where a portion of the grammar is already induced
and post-edited by the developer and new candi-
date fragments are rolling in order to be classified
to an existing rule (or rejected). The goal is to de-
velop machine learning algorithms for classifying
candidate lexical fragments to the correct grammar
rule (semantic category). The task is equally rel-
evant for both finite-state machine and statistical
grammar induction.

In this task the semantic hierarchy of SDS
grammars has two layers, namely, low- and high-
level. Low-level rules are similar to gazetteers
referring to terminal concepts that can be as rep-
resented as sets of lexical entries. For example,
the concept of city name can be represented as
<CITY> = (“London”, “Paris”, ...). High-level
rules are defined on top of low-level rules, while
they can be lexicalized as textual fragments (or
chunks), e.g., <TOCITY> = (“fly to <CITY>",
...). Using the above examples the sentence I
want to fly to Paris” will be first parsed as “I
want to fly to <CITY>" and finally as “I want to
<TOCITY>".

In this task, we focus exclusively on high-level
rule induction, assuming that the low-level rules
are known. The problem of fragment extraction
and selection is simplified by investigating the

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 9-16,
Dublin, Ireland, August 23-24, 2014.



binary classification of (already extracted) frag-
ments into valid and non-valid. The task boils
down mainly to a semantic similarity estimation
problem for the assignment of valid fragments into
high-level rules.

2 Prior Work

The manual development of grammars is a time-
consuming and tedious process that requires hu-
man expertise, posing an obstacle to the rapid port-
ing of SDS to new domains and languages. A
semantically coherent workflow for SDS gram-
mar development starts from the definition of low-
level rules and proceeds to high-level ones. This
process is also valid for the case of induction
algorithms. Automatic or machine-aided gram-
mar creation for spoken dialogue systems can
be broadly divided in two categories (Wang and
Acero, 2006): knowledge-based (or top-down)
and data-driven (or bottom-up) approaches.
Knowledge-based approaches rely on the man-
val or semi-automatic development of domain-
specific grammars. They start from the domain on-
tology (or taxonomy), often in the form of seman-
tic frames. First, terminal concepts in the ontology
(that correspond to low-level grammar rules) get
populated with values, e.g., <CITY>, and then
high-level concepts (that correspond to high-level
grammar rules) get lexicalized creating grammar
fragments. Finally, phrase headers and trailers are
added to create full sentences. The resulting gram-
mars often suffer from limited coverage (poor re-
call). In order to improve coverage, regular ex-
pressions and word/phrase order permutations are
used, however at the cost of over-generalization
(poor precision). Moreover, knowledge-based
grammars are costly to create and maintain, as
they require domain and engineering expertise,
and they are not easily portable to new domains.
This led to the development of grammar authoring
tools that aim at facilitating the creation and adap-
tation of grammars. SGStudio (Semantic Gram-
mar Studio), (Wang and Acero, 2006), for exam-
ple, enables 1) example-based grammar learning,
2) grammar controls, i.e., building blocks and op-
erators for building more complex grammar frag-
ments (regular expressions, lists of concepts), and
3) configurable grammar structures, allowing for
domain-adaptation and word-spotting grammars.
The Grammatical Framework Resource Grammar
Library (GFRGL) (Ranta, 2004) enables the cre-
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ation of multilingual grammars adopting an ab-
straction formalism, which aims to hide the lin-
guistic details (e.g., morphology) from the gram-
mar developer.

Data-driven approaches rely solely on corpora
(bottom-up) of transcribed utterances (Meng and
Siu, 2002; Pargellis et al., 2004). The induction
of low-level rules consists of two steps dealing
with the 1) identification of terms, and 2) assign-
ment of terms into rules. Standard tokenization
techniques can be used for the first step, however,
different approaches are required for the case of
multiword terms, e.g., “New York”. In such cases,
gazetteer lookup and named entity recognition can
be employed (if the respective resources and tools
are available), as well as corpus-based colloca-
tion metrics (Frantzi and Ananiadou, 1997). Typ-
ically, the identified terms are assigned into low-
level rules via clustering algorithms operating over
a feature space that is built according to the term
semantic similarity. The distributional hypothe-
sis of meaning (Harris, 1954) is a widely-used ap-
proach for estimating term similarity. A compar-
ative study of similarity metrics for the induction
of SDS low-level rules is presented in (Pargellis
et al., 2004), while the combination of metrics
was investigated in (losif et al., 2006). Different
clustering algorithms have been applied includ-
ing hard- (Meng and Siu, 2002) and soft-decision
(Iosif and Potamianos, 2007) agglomerative clus-
tering.

High-level rule induction is a less researched
area that consists of two main sub-problems: 1)
the extraction and selection of candidate frag-
ments from a corpus, and 2) assignment of terms
into rules. Regarding the first sub-problem,
consider the fragments “I want to depart from
<CITY> on” and “depart from <CITY>" for the
air travel domain. Both express the meaning of de-
parture city, however, the (semantics of the) latter
fragment are more concise and generalize better.
The application of syntactic parsers for segment
extraction is not straightforward since the output
is a full parse tree. Moreover, such parsers are
typically trained over annotated corpora of formal
language usage, while the SDS corpora often are
ungrammatical due to spontaneous speech. There
are few statistical parsing algorithms that rely only
on plain lexical features (Ponvert et al., 2011; Bisk
and Hockenmaier, 2012) however, as other algo-
rithms, one needs to decide where to prune the



parse tree. In (Georgiladakis et al., 2014), the ex-
plicit extraction and selection of fragments is in-
vestigated following an example-driven approach
where few rule seeds are provided by the gram-
mar developer. The second sub-problem of high-
level rule induction deals with the formulation
of rules using the selected fragments. Each rule
is meant to consist of semantically similar frag-
ments. For this purpose, clustering algorithms can
be employed exploiting the semantic similarity be-
tween fragments as features. This is a challenging
problem since the fragments are multi-word struc-
tures whose overall meaning is composed accord-
ing to semantics of the individual constituents. Re-
cently, several models have been proposed regard-
ing phrase (Mitchell and Lapata, 2010) and sen-
tence similarity (Agirre et al., 2012), while an
approach towards addressing the issue of seman-
tic compositionality is presented in (Milajevs and
Purver, 2014).

The main drawback of data-driven approaches
is the problem of data sparseness, which may af-
fect the coverage of the grammar. A popular so-
lution to the data sparseness bottleneck is to har-
vest in-domain data from the web. Recently, this
has been an active research area both for SDS
systems and language modeling in general. Data
harvesting is performed in two steps: (i) query
formulation, and (ii) selection of relevant docu-
ments or sentences (Klasinas et al., 2013). Posing
the appropriate queries is important both for ob-
taining in-domain and linguistically diverse sen-
tences. In (Sethy et al., 2007), an in-domain lan-
guage model was used to identify the most ap-
propriate n-grams to use as web queries. An in-
domain language model was used in (Klasinas et
al., 2013) for the selection of relevant sentences.
A more sophisticated query formulation was pro-
posed in (Sarikaya, 2008), where from each in-
domain utterance a set of queries of varying length
and complexity was generated. These approaches
assume the availability of in-domain data (even if
limited) for the successful formulation of queries;
this dependency is also not eliminated when us-
ing a mildly lexicalized domain ontology to for-
mulate the queries, as in (Misu and Kawahara,
2006). Selecting the most relevant sentences that
get returned from web queries is typically done
using statistical similarity metrics between in do-
main data and retrieved documents, for example
the BLEU metric (Papineni et al., 2002) of n-
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gram similarity in (Sarikaya, 2008) and a metric
of relative entropy (Kullback-Leibler) in (Sethy et
al., 2007). In cases where in-domain data is not
available, cf. (Misu and Kawahara, 2006), heuris-
tics (pronouns, sentence length, wh-questions) and
matches with out-of-domain language models can
be used to identify sentences for training SDS
grammars. In (Sarikaya, 2008), the produced
grammar fragments are also parsed and attached
to the domain ontology. Harvesting web data can
produce high-quality grammars while requiring up
to 10 times less in-domain data (Sarikaya, 2008).

Further, data-driven approaches induce syntac-
tic grammars but do not learn their corresponding
meanings, for this purpose an additional step is re-
quired of parsing the grammar fragments and at-
taching them to the domain ontology (Sarikaya,
2008). Also, in many cases it was observed
that the fully automated bottom-up paradigm re-
sults to grammars of moderate quality (Wang
and Acero, 2006), especially on corpora con-
taining longer sentences and more lexical vari-
ety (Cramer, 2007). Finally, algorithms focusing
on crosslingual grammar induction, like CLIoS
(Kuhn, 2004), are often even more resource-
intensive, as they require training corpora of par-
allel text and sometimes also a grammar for one of
the languages. Grammar quality can be improved
by introducing a human in the loop of grammar in-
duction (Portdial, 2014a); an expert that validates
the automatically created results (Meng and Siu,
2002).

3 Task Description

Next we describe in detail the candidate grammar
fragment classification SemEval task. This task
is part of a grammar rule induction scenario for
high-level rules. The evaluation focuses in spoken
dialogue system grammars for multiple domains
and languages.

3.1 Task Design

The goal of the task is to classify a number frag-
ment to the rules available in the grammar. For
each grammar we provide a training and develop-
ment set, i.e., a set of rules with the associated
fragments and the test set which is composed of
plain fragments. An excerpt of the train set for the
rule “<TOCITY>" is “ARRIVE AT <CITY>,
ARRIVES AT <CITY>, GOING TO <CITY>"
and of the test set “GOING INTO <CITY >, AR-



RIVES INTO <CITY>".

In preliminary experiments during the task de-
sign we noticed that if the test set consists of valid
fragments only, good classification performance is
achieved, even when using the naive baseline sys-
tem described later in this paper. To make the task
more realistic we have included a set of “junk”
fragments not corresponding to any specific rule.
Junk fragments were added both in the train set
where they are annotated as such and in the test
set. For this task we have artificially created the
junk fragments by removing or adding words from
legitimate fragments. Example junk fragments
used are “HOLD AT AT <TIME> TRY” and
“ANY CHOICE EXCEPT <AIRLINE> OR”, the
first one having a repetition of the word “AT”
while the second one should include one more
time the concept “<AIRLINE>" in the end to be
meaningful.

Junk fragments help better model a real-world
scenario, where the candidate fragments will in-
clude irrelevant examples too. For example, if
web corpora are used to extract the candidate frag-
ments grammatical mistakes and out-of-domain
sentences might appear. Similarly, if the transcrip-
tions from a deployed SDS system are used for
grammar induction, transcription errors might in-
troduce noise (Bechet et al., 2014).

Junk fragments account for roughly 5% of the
train test and 15% of the test set. The discrep-
ancy between train and test set ratios is due to a
conscious effort to model realistic train/test condi-
tions, where train data is manually processed and
does not include errors, while candidate fragments
are typically more noisy.

3.2 Datasets

We have provided four datasets, travel English,
travel Greek, tourism English and finance English.
The travel domain grammar covers flight, car and
hotel reservation utterances. The tourism domain
covers touristic information including accommo-
dation, restaurants and movies. The finance do-
main covers utterances of a bank client asking
questions about his bank account as well as re-
porting problems. In Table 1 are presented typical
examples of fragments for every subtask.

All grammars have been manually constructed
by a grammar developer. For the three English
grammars, a small corpus (between 500 and 2000
sentences) was initially available. The grammar

12

developer first identified terminal concepts, which
correspond to low-level rules. Typical examples
include city names for the travel domain, restau-
rant names for the tourism domain and credit card
names in the finance domain. After covering all
low-level rules the grammar developer proceeded
to identify high-level rules present in the corpus,
like the departure city in the travel domain, or the
user request type for a credit card. The gram-
mar developer was instructed to identify all rules
present in the corpus, but also spend some effort
to include rules not appearing in the corpus so that
the resulting grammar better covers the domain at
hand. For the case of Greek travel grammar no
corpus was initially available. The Greek gram-
mar was instead produced by manually translat-
ing the English one, accounting for the differences
in syntax between the two languages. The gram-
mars have been developed as part of the PortDial
FP7 project and are explained in detail in (Portdial,
2014b).

For the first three datasets that have been avail-
able from the beginning of the campaign we have
split the release into train, development and test
set. For the finance domain which was announced
when the test sets were released we only provided
the train and test set, to simulate a resource poor
scenario. The statistics of the datasets for all lan-
guage/domain pairs are given in Table 2.

In addition to the high-level rules we made
available the low-level rules for each grammar,
which although not used in the evaluation, can be
useful for expanding the high-level rules to cover
all lexicalizations expressed by the grammar.

3.3 Evaluation

For the evaluation of the task we have used preci-
sion, recall and f-measure, both weighted and un-
weighted.

If R; denotes the set of fragments for one rule
and C the set of fragments classified to this rule
by a system then per-rule precision is computed by
the equation:

|R; NGyl
Prj= ————
’ (]

and per-rule recall by:

|R; NGyl
Rec; = ————
! |R;|

F-measure is then computed by:



Grammar Rule Fragment
Travel English | <FLIGHTFROM> FLIGHT FROM <CITY>
Travel Greek <FLIGHTFROM > IITHXH AIIO <CITY>
Tourism English | <TRANSFERQ> | TRANSFERS FROM <airportname> TO <cityname>
Finance English <CARDNAME> <BANKNAME> CARD

Table 1: Example grammar fragments for each application domain.

Grammar Rules Fragments
Train set | Dev set | Test set
Travel English 32 623 331 284
Travel Greek 35 616 340 324
Tourism English 24 694 334 285
Finance English 9 136 - 37

Table 2: Number of rules in the training, development and test sets for each application domain.

o QPTjRCj
7 Prj + Rc;j

Precision for all the J rules R;,1 < j < Jis
computed by the following equation:

Pr= Z Prjw;
J
In the unweighted case the weight w; has a fixed
value for all rules, so w; = % Taking into account
the fact that the rules are not balanced in terms of

fragments, a better way to compute for the weight
_ _IB;]
T2 IR
total precision will better describe the results.
Recall is similarly computed using the same

weighting scheme as:

Rc = Z Rejw;
J

is w; In the latter, weighted, case the

3.4 Baseline

For comparison purposes we have developed a
naive baseline system. To classify a test fragment,
first its similarity with all the train fragments is
computed, and it is classified to the rule where
the most similar train fragment belongs. Fragment
similarity is computed as the ratio of their Longest
Common Substring (LCS) divided by the sum of
their lengths:

. LCS(s,t
Sim(s,t) = 7| ] JE m )l

where s and t are two strings, |s| and |¢| their
length in characters and |LC'S(s, t)| the length of
their LCS. This is a very simple baseline, comput-
ing similarity without taking into account context
or semantics.
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4 Participating Systems

Three teams have participated in the task with five
systems. All teams participated in all subtasks
with the exception of travel Greek, where only
two teams participated. An overview of core
system features is presented in Table 3. The
remainder of this section briefly describes each
of the submissions and then compares them. A
brief description for each system is provided in
the following paragraphs.

tucSage. The core of the tucSage system is
a combination of two components. The first
component is used for the selection of candidate
rule fragments from a corpus. Specifically, the
posterior probability of a candidate fragment
belonging to a rule is computed using a variety of
features. The feature set includes various lexical
features (e.g., the number of tokens), the fragment
perplexity computed using n-gram language
modeling, and features based on lexical similarity.
The second component is used for computing
the similarity between a candidate fragment and
a grammar rule. In total, two different types of
similarity metrics are used relying on the overlap
of character bigrams and contextual features.
These similarities are fused with the posterior
probabilities produced by the fragment selection
model. The contribution of the two components is
adjusted using an exponential weight.

SAIL-GRS. The SAIL-GRS system is based
on the well-established term frequency—inverse
document frequency (7F — IDF') measurement.
This metric is adapted to the present task by
considering each grammar rule as a “document”.
For each rule, all its fragments are aggregated



System Use of Features Similarity External Language-
acronym machine learn. used metrics corpora specific
Baseline no lexical Longest Common no no

Substring
tucSage yes: lexical, perplexity, character overlap, web no
random forests | similarity-based , heuristic | cosine similarity | documents
SAIL-GRS no lexical cosine similarity no no
Biel no lexical, expansion of cosine Wikipedia yes
low-level rules similarity articles

Table 3: Overview of the characteristics of the participating systems.

and the frequency of the respective n-grams
(constituents) is computed. The inverse document
frequency is casted as inverse rule frequency
and it is computed for the extracted n-grams.
The process is performed for both unigrams and
bigrams.

Biel. The fundamental idea behind the Biel
system is the encoding of domain semantics via
topic modeling. For this purpose a background
document space is constructed using thousands
of Wikipedia articles. Particular focus is given
to the transformation of the initial document
space according to the paradigm of explicit
semantic analysis. For each domain, a topic
space is defined and a language-specific function
is employed for the mapping of documents. In
essence, the mapping function is an association
measurement that is based on TF—IDF' scores.
An approximation regarding the construction of
the topic space is investigated in order to reduce
data sparsity, while a number of normalization
schemes are also presented.

Overall, only the tucSage system employs a ma-
chine learning-based approach (random forests),
while an unsupervised approach is followed by the
SAIL-GRS and Biel systems. All systems exploit
lexical information extracted from rule fragments.
This information is realized as the lexical surface
form of the constituents of fragments. For ex-
ample, consider the “depart for <CITY>" frag-
ment that corresponds to the high-level rule refer-
ring to the notion of departure city. The follow-
ing set of lexical features can be extracted from
the aforementioned fragment: (“depart”, “from”,
“<CITY>"). Unlike the other systems, the Biel
system utilizes low-level rules to expand high-
level rules with terminal concept instances. For
example, the “<CITY>" rule is not processed as
is, but it is represented as a list of city names
(“New York”, “Boston”, ...). The most rich fea-
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ture set is used by the tucSage system which com-
bines lexical, perplexity and similarity features
with a set of heuristic rules. All three systems
employ the widely-used cosine similarity metric.
Both SAIL-GRS and Biel systems rely solely on
this metric during the assignment of an unknown
fragment to a high-level rule. A more sophis-
ticated approach is presented by tucSage, where
first a classifier is built for every grammar rule,
computing the probability of a fragment belong-
ing to this rule and then the similarity between the
fragment and the rule is computed. Classification
is then performed by combining the two scores.
Also, another difference regarding the employ-
ment of the cosine similarity deals with the com-
putation of the vectorial feature values. A simple
binary scheme is used in the tucSage system, while
variations of the term frequency-inverse document
frequency scheme are used in SAIL-GRS and Biel.
Besides cosine similarity, a similarity metric based
on the overlap of character bigrams is used by the
tucSage system. External corpora (i.e., corpora
that were not provided as part of the official task
data) were used by the tucSage and Biel systems.
Such corpora were meant as an additional source
of information with respect to the domains under
investigation. Regarding tucSage, the training data
were exploited in order to construct web search
queries for harvesting a collection of web docu-
ments from which a number of sentences were se-
lected for corpus creation. In the case of the Biel
system, a set of Wikipedia articles was exploited.
Language specific resources where used for the
Biel system, while the other two teams used lan-
guage agnostic methods.

5 Results

The results for all participating teams and the
baseline system are given in Table 4. The tucSage
team submitted three runs, the first one being the
primary, indicated with an asterisk in the results.



Focusing on the weighted F-measure we see
that in all domains but the tourism English, at
least one submission manages to outperform the
baseline provided by the organizers. In travel En-
glish the baseline system achieves 0.51 weighted
f-measure, with two out of the three systems
achieving 0.68 and 0.58. The improvement over
the baseline is greater for the travel Greek sub-
task, where the baseline score of 0.26 is much
lower than the achieved 0.52 from tucSage. In the
tourism English subtask the best submitted sys-
tems managed to match the performance of the
baseline system, but not to exceed it. This can
be attributed to the good performance of the base-
line system, due to the fact that the tourism gram-
mar is composed of longer fragments than the rest,
helping the naive baseline system achieve top per-
formance exploiting lexical similarity only. We
can however assume that more complex systems
would beat the baseline if the test set fragments
were built using different lexicalizations, as would
be the case in unannotated data coming from de-
ployed SDS.

In the finance domain, even though the amount
of training data is quite smaller than in all other
subtasks the submitted systems still manage to
outperform the baseline system. This means that
the submitted systems display robust performance
both in resource-rich and resource-poor condi-
tions.

6 Conclusion

The tucSage and SAIL-GRS systems are shown to
be portable across domains and languages, achiev-
ing performance that exceeds the baseline for three
out of four datasets. The highest performance of
the tucSage system compared to the SAIL-GRS
system may be attributed to the use of a model for
fragment selection. Interestingly, the simple vari-
ation of the TF—IDF' scheme used by the SAIL
system achieved very good results being a close
second performer. The UNIBI system proposed
a very interesting new application of the frame-
work of topic modeling to the task of grammar in-
duction, however, the respective performance does
not exceed the state-of-the-art. The combination
of the tucSage and SAIL-GRS systems could give
better results.

15

team Weighted Unweighted
Pr.. Rec. Fm. Pr. Rec. F-m.
Travel English
Baseline 040 0.69 051 038 0.67 048
tucSagel®™ 0.60 0.73 0.66 059 0.74 0.66
tucSage2  0.59 0.72 0.65 0.59 074 0.65
tucSage3  0.69 0.67 0.68 0.66 0.69 0.67
SAIL-GRS 054 0.62 058 0.57 0.66 0.61
Biel 0.13 039 020 0.09 034 0.14
Travel Greek

Baseline 0.17 0.65 026 0.16 0.73 0.26
tucSagel™ 047 058 052 055 072 0.62
tucSage2 046 053 049 050 059 054
tucSage3  0.51 048 049 052 056 0.54
SAIL-GRS 046 051 049 049 062 055

Biel - - - - - -

Tourism English
Baseline 080 094 087 082 094 0.87
tucSagel™ 0.79 0.94 086 076 091 0.83
tucSage2  0.78 093 0.85 0.73 090 0.80
tucSage3 080 093 086 0.77 090 0.83
SAIL-GRS 0.75 090 082 0.75 090 0.82
Biel 004 0.14 006 0.02 0.08 0.04
Finance English
Baseline 048 0.78 060 040 0.63 0.49
tucSagel™ 0.61 0.81 070 043 054 048
tucSage2 055 0.74 0.63 040 051 045
tucSage3  0.52 0.67 058 039 043 041
SAIL-GRS 0.78 0.78 0.78 0.67 0.62 0.65
Biel 022 030 025 006 0.18 0.09
Average over all four tasks

Baseline 046 073 056 044 0.74 0.53
tucSagel®™ 0.62 0.77 0.69 058 0.73 0.65
tucSage2  0.60 0.73 0.66 0.56 0.69 0.61
tucSage3  0.63 0.69 0.65 059 065 0.61
SAIL-GRS 0.63 0.70 0.67 0.62 0.70 0.66
Biel 0.13 028 0.17 006 0.20 0.09

Table 4: Weighted and unweighted precision, re-
call and f-measure for all systems. Best perfor-
mance per metric and dataset shown in bold.
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Abstract

This paper introduces a new SemEval
task on Cross-Level Semantic Similarity
(CLSS), which measures the degree to
which the meaning of a larger linguistic
item, such as a paragraph, is captured by
a smaller item, such as a sentence. High-
quality data sets were constructed for four
comparison types using multi-stage an-
notation procedures with a graded scale
of similarity. Nineteen teams submitted
38 systems. Most systems surpassed the
baseline performance, with several attain-
ing high performance for multiple com-
parison types. Further, our results show
that comparisons of semantic representa-
tion increase performance beyond what is
possible with text alone.

1 Introduction

Given two linguistic items, semantic similarity
measures the degree to which the two items have
the same meaning. Semantic similarity is an es-
sential component of many applications in Nat-
ural Language Processing (NLP), and similarity
measurements between all types of text as well
as between word senses lend themselves to a va-
riety of NLP tasks such as information retrieval
(Hliaoutakis et al., 2006) or paraphrasing (Glick-
man and Dagan, 2003).

Semantic similarity evaluations have largely fo-
cused on comparing similar types of lexical items.
Most recently, tasks in SemEval (Agirre et al.,
2012) and *SEM (Agirre et al., 2013) have intro-
duced benchmarks for measuring Semantic Tex-
tual Similarity (STS) between similar-sized sen-
tences and phrases. Other data sets such as that
This work is licensed under a Creative Commons Attribution
4.0 International License. Page numbers and proceedings

footer are added by the organizers. License details: http:
//creativecommons.org/licenses/by/4.0/
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of Rubenstein and Goodenough (1965) measure
similarity between word pairs, while the data sets
of Navigli (2006) and Kilgarriff (2001) offer a bi-
nary similar-dissimilar distinction between senses.
Notably, all of these evaluations have focused on
comparisons between a single type, in contrast to
application-based evaluations such as summariza-
tion and compositionality which incorporate tex-
tual items of different sizes, e.g., measuring the
quality of a paragraph’s sentence summarization.

Task 3 introduces a new evaluation where sim-
ilarity is measured between items of different
types: paragraphs, sentences, phrases, words and
senses. Given an item of the lexically-larger type,
a system measures the degree to which the mean-
ing of the larger item is captured in the smaller
type, e.g., comparing a paragraph to a sentence.
We refer to this task as Cross-Level Semantic Sim-
ilarity (CLSS). A major motivation of this task
is to produce semantic similarity systems that are
able to compare all types of text, thereby free-
ing downstream NLP applications from needing to
consider the type of text being compared. Task 3
enables assessing the extent to which the mean-
ing of the sentence “do u know where i can watch
free older movies online without download?” is
captured in the phrase “streaming vintage movies
for free”, or how similar is “circumscribe” to the
phrase “beating around the bush.” Furthermore,
by incorporating comparisons of a variety of item
sizes, Task 3 unifies in a single task multiple ob-
jectives from different areas of NLP such as para-
phrasing, summarization, and compositionality.

Because CLSS generalizes STS to items of dif-
ferent types, successful CLSS systems can directly
be applied to all STS-based applications. Fur-
thermore, CLSS systems can be used in other
similarity-based applications such as text simpli-
fication (Specia et al., 2012), keyphrase iden-
tification (Kim et al., 2010), lexical substitu-
tion (McCarthy and Navigli, 2009), summariza-
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tion (Sparck Jones, 2007), gloss-to-sense mapping
(Pilehvar and Navigli, 2014b), and modeling the
semantics of multi-word expressions (Marelli et
al., 2014) or polysemous words (Pilehvar and Nav-
igli, 2014a).

Task 3 was designed with three main objectives.
First, the task should include multiple types of
comparison in order to assess each type’s difficulty
and whether specialized resources are needed for
each. Second, the task should incorporate text
from multiple domains and writing styles to en-
sure that system performance is robust across text
types. Third, the similarity methods should be able
to operate at the sense level, thereby potentially
uniting text- and sense-based similarity methods
within a single framework.

2 Task Description
2.1 Objective

Task 3 is intended to serve as an initial task for
evaluating the capabilities of systems at measuring
all types of semantic similarity, independently of
the size of the text. To accomplish this objective,
systems were presented with items from four com-
parison types: (1) paragraph to sentence, (2) sen-
tence to phrase, (3) phrase to word, and (4) word to
sense. Given a pair of items, a system must assess
the degree to which the meaning of the larger item
is captured in the smaller item. WordNet 3.0 was
chosen as the sense inventory (Fellbaum, 1998).

2.2 Rating Scale

Following previous SemEval tasks (Agirre et al.,
2012; Jurgens et al., 2012), Task 3 recognizes that
two items’ similarity may fall within a range of
similarity values, rather than having a binary no-
tion of similar or dissimilar. Initially a six-point
(0-5) scale similar to that used in the STS tasks
was considered (Agirre et al., 2012); however, an-
notators found difficulty in deciding between the
lower-similarity options. After multiple revisions
and feedback from a group of initial annotators,
we developed a five-point Likert scale for rating a
pair’s similarity, shown in Table 1.!

The scale was designed to systematically order
a broad range of semantic relations: synonymy,
similarity, relatedness, topical association, and un-
relatedness. Because items are of different sizes,
the highest rating is defined as very similar rather

! Annotation materials along with all training and test

data are available on the task website http://alt.qgcri.
org/semeval2014/task3/.
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than identical to allow for some small loss in the
overall meaning. Furthermore, although the scale
is designed as a Likert scale, annotators were given
flexibility when rating items to use values between
the defined points in the scale, indicating a blend
of two relations. Table 2 provides examples of
pairs for each scale rating for all four comparison

type.
3 Task Data

Though several data sets exist for STS and com-
paring words and senses, no standard data set ex-
ists for CLSS. Therefore, we created a pilot data
set designed to test the capabilities of systems in a
variety of settings. The task data for all compar-
isons but word-to-sense was created using a three-
phase process. First, items of all sizes were se-
lected from publicly-available data sets. Second,
the selected items were used to produce a second
item of the next-smaller level (e.g., a sentence in-
spires a phrase). Third, the pairs of items were
annotated for their similarity. Because of the ex-
pertise required for working with word senses, the
word-to-sense data set was constructed by the or-
ganizers using a separate but similar process. In
the training and test data, each comparison type
had 500 annotated examples, for a total of 2000
pairs each for training and test. We first describe
the corpora used by Task 3 followed by the anno-
tation process. We then describe the construction
of the word-to-sense data set.

3.1 Corpora

Test and training data were constructed by draw-
ing from multiple publicly-available corpora and
then manually generating a paired item for com-
parison. To achieve our second objective for the
task, the data sets used to create item pairs in-
cluded texts from specific domains, social media,
and text with idiomatic or slang language. Table
3 summarizes the corpora and their distribution
across the test and training sets for each compari-
son type, with a high-level description of the genre
of the data. We briefly describe the corpora next.
The WikiNews, Reuters 21578, and Microsoft
Research (MSR) Paraphrase corpora are all drawn
from newswire text, with WikiNews being au-
thored by volunteer writers and the latter two cor-
pora written by professionals. Travel Guides was
drawn from the Berlitz travel guides data in the
Open American National Corpus (Ide and Suder-
man, 2004) and includes very verbose sentences



4 — Very
Similar

The two items have very similar meanings and the most important ideas, concepts, or actions in the larger
text are represented in the smaller text. Some less important information may be missing, but the smaller

text is a very good summary of the larger text.

3 — Somewhat
Similar

The two items share many of the same important ideas, concepts, or actions, but include slightly different
details. The smaller text may use similar but not identical concepts (e.g., car vs. vehicle), or may omit a

few of the more important ideas present in the larger text.

2 — Somewhat
related but not
similar

1 — Slightly
related

0 — Unrelated

The two items have dissimilar meaning, but share concepts, ideas, and actions that are related. The smaller
text may use related but not necessarily similar concepts (window vs. house) but should still share some
overlapping concepts, ideas, or actions with the larger text.

The two items describe dissimilar concepts, ideas and actions, but may share some small details or domain
in common and might be likely to be found together in a longer document on the same topic.

The two items do not mean the same thing and are not on the same topic.

Table 1: The five-point Likert scale used to rate the similarity of item pairs. See Table 2 for examples.

with many named entities. Wikipedia Science
was drawn from articles tagged with the cate-
gory Science on Wikipedia. Food reviews were
drawn from the SNAP Amazon Fine Food Re-
views data set (McAuley and Leskovec, 2013)
and are customer-authored reviews for a variety of
food items. Fables were taken from a collection of
Aesop’s Fables. The Yahoo! Answers corpus was
derived from the Yahoo! Answers data set, which
is a collection of questions and answers from the
Community Question Answering (CQA) site; the
data set is notable for having the highest degree of
ungrammaticality in our test set. SMT Europarl
is a collection of texts from the English-language
proceedings of the European parliament (Koehn,
2005); Europarl data was also used in the PPDB
corpus (Ganitkevitch et al., 2013), from which
phrases were extracted. Wikipedia was used to
generate two phrase data sets from (1) extracting
the definitional portion of an article’s initial sen-
tence, e.g., “An [article name] is a [definition],”
and (2) captions for an article’s images. Web
queries were gathered from online sources of real-
world queries. Last, the first and second authors
generated slang and idiomatic phrases based on
expressions contained in Wiktionary.

For all comparison types, the test data included
one genre that was not seen in the training data
in order to test the generalizability of the systems
on data from a novel domain. In addition, we
included a new type of challenge genre with Fa-
bles; unlike other domains, the sentences paired
with the fable paragraphs were potentially seman-
tic interpretations of the intent of the fable, i.e.,
the moral of the story. These interpretations often
have little textual overlap with the fable itself and
require a deeper interpretation of the paragraph’s
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meaning in order to make the correct similarity
judgment.

Prior to the annotation process, all content was
filtered to ensure its size and format matched the
desired text type. By average, a paragraph in our
dataset consists of 3.8 sentences. Typos and gram-
matical mistakes in the community-produced con-
tent were left unchanged.

3.2 Annotation Process

A two-phase process was used to produce the test
and training data sets for all but word-to-sense.
Phase 1 generates the item pairs from source texts
and Phase 2 rates the pairs’ similarity.

Phase 1 In this phase, annotators were shown the
larger text of a comparison type and then asked
to produce the smaller text of the pair at a spec-
ified similarity; for example an annotator may be
shown a paragraph and asked to write a sentence
that is a ““3” rating. Annotators were instructed to
leave the smaller text blank if they had difficulty
understanding the larger text.

The requested similarity ratings were balanced
to create a uniform distribution of similarity val-
ues. Annotators were asked only to generate rat-
ings of 1-4; pairs with a “0” rating were automat-
ically created by pairing the larger item with ran-
dom selections of text of the appropriate size from
the same corpus. The intent of Phase 1 is to pro-
duce varied item pairs with an expected uniform
distribution of similarity values along the rating
scale.

Four annotators participated in Phase 1 and
were paid a bulk rate of €110 for completing the
work. In addition to the four annotators, the first
two organizers also assisted in Phase 1: Both com-
pleted items from the SCIENTIFIC genre and the
first organizer produced 994 pairs, including all



PARAGRAPH TO SENTENCE

Paragraph: Teenagers take aerial shots of their neigh-
bourhood using digital cameras sitting in old bottles which
are launched via kites - a common toy for children liv-
They then use GPS-enabled smart-
phones to take pictures of specific danger points - such as
rubbish heaps, which can become a breeding ground for

ing in the favelas.

mosquitoes carrying dengue fever.

Rating
4

Sentence

Students use their GPS-enabled cellphones to
take birdview photographs of a land in order
to find specific danger points such as rubbish
heaps.

Teenagers are enthusiastic about taking aerial
photograph in order to study their neighbour-
hood.

Aerial photography is a great way to identify
terrestrial features that aren’t visible from the
ground level, such as lake contours or river
paths.

During the early days of digital SLRs, Canon
was pretty much the undisputed leader in
CMOS image sensor technology.

Syrian President Bashar al-Assad tells the US
it will “pay the price” if it strikes against Syria.

SENTENCE TO PHRASE

Sentence: Schumacher was undoubtedly one of the very
greatest racing drivers there has ever been, a man who was
routinely, on every lap, able to dance on a limit accessible

to almost no-one else.

Rating
4

O =N W

Phrase

the unparalleled greatness of Schumacher’s
driving abilities

driving abilities

formula one racing

north-south highway

orthodontic insurance

PHRASE TO WORD

Phrase: loss of air pressure in a tire

Rating

O =N WA

Word
flat-tire
deflation
wheel
parking
butterfly

WORD TO SENSE

Word: automobile,,

Rating
4

3

2

Sense

carl, (a motor vehicle with four wheels; usually
propelled by an internal combustion engine)
vehicle} (a conveyance that transports people
or objects)

bike’, (a motor vehicle with two wheels and a
strong frame)

highway}, (a major road for any form of motor
transport)

penl, (a writing implement with a point from
which ink flows)

Table 2: Example pairs and their ratings.
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those for the METAPHORIC genre, and those that
the other annotators left blank.

Phase 2 Here, the item pairs produced in Phase
1 were rated for their similarity according to the
scale described in Section 2.2. An initial pilot
study showed that crowdsourcing was only mod-
erately effective for producing these ratings with
high agreement. Furthermore, the texts used in
Task 3 came from a variety of genres, such as
scientific domains, which some workers had dif-
ficulty understanding. While we note that crowd-
sourcing has been used in prior STS tasks for
generating similarity scores (Agirre et al., 2012;
Agirre et al., 2013), both tasks’ efforts encoun-
tered lower worker score correlations on some por-
tions of the dataset (Diab, 2013), suggesting that
crowdsourcing may not be reliable for judging the
similarity of certain types of text. See Section 3.5
for additional details.

Therefore, to ensure high quality, the first two
organizers rated all items independently. Because
the sentence-to-phrase and phrase-to-word com-
parisons contain slang and idiomatic language, a
third American English mother tongue annotator
was added for those data sets. The third annotator
was compensated €250 for their assistance.

Annotators were allowed to make finer-grained
distinctions in similarity using multiples of 0.25.
For all items, when any two annotators disagreed
by one or more scale points, we performed an
adjudication to determine the item’s rating in the
gold standard. The adjudication process revealed
that nearly all disagreements were due to annota-
tor mistakes, e.g., where one annotator had over-
looked a part of the text or had misunderstood the
text’s meaning. The final similarity rating for an
unadjudicated item was the average of its ratings.

3.3 Word-to-Sense

Word-to-sense comparison items were generated
in three phases. To increase the diversity and
challenge of the data set, the word-to-sense was
created for four types of words: (1) a word and
its intended meaning are in WordNet, (2) a word
was not in the WordNet vocabulary, e.g., the verb
“zombify,” (3) the word is in WordNet, but has a
novel meaning that is not in WordNet, e.g., the ad-
jective “red” referring to Communist, and (4) a set
of challenge words where one of the word’s senses
and a second sense are directly connected by an
edge in the WordNet network, but the two senses
are not always highly similar.



Paragraph-to-Sentence

Sentence-to-Phrase Phrase-to-Word

Corpus  Genre Train Test Train Test Train Test
WikiNews  Newswire 15.0 10.0 9.2 6.0
Reuters 21578  Newswire 20.2 15.0 5.0
Travel Guides  Travel 15.2 10.0 15.0 9.8
Wikipedia Science  Scientific - 25.6 - 14.8
Food Reviews  Review 19.6 20.0
Fables Metaphoric 9.0 5.2
Yahoo! Answers CQA 21.0 14.2 17.6 174
SMT Europarl Newswire 35.4 14.4
MSR Paraphrase = Newswire 10.0 10.0 8.8 6.0
Idioms Idiomatic 12.8 12.6 20.0 20.0
Slang  Slang - 15.0 - 25.0
PPDB  Newswire 10.0 10.0
Wikipedia Glosses  Lexicographic 28.2 17.0
Wikipedia Image Captions ~ Descriptive 23.0 17.0
Web Search Queries  Search 5.0 5.0

Table 3: Percentages of the training and test data per source corpus.

In Phase 1, to select the first type of word,
lemmas in WordNet were ranked by frequency
in Wikipedia; the ranking was divided into ten
equally-sized groups, with words sampled evenly
from groups in order to control for word frequency
in the task data. For the second type, words not
present in WordNet were drawn from two sources:
examining words in Wikipedia, which we refer
to as out-of-vocabulary (OOV), and slang words.
For the third type, to identify words with a novel
sense, we examined Wiktionary entries and chose
novel, salient senses that were distinct from those
in WordNet. We refer to words with a novel mean-
ing as out-of-sense (OOS). Words of the fourth
type were chosen by hand. The part-of-speech dis-
tributions for all four types of items were balanced
as 50% noun, 25% verb, 25% adjective.

In Phase 2, each word was associated with a
particular WordNet sense for its intended mean-
ing, or the closest available sense in WordNet
for OOV or OOS items. To select a comparison
sense, we adopted a neighborhood search proce-
dure: All synsets connected by at most three edges
in the WordNet semantic network were shown.
Given a word and its neighborhood, the corre-
sponding sense for the item pair was selected by
matching the sense with an intended similarity for
the pair, much like how text items were gener-
ated in Phase 1. The reason behind using this
neighborhood-based selection process was to min-
imize the potential bias of consistently selecting
lower-similarity items from those further away in
the WordNet semantic network.

In Phase 3, given all word-sense pairs, annota-
tors were shown the definitions associated with the
intended meaning of the word and of the sense.
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Definitions were drawn from WordNet or from
Wiktionary, if the word was OOV or OOS. An-
notators had access to the WordNet structure for
the compared sense in order to take into account
its parents and siblings.

3.4 Trial Data

The trial data set was created using a separate
process. Source text was drawn from WikiNews;
we selected the text for the larger item of each
level and then generated the text or sense of the
smaller. A total of 156 items were produced.
After, four fluent annotators independently rated
all items. Inter-annotator agreement rates varied
in 0.734-0.882, using Krippendorff’s o (Krippen-
dorff, 2004) on the interval scale.

3.5 Data Set Discussion

The resulting annotation process produced a high-
quality data set. First, Table 4 shows the inter-
annotator agreement (IAA) statistics for each
comparison type on both the full and unadjudi-
cated portions of the data set. IAA was measured
using Krippendorff’s « for interval data. Because
the disagreements that led to lower « in the full
data were resolved via adjudication, the quality of
the full data set is expected to be on par with that
of the unadjudicated data. The annotation quality
for Task 3 was further improved by manually ad-
judicating all significant disagreements.

In contrast, the data sets of current STS tasks
aggregated data from annotators with moderate
correlation with each other (Diab, 2013); STS-
2012 (Agirre et al., 2012) saw inter-annotator
Pearson correlations of 0.530-0.874 per data set
and STS-2013 (Agirre et al., 2013) had average



Training Test
Data All Unadj. All Unadj.
Para.-to-Sent. 0.856 0916 0.904 0.971
Sent.-to-Phr.  0.773 0913  0.766 0.980
Phr.-to-Word 0.735 0.895 0.730 0.988
Word-to-Sense  0.681 0.895  0.655 0.952

Table 4: TAA rates for the task data.
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Figure 1: Similarity ratings distributions.

inter-annotator correlations of 0.377-0.832. How-
ever, we note that Pearson correlation and Krip-
pendorff’s « are not directly comparable (Artstein
and Poesio, 2008), as annotators’ scores may be
correlated, but completely disagree.

Second, the two-phase construction process
produced values that were evenly distributed
across the rating scale, shown in Figure 1 as the
distribution of the values for all data sets. How-
ever, we note that this creation procedure was very
resource intensive and, therefore, semi-automated
or crowdsourcing-based approaches for produc-
ing high-quality data will be needed to expand
the size of the data in future CLSS-based eval-
uations. Nevertheless, as a pilot task, the man-
ual effort was essential for ensuring a rigorously-
constructed data set for the initial evaluation.

4 Evaluation

Participation The ultimate goal of Task 3 is to
produce systems that can measure similarity for
multiple types of items. Therefore, we strongly
encouraged participating teams to submit systems
that were capable of generating similarity judg-
ments for multiple comparison types. However,
to further the analysis, participants were also per-
mitted to submit systems specialized to a single
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domain. Teams were allowed at most three system
submissions, regardless of the number of compar-
ison types supported.

Scoring Systems were required to provide sim-
ilarity values for all items within a comparison
type. Following prior STS evaluations, systems
were scored for each comparison type using Pear-
son correlation. Additionally, we include a second
score using Spearman’s rank correlation, which is
only affected by differences in the ranking of items
by similarity, rather than differences in the similar-
ity values. Pearson correlation was chosen as the
official evaluation metric since the goal of the task
is to produce similar scores. However, Spearman’s
rank correlation provides an important metric for
assessing systems whose scores do not match hu-
man scores but whose rankings might, e.g., string-
similarity measures. Ultimately, a global ranking
was produced by ordering systems by the sum of
their Pearson correlation values for each of the
four comparison levels.

Baselines The official baseline system was
based on the Longest Common Substring (LCS),
normalized by the length of items using the
method of Clough and Stevenson (2011). Given
a pair, the similarity is reported as the normalized
length of the LCS. In the case of word-to-sense,
the LCS for a word-sense pair is measured be-
tween the sense’s definition in WordNet and the
definitions of each sense of the pair’s word, report-
ing the maximal LCS. Because OOV and slang
words are not in WordNet, the baseline reports the
average similarity value of non-OOV items. Base-
line scores were made public after the evaluation
period ended.

Because LCS is a simple procedure, a second
baseline based on Greedy String Tiling (GST)
(Wise, 1996) was added after the evaluation pe-
riod concluded. Unlike LCS, GST better handles
the transpositions of tokens across the two texts
and can still report high similarity when encoun-
tering reordered text. The minimum match length
for GST was set to 6.

5 Results

Nineteen teams submitted 38 systems. Of those
systems, 34 produced values for paragraph-to-
sentence and sentence-to-phrase comparisons, 22
for phrase-to-word, and 20 for word-to-sense.
Two teams submitted revised scores for their sys-
tems after the deadline but before the test set had



Team System Para-2-Sent  Sent-2-Phr Phr-2-Word Word-2-Sense  Official Rank  Spearman Rank
Meerkat Mafia pairingWords{ 0.794 0.704 0.457 0.389

SimCompass runl 0.811 0.742 0.415 0.356 1 1
ECNU runl 0.834 0.771 0.315 0.269 2 2
UNAL-NLP run2 0.837 0.738 0.274 0.256 3 6
SemantiKLUE runl 0.817 0.754 0.215 0.314 4 4
UNAL-NLP runl 0.817 0.739 0.252 0.249 5 7
UNIBA run2 0.784 0.734 0.255 0.180 6 8
RTM-DCU runlf 0.845 0.750 0.305

UNIBA runl 0.769 0.729 0.229 0.165 7 10
UNIBA run3 0.769 0.729 0.229 0.165 8 11
BUAP runl 0.805 0.714 0.162 0.201 9 13
BUAP run2 0.805 0.714 0.142 0.194 10 9
Meerkat Mafia pairingWords 0.794 0.704 -0.044 0.389 11 12
HULTECH runl 0.693 0.665 0.254 0.150 12 16
GST Baseline 0.728 0.662 0.146 0.185

HULTECH run3 0.669 0.671 0.232 0.137 13 15
RTM-DCU run2f 0.785 0.698 0.221

RTM-DCU run3 0.780 0.677 0.208 14 17
HULTECH run2 0.667 0.633 0.180 0.169 15 14
RTM-DCU runl 0.786 0.666 0.171 16 18
RTM-DCU run3f 0.786 0.663 0.171

Meerkat Mafia SuperSaiyan 0.834 0.777 17 19
Meerkat Mafia Hulk2 0.826 0.705 18 20
RTM-DCU run2 0.747 0.588 0.164 19 22
FBK-TR run3 0.759 0.702 20 23
FBK-TR runl 0.751 0.685 21 24
FBK-TR run2 0.770 0.648 22 25
Duluth Duluth2 0.501 0.450 0.241 0.219 23 21
AI-KU runl 0.732 0.680 24 26
LCS Baseline 0.527 0.562 0.165 0.109

UNAL-NLP run3 0.708 0.620 25 27
AI-KU run2 0.698 0.617 26 28
TCDSCSS run2 0.607 0.552 27 29
JU-Evora runl 0.536 0.442 0.090 0.091 28 31
TCDSCSS runl 0.575 0.541 29 30
Duluth Duluthl 0.458 0.440 0.075 0.076 30 5
Duluth Duluth3 0.455 0.426 0.075 0.079 31 3
OPI runl 0.433 0.213 0.152 32 36
SSMT runl 0.789 33 34
DIT runl 0.785 34 32
DIT run2 0.784 35 33
UMCC DLSI SelSim  runl 0.760 36 35
UMCC DLSI SelSim  run2 0.698 37 37
UMCC DLSI Prob runl 0.023 38 38

Table 5: Task results. Systems marked with a { were submitted after the deadline but are positioned

where they would have ranked.

been released. These systems were scored and
noted in the results but were not included in the
official ranking.

Table 5 shows the performance of the participat-
ing systems across all the four comparison types in
terms of Pearson correlation. The two right-most
columns show system rankings by Pearson (Offi-
cial Rank) and Spearman’s ranks correlation.

The SimCompass system attained first place,
partially due to its superior performance on
phrase-to-word comparisons, providing an im-
provement of 0.10 over the second-best sys-
tem. The late-submitted version of the Meerkat
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Mafia pairingWordsj system corrected a bug in
the phrase-to-word comparison, which ultimately
would have attained first place due to large per-
formance improvements over SimCompass on
phrase-to-word and word-to-sense. ENCU and
UNAL-NLP systems rank respectively second and
third while the former being always in top-4 and
the latter being among the top-7 systems across the
four comparison types. Most systems were able
to surpass the naive LCS baseline; however, the
more sophisticated GST baseline (which accounts
for text transposition) outperforms two-thirds of
the systems. Importantly, both baselines perform



poorly on smaller text, highlighting the impor-
tance of performing a semantic comparison, as op-
posed to a string-based one.

Within the individual comparison types, spe-
cialized systems performed well for the larger
text sizes. In the paragraph-to-sentence type, the
runl system of UNAL-NLP provides the best of-
ficial result, with the late RTM-DCU runlf sys-
tem surpassing its performance slightly. Meerkat
Mafia provides the best performance in sentence-
to-phrase with its SuperSaiyan system and the
best performances in phrase-to-word and word-to-
sense with its late pairingWordst system.

Comparison-Type Analysis Performance
across the comparison types varied considerably,
with systems performing best on comparisons
between longer textual items. As a general trend,
both the baselines’ and systems’ performances
tend to decrease with the size of lexical items
in the comparison types. A main contributing
factor to this is the reliance on textual similarity
measures (such as the baselines), which perform
well when two items’ may share content. How-
ever, as the items’ content becomes smaller, e.g.,
a word or phrase, the textual similarity does not
necessarily provide a meaningful indication of
the semantic similarity between the two. This
performance discrepancy suggests that, in order
to perform well, CLSS systems must rely on
comparisons between semantic representations
rather than textual representations. The two
top-performing systems on these smaller levels,
Meerkat Mafia and SimCompass, used additional
resources beyond WordNet to expand a word or
sense to its definition or to represent words with
distributional representations.

Per-genre results and discussions Task 3 in-
cludes multiple genres within the data set for each
comparison type. Figure 2 shows the correlation
of each system for each of these genres, with sys-
tems ordered left to right according to their official
ranking in Table 5. An interesting observation is
that a system’s official rank does not always match
the rank from aggregating its correlations for each
genre individually. This difference suggests that
some systems provided good similarity judgments
on individual genres, but their range of similarity
values was not consistent between genres leading
to lower overall Pearson correlation. For instance,
in the phrase-to-word comparison type, the ag-
gregated per-genre performance of Duluth-1 and
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Duluth-3 are among the best whereas their over-
all Pearson performance puts these systems among
the worst-performing ones in the comparison type.

Among the genres, CQA, SLANG, and ID-
IOMATIC prove to be the more difficult for sys-
tems to interpret and judge. These genres in-
cluded misspelled, colloquial, or slang language
which required converting the text into semantic
form in order to meaningfully compare it. Fur-
thermore, as expected, the METAPHORIC genre
was the most difficult, with no system perform-
ing well; we view the METAPHORIC genre as an
open challenge for future systems to address when
interpreting larger text. On the other hand, SCI-
ENTIFIC, TRAVEL, and NEWSWIRE tend to be
the easiest genres for paragraph-to-sentence and
sentence-to-phrase. All three genres tend to in-
clude many named entities or highly-specific lan-
guage, which are likely to be more preserved in the
more-similar paired items. Similarly, DESCRIP-
TIVE and SEARCH genres were easiest in phrase-
to-word, which also often featured specific words
that were preserved in highly-similar pairs. In
the case of word-to-sense, REGULAR proves to be
the least difficult genre. Interestingly, in word-
to-sense, most systems attained moderate perfor-
mance for comparisons with words not in Word-
Net (i.e., OOV) but had poor performance for
slang words, which were also OOV. This differ-
ence suggests that systems could be improved with
additional semantic resources for slang.

Spearman Rank Analysis Although the goal of
Task 3 is to have systems produce similarity judg-
ments, some applications may benefit from simply
having a ranking of pairs, e.g., ranking summa-
rizations by goodness. The Spearman rank corre-
lation measures the ability of systems to perform
such a ranking. Surprisingly, with the Spearman-
based ranking, the Duluthl and Duluth3 systems
attain the third and fifth ranks — despite being
among the lowest ranked with Pearson. Both sys-
tems were unsupervised and produced similarity
values that did not correlate well with those of
humans. However, their Spearman ranks demon-
strate the systems ability to correctly identify rela-
tive similarity and suggests that such unsupervised
systems could improve their Pearson correlation
by using the training data to tune the range of sim-
ilarity values to match those of humans.
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Figure 2: A stacked histogram for each system, showing its Pearson correlations for genre-specific por-
tions of the gold-standard data, which may also be negative.

6 Conclusion

This paper introduces a new similarity task, Cross-
Level Semantic Similarity, for measuring the se-
mantic similarity of lexical items of different
sizes. Using a multi-phase annotation proce-
dure, we have produced a high-quality data set of
4000 items comprising of various genres, evenly-
split between training and test with four types of
comparison: paragraph-to-sentence, sentence-to-
phrase, phrase-to-word, and word-to-sense. Nine-
teen teams submitted 38 systems, with most teams
surpassing the baseline system and several sys-
tems achieving high performance in multiple types
of comparison. However, a clear performance
trend emerged where systems perform well only
when the text itself is similar, rather than its under-
lying meaning. Nevertheless, the results of Task 3
are highly encouraging and point to clear future
objectives for developing CLSS systems that op-
erate on more semantic representations rather than
text. In future work on CLSS evaluation, we first
intend to develop scalable annotation methods to
increase the data sets. Second, we plan to add new
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evaluations where systems are tested according to
their performance in an application related to each
comparison-type, such as measuring the quality of
a paraphrase or summary.
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Abstract

Sentiment analysis is increasingly viewed
as a vital task both from an academic and
a commercial standpoint. The majority of
current approaches, however, attempt to
detect the overall polarity of a sentence,
paragraph, or text span, irrespective of the
entities mentioned (e.g., laptops) and their
aspects (e.g., battery, screen). SemEval-
2014 Task 4 aimed to foster research in the
field of aspect-based sentiment analysis,
where the goal is to identify the aspects
of given target entities and the sentiment
expressed for each aspect. The task pro-
vided datasets containing manually anno-
tated reviews of restaurants and laptops, as
well as a common evaluation procedure. It
attracted 163 submissions from 32 teams.

1 Introduction

With the proliferation of user-generated content on
the web, interest in mining sentiment and opinions
in text has grown rapidly, both in academia and
business. Early work in sentiment analysis mainly
aimed to detect the overall polarity (e.g., positive
or negative) of a given text or text span (Pang et
al., 2002; Turney, 2002). However, the need for a
more fine-grained approach, such as aspect-based
(or ‘feature-based’) sentiment analysis (ABSA),
soon became apparent (Liu, 2012). For example,
laptop reviews not only express the overall senti-
ment about a specific model (e.g., “This is a great
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laptop”), but also sentiments relating to its spe-
cific aspects, such as the hardware, software, price,
etc. Subsequently, a review may convey opposing
sentiments (e.g., “Its performance is ideal, I wish
I could say the same about the price”) or objective
information (e.g., “This one still has the CD slot”)
for different aspects of an entity.

ABSA is critical in mining and summarizing
opinions from on-line reviews (Gamon et al.,
2005; Titov and McDonald, 2008; Hu and Liu,
2004a; Popescu and Etzioni, 2005). In this set-
ting, ABSA aims to identify the aspects of the en-
tities being reviewed and to determine the senti-
ment the reviewers express for each aspect. Within
the last decade, several ABSA systems of this kind
have been developed for movie reviews (Thet et
al., 2010), customer reviews of electronic products
like digital cameras (Hu and Liu, 2004a) or net-
book computers (Brody and Elhadad, 2010), ser-
vices (Long et al., 2010), and restaurants (Ganu et
al., 2009; Brody and Elhadad, 2010).

Previous publicly available ABSA benchmark
datasets adopt different annotation schemes within
different tasks. The restaurant reviews dataset of
Ganu et al. (2009) uses six coarse-grained aspects
(e.g., FOOD, PRICE, SERVICE) and four overall
sentence polarity labels (positive, negative, con-
flict, neutral). Each sentence is assigned one or
more aspects together with a polarity label for
each aspect; for example, “The restaurant was ex-
pensive, but the menu was great.” would be as-
signed the aspect PRICE with negative polarity and
FOOD with positive polarity. In the product re-
views dataset of Hu and Liu (2004a; 2004b), as-
pect terms, i.e., terms naming aspects (e.g., ‘ra-
dio’, ‘voice dialing’) together with strength scores
(e.g., ‘radio’: +2, ‘voice dialing’: —3) are pro-
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vided. No predefined inventory of aspects is pro-
vided, unlike the dataset of Ganu et al.

The SemEval-2014 ABSA Task is based on lap-
top and restaurant reviews and consists of four
subtasks (see Section 2). Participants were free to
participate in a subset of subtasks and the domains
(laptops or restaurants) of their choice.

2 Task Description

For the first two subtasks (SB1, SB2), datasets on
both domains (restaurants, laptops) were provided.
For the last two subtasks (SB3, SB4), datasets only
for the restaurant reviews were provided.

Aspect term extraction (SB1): Given a set of
review sentences, the task is to identify all as-
pect terms present in each sentence (e.g., ‘wine’,
‘waiter’, ‘appetizer’, ‘price’, ‘food’). We require
all the aspect terms to be identified, including as-
pect terms for which no sentiment is expressed
(neutral polarity). These will be useful for con-
structing an ontology of aspect terms and to iden-
tify frequently discussed aspects.

Aspect term polarity (SB2): In this subtask,
we assume that the aspect terms are given (as de-
scribed in SB1) and the task is to determine the po-
larity of each aspect term (positive, negative, con-
flict, or neutral). The conflict label applies when
both positive and negative sentiment is expressed
about an aspect term (e.g., “Certainly not the best
sushi in New York, however, it is always fresh™).
An alternative would have been to tag the aspect
term in these cases with the dominant polarity, but
this in turn would be difficult to agree on.

Aspect category detection (SB3): Given a
predefined set of aspect categories (e.g., PRICE,
FOOD) and a set of review sentences (but without
any annotations of aspect terms and their polari-
ties), the task is to identify the aspect categories
discussed in each sentence. Aspect categories are
typically coarser than the aspect terms as defined
in SB1, and they do not necessarily occur as terms
in the sentences. For example, in “Delicious but
expensive”, the aspect categories FOOD and PRICE
are not instantiated through specific aspect terms,
but are only inferred through the adjectives ‘deli-
cious’ and ‘expensive’. SB1 and SB3 were treated
as separate subtasks, thus no information linking
aspect terms to aspect categories was provided.

Aspect category polarity (SB4): For this sub-
task, aspect categories for each review sentence
are provided. The goal is to determine the polar-
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ity (positive, negative, conflict, or neutral) of each
aspect category discussed in each sentence.

Subtasks SB1 and SB2 are useful in cases where
no predefined inventory of aspect categories is
available. In these cases, frequently discussed as-
pect terms of the entity can be identified together
with their overall sentiment polarities. We hope to
include an additional aspect term aggregation sub-
task in future (Pavlopoulos and Androutsopoulos,
2014b) to cluster near-synonymous (e.g., ‘money’,
‘price’, ‘cost’) or related aspect terms (e.g., ‘de-
sign’, ‘color’, ‘feeling’) together with their aver-
aged sentiment scores as shown in Fig. 1.

. Apple Mac mini u

money, price, cost, ... J

Tam, Memory, ... |

design, color, feeling, ...

extras, keyboard, screen, ...

Figure 1: Aggregated aspect terms and average
sentiment polarities for a target entity.

Subtasks SB3 and SB4 are useful when a pre-
defined inventory of (coarse) aspect categories is
available. A table like the one of Fig. 1 can then
also be generated, but this time using the most
frequent aspect categories to label the rows, with
stars showing the proportion of reviews express-
ing positive vs. negative opinions for each aspect
category.

3 Datasets
3.1 Data Collection

The training and test data sizes are provided in Ta-
ble 1. The restaurants training data, consisting of
3041 English sentences, is a subset of the dataset
from Ganu et al. (2009), which included annota-
tions for coarse aspect categories (as in SB3) and
overall sentence polarities. We added annotations
for aspect terms occurring in the sentences (SB1),
aspect term polarities (SB2), and aspect category
polarities (SB4). Additional restaurant reviews
were collected and annotated (from scratch) in
the same manner and used as test data (800 sen-
tences). The laptops dataset contains 3845 English



sentences extracted from laptop custumer reviews.
Human annotators tagged the aspect terms (SB1)
and their polarities (SB2); 3045 sentences were
used for training and 800 for testing (evaluation).

Domain Train | Test | Total
Restaurants | 3041 | 800 | 3841
Laptops 3045 | 800 | 3845
Total | 6086 | 1600 | 7686 |

Table 1: Sizes (sentences) of the datasets.

3.2 Annotation Process

For a given target entity (a restaurant or a lap-
top) being reviewed, the annotators were asked to
provide two types of information: aspect terms
(SB1) and aspect term polarities (SB2). For the
restaurants dataset, two additional annotation lay-
ers were added: aspect category (SB3) and aspect
category polarity (SB4).

The annotators used BRAT (Stenetorp et al.,
2012), a web-based annotation tool, which was
configured appropriately for the needs of the
ABSA task.! Figure 2 shows an annotated sen-
tence in BRAT, as viewed by the annotators.

Stage 1: Aspect terms and polarities. During
a first annotation stage, the annotators tagged all
the single or multiword terms that named par-
ticular aspects of the target entity (e.g., “I liked
the service and the staff, but not the food” —
{*service’, ‘staff’, ‘food’}, “The hard disk is very
noisy” — {‘hard disk’}). They were asked to tag
only aspect terms explicitly naming particular as-
pects (e.g., “everything about it” or “it’s expen-
sive” do not name particular aspects). The as-
pect terms were annotated as they appeared, even
if misspelled (e.g., ‘warrenty’ instead of ‘war-
ranty’). Each identified aspect term also had to be
assigned a polarity label (positive, negative, neu-
tral, conflict). For example, “I hated their fajitas,
but their salads were great” — {‘fajitas’: nega-
tive, ‘salads’: positive}, “The hard disk is very
noisy” — {‘hard disk’: negative}.

Each sentence of the two datasets was anno-
tated by two annotators, a graduate student (an-
notator A) and an expert linguist (annotator B).
Initially, two subsets of sentences (300 from each
dataset) were tagged by annotator A and the anno-
tations were inspected and validated by annotator

'Consult http://brat.nlplab.org/ for more in-
formation about BRAT.
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B. The disagreements between the two annotators
were confined to borderline cases. Taking into ac-
count the types of these disagreements (discussed
below), annotator A was provided with additional
guidelines and tagged the remainder of the sen-
tences in both datasets.”> When A was not confi-
dent, a decision was made collaboratively with B.
When A and B disagreed, a decision was made
collaboratively by them and a third expert annota-
tor. Most disagreements fall into one of the fol-
lowing three types:

Polarity ambiguity: In several sentences, it was
unclear if the reviewer expressed positive or neg-
ative opinion, or no opinion at all (just reporting
a fact), due to lack of context. For example, in
“12.44 seconds boot time” it is unclear if the re-
viewer expresses a positive, negative, or no opin-
ion about the aspect term ‘boot time’. In future
challenges, it would be better to allow the annota-
tors (and the participating systems) to consider the
entire review instead of each sentence in isolation.
Multi-word aspect term boundaries: In sev-
eral cases, the annotators disagreed on the exact
boundaries of multi-word aspect terms when they
appeared in conjunctions or disjunctions (e.g.,
“selection of meats and seafoods”, “noodle and
rices dishes”, “school or office use”). In such
cases, we asked the annotators to tag as a sin-
gle aspect term the maximal noun phrase (the en-
tire conjunction or disjunction). Other disagree-
ments concerned the extent of the aspect terms
when adjectives that may or may not have a sub-
jective meaning were also present. For example,
if ‘large’ in “large whole shrimp” is part of the
dish name, then the guidelines require the adjec-
tive to be included in the aspect term; otherwise
(e.g., in “large portions”) ‘large’ is a subjectivity
indicator not to be included in the aspect term. De-
spite the guidelines, in some cases it was difficult
to isolate and tag the exact aspect term, because of
intervening words, punctuation, or long-term de-
pendencies.

Aspect term vs. reference to target entity: In
some cases, it was unclear if a noun or noun phrase
was used as the aspect term or if it referred to the
entity being reviewed as whole. In “This place
is awesome”, for example, ‘place’ most probably
refers to the restaurant as a whole (hence, it should
not be tagged as an aspect term), but in “Cozy

The guidelines are available at: http://alt.qgcri.
org/semeval?2014/task4d/data/uploads/.
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Figure 2: A sentence in the BRAT tool, annotated with four aspect terms (‘appetizers’, ‘salads’, ‘steak’,
‘pasta’) and one aspect category (FOOD). For aspect categories, the whole sentence is tagged.

place and good pizza” it probably refers to the am-
bience of the restaurant. A broader context would
again help in some of these cases.

We note that laptop reviews often evaluate each
laptop as a whole, rather than expressing opinions
about particular aspects. Furthermore, when they
express opinions about particular aspects, they of-
ten do so by using adjectives that refer implicitly
to aspects (e.g., ‘expensive’, ‘heavy’), rather than
using explicit aspect terms (e.g., ‘cost’, ‘weight’);
the annotators were instructed to tag only explicit
aspect terms, not adjectives implicitly referring to
aspects. By contrast, restaurant reviews contain
many more aspect terms (Table 2, last column).?

Dataset | Pos. | Neg. | Con. | Neu. | Tot.
LPT-TR | 987 | 866 | 45 460 | 2358
LPT-TE | 341 | 128 16 169 | 654
RST-TR | 2164 | 805 91 633 | 3693
RST-TE | 728 | 196 14 196 | 1134

Table 2: Aspect terms and their polarities per do-
main. LPT and RST indicate laptop and restau-
rant reviews, respectively. TR and TE indicate the
training and test set.

Another difference between the two datasets
is that the neutral class is much more frequent
in (the aspect terms of) laptops, since laptop re-
views often mention features without expressing
any (clear) sentiment (e.g., “the latest version does
not have a disc drive”). Nevertheless, the positive
class is the majority in both datasets, but it is much
more frequent in restaurants (Table 2). The ma-
jority of the aspect terms are single-words in both
datasets (2148 in laptops, 4827 in restaurants, out
of 3012 and 4827 total aspect terms, respectively).

Stage 2: Aspect categories and polarities. In
this task, each sentence needs to be tagged with
the aspect categories discussed in the sentence.
The aspect categories are FOOD, SERVICE, PRICE,
AMBIENCE (the atmosphere and environment of

3We count aspect term occurrences, not distinct terms.
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a restaurant), and ANECDOTES/MISCELLANEOUS
(sentences not belonging in any of the previous
aspect categories). * For example, “The restau-
rant was expensive, but the menu was great” is
assigned the aspect categories PRICE and FOOD.
Additionally, a polarity (positive, negative, con-
flict, neutral) for each aspect category should be
provided (e.g., “The restaurant was expensive, but
the menu was great” — {PRICE: negative, FOOD:
positive}.

One annotator validated the existing aspect cat-
egory annotations of the corpus of Ganu et al.
(2009). The agreement with the existing anno-
tations was 92% measured as average F;. Most
disagreements concerned additions of missing as-
pect category annotations. Furthermore, the same
annotator validated and corrected (if needed) the
existing polarity labels per aspect category anno-
tation. The agreement for the polarity labels was
87% in terms of accuracy and it was measured
only on the common aspect category annotations.
The additional 800 sentences (not present in Ganu
et al.’s dataset) were used for testing and were an-
notated from scratch in the same manner. The dis-
tribution of the polarity classes per category is pre-
sented in Table 3. Again, ‘positive’ is the majority
polarity class while the dominant aspect category
is FOOD in both the training and test restaurant
sentences.

Determining the aspect categories of the sen-
tences and their polarities (Stage 2) was an easier
task compared to detecting aspect terms and their
polarities (Stage 1). The annotators needed less
time in Stage 2 and it was easier to reach agree-
ment. Exceptions were some sentences where it
was difficult to decide if the categories AMBIENCE
or ANECDOTES/MISCELLANEOUS applied (e.g.,
“One of my Fav spots in the city”). We instructed
the annotators to classify those sentences only in
ANECDOTES/MISCELLANEOUS, if they conveyed

“In the original dataset of Ganu et al. (2009), ANECDOTES
and MISCELLANEOUS were separate categories, but in prac-
tice they were difficult to distinguish and we merged them.



Positive Negative Conflict Neutral Total

Category Train | Test | Train | Test | Train | Test | Train | Test | Train | Test
Foob 867 | 302 | 209 | 69 66 16 90 31 | 1232 | 418
PRICE 179 | 51 115 | 28 17 3 10 1 321 83

SERVICE 324 | 101 | 218 | 63 35 5 20 3 597 | 172
AMBIENCE 263 | 76 98 21 47 13 23 8 431 118
ANECD./M1sc. | 546 | 127 | 199 | 41 30 15 | 357 | 51 | 1132 | 234
Total 2179 | 657 | 839 | 159 | 163 | 52 | 500 | 94 | 3713 | 1025

Table 3: Aspect categories distribution per sentiment class.

general views about a restaurant, without explic-
itly referring to its atmosphere or environment.

3.3 Format and Availability of the Datasets

The datasets of the ABSA task were provided in
an XML format (see Fig. 3). They are avail-
able with a non commercial, no redistribution li-
cense through META-SHARE, a repository de-
voted to the sharing and dissemination of language
resources (Piperidis, 2012).

4 Evaluation Measures and Baselines

The evaluation of the ABSA task ran in two
phases. In Phase A, the participants were asked
to return the aspect terms (SB1) and aspect cate-
gories (SB3) for the provided test datasets. Subse-
quently, in Phase B, the participants were given
the gold aspect terms and aspect categories (as
in Fig. 3) for the sentences of Phase A and they
were asked to return the polarities of the aspect
terms (SB2) and the polarities of the aspect cate-
gories of each sentence (SB4).° Each participat-
ing team was allowed to submit up to two runs
per subtask and domain (restaurants, laptops) in
each phase; one constrained (C), where only the
provided training data and other resources (e.g.,
publicly available lexica) excluding additional an-
notated sentences could be used, and one uncon-
strained (U), where additional data of any kind
could be used for training. In the latter case, the
teams had to report the resources they used.

To evaluate aspect term extraction (SB1) and as-
pect category detection (SB3) in Phase A, we used

SThe datasets can be downloaded from http://
metashare.ilsp.gr:8080/. META-SHARE (http:
//www.meta-share.org/) was implemented in the
framework of the META-NET Network of Excellence
(http://www.meta-net.eu/).

®Phase A ran from 9:00 GMT, March 24 to 21:00 GMT,
March 25, 2014. Phase B ran from 9:00 GMT, March 27 to
17:00 GMT, March 29, 2014.
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Here S is the set of aspect term or aspect category
annotations (in SB1 and SB3, respectively) that a
system returned for all the test sentences (of a do-
main), and G is the set of the gold (correct) aspect
term or aspect category annotations.

To evaluate aspect term polarity (SB2) and as-
pect category polarity (SB4) detection in Phase B,
we calculated the accuracy of each system, defined
as the number of correctly predicted aspect term
or aspect category polarity labels, respectively, di-
vided by the total number of aspect term or aspect
category annotations. Recall that we used the gold
aspect term and category annotations in Phase B.

We provided four baselines, one per subtask:’
Aspect term extraction (SB1) baseline: A se-
quence of tokens is tagged as an aspect term in
a test sentence (of a domain), if it is listed in a
dictionary that contains all the aspect terms of the
training sentences (of the same domain).

Aspect term polarity (SB2) baseline: For each
aspect term t in a test sentence s (of a particu-
lar domain), this baseline checks if £ had been
encountered in the training sentences (of the do-
main). If so, it retrieves the £ most similar to s
training sentences (of the domain), and assigns to
the aspect term ¢ the most frequent polarity it had
in the k sentences. Otherwise, if ¢ had not been en-
countered in the training sentences, it is assigned
the most frequent aspect term polarity label of the
"Implementations of the baselines and further information

about the baselines are available at: http://alt.qgcri.
org/semeval?2014/task4d/data/uploads/.



<sentence 1d="11351725#582163#9">

<text>Our waiter was friendly and it is a shame that he didnt have a supportive

staff to work with.</text>
<aspectTerms>

<aspectTerm term="waiter" polarity="positive" from="4" to="10"/>
<aspectTerm term="staff" polarity="negative" from="74" to="79"/>

</aspectTerms>
<aspectCategories>

<aspectCategory category="service" polarity="conflict"/>

</aspectCategories>
</sentence>

Figure 3: An XML snippet that corresponds to the annotated sentence of Fig. 2.

training set. The similarity between two sentences
is measured as the Dice coefficient of the sets of
(distinct) words of the two sentences. For exam-
ple, the similarity between “this is a demo” and
“that is yet another demo” is 42%_‘_25 = 0.44.

Aspect category extraction (SB3) baseline: For
every test sentence s, the k most similar to s train-
ing sentences are retrieved (as in the SB2 base-
line). Then, s is assigned the m most frequent as-
pect category labels of the k retrieved sentences;
m is the most frequent number of aspect category
labels per sentence among the k sentences.
Aspect category polarity (SB4): This baseline
assigns to each aspect category c of a test sentence
s the most frequent polarity label that c had in the
k most similar to s training sentences (of the same
domain), considering only training sentences that
have the aspect category label c. Sentence similar-
ity is computed as in the SB2 baseline.

For subtasks SB2 and SB4, we also use a major-
ity baseline that assigns the most frequent polarity
(in the training data) to all the aspect terms and as-
pect categories. The scores of all the baselines and
systems are presented in Tables 4—6.

5 Evaluation Results

The ABSA task attracted 32 teams in total and 165
submissions (systems), 76 for phase A and 89 for
phase B. Based on the human-annotation experi-
ence, the expectations were that systems would
perform better in Phase B (SB3, SB4, involving
aspect categories) than in Phase A (SB1, SB2, in-
volving aspect terms). The evaluation results con-
firmed our expectations (Tables 4-6).

5.1 Results of Phase A

The aspect term extraction subtask (SB1) attracted
24 teams for the laptops dataset and 24 teams for
the restaurants dataset; consult Table 4.

32

Laptops | Restaurants
Team Fy Team Fi
IHS_RD. 74.551 | DLIREC 84.01*
DLIREC 73.78* | XRCE 83.98
DLIREC 70.4 NRC-Can. | 80.18
NRC-Can. | 68.56 | UNITOR | 80.09
UNITOR | 67.95* | UNITOR | 79.96*
XRCE 67.24 | IHS_RD. 79.627
SAPRI 66.6 UWB 79.35%
IITP 66.55 | SeemGo 78.61
UNITOR | 66.08 | DLIREC 78.34
SeemGo 65.99 | ECNU 78.24
ECNU 65.88 | SAP_RI 77.88
SNAP 62.4 UWB 76.23
DMIS 60.59 | IITP 74.94
UWB 60.39 | DMIS 72.73
JU_CSE. 59.37 | JUCSE. 72.34
Isis_lif 56.97 | Blinov 71.21%
USF 52.58 | Isis_lif 71.09
Blinov 52.07* | USF 70.69
UFAL 4898 | EBDG 69.28*
UBham 47.49 | UBham 68.63*
UBham 47.26* | UBham 68.51
SINAI 45.28 | SINAI 65.41
EBDG 41.52*% | V3 60.43*
V3 36.62* | UFAL 58.88
COMMIT. | 25.19 | COMMIT. | 54.38
NILCUSP | 25.19 | NILCUSP | 49.04
iTac 23.92 | SNAP 46.46
iTac 38.29
Baseline 35.64 | Baseline 47.15

Table 4: Results for aspect term extraction (SB1).
Stars indicate unconstrained systems. The { indi-
cates a constrained system that was not trained on
the in-domain training dataset (unlike the rest of
the constrained systems), but on the union of the
two training datasets (laptops, restaurants).



Restaurants Restaurants
Team Fi Team Acc.
NRC-Can. | 88.57 | NRC-Can. | 82.92
UNITOR | 85.26* | XRCE 78.14
XRCE 82.28 | UNITOR | 76.29%*
UWB 81.55* | SAP_RI 75.6
UWB 81.04 | SeemGo 74.63
UNITOR | 80.76 | SA-UZH 73.07
SAP_RI 79.04 | UNITOR | 73.07
SNAP 78.22 | UWB 72.78
Blinov 75.27* | UWB 72.778*
UBham 74.79% | Isis_lif 72.09
UBham 74.24 | UBham 71.9
EBDG 73.98* | EBDG 69.75
SeemGo 73.75 | SNAP 69.56
SINAI 73.67 | COMMIT. | 67.7
JU_CSE. 70.46 | Blinov 65.65*
Isis_lif 68.27 | Ualberta. 65.46
ECNU 67.29 | JU_CSE. 64.09
UFAL 64.51 | ECNU 63.41
V3 60.20* | UFAL 63.21
COMMIT. | 59.3 iTac 62.73*
iTac 56.95 | ECNU 60.39*

SINAI 60.29
V3 47.21
Baseline 65.65
Baseline 63.89 | Majority 64.09

Table 5: Results for aspect category detection
(SB3) and aspect category polarity (SB4). Stars
indicate unconstrained systems.

Overall, the systems achieved significantly
higher scores (+10%) in the restaurants domain,
compared to laptops. The best F7 score (74.55%)
for laptops was achieved by the IHS_RD. team,
which relied on Conditional Random Fields (CRF)
with features extracted using named entity recog-
nition, POS tagging, parsing, and semantic anal-
ysis. The IHS_RD. team used additional reviews
from Amazon and Epinions (without annotated
terms) to learn the sentiment orientation of words
and they trained their CRF on the union of the
restaurant and laptop training data that we pro-
vided; the same trained CRF classifier was then
used in both domains.

The second system, the unconstrained system of
DLIREC, also uses a CRF, along with POS and
dependency tree based features. It also uses fea-
tures derived from the aspect terms of the train-
ing data and clusters created from additional re-
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views from YELP and Amazon. In the restaurants
domain, the unconstrained system of DLIREC
ranked first with an F; of 84.01%, but the best
unconstrained system, that of XRCE, was very
close (83.98%). The XRCE system relies on a
parser to extract syntactic/semantic dependencies
(e.g., ‘dissapointed’—‘food’). For aspect term ex-
traction, the parser’s vocabulary was enriched with
the aspect terms of the training data and a term
list extracted from Wikipedia and Wordnet. A set
of grammar rules was also added to detect multi-
word terms and associate them with the corre-
sponding aspect category (e.g., FOOD, PRICE).
The aspect category extraction subtask (SB3)
attracted 18 teams. As shown in Table 5, the best
score was achieved by the system of NRC-Canada
(88.57%), which relied on five binary (one-vs-all)
SVMs, one for each aspect category. The SVMs
used features based on various types of n-grams
(e.g., stemmed) and information from a lexicon
learnt from YELP data, which associates aspect
terms with aspect categories. The latter lexicon
significantly improved F;. The constrained UN-
ITOR system uses five SVMs with bag-of-words
(BoW) features, which in the unconstrained sub-
mission are generalized using distributional vec-
tors learnt from Opinosis and TripAdvisor data.
Similarly, UWB uses a binary MaxEnt classifier
for each aspect category with Bow and TF-IDF
features. The unconstrained submission of UWB
also uses word clusters learnt using various meth-
ods (e.g., LDA); additional features indicate which
clusters the words of the sentence being classi-
fied come from. XRCE uses information identi-
fied by its syntactic parser as well as BoW features
to train a logistic regression model that assigns to
the sentence probabilities of belonging to each as-
pect category. A probability threshold, tuned on
the training data, is then used to determine which
categories will be assigned to the sentence.

5.2 Results of Phase B

The aspect term polarity detection subtask (SB2)
attracted 26 teams for the laptops dataset and 26
teams for the restaurants dataset. DCU and NRC-
Canada had the best systems in both domains (Ta-
ble 6). Their scores on the laptops dataset were
identical (70.48%). On the laptops dataset, the
DCU system performed slightly better (80.95%
vs. 80.15%). For SB2, both NRC-Canada and
DCU relied on an SVM classifier with features



mainly based on n-grams, parse trees, and sev-
eral out-of-domain, publicly available sentiment
lexica (e.g., MPQA, SentiWordnet and Bing Liu’s
Opinion Lexicon). NRC-Canada also used two
automatically compiled polarity lexica for restau-
rants and laptops, obtained from YELP and Ama-
zon data, respectively. Furthermore, NRC-Canada
showed by ablation experiments that the most use-
ful features are those derived from the sentiment
lexica. On the other hand, DCU used only publicly
available lexica, which were manually adapted by
filtering words that do not express sentiment in
laptop and restaurant reviews (e.g., ‘really’) and
by adding others that were missing and do express
sentiment (e.g., ‘mouthwatering’).

The aspect category polarity detection subtask
(SB4) attracted 20 teams. NRC-Canada again had
the best score (82.92%) using an SVM classifier.
The same feature set as in SB2 was used, but it
was further enriched to capture information re-
lated to each specific aspect category. The second
team, XRCE, used information from its syntactic
parser, BoW features, and an out-of-domain senti-
ment lexicon to train an SVM model that predicts
the polarity of each given aspect category.

6 Conclusions and Future Work

We provided an overview of Task 4 of SemEval-
2014. The task aimed to foster research in aspect-
based sentiment analysis (ABSA). We constructed
and released ABSA benchmark datasets contain-
ing manually annotated reviews from two domains
(restaurants, laptops). The task attracted 163 sub-
missions from 32 teams that were evaluated in four
subtasks centered around aspect terms (detecting
aspect terms and their polarities) and coarser as-
pect categories (assigning aspect categories and
aspect category polarities to sentences). The task
will be repeated in SemEval-2015 with additional
datasets and a domain-adaptation subtask.® In the
future, we hope to add an aspect term aggrega-
tion subtask (Pavlopoulos and Androutsopoulos,
2014a).
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Laptops Restaurants ‘

Team Acc. Team Acc.
DCU 70.48 | DCU 80.95
NRC-Can. | 70.48 | NRC-Can. | 80.157
SZTE-NLP | 66.97 | UWB 77.68*
UBham 66.66 | XRCE 77.68
UWB 66.66* | SZTE-NLP | 75.22
Isis_lif 64.52 | UNITOR 74.95%
USF 64.52 | UBham 74.6
SNAP 64.06 | USF 73.19
UNITOR 62.99 | UNITOR 72.48
UWB 62.53 | SeemGo 72.31
IHS _RD. 61.62 | Isis_lif 72.13
SeemGo 61.31 UWB 71.95
ECNU 61.16 | SA-UZH 70.98
ECNU 61.16* | IHS_RD. 70.81
SINAI 58.71 SNAP 70.81
SAP_RI 58.56 | ECNU 70.72
UNITOR 58.56* | ECNU 70.72%
SA-UZH 58.25 | INSIGHT. | 70.72
COMMIT | 57.03 | SAPRI 69.92
INSIGHT. | 57.03 | EBDG 68.6
UMCC. 57.03*% | UMCC. 66.84*
UFAL 56.88 | UFAL 66.57
UMCC. 56.11 UMCC. 66.57
EBDG 5596 | COMMIT | 65.96
JU_CSE. 55.65 | JUCSE. 65.52
UO_UA 55.19% | Blinov 63.58*
V3 53.82 | iTac 62.25%
Blinov 52.29% | V3 59.78
iTac 51.83* | SINAI 58.73
DLIREC 36.54 | DLIREC 42.32%
DLIREC 36.54* | DLIREC 41.71
IITP 66.97 | IITP 67.37
Baseline 51.37 | Baseline 64.28
Majority 52.14 | Majority 64.19

Table 6: Results for the aspect term polarity sub-
task (SB2). Stars indicate unconstrained systems.
The 7 indicates a constrained system that was not
trained on the in-domain training dataset (unlike
the rest of the constrained systems), but on the
union of the two training datasets. IITP’s original
submission files were corrupted; they were resent
and scored after the end of the evaluation period.
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ported our use of the META-SHARE platform.
We are also very grateful to the participants for
their feedback. Maria Pontiki and Haris Papageor-
giou were supported by the IS-HELLEANA (09-



72-922) and the POLYTROPON (KRIPIS-GSRT,
MIS: 448306) projects.

References

Samuel Brody and Noemie Elhadad. 2010. An unsu-
pervised aspect-sentiment model for online reviews.
In Proceedings of NAACL, pages 804-812, Los An-
geles, California.

Michael Gamon, Anthony Aue, Simon Corston-Oliver,
and Eric K. Ringger. 2005. Pulse: Mining customer
opinions from free text. In IDA, pages 121-132,
Madrid, Spain.

Gayatree Ganu, Noemie Elhadad, and Amélie Marian.
2009. Beyond the stars: Improving rating predic-
tions using review text content. In Proceedings of
WebDB, Providence, Rhode Island, USA.

Minqging Hu and Bing Liu. 2004a. Mining and sum-
marizing customer reviews. In Proceedings of KDD,
pages 168—177, Seattle, WA, USA.

Minging Hu and Bing Liu. 2004b. Mining opinion fea-
tures in customer reviews. In Proceedings of AAAI,
pages 755-760, San Jose, California.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool Publishers.

Chong Long, Jie Zhang, and Xiaoyan Zhu. 2010. A
review selection approach for accurate feature rating
estimation. In Proceedings of COLING (Posters),
pages 766—774, Beijing, China.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification us-
ing machine learning techniques. In Proceedings of
EMNLP, pages 79-86, Philadelphia, Pennsylvania,
USA.

John Pavlopoulos and Ion Androutsopoulos. 2014a.
Aspect term extraction for sentiment analysis: New
datasets, new evaluation measures and an improved
unsupervised method. In Proceedings of LASM-
EACL, pages 44-52, Gothenburg, Sweden.

John Pavlopoulos and Ion Androutsopoulos. 2014b.
Multi-granular aspect aggregation in aspect-based
sentiment analysis. In Proceedings of EACL, pages
78-87, Gothenburg, Sweden.

Stelios Piperidis. 2012. The META-SHARE language
resources sharing infrastructure: Principles, chal-
lenges, solutions. In Proceedings of LREC-2012,
pages 36-42, Istanbul, Turkey.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
Proceedings of HLT/EMNLP, pages 339-346, Van-
couver, British Columbia, Canada.

35

Pontus Stenetorp, Sampo Pyysalo, Goran Topic,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: a web-based tool for NLP-assisted
text annotation. In Proceedings of EACL, pages
102-107, Avignon, France.

Tun Thura Thet, Jin-Cheon Na, and Christopher S. G.
Khoo. 2010. Aspect-based sentiment analysis of
movie reviews on discussion boards. J. Information
Science, 36(6):823-848.

Ivan Titov and Ryan T. McDonald. 2008. A joint
model of text and aspect ratings for sentiment sum-
marization. In Proceedings of ACL, pages 308-316,
Columbus, Ohio, USA.

Peter Turney. 2002. Thumbs up or thumbs down? se-
mantic orientation applied to unsupervised classifi-
cation of reviews. In Proceedings of ACL, pages
417-424, Philadelphia, Pennsylvania, USA.



SemEval-2014 Task 5: L2 Writing Assistant

Maarten van Gompel, Iris Hendrickx,

Antal van den Bosch
Centre for Language Studies,
Radboud University Nijmegen,
The Netherlands
proycon@anaproy.nl,
i.hendrickx@let.ru.nl,
a.vandenbosch@let.ru.nl

Abstract

We present a new cross-lingual task for
SemEval concerning the translation of
L1 fragments in an L2 context. The
task is at the boundary of Cross-Lingual
Word Sense Disambiguation and Machine
Translation. It finds its application in the
field of computer-assisted translation, par-
ticularly in the context of second language
learning. Translating L1 fragments in an
L2 context allows language learners when
writing in a target language (L2) to fall
back to their native language (L.1) when-
ever they are uncertain of the right word
or phrase.

1 Introduction

We present a new cross-lingual and application-
oriented task for SemEval that is situated in the
area where Word Sense Disambiguation and Ma-
chine Translation meet. Finding the proper trans-
lation of a word or phrase in a given context is
much like the problem of disambiguating between
multiple senses.

In this task participants are asked to build a
translation/writing assistance system that trans-
lates specifically marked L1 fragments in an L2
context to their proper L2 translation. This type
of translation can be applied in writing assistance
systems for language learners in which users write
in a target language, but are allowed to occasion-
ally back off to their native L1 when they are un-
certain of the proper lexical or grammatical form
in L2. The task concerns the NLP back-end rather
than any user interface.

Full-on machine translation typically concerns
the translation of complete sentences or texts from
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L1 to L2. This task, in contrast, focuses on smaller
fragments, side-tracking the problem of full word
reordering.

We focus on the following language combi-
nations of L1 and L2 pairs: English-German,
English-Spanish, French-English and Dutch-
English. Task participants could participate for all
language pairs or any subset thereof.

2 Task Description

We frame the task in the context of second lan-
guage learning, yielding a specific practical appli-
cation.

Participants build a translation assistance sys-
tem rather than a full machine translation system.
The L1 expression, a word or phrase, is translated
by the system to L2, given the L2 context already
present, including right-side context if available.
The aim here, as in all translation, is to carry the
semantics of the L1 fragment over to L2 and find
the most suitable L2 expression given the already
present L2 context.

Other than a limit on length (6 words), we do
not pose explicit constraints on the kinds of L1
fragments allowed. The number of L1 fragments
is limited to one fragment per sentence.

The task addresses both a core problem of
WSD, with cross-lingual context, and a sub-
problem of Phrase-based Statistical Machine
Translation; that of finding the most suitable trans-
lation of a word or phrase. In MT this would be
modelled by the translation model. In our task
the full complexity of full-sentential translation
is bypassed, putting the emphasis on the seman-
tic aspect of translation. Our task has specific
practical applications and a specific intended au-
dience, namely intermediate and advanced second
language learners, whom one generally wants to
encourage to use their target language as much as
possible, but who may often feel the need to fall
back to their native language.

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 3644,
Dublin, Ireland, August 23-24, 2014.



Currently, language learners are forced to fall
back to a bilingual dictionary when in doubt. Such
dictionaries do not take the L2 context into ac-
count and are generally more constrained to single
words or short expressions. The proposed applica-
tion would allow more flexible context-dependent
lookups as writing progresses. The task tests how
effectively participating systems accomplish this.

The following examples illustrate the task for
the four language pairs we offer:

e Input (L1=English,L.2=Spanish): “Todo ello,
in accordance con los principios que siempre
hemos apoyado.”

Desired output: “Todo ello, de conformidad
con los principios que siempre hemos apoy-
ado.”

Input (L1-English, L2=German): “Das,
was wir heute machen, is essentially ein
Argernis.”

Desired output: “Das, was wir heute machen,
ist im Grunde genommen ein Argernis.”

Input (L1=French,L2=English): “I rentre a
la maison because I am tired.”

Desired output: “I return home because I am
tired.”

Input (L1=Dutch, L2=English): “Workers
are facing a massive aanval op their employ-
ment and social rights.”

Desired output: “Workers are facing a mas-
sive attack on their employment and social
rights.”

The task can be related to two tasks that were
offered in previous years of SemEval: Lexical
Substitution (Mihalcea et al., 2010) and most no-
tably Cross-lingual Word Sense Disambiguation
(Lefever and Hoste, 2013).

When comparing our task to the Cross-Lingual
Word-Sense Disambiguation task, one notable dif-
ference is the fact that our task concerns not just
words, but also phrases. Another essential differ-
ence is the nature of the context; our context is in
L2 instead of L1. Unlike the Cross-Lingual Word
Sense Disambiguation task, we do not constrain
the L1 words or phrases that may be used for trans-
lation, except for a maximum length which we set
to 6 tokens, whereas Lefever and Hoste (2013)
only tested a select number of nouns. Our task
emphasizes a correct meaning-preserving choice
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of words in which translations have to fit in the
L2 context. There is thus a clear morphosyntactic
aspect to the task, although less prominent than
in full machine translation, as the remainder of
the sentence, already in L2, does not need to be
changed. In the Cross-Lingual Word Sense Dis-
ambiguation tasks, the translations/senses were
lemmatised. We deliberately chose a different path
that allows for the envisioned application to func-
tion directly as a translation assistance system.

A pilot study was conducted to test the feasibil-
ity of the proposed translation system (van Gom-
pel and van den Bosch, 2014). It shows that L2
context information can be a useful cue in transla-
tion of L1 fragments to L2, improving over a non-
context-informed baseline.

3 Data

We did not provide training data for this task, as
we did not want to bias participating systems by
favouring a particular sort of material and method-
ology. Moreover, it would be a prohibitively large
task to manually collect enough training data of
the task itself. Participants were therefore free to
use any suitable training material such as parallel
corpora, wordnets, or bilingual lexica.

Trial and test data has been collected for the
task, both delivered in a simple XML format that
explicitly marks the fragments. System output of
participants adheres to the same format. The trial
set, released early on in the task, was used by par-
ticipants to develop and tune their systems on. The
test set corresponds to the final data released for
the evaluation period; the final evaluation was con-
ducted on this data.

The trial data was constructed in an automated
fashion in the way described in our pilot study
(van Gompel and van den Bosch, 2014). First a
phrase-translation table is constructed from a par-
allel corpus. We used the Europarl parallel corpus
(Koehn, 2005) and the Moses tools (Koehn et al.,
2007), which in turn makes use of GIZA++ (Och
and Ney, 2000). Only strong phrase pairs (ex-
ceeding a set threshold) were retained and weaker
ones were pruned. This phrase-translation table
was then used to create input sentences in which
the L2 fragments are swapped for their L1 coun-
terparts, effectively mimicking a fall-back to L1 in
an L2 context. The full L2 sentence acts as refer-
ence sentence. Finally, to ensure all fragments are
correct and sensible, a manual selection from this



automatically generated corpus constituted the fi-
nal trial set.

In our pilot study, such a data set, even with-
out the manual selection stage, proved adequate to
demonstrate the feasibility of translating L.1 frag-
ments in an L2 context (van Gompel and van den
Bosch, 2014). One can, however, rightfully argue
whether such data is sufficiently representative for
the task and whether it would adequately cover in-
stances where L2 language learners might experi-
ence difficulties and be inclined to fall back to L1.
We therefore created a more representative test set
for the task.

The actual test set conforms to much more
stringent constraints and was composed entirely
by hand from a wide variety of written sources.
Amongst these sources are study books and gram-
mar books for language learners, short bilingual
on-line stories aimed at language learners, gap-
exercises and cloze tests, and contemporary writ-
ten resources such as newspapers, novels, and
Wikipedia. We aimed for actual learner corpora,
but finding suitable learner corpora with sufficient
data proved hard. For German we could use the
the Merlin corpus (Abel et al., 2013). In example
(a) we see a real example of a fragment in a fall-
back language in an L2 context from the Merlin
corpus.

(a)

Input: Das Klima hier ist Tropical und wir haben fast
keinen Winter

Reference: Das Klima hier ist tropisch und wir haben
fast keinen Winter.

For various sources bilingual data was avail-
able. For the ones that were monolingual (L2)
we resorted to manual translation. To ensure our
translations were correct, these were later indepen-
dently verified, and where necessary corrected by
native speakers.

A large portion of the test set comes from off-
line resources because we wanted to make sure
that a substantial portion of the test set could not
be found verbatim on-line. This was done to pre-
vent systems from solving the actual problem by
just attempting to just look up the sources through
the available context information.

Note that in general we aimed for the European
varieties of the different languages. However, for
English we did add the US spelling variants as al-
ternatives. A complete list of all sources used in
establishing the test set is available on our web-
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site!.

We created a trial set and test set/gold standard
of 500 sentence pairs per language pair. Due to
the detection of some errors at a later stage, some
of which were caused by the tokenisation pro-
cess, we were forced to remove some sentences
from the test set and found ourselves slightly be-
low our aim for some of the language pairs. The
test set was delivered in both tokenised” and unto-
kenised form. The trial set was delivered only in
tokenised form. Evaluation was conducted against
the tokenised version, but our evaluation script
was designed to be as lenient as possible regard-
ing differences in tokenisation. We explicitly took
cases into account where participant’s tokenisers
split contractions (such as Spanish “del” to “de”
+ “el”), whereas our tokeniser did not.

For a given input fragment, it may well be possi-
ble that there are multiple correct translations pos-
sible. In establishing our test set, we therefore paid
special attention to adding alternatives. To ensure
no alternatives were missed, all participant output
was aggregated in one set, effectively anonymis-
ing the systems, and valid but previously missed
alternatives were added to the gold standard.

4 Evaluation

Several metrics are available for automatic eval-
vation. First, we measure the absolute accuracy
a ¢/n, where c¢ is the number of fragment
translations from the system output that precisely
match the corresponding fragments in the refer-
ence translation, and n is the total number of trans-
latable fragments, including those for which no
translation was found. We also introduce a word-
based accuracy, which unlike the absolute accu-
racy gives some credits to mismatches that show
partial overlap with the reference translation. It as-
signs a score according to the longest consecutive
matching substring between output fragment and
reference fragment and is computed as follows:

|longestsubmatch(output, reference)]

wae= mazx(|output|, |re ference|)

ey

The system with the highest word-based accu-

racy wins the competition. All matching is case-
sensitive.

"https://github.com/proycon/semeval2014task5
2Using ucto, available at https://github.com/proycon/ucto



Systems may decide not to translate fragments
if they cannot find a suitable translation. A recall
metric simply measures the number of fragments
for which the system generated a translation, re-
gardless of whether that translation is correct or
not, as a proportion of the total number of frag-
ments.

In addition to these task-specific metrics, stan-
dard MT metrics such as BLEU, NIST, METEOR
and error rates such as WER, PER and TER, are
included in the evaluation script as well. Scores
such as BLEU will generally be high (> 0.95)
when computed on the full sentence, as a large
portion of the sentence is already translated and
only a specific fragment remains to be evaluated.
Nevertheless, these generic metrics are proven in
our pilot study to follow the same trend as the
more task-specific evaluation metrics, and will be
omitted in the result section for brevity.

It regularly occurs that multiple translations are
possible. As stated, in the creation of the test set
we have taken this into account by explicitly en-
coding valid alternatives. A match with any alter-
native in the reference counts as a valid match. For
word accuracy, the highest word accuracy amongst
all possible alternatives in the reference is taken.
Likewise, participant system output may contain
multiple alternatives as well, as we allowed two
different types of runs, following the example of
the Cross-Lingual Lexical Substitution and Cross-
Lingual Word Sense Disambiguation tasks:

e Best - The system may only output one, its
best, translation;

e Out of Five - The system may output up
to five alternatives, effectively allowing 5
guesses. Only the best match is counted. This
metric does not count how many of the five
are valid.

Participants could submit up to three runs per
language pair and evaluation type.

5 Participants

Six teams submitted systems, three of which par-
ticipated for all language pairs. In alphabetic or-
der, these are:

1. CNRC - Cyril Goutte, Michel Simard, Ma-
rine Carpuat - National Research Council
Canada — All language pairs
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. IUCL - Alex Rudnick, Liu Can, Levi King,
Sandra Kiibler, Markus Dickinson - Indiana
University (US) — all language pairs

. UEdin - Eva Hasler - University of Ed-
inburgh (UK) — all language pairs except
English-German

. UNAL - Sergio Jiménez, Emilio Silva - Uni-
versidad Nacional de Colombia — English-
Spanish

. Sensible - Liling Tan - Universitit des Saar-
landes (Germany) and Nanyang Technolog-
ical University (Singapore) — all language
pairs

. TeamZ - Anubhav Gupta - Université de
Franche-Comté (France) — English-Spanish,
English-German

Participants implemented distinct methodolo-
gies and implementations. One obvious avenue of
tackling the problem is through standard Statisti-
cal Machine Translation (SMT). The CNRC team
takes a pure SMT approach with few modifica-
tions. They employ their own Portage decoder and
directly send an L1 fragment in an L2 context, cor-
responding to a partial translation hypothesis with
only one fragment left to decode, to their decoder
(Goutte et al., 2014). The UEdin team applies a
similar method using the Moses decoder, marking
the L2 context so that the decoder leaves this con-
text as is. In addition they add a context similarity
feature for every phrase pair in the phrase transla-
tion table, which expresses topical similarity with
the test context. In order to properly decode, the
phrase table is filtered per test sentence (Hasler,
2014). The IUCL and UNAL teams do make use
of the information from word alignments or phrase
translation tables, but do not use a standard SMT
decoder. The IUCL system combines various in-
formation sources in a log-linear model: phrase
table, L2 Language Model, Multilingual Dictio-
nary, and a dependency-based collocation model,
although this latter source was not finished in time
for the system submission (Rudnick et al., 2014).
The UNAL system extracts syntactic features as a
means to relate L1 fragments with L2 context to
their L2 fragment translations, and uses memory-
based classifiers to achieve this (Silva-Schlenker
et al., 2014). The two systems on the lower end of
the result spectrum use different techniques alto-
gether. The Sensible team approaches the problem



by attempting to emulate the manual post-editing
process human translators employ to correct MT
output (Tan et al., 2014), whereas TeamZ relies on
Wiktionary as the sole source (Gupta, 2014).

6 Results

The results of the six participating teams can be
viewed in consensed form in Table 1. This table
shows the highest word accuracy achieved by the
participants, in which multiple system runs have
been aggregated. A ranking can quickly be dis-
tilled from this, as the best score is marked in
bold. The system by the University of Edinburgh
emerges as the clear winner of the task. The full
results of the various system runs by the six par-
ticipants are shown in Tables 2 and 3, two pages
down, all three aforementioned evaluation metrics
are reported there and the systems are sorted by
word accuracy per language pair and evaluation

type.

Team en-es oof en-de oof
CNRC 0.745 0.887 0.717 0.868
IUCL 0.720 0.847 0.722 0.857
UEdin 0.827 0949 - -
UNAL 0.809 0.880 - -
Sensible | 0.351 0.231 0.233 0.306
TeamZ | 0.333 0.386 0.293 0.385
fr-en oof nl-en oof
CNRC 0.694 0.839 0.610 0.723
IUCL 0.682 0.800 0.679 0.753
UEdin 0.824 0939 0.692 0.811
UNAL - - - -
Sensible | 0.116 0.14  0.152 0.171
TeamZ | - - - -

Table 1: Highest word accuracy per team, per lan-
guage pair, and per evaluation type (out-of-five is
include in the “oof” column). The best score in
each column is marked in bold.

For the lowest-ranking participants, the score is
negatively impacted by the low recall; their sys-
tems could not find translations for a large number
of fragments.

Figures 1 (next page) and 2 (last page) show the
results for the best evaluation type for each sys-
tem run. Three bars are shown; from left to right
these represent accuracy (blue), word-accuracy
(green) and recall (red). Graphs for out-of-five
evaluation were omitted for brevity, but tend to fol-
low the same trend with scores that are somewhat
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higher. These scores can be viewed on the result
website at http://github.com/proycon/
semeval201l4task5/. The result website also
holds the system output and evaluation scripts with
which all graphs and tables can be reproduced.

We observe that the best scoring team in the
task (UEdin), as well as the CNRC team, both em-
ploy standard Statistical Machine Translation and
achieve high results. From this we can conclude
that standard SMT techniques are suitable for this
task. Teams IUCL and UNAL achieve similarly
good results, building on word and phrase align-
ment data as does SMT, yet not using a traditional
SMT decoder. TeamZ and Sensible, the two sys-
tems ranked lowest do not rely on any techniques
from SMT. To what extent the context-informed
measures of the various participants are effective
can not be judged from this comparison, but can
only be assessed in comparison to their own base-
lines. For this we refer to the system papers of the
participants.

7 Discussion

We did not specify any training data for the task.
The advantage of this is that participants were free
to build a wider variety of systems from various
sources, rather than introducing a bias towards for
instances statistical systems. The disadvantage,
however, is that a comparison of the various sys-
tems does not yield conclusive results regarding
the merit of their methodologies. Discrepancies
might at least be partly due to differences in train-
ing data, as it is generally well understood in MT
that more training data improves results. The base-
lines various participants describe in their system
papers provide more insight to the merit of their
approaches than a comparison between them.

In the creation of the test set, we aimed to mimic
intermediate to high-level language learners. We
also aimed at a fair distribution of different part-
of-speech categories and phrasal length. The dif-
ficulty of the task differs between language pairs,
though not intentionally so. We observe that the
Dutch-English set is the hardest and the Spanish-
English is the easiest in the task. One of the par-
ticipants implicitly observes this through measure-
ment of the number of Out-of-Vocabulary words
(Goutte et al., 2014). This implies that when com-
paring system performance between different lan-
guage pairs, one can not simply ascribe a lower
result to a system having more difficulty with said
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10 English (L1) - German (L2), Best

Score
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Figure 1: English to Spanish (top), English to German (middle) and French to English (bottom). The
three bars, left-to-right, represent Accuracy (blue), Word Accuracy (green) and Recall (red).
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System [ Acc. W.Acc. Recall
English-Spanish (best)
UEdin-run2 0.755 0.827 1.0
UEdin-runl 0.753  0.827 1.0
UEdin-run3 0.745 0.82 1.0
UNAL-run2 0.733  0.809 0.994
UNAL-runl 0.721 0.794 0.994
CNRC-runl 0.667 0.745 1.0
CNRC-run2 0.651 0.735 1.0
IUCL-runl 0.633 0.72 1.0
TUCL-run2 0.633 0.72 1.0
Sensible-wtmxlingyu | 0.239  0.351 0.819
TeamZ-runl 0.223  0.333 0.751
Sensible-wtm 0.145 0.175 0.470
Sensible-wtmxling 0.141 0.171 0.470
English-Spanish (out-of-five)
UEdin-run3 0.928  0.949 1.0
UEdin-runl 0.924  0.946 1.0
UEdin-run2 0.92 0.944 1.0
CNRC-runl 0.843 0.887 1.0
CNRC-run2 0.837 0.884 1.0
UNAL-runl 0.823 0.88 0.994
TUCL-runl 0.781 0.847 1.0
TUCL-run2 0.781 0.847 1.0
Sensible-wtmxlingyu | 0.263  0.416 0.819
TeamZ-runl 0.277 0.386 0.751
Sensible-wtm 0.173  0.231 0.470
Sensible-wtmxling 0.169 0.228 0.470
English-German (best)
IUCL-run2 0.665 0.722 1.0
CNRC-runl 0.657 0.717 1.0
CNRC-run2 0.645 0.702 1.0
TeamZ-runl 0.218 0.293 0.852
TUCL-runl 0.198  0.252 1.0
Sensible-wtmxlingyu | 0.162  0.233 0.878
Sensible-wtm 0.16 0.184 0.647
Sensible-wtmxling 0.152  0.178 0.647
English-German (out-of-five)

CNRC-runl 0.834  0.868 1.0
CNRC-run2 0.828 0.865 1.0
IUCL-run2 0.806  0.857 1.0
TeamZ-runl 0.307 0.385 0.852
IUCL-runl 0.228 0.317 1.0
Sensible-wtmxlingyu | 0.18 0.306 0.878
Sensible-wtm 0.182 0.256 0.647
Sensible-wtmxling 0.174  0.25 0.647

Table 2: Full results for
English-German.

English-Spanish and

language pair. This could rather be an intrinsic
property of the test set or the distance between the
languages.

Distance in syntactic structure between lan-
guages also defines the limits of this task. Dur-
ing composition of the test set it became clear that
backing off to L1 was not always possible when
syntax diverged to much. An example of this is
separable verbs in Dutch and German. Consider
the German sentence “Er ruft seine Mutter an”
(translation: “He calls his mother”). Imagine
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System [ Acc W.Acc. Recall
French-English (best)
UEdin-runl 0.733  0.824 1.0
UEdin-run2 0.731 0.821 1.0
UEdin-run3 0.723 0.816 1.0
CNRC-runl 0.556 0.694 1.0
CNRC-run2 0.533  0.686 1.0
IUCL-runl 0.545 0.682 1.0
TUCL-run2 0.545 0.682 1.0
Sensible-wtmxlingyu | 0.081 0.116 0.321
Sensible-wtm 0.055 0.067 0.210
Sensible-wtmxling 0.055 0.067 0.210
French-English (out-of-five)
UEdin-run2 0.909 0.939 1.0
UEdin-runl 0.905 0.938 1.0
UEdin-run3 0.907 0.937 1.0
CNRC-runl 0.739  0.839 1.0
CNRC-run2 0.731 0.834 1.0
TUCL-runl 0.691 0.8 1.0
IUCL-run2 0.691 0.8 1.0
Sensible-wtmxlingyu | 0.085 0.14 0.321
Sensible-wtmxling 0.061 0.09 0.210
Sensible-wtm 0.061  0.089 0.210
Dutch-English (best)
UEdin-runl 0.575  0.692 1.0
UEdin-run2 0.567 0.688 1.0
UEdin-run3 0.565 0.688 1.0
IUCL-runl 0.544 0.679 1.0
TUCL-run2 0.544  0.679 1.0
CNRC-runl 0.45 0.61 1.0
CNRC-run2 0.444  0.609 1.0
Sensible-wtmxlingyu | 0.115 0.152 0.335
Sensible-wtm 0.092  0.099 0.214
Sensible-wtmxling 0.088  0.095 0.214
Dutch-English (out-of-five)

UEdin-runl 0.733  0.811 1.0
UEdin-run3 0.727  0.808 1.0
UEdin-run2 0.725 0.808 1.0
IUCL-runl 0.634  0.753 1.0
TUCL-run2 0.634  0.753 1.0
CNRC-runl 0.606  0.723 1.0
CNRC-run2 0.602 0.721 1.0
Sensible-wtmxlingyu | 0.123  0.171 0.335
Sensible-wtm 0.099 0.115 0.214
Sensible-wtmxling 0.096 0.112 0.214

Table 3: Full results for French-English and
Dutch-English.

a German language learner wanting to compose
such a sentence but wanting to fall back to En-
glish for the verb “fo call”, which would translate
to German as “anrufen”. The possible input sen-
tence may still be easy to construe: “Er calls seine
Mutter”, but the solution to this problem would
require insertion at two different points, whereas
the task currently only deals with a substitution of
a single fragment. The reverse is arguably even
more complex and may stray too far from what
a language learner may do. Consider an English
language learner wanting to fall back to her na-



tive German, struggling with the English transla-
tion for “anrufen”. She may compose a sentence
such as “He ruft his mother an”, which would
require translating two dependent fragments into
one.

We already have interesting examples in the
gold standard, such as example (b), showing syn-
tactic word-order changes confined to a single
fragment.

(b)

Input: I always wanted iemand te zijn , but now I
realize I should have been more specific.

Reference: I always wanted to be somebody , but
now I realize I should have been more specific.
Participant output (aggregated): to be a person; it to
be; someone to his; to be somebody; person to be;
someone to; someone to be; to be anybody; to anyone;
to be someone; a person to have any; to be someone
else

Another question we can ask, but have not in-
vestigated, is whether a language learner would
insert the proper morphosyntactic form of an L1
word given the L2 context, or whether she may
be inclined to fall back to a normal form such
as an infinitive. Especially in the above case of
separable verbs someone may be more inclined to
circumvent the double fragments and provide the
input: “He anrufen his mother®, but in simpler
cases the same issue arises as well. Consider an
English learner falling back to her native Croatian,
a Slavic language which heavily declines nouns.
If she did not know the English word “book” and
wanted to write “He gave the book to him”, she
could use either the Croatian word “knjigu” in its
accusative declension or fall back to the normal
form “knjiga”. A proper writing assistant system
would have to account for both options.

We can analyse which of the sentences in the
test data participants struggled with most. First
we look at the number of sentences that produce
an average word accuracy of zero, measured per
sentence over all systems and runs in the out-of-
five metric. This means no participant was close
to the correct output. There were 6 such sentences
in English-Spanish, 17 in English-German, 6 in
French-English, and 32 in Dutch-English.

A particularly difficult context from the Span-
ish set is when a subjunctive verb form was re-
quired, but an indicative verb form was submit-
ted by the systems, such as in the sentence: “Es-
pero que los frenos del coche funcionen bien.”.
Though this may be deduced from context (the
word “Espero”, expressing hope yet doubt, be-
ing key here), it is often subtle and hard to cap-
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ture. Another problematic case that recurs in the
German and Dutch data sets is compound nouns.
The English fragment “work motivation” should
translate into the German compound “Arbeitsmo-
tivation” or “Arbeitsmoral”, yet participants were
not able to find the actual compound noun. Beside
compound nouns, other less frequent multi-word
expressions are also amongst the difficult cases.
Sparsity or complete absence in training data of
these expressions is why systems struggle here.
Another point of discussion is the fact that we
enriched the test set by adding previously unavail-
able alternative translations from an aggregated
pool of system output. This might draw criticism
for possibly introducing a bias, also considering
the fact that the decision to include a particular al-
ternative for a given context is not always straight-
forward and at times subjective. We, however,
contend that this is the best way to ensure that
valid system output is not discarded and reduce the
number of false negatives. The effect of this mea-
sure has been an increase in (word) accuracy for
all systems, without significant impact on ranking.

8 Conclusion

In this SemEval task we showed that systems can
translate L1 fragments in an L2 context, a task
that finds application in computer-assisted trans-
lation and computer-assisted language learning.
The localised translation of a fragment in a cross-
lingual context makes it a novel task in the field.
Though the task has its limits, we argue for its
practical application in a language-learning set-
ting: as a writing assistant and dictionary replace-
ment. Six contestants participated in the task,
and used an ensemble of techniques from Statis-
tical Machine Translation and Word Sense Disam-
biguation. Most of the task organizers’ time went
into manually establishing a gold standard based
on a wide variety of sources, most aimed at lan-
guage learners, for each of the four language pairs
in the task. We have been positively surprised by
the good results of the highest ranking systems.
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Abstract

SemEval-2014 Task 6 aims to advance
semantic parsing research by providing a
high-quality annotated dataset to com-
pare and evaluate approaches. The task
focuses on contextual parsing of robotic
commands, in which the additional con-
text of spatial scenes can be used to guide
a parser to control a robot arm. Six teams
submitted systems using both rule-based
and statistical methods. The best per-
forming (hybrid) system scored 92.5%
and 90.5% for parsing with and without
spatial context. However, the best per-
forming statistical system scored 87.35%
and 60.84% respectively, indicating that
generalized understanding of commands
given to a robot remains challenging, de-
spite the fixed domain used for the task.

1 Introduction

Semantic parsers analyze sentences to produce
formal meaning representations that are used for
the computational understanding of natural lan-
guage. Recently, state-of-the-art semantic pars-
ing methods have used for a variety of applica-
tions, including question answering (Kwiat-
kowski et al., 2013; Krishnamurthy and Mitchell,
2012), dialog systems (Artzi and Zettlemoyer,
2011), entity relation extraction (Kate and
Mooney, 2010) and robotic control (Tellex,
2011; Kim and Mooney, 2012).

Different parsers can be distinguished by the
level of supervision they require during training.
Fully supervised training typically requires an
annotated dataset that maps natural language
(NL) to a formal meaning representation such as
logical form. However, because annotated data is

This work is licensed under a Creative Commons Attribution

4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0

often not available, a recent trend in semantic
parsing research has been to eschew supervised
training in favour of either unsupervised or
weakly-supervised methods that utilize addi-
tional information. For example, Berant and Li-
ang (2014) use a dataset of 5,810 question-
answer pairs without annotated logical forms to
induce a parser for a question-answering system.
In comparison, Poon (2013) converts NL ques-
tions into formal queries via indirect supervision
through database interaction.

In contrast to previous work, the shared task
described in this paper uses the Robot Com-
mands Treebank (Dukes, 2013a), a new dataset
made available for supervised semantic parsing.
The chosen domain is robotic control, in which
NL commands are given to a robot arm used to
manipulate shapes on an 8 x 8 game board. De-
spite the fixed domain, the task is challenging as
correctly parsing commands requires understand-
ing spatial context. For example, the command in
Figure 1 may have several plausible interpreta-
tions, given different board configurations.

‘Move the pyramid on the blue cube on the gray one.’

Figure 1: Example scene with a contextual spatial
command from the Robot Commands Treebank.

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 45-53,
Dublin, Ireland, August 23-24, 2014.



The task is inspired by the classic Al system
SHRLDU, which responded to NL commands to
control a robot for a similar game board (Wino-
grad, 1972), although that system is reported to
not have generalized well (Dreyfus, 2009; Mit-
kov, 1999). More recent research in command
understanding has focused on parsing jointly
with grounding, the process of mapping NL de-
scriptions of entities within an environment to a
semantic representation. Previous work includes
Tellex et al. (2011), who develop a small corpus
of commands for a simulated fork lift robot, with
grounding performed using a factor graph. Simi-
larly, Kim and Mooney (2012) perform joint
parsing and grounding using a corpus of naviga-
tion commands. In contrast, this paper focuses on
parsing using additional situational context for
disambiguation and by using a larger NL dataset,
in comparison to previous robotics research.

In the remainder of this paper, we describe the
task, the dataset and the metrics used for evalua-
tion. We then compare the approaches used by
participant systems and conclude with suggested
improvements for future work.

2 Task Description

The long term research goal encouraged by the
task is to develop a system that will robustly
execute NL robotic commands. In general, this is
a highly complex problem involving computa-
tional processing of language, spatial reasoning,
contextual awareness and knowledge representa-
tion. To simplify the problem, participants were
provided with additional tools and resources,
allowing them to focus on developing a semantic
parser for a fixed domain that would fit into an
existing component architecture. Figure 2 shows
how these components interact.

Semantic parser: Systems submitted by partici-
pants are semantic parsers that accept an NL
command as input, mapping this to a formal Ro-
bot Control Language (RCL), described further
in section 3.3. The Robot Commands Treebank
used for the both training and evaluation is an
annotated corpus that pairs NL commands with
contextual RCL statements.

Spatial planner: A spatial planner is provided
as an open Java API'. Commands in the treebank
are specified in the context of spatial scenes. By
interfacing with the planner, participant systems

! https://github.com/kaisdukes/train-robots
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Figure 2: Integrated command understanding system.

have access to this additional information. For
example, given an RCL fragment for the expres-
sion ‘the red cube on the blue block’, the planner
will ground the entity, returning a list of zero or
more board coordinates corresponding to possi-
ble matches. The planner also validates com-
mands to determine if they are compatible with
spatial context. It can therefore be used to con-
strain the search space of possible parses, as well
as enabling early resolution of attachment ambi-
guity during parsing.

Robotic simulator: The simulated environment
consists of an 8 x 8 board that can hold prisms
and cubes which occur in eight different colors.
The robot’s gripper can move to any discrete po-
sition within an 8 x 8 x 8 space above the board.
The planner uses the simulator to enforce physi-
cal laws within the game. For example, a block
cannot remain unsupported in empty space due
to gravity. Similarly, prisms cannot lie below
other block types. In the integrated system, the
parser uses the planner for context, then provides
the final RCL statement to the simulator which
executes the command by moving the robot arm
to update the board.

3

3.1

For the shared task, 3,409 sentences were se-
lected from the treebank. This data size compares
with related corpora used for semantic parsing
such as the ATIS (Zettlemoyer and Collins,
2007), GeoQuery (Kate et al., 2005), Jobs (Tang
and Mooney, 2001) and RoboCup (Kuhlmann et
al., 2004) datasets, consisting of 4,978; 880; 640
and 300 sentences respectively.

The treebank was developed via a game with a
purpose (www.TrainRobots.com), in Which play-
ers were shown before and after configurations

Data

Data Collection
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Figure 3: Semantic tree from the treebank with an elliptical anaphoric node and its annotated antecedent.

and asked to give a corresponding command to a
hypothetical robot arm. To make the game more
competitive and to promote data quality, players
rated each other’s sentences and were rewarded
with points for accurate entries (Dukes, 2013b).

3.2 Annotation

In total, over 10,000 commands were collected
through the game. During an offline annotation
phase, sentences were manually mapped to RCL.
However, due to the nature of the game, players
were free to enter arbitrarily complex sentences
to describe moves, not all of which could be rep-
resented by RCL. In addition, some commands
were syntactically well-formed, but not compati-
ble with the corresponding scenes. The 3,409
commands selected for the task had RCL state-
ments that were both understood by the planner

(sequence:
(event:
(action:
(entity:
(id: 1)
(color: cyan)
(type: prism)
(spatial-relation:
(relation: above)
(entity:
(color:
(type:

take)

white)
cube)))))

(event:
(action:
(entity:
(type:
(reference-1id:

(destination:
(spatial-relation:
(relation: above)
(entity:
(color:
(color:

(type:

drop)

reference)
1))

blue)
green)
stack))))))

Figure 4: RCL representation with co-referencing.
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and when given to the robotic simulator resulted
in the expected move being made between before
and after board configurations. Due to this extra
validation step, all RCL statements provided for
the task were contextually well-formed.

3.3

RCL is a novel linguistically-oriented semantic
representation. An RCL statement is a semantic
tree (Figure 3) where leaf nodes generally align
to words in the corresponding sentence, and non-
leaves are tagged using a pre-defined set of cate-
gories. RCL is designed to annotate rich linguis-
tic structure, including ellipsis (such as ‘place [it]
on’), anaphoric references (‘it” and ‘one’), multi-
word spatial expressions (‘on top of”) and lexical
disambiguation (‘one’ and ‘place’). Due to ellip-
sis, unaligned words and multi-word expressions,
a leaf node may align to zero, one or more words
in a sentence. Figure 4 shows the RCL syntax for
the tree in Figure 3, as accepted by the spatial
planner and the simulator. As these components
do not require NL word alignment data, this ad-
ditional information was made available to task
participants for training via a separate Java API.

The tagset used to annotate RCL nodes can be
divided into general tags (that are arguably ap-
plicable to other domains) and specific tags that
were customized for the domain in the task (Ta-
bles 1 and 2 overleaf, respectively). The general
elements are typed entities (labelled with seman-
tic features) that are connected using relations
and events. This universal formalism is not do-
main-specific, and is inspired by semantic frames
(Fillmore and Baker, 2001), a practical represen-
tation used for NL understanding systems (Dzik-
ovska, 2004; UzZaman and Allen, 2010; Coyne
et al., 2010; Dukes, 2009).

In the remainder of this section we summarize
aspects of RCL that are relevant to the task; a

Robot Control Language



more detailed description is provided by Dukes
(2013a; 2014). In an RCL statement such as Fig-
ure 4, a preterminal node together with its child
leaf node correspond to a feature-value pair
(such as the feature color and the constant blue).
Two special features which are distinguished by
the planner are id and reference-id, which are
used for co-referencing such as for annotating
anaphora and their antecedents. The remaining
features model the simulated robotic domain. For

RCL Element Description
action Aligped tc,) a v‘er_bal gr?up in NL,
e.g. ‘drop’ or ‘pick up’.
cardinal Number (e.g. 2 or ‘three’).
color Colored attribute of an entity.
destination A spatial destination.
entity Entity within the domain.
event Specification of a command.
id Id for anaphoric references.
indicator Spatial attribute of an entity.
measure Used for distance metrics.

reference-id A resolved reference.

relation Relation type (e.g. ‘above’).

Used to specify a sequence of

sequence
g events or statements.

Used to specify a spatial relation
between two entities or to de-
scribe a location.

spatial-relation

type Used to specify an entity type.

Table 1: Universal semantic elements in RCL.

Category Values

Actions move, take, drop

left, right, above, below,
forward, backward, adjacent,
within, between, nearest, near,
furthest, far, part

Relations

left, leftmost, right, rightmost,
top, highest, bottom, lowest,
front, back, individual, furthest,
nearest, center

Indicators

cube, prism, corner, board stack,
row, column, edge, tile, robot,
region, reference, type-reference

entity types

blue, cyan, red, yellow,

Colors .
green, magenta, gray, white

Table 2: Semantic categories customized for the task.
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example, the values of the action feature are the
moves used to control the robotic arm, while
values of the type and relation features are the
entity and relation types understood by the spa-
tial planner (Table 2). As well as qualitative rela-
tions (such as ‘below’ or ‘above’), the planner
also accepts spatial relations that include quanti-
tative measurements, such as in ‘two squares left
of the red prism’ (Figure 5).

event

-
action entity destination
col(){\type sp—rel‘ation
: : ] T
measure relqtion entity
ent‘ity

color  type

cardinal  type

place the blue pyrémid one square left of the red pyramid

Fig.ure 5: A quantitative relation with a landmark.

RCL distinguishes between relations which
relate entities and indicators, which are attributes
of entities (such as ‘left’ in ‘the left cube’). For
the task, participants are asked to map NL sen-
tences to well-formed RCL by identifying spatial
relations and indicators, then parsing higher-level
entities and events. Finally, a well-formed RCL
tree with an event (or sequence of events) at top-
level is given the simulator for execution.

4  Evaluation Metrics

Out of the 3,400 sentences annotated for the task,
2,500 sentences were provided to participants for
system training. During evaluation, trained sys-
tems were presented with 909 previously unseen
sentences and asked to generate corresponding
RCL statements, with access to the spatial plan-
ner for additional context. To keep the evaluation
process as simple as possible, each parser’s out-
put for a sentence was scored as correct if it ex-
actly matched the expected RCL statement in the
treebank. Participants were asked to calculate
two metrics, P and NP, which are the proportion
of exact matches with and without using the spa-
tial planner respectively:

_ # matches with planning

# sentences

_ # matches without planning

# sentences



System Authors Statistical? Strategy P NP NP -P
UW-MRS  Packard Hybrid  Rule-based ERG + Berkeley parser 92,50 90.50 -2.00
AT&T Labs Stoyanchevetal. Statistical Statistical maximum entropy parser 87.35 60.84 -26.51
RoBox Evang and Bos Statistical CCG parser + structured perceptron 86.80 79.21 -7.59
Shrdlite Ljunglof Rule-based Hand crafted domain-specific grammar 86.10 51.50 -34.60
KUL-Eval  Mattelaer et al. Statistical CCG parser 71.29 57.76  -13.53
UwM Kate Statistical KRISP parser N/A 45,98 N/A

Table 3: System results for supervised semantic parsing of the Robot Commands Treebank
(P = parsing with integrated spatial planning, NP = parsing without integrated spatial planning,
NP - P = drop in performance without integrated spatial planning, N/A = performance not available).

These metrics contrast with measures for par-
tially correct parsed structures, such as Parseval
(Black et al., 1991) or the leaf-ancestor metric
(Sampson and Babarczy, 2003). The rationale for
using a strict match is that in the integrated sys-
tem, a command will only be executed if it is
completely understood, as both the spatial plan-
ner and the simulator require well-formed RCL.

5 Systems and Results

Six teams participated in the shared task using a
variety of strategies (Table 3). The last measure
in the table gives the performance drop without
spatial context. The value NP - P = -2 for the
best performing system suggests this as an upper
bound for the task. The different values of this
measure indicate the sensitivity to (or possibly
reliance on) context to guide the parsing process.
In the remainder of this section we compare the
approaches and results of the six systems.

UW-MRS: Packard (2014) achieved the best
score for parsing both with and without spatial
context, at 92.5% and 90.5%, respectively, using
a hybrid system that combines a rule-based
grammar with the Berkeley parser (Petrov et al.,
2006). The rule-based component uses the Eng-
lish Resource Grammar, a broad coverage hand-
written HPSG grammar for English. The ERG
produces a ranked list of Minimal Recursion
Semantics (MRS) structures that encode predi-
cate argument relations (Copestake et al., 2005).
Approximately 80 rules were then used to con-
vert MRS to RCL. The highest ranked result that
is validated by the spatial planner was selected as
the output of the rule-based system. Using this
approach, Packard reports scores of P = 82.4%
and NP = 80.3% for parsing the evaluation data.
To further boost performance, the Berkeley
parser was used for back-off. To train the parser,
the RCL treebank was converted to phrase struc-
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ture by removing non-aligned nodes and insert-
ing additional nodes to ensure one-to-one align-
ment with words in NL sentences. Performance
of the Berkeley parser alone was NP = 81.5% (no
P-measure was available as spatial planning was
not integrated).

To combine components, the ERG was used
initially, with fall back to the Berkeley parser
when no contextually compatible RCL statement
was produced. The hybrid approach improved
accuracy considerably, with P = 92.5% and NP =
90.5%. Interestingly, Packard also performs pre-
cision and recall analysis, and reports that the
rule-based component had higher precision,
while the statistical component had higher recall,
with the combined system outperforming each
separate component in both precision and recall.

AT&T Labs Research: The system by Stoy-
anchev et al. (2014) scored second best for con-
textual parsing and third best for parsing without
using the spatial planner (P = 87.35% and NP =
60.84%). In contrast to Packard’s UW-MRS
submission, the AT&T system is a combination
of three statistical models for tagging, parsing
and reference resolution. During the tagging
phase, a two-stage sequence tagger first assigns a
part-of-speech tag to each word in a sentence,
followed by an RCL feature-value pair such as
(type: cube) or (color: blue), with unaligned
words tagged as ‘O’. For parsing, a constituency
parser was trained using non-lexical RCL trees.
Finally, anaphoric references were resolved us-
ing a maximum entropy feature model. When
combined, the three components generate a list
of weighted RCL trees, which are filtered by the
spatial planner. Without integrated planning, the
most-probable parse tree is selected.

In their evaluation, Stoyanchev et al. report
accuracy scores for the separate phases as well as
for the combined system. For the tagger, they
report an accuracy score of 95.2%, using the



standard split of 2,500 sentences for training and
909 for evaluation. To separately measure the
joint accuracy of the parser together with refer-
ence resolution, gold-standard tags were used
resulting in a performance of P = 94.83% and NP
= 67.55%. However, using predicted tags, the
system’s final performance dropped to P
87.35% and NP = 60.84%. To measure the effect
of less supervision, the models were additionally
trained on only 500 sentences. In this scenario,
the tagging model degraded significantly, while
the parsing and reference resolution models per-
formed nearly as well.

RoBox: Using Combinatory Categorial Grammar
(CCG) as a semantic parsing framework has
been previously shown to be suitable for translat-
ing NL into logical form. Inspired by previous
work using a CCG parser in combination with a
structured perceptron (Zettlemoyer and Collins,
2007), RoBox (Evang and Bos, 2014) was the
best performing CCG system in the shared task
scoring P = 86.8% and NP = 79.21%.

Using a similar approach to UW-MRS for its
statistical component, RCL trees were interpreted
as phrase-structure and converted to CCG deriva-
tions for training. During decoding, RCL state-
ments were generated directly by the CCG
parser. However, in contrast to the approach used
by the AT&T system, RoBox interfaces with the
planner during parsing instead of performing
spatial validation a post-processing step. This
enables early resolution of attachment ambiguity
and helps constrain the search space. However,
the planner is only used to validate entity ele-
ments, so that event and sequence elements were
not validated. As a further difference to the
AT&T system, anaphora resolution was not per-
formed using a statistical model. Instead, multi-
ple RCL trees were generated with different can-
didate anaphoric references, which were filtered
out contextually using the spatial planner.

RoBox suffered only a 7.59% absolute drop in
performance without using spatial planning, sec-
ond only to UW-MRS at 2%. Evang and Bos
perform error analysis on RoBox and report that
most errors relate to ellipsis, the ambiguous word
one, anaphora or attachment ambiguity. They
suggest that the system could be improved with
better feature selection or by integrating the CCG
parser more closely with the spatial planner.

Shrdlite: The Shrdlite system by Ljunglof
(2014), inspired by the Classic SHRDLU system
by Winograd (1972), is a purely rule-based sys-
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tem that was shown to be effective for the task.
Scoring P = 86.1% and NP = 51.5%, Shrdlite
ranked fourth for parsing with integrated plan-
ning, and fifth without using spatial context.
However, it suffered the largest absolute drop in
performance without planning (34.6 points), in-
dicating that integration with the planner is es-
sential for the system’s reported accuracy.
Shrdlite uses a hand-written compact unifica-
tion grammar for the fragment of English appear-
ing in the training data. The grammar is small,
consisting of only 25 grammatical rules and 60
lexical rules implemented as a recursive-descent
parser in Prolog. The lexicon consists of 150
words (and multi-word expressions) divided into
23 lexical categories, based on the RCL pre-
terminal nodes found in the treebank. In a post-
processing phase, the resulting parse trees are
normalized to ensure that they are well-formed
by using a small set of supplementary rules.
However, the grammar is highly ambiguous
resulting in multiple parses for a given input sen-
tence. These are filtered by the spatial planner. If
multiple parse trees were found to be compatible
with spatial context (or when not using the plan-
ner), the tree with the smallest number of nodes
was selected as the parser’s final output. Addi-
tionally, because both the training and evaluation
data were collected via crowdsourcing, sentences
occasionally contain spelling errors, which were
intentionally included in the task. To handle mis-
spelt words, Shrdlite uses Levenshtein edit dis-
tance with a penalty to reparse sentences when
the parser initially fails to produce any analysis.

KUL-Eval: The CCG system by Mattelaer et al.
(2014) uses a different approach to the RoBox
system described previously. KUL-Eval scored P
=71.29% and NP = 57.76% in comparison to the
RoBox scores of P = 86.8% and NP = 79.21%.
During training, the RCL treebank was con-
verted to A-expressions. This process is fully re-
versible, so that no information in an RCL tree is
lost during conversion. In contrast to RoBox, but
in common with the AT&T parser, KUL-Eval
performs spatial validation as a post-processing
step and does not integrate the planner directly
into the parsing process. A probabilistic CCG is
used for parsing, so that multiple A-expressions
are returned (each with an associated confidence
measure) that are translated into RCL. Finally, in
the validation step, the spatial planner is used to
discard RCL statements that are incompatible
with spatial context and the remaining most-
probable parse is returned as the system’s output.



Mattelaer et al. note that in several cases the
parser produced partially correct statements but
that these outputs did not contribute to the final
score, given the strictly matching measures used
for the P and NP metrics. However, well-formed
RCL statements are required by the spatial plan-
ner and robotic simulator for the integrated sys-
tem to robustly execute the specified NL com-
mand. Partially correct structures included state-
ments which almost matched the expected RCL
tree with the exception of incorrect feature-
values, or the addition or deletion of nodes. The
most common errors were feature-values with
incorrect entity types (such as ‘edge’ and ‘re-
gion’) and mismatched spatial relations (such as
confusing ‘above’ and ‘within’ and confusing
‘right’, “left” and ‘front”).

UWM: The UWM system submitted by Kate
(2014) uses an existing semantic parser, KRISP,
for the shared task. KRISP (Kernel-based Robust
Interpretation for Semantic Parsing) is a trainable
semantic parser (Kate and Mooney, 2006) that
uses Support Vector Machines (SVMs) as the
machine learning method with a string subse-
quence kernel. As well as training data consisting
of RCL paired with NL commands, KRISP re-
quired a context-free grammar for RCL, which
was hand-written for UWM. During training, id
nodes were removed from the RCL trees. These
were recovered after parsing in a post-processing
phase to resolve anaphora by matching to the
nearest preceding antecedent.

In contrast to other systems submitted for the
task, UWM does not interface with the spatial
planner and parses purely non-contextually. Be-
cause the planner was not used, the system’s ac-
curacy was negatively impacted by simple issues
that may have been easily resolved using spatial
context. For example, in RCL, the verb ‘place’
can map to either drop or move actions, depend-
ing on whether or not a block is held in the grip-
per in the corresponding spatial scene. Without
using spatial context, it is hard to distinguish be-
tween these cases during parsing.

The system scored a non-contextual measure
of NP = 45.98%, with Kate reporting a 51.18%
best F-measure (at 72.67% precision and 39.49%
recall). No P-measure was reported as the spatial
planner was not used. Due to memory constraints
when training the SVM classifiers, only 1,500
out of 2,500 possible sentences were used from
the treebank to build the parsing model. How-
ever, it may be possible to increasing the size of
training data in future work through sampling.
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6 Discussion

The six systems evaluated for the task employed
a variety of semantic parsing strategies. With the
exception of one submission, all systems inter-
faced with the spatial planner, either in a post-
processing phase, or directly during parsing to
enable early disambiguation and to help con-
strain the search space. An open question that
remains following the task is how applicable
these methods would be to other domains. Sys-
tems that relied heavily on the planner to guide
the parsing process could only be adapted to do-
mains for a which a planner could conceivably
exist. For example, nearly all robotic tasks such
as such as navigation, object manipulation and
task execution involve aspects of planning. NL
question-answering interfaces to databases or
knowledge stores are also good candidates for
this approach, since parsing NL questions into a
semantic representation within the context of a
database schema or an ontology could be guided
by a query planner.

However, approaches with a more attractive
NP - P measure (such as UW-MRS and RoBox)
are arguably more easily generalized to other
domains, as they are less reliant on a planner.
Additionally, the usual arguments for rule-based
systems verses supervised statistical systems ap-
ply to any discussion on domain adaptation: rule-
based systems require human manual effort,
while supervised statistical systems required an-
notated data for the new domain.

In comparing the best two statistical systems
(AT&T and RoBox) it is interesting to note that
these performed similarly with integrated plan-
ning (P = 87.35% and 86.80%, respectively), but
differed considerably without planning (NP =
60.84% and 79.21%). As these two systems em-
ployed different parsers (a constituency parser
and a CCG parser), it is difficult to perform a
direct comparison to understand why the AT&T
system is more reliant on spatial context. It
would also be interesting to understand, in fur-
ther work, why the two CCG-based systems dif-
fered considerably in their P and NP scores.

It is also surprising that the best performing
system, UW-MRS, suffered only a 2% drop in
performance without using the planner, demon-
strating clearly that in the majority of sentences
in the evaluation data, spatial context is not actu-
ally required to perform semantic parsing. Al-
though as shown by the NP - P scores, spatial
context can dramatically boost performance of
certain approaches for the task when used.



7

This paper described a new task for SemEval:
Supervised Semantic Parsing of Robotic Spatial
Commands. Despite its novel nature, the task
attracted high-quality submissions from six
teams, using a variety of semantic parsing strate-
gies.

It is hoped that this task will reappear at Se-
mEval. Several lessons were learnt from this first
version of the shared task which can be used to
improve the task in future. One issue which sev-
eral participants noted was the way in which the
treebank was split into training and evaluation
datasets. Out of the 3,409 sentences in the tree-
bank, the first 2,500 sequential sentences were
chosen for training. Because this data was not
randomized, certain syntactic structures were
only found during evaluation and were not pre-
sent in the training data. Although this may have
affected results, all participants evaluated their
systems against the same datasets. Based on par-
ticipant feedback, in addition to reporting P and
NP-measures, it would also be illuminating to
include a metric such as Parseval Fl1-scores to
measure partial accuracy. An improved version
of the task could also feature a better dataset by
expanding the treebank, not only in terms of size
but also in terms of linguistic structure. Many
commands captured in the annotation game are
not yet represented in RCL due to linguistic phe-
nomena such as negation and conditional state-
ments.

Looking forward, a more promising approach
to improving the spatial planner could be prob-
abilistic planning, so that semantic parsers could
interface with probabilistic facts with confidence
measures. This approach is particularly suitable
for robotics, where sensors often supply noisy
signals about the robot’s environment.

Conclusion and Future Work
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Abstract

This paper describes the SemEval-2014,
Task 7 on the Analysis of Clinical Text
and presents the evaluation results. It fo-
cused on two subtasks: (i) identification
(Task A) and (ii) normalization (Task B)
of diseases and disorders in clinical reports
as annotated in the Shared Annotated Re-
sources (ShARe)! corpus. This task was
a follow-up to the ShARe/CLEF eHealth
2013 shared task, subtasks 1a and 1b,? but
using a larger test set. A total of 21 teams
competed in Task A, and 18 of those also
participated in Task B. For Task A, the
best system had a strict F;-score of 81.3,
with a precision of 84.3 and recall of 78.6.
For Task B, the same group had the best
strict accuracy of 74.1. The organizers
have made the text corpora, annotations,
and evaluation tools available for future re-
search and development at the shared task
website.?

1 Introduction

A large amount of very useful information—both
for medical researchers and patients—is present
in the form of unstructured text within the clin-
ical notes and discharge summaries that form a
patient’s medical history. Adapting and extend-
ing natural language processing (NLP) techniques
to mine this information can open doors to bet-
ter, novel, clinical studies on one hand, and help
patients understand the contents of their clini-
cal records on the other. Organization of this

]http://share.healthnlp.org

2https://sites.google.com/site/shareclefehealth/
evaluation

3http://alt.qcri.org/semeva12014/task7/

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

54

suresh@cs.york.ac.uk

shared task helps establish state-of-the-art bench-
marks and paves the way for further explorations.
It tackles two important sub-problems in NLP—
named entity recognition and word sense disam-
biguation. Neither of these problems are new to
NLP. Research in general-domain NLP goes back
to about two decades. For an overview of the
development in the field through roughly 2009,
we refer the refer to Nadeau and Sekine (2007).
NLP has also penetrated the field of bimedical
informatics and has been particularly focused on
biomedical literature for over the past decade. Ad-
vances in that sub-field has also been documented
in surveys such as one by Leaman and Gonza-
lez (2008). Word sense disambiguation also has
a long history in the general NLP domain (Nav-
igli, 2009). In spite of word sense annotations in
the biomedical literature, recent work by Savova
et al. (2008) highlights the importance of annotat-
ing them in clinical notes. This is true for many
other clinical and linguistic phenomena as the var-
ious characteristics of the clinical narrative present
a unique challenge to NLP. Recently various ini-
tiatives have led to annotated corpora for clini-
cal NLP research. Probably the first comprehen-
sive annotation performed on a clinical corpora
was by Roberts et al. (2009), but unfortunately
that corpus is not publicly available owing to pri-
vacy regulations. The i2b2 initiative* challenges
have focused on such topics as concept recog-
nition (Uzuner et al., 2011), coreference resolu-
tion (Uzuner et al., 2012), temporal relations (Sun
et al., 2013) and their datasets are available to the
community. More recently, the Shared Annotated
Resources (ShARe)! project has created a corpus
annotated with disease/disorder mentions in clini-
cal notes as well as normalized them to a concept
unique identifier (CUI) within the SNOMED-CT
subset of the Unified Medical Language System’

4http://www.i2b2.org
5https://uts.nlm.nih.gov/home.html
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Train

Development Test

Notes
Words

Disorder mentions
CUI-less mentions
CUI-ied mentions
Contiguous mentions
Discontiguous mentions

199
94K

5816

1,639 (28%)
4,117 (72%)
5,165 (89%)
651 (11%)

99 133

88K 153K

5351

1,750 (32%)
3,601 (67%)
4,912 (92%)
439 (8%)

7,998
1,930 (24%)
6,068 (76%)
7,374 (93%)

6,24 (8%)

Table 1: Distribution of data in terms of notes and disorder mentions across the training, development
and test sets. The disorders are further split according to two criteria — whether they map to a CUI or

whether they are contiguous.

(UMLS) (Campbell et al., 1998). The task of nor-
malization is a combination of word/phrase sense
disambiguation and semantic similarity where a
phrase is mapped to a unique concept in an on-
tology (based on the description of that concept in
the ontology) after disambiguating potential am-
biguous surface words, or phrases. This is espe-
cially true with abbreviations and acronyms which
are much more common in clinical text (Moon et
al., 2012). The SemEval-2014 task 7 was one of
nine shared tasks organized at the SemEval-2014.
It was designed as a follow up to the shared tasks
organized during the ShARe/CLEF eHealth 2013
evaluation (Suominen et al., 2013; Pradhan et al.,
2013; Pradhan et al., 2014). Like the previous
shared task, we relied on the ShARe corpus, but
with more data for training and a new test set. Fur-
thermore, in this task, we provided the options to
participants to utilize a large corpus of unlabeled
clinical notes. The rest of the paper is organized as
follows. Section 2 describes the characteristics of
the data used in the task. Section 3 describes the
tasks in more detail. Section 4 explains the evalu-
ation criteria for the two tasks. Section 5 lists the
participants of the task. Section 6 discusses the re-
sults on this task and also compares them with the
ShARe/CLEF eHealth 2013 results, and Section 7
concludes.

2 Data

The ShARe corpus comprises annotations over
de-identified clinical reports from a US intensive
care department (version 2.5 of the MIMIC II
database ©) (Saeed et al., 2002). It consists of
discharge summaries, electrocardiogram, echocar-
diogram, and radiology reports. Access to data
was carried out following MIMIC user agreement
requirements for access to de-identified medical

6http ://mimic.physionet.org— Multiparameter Intelligent
Monitoring in Intensive Care
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data. Hence, all participants were required to reg-
ister for the evaluation, obtain a US human sub-
jects training certificate’, create an account to the
password-protected MIMIC site, specify the pur-
pose of data usage, accept the data use agree-
ment, and get their account approved. The anno-
tation focus was on disorder mentions, their var-
ious attributes and normalizations to an UMLS
CUI. As such, there were two parts to the annota-
tion: identifying a span of text as a disorder men-
tion and normalizing (or mapping) the span to a
UMLS CUI. The UMLS represents over 130 lex-
icons/thesauri with terms from a variety of lan-
guages and integrates resources used world-wide
in clinical care, public health, and epidemiology.
A disorder mention was defined as any span of text
which can be mapped to a concept in SNOMED-
CT and which belongs to the Disorder semantic
group®. It also provided a semantic network in
which every concept is represented by its CUI
and is semantically typed (Bodenreider and Mc-
Cray, 2003). A concept was in the Disorder se-
mantic group if it belonged to one of the follow-
ing UMLS semantic types: Congenital Abnormal-
ity; Acquired Abnormality; Injury or Poisoning;
Pathologic Function; Disease or Syndrome; Men-
tal or Behavioral Dysfunction; Cell or Molecu-
lar Dysfunction; Experimental Model of Disease;
Anatomical Abnormality; Neoplastic Process; and
Signs and Symptoms. The Finding semantic type
was left out as it is very noisy and our pilot study
showed lower annotation agreement on it. Follow-
ing are the salient aspects of the guidelines used to

7The course was available free of charge on the Internet, for example,
via the CITI Collaborative Institutional Training Initiative at
https://www.citiprogram.org/Default.asp
or, the US National Institutes of Health (NIH) at
http://phrp.nihtraining.com/users.

Note that this definition of Disorder semantic group did not include the
Findings semantic type, and as such differed from the one of UMLS Seman-
tic Groups, available at http://semanticnetwork.nlm.nih.gov/
SemGroups



annotate the data.

e Annotations represent the most specific dis-
order span. For example, small bowel ob-
struction is preferred over bowel obstruction.
A disorder mention is a concept in the
SNOMED-CT portion of the Disorder se-
mantic group.

Negation and temporal modifiers are not con-
sidered part of the disorder mention span.
All disorder mentions are annotated—even
the ones related to a person other than the pa-
tient and including acronyms and abbrevia-
tions.

Mentions of disorders that are coreferen-
tial/anaphoric are also annotated.

Following are a few examples of disorder men-
tions from the data.

Patient found to have lower extremity DVT. (E1)

In example (E1), lower extremity DVT is marked
as the disorder. It corresponds to CUI C0340708
(preferred term: Deep vein thrombosis of lower
limb). The span DVT can be mapped to CUI
C0149871 (preferred term: Deep Vein Thrombo-
sis), but this mapping would be incorrect because
it is part of a more specific disorder in the sen-
tence, namely lower extremity DVT.

A tumor was found in the left ovary. (E2)

In example (E2), tumor ... ovary is annotated as a
discontiguous disorder mention. This is the best
method of capturing the exact disorder mention
in clinical notes and its novelty is in the fact that
either such phenomena have not been seen fre-
quently enough in the general domain to gather
particular attention, or the lack of a manually
curated general domain ontology parallel to the
UMLS.

Patient admitted with low blood pressure.  (E3)

There are some disorders that do not have a rep-
resentation to a CUI as part of the SNOMED CT
within the UMLS. However, if they were deemed
important by the annotators then they were anno-
tated as CUI-less mentions. In example (E3), low
blood pressure is a finding and is normalized as
a CUlI-less disorder. We constructed the annota-
tion guidelines to require that the disorder be a
reasonable synonym of the lexical description of a
SNOMED-CT disorder. There are a few instances
where the disorders are abbreviated or shortened
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in the clinical note. One example is w/r/r, which
is an abbreviation for concepts wheezing (CUI
C0043144), rales (CUI C0034642), and ronchi
(CUI C0035508). This abbreviation is also some-
times written as r/w/r and r/r/w. Another is gsw for
gunshot wound and tachy for tachycardia. More
details on the annotation scheme is detailed in the
guidelines’ and in a forthcoming manuscript. The
annotations covered about 336K words. Table 1
shows the quantity of the data and the split across
the training, development and test sets as well as
in terms of the number of notes and the number of
words.

2.1 Annotation Quality

Each note in the training and development set was
annotated by two professional coders trained for
this task, followed by an open adjudication step.
By the time we reached annotating the test data,
the annotators were quite familiar with the anno-
tation and so, in order to save time, we decided
to perform a single annotation pass using a senior
annotator. This was followed by a correction pass
by the same annotator using a checklist of frequent
annotation issues faced earlier. Table 2 shows the
inter-annotator agreement (IAA) statistics for the
adjudicated data. For the disorders we measure the
agreement in terms of the F;-score as traditional
agreement measures such as Cohen’s kappa and
Krippendorf’s alpha are not applicable for measur-
ing agreement for entity mention annotation. We
computed agreements between the two annotators
as well as between each annotator and the final ad-
judicated gold standard. The latter is to give a
sense of the fraction of corrections made in the
process of adjudication. The strict criterion con-
siders two mentions correct if they agree in terms
of the class and the exact string, whereas the re-
laxed criteria considers overlapping strings of the

*http://g00.gl/vUSKIW
Disorder CUI
Relaxed Strict Relaxed Strict
F, Fy Acc. Acc.
Al-A2 90.9 76.9 77.6 84.6
Al-GS 96.8 93.2 95.4 97.3
A2-GS 93.7 82.6 80.6 86.3

Table 2: Inter-annotator (A1l and A2) and gold
standard (GS) agreement as F;-score for the Dis-
order mentions and their normalization to the
UMLS CUL



Institution User ID Team ID
University of Pisa, Italy attardi UniPI
University of Lisbon, Portugal francisco ULisboa
University of Wisconsin, Milwaukee, USA ghiasvand UWM
University of Colorado, Boulder, USA gung CLEAR
University of Guadalajara, Mexico herrera UG
Taipei Medical University, Taiwan hjdai T™U
University of Turku, Finland kaewphan UTU
University of Szeged, Hungary katona SZTE-NLP
Queensland University of Queensland, Australia kholghi QUT_AEHRC
KU Leuven, Belgium kolomiyets =~ KUL
Universidade de Aveiro, Portugal nunes BioinformaticsUA
University of the Basque Country, Spain oronoz IxaMed
IBM, India parikh ThinkMiners
easy data intelligence, India pathak ezDI
RelAgent Tech Pvt. Ltd., India ramanan RelAgent
Universidad Nacional de Colombia, Colombia riveros MindLab-UNAL
IIT Patna, India sikdar 1ITP
University of North Texas, USA solomon UNT
University of Illinois at Urbana Champaign, USA upadhya CogComp
The University of Texas Health Science Center at Houston, USA  wu UTH-CCB
East China Normal University, China yi ECNU

Table 3: Participant organization and the respective User IDs and Team IDs.

same class as correct. The reason for checking
the class is as follows. Although we only use the
disorder mention in this task, the corpus has been
annotated with some other UMLS types as well
and therefore there are instances where a differ-
ent UMLS type is assigned to the same character
span in the text by the second annotator. If exact
boundaries are not taken into account then the [AA
agreement score is in the mid-90s. For the task of
normalization to CUIs, we used accuracy to assess
agreement. For the relaxed criterion, all overlap-
ping disorder spans with the same CUI were con-
sidered correct. For the strict criterion, only disor-
der spans with identical spans and the same CUI
were considered correct.

3 Task Description

The participants were evaluated on the following
two tasks:

e Task A — Identification of the character spans
of disorder mentions.

e Task B — Normalizing disorder mentions to
SNOMED-CT subset of UMLS CUIs.

For Task A, participants were instructed to develop
a system that predicts the spans for disorder men-
tions. For Tasks B, participants were instructed
to develop a system that predicts the UMLS CUI
within the SNOMED-CT vocabulary. The input to
Task B were the disorder mention predictions from
Task A. Task B was optional. System outputs ad-
hered to the annotation format. Each participant
was allowed to submit up to three runs. The en-
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tire set of unlabeled MIMIC clinical notes (exclud-
ing the test notes) were made available to the par-
ticipants for potential unsupervised approaches to
enhance the performance of their systems. They
were allowed to use additional annotations in their
systems, but this counted towards the total allow-
able runs; systems that used annotations outside
of those provided were evaluated separately. The
evaluation for all tasks was conducted using the
blind, withheld test data. The participants were
provided a training set containing clinical text as
well as pre-annotated spans and named entities for
disorders (Tasks A and B).

4 Evaluation Criteria

The following evaluation criteria were used:

e Task A — The system performance was eval-
vated against the gold standard using the
F;-score of the Precision and Recall values.
There were two variations: (i) Strict; and (i)
Relaxed. The formulae for computing these
metrics are mentioned below.

. D,
Precision =P =——"__ (1)
Dtp + Dfp
Dy
Recall=R= ——2 2
eca Dy + Dy 2)

Where, Dy, = Number of true positives dis-
order mentions; Dy, = Number of false pos-
itives disorder mentions; D, = Number of
false negative disorder mentions. In the strict
case, a span was counted as correct if it was
identical to the gold standard span, whereas



Strict Relaxed
Team ID User ID Run P R Fq P R Fq Data

UTH_-CCB wu 0 843 786 813 936 8.6 90.0 T+D
UTH-CCB wu 1 808 805 806 91.6 907 91.1 T+D
UTU kaewphan 1 765 767 766 836 899 893 T+D
UWM ghiasvand 0 787 726 755  91.1 856 883 T+D
UTH_CCB wu 2 680 849 755 838 935 884 T+D
UTU kaewphan 0 713 724 748  90.1 856 878 T
IxaMed oronoz 1 68.1 786 730 872 890 8.1 T+D
UWM ghiasvand 0 715 679 724 909 812 8.8 T
RelAgent ramanan 0 74.1 70.1 720 895 84.0 867 T+D
IxaMed oronoz 0 72.9 70.1 71.5 88.5 80.8 84.5 T+D
ezDI pathak 1 750 682 714 915 827 89 T
CLEAR gung 0 80.7 636 712 920 723 810 T
ezDI pathak 0 750 677 712 914 819 8.4 T
ULisboa francisco 0 75.3 66.3 70.5 914 81.5 862 T
ULisboa francisco 1 752 660 703 909 806 8.5 T
ULisboa francisco 2 752 660 703 909 806 8.5 T
BioinformaticsUA  nunes 0 81.3 60.5 694 929 693 794 T+D
ThinkMiners parikh 0 734 650 689 8.2 802 844 T
ThinkMiners parikh 1 749 617 677 907 758 826 T
ECNU yi 0 754 6l.1 675 89.8 722 80.0 T+D
UniPI attardi 2 712 60.1 652 897 766 82.6 T+D
UNT solomon 0 647 628 638 815 799 807 T+D
UniPI attardi 1 659 612 635 902 775 834 T+D
BioinformaticsUA  nunes 2 753 538 628 865 621 723  T+D
BioinformaticsUA ~ nunes 1 60.0  62.1 61.0 698 723 710 T+D
UniPI attardi 0 539 684 602 778 885 828 T+D
CogComp upadhya 1 639 529 579 823 683 746 T+D
CogComp upadhya 2 64.1 520 574 829 675 744 T+D
CogComp upadhya 0 636 515 569 819 665 734 T+D
T™MU hjdai 0 524 576 549 914 765 833 T+D
MindLab-UNAL riveros 2 56.1 534 547 769 677 720 T
MindLab-UNAL riveros 1 578 515 545 777 654 710 T
T™MU hjdai 1 622 429 508 899 652 756 T+D
TP sikdar 0 500 479 489 815 797 80.6 T+D
TP sikdar 1 473 458 465 789 776 782 T+D
TP sikdar 2 450 481 465 769 826 79.6 T+D
MindLab-UNAL riveros 0 321 565 409 439 725 547 T
SZTE-NLP katona 1 547 252 345 834 40.1 551 T
SZTE-NLP katona 2 54.7 25.2 34.5 88.4 40.1 55.1 T
QUT-AEHRC kholghi 0 387 298 337 906 709 795 T+D
SZTE-NLP katona 0 57.1 205 302 918 325 480 T
KUL kolomiyets 0 65.5 178 28,0 721 196 308 P
UG herrera 0 114 234 153 259 490 339 P

Table 4: Performance on test data for participating systems on Task A — Identification of disorder men-
tions.

Task A
Strict Relaxed
Team ID User ID Run P R F, P R Fi Data
(%) (%) (%) (%) (%) (%)
hjdai T™MU 1 0.687 0922 0.787 0.952 1.000 0975 T
wu UTH.CCB 0 0877 0710 0785 0962 0.789 0.867 T
wu UTH-CCB 1 0.828 0.747 0.785  0.941 0853 0895 T
Best ShARe/CLEF-2013 performance  0.800  0.706  0.750 0925 0.827 0873 T
ghiasvand ~ UWM 0 0.827 0.675 0743 0958 0799 0871 T
pathak ezDI 0 0813 0.670 0.734 0954 0800 0.870 T
pathak ezDI 1 0809 0.667 0732 0954 0801 0.871 T
wu UTH.CCB 2 0.657 0.790 0717 0.806 0893 0.847 T
francisco ULisboa 1 0.803 0.646 0.716 0954  0.781 0858 T
francisco ULisboa 2 0.803 0.646 0716 0954 0.781 0.858 T
francisco ULisboa 0 0796 0.642 0711 0959 0793 0.868 T
oronoz IxaMed 0 0.766  0.650 0.703 0936 0.752 0.834 T
oronoz IxaMed 1 0.660  0.721 0.689 0.899 0842 0870 T
hjdai TMU 0 0.667 0414 0511 0912 0591 0717 T
sikdar TP 0 0.525 0430 0473 0.862 0726 0.788 T
sikdar TP 2 0.467 0440 0453 0812 0775 0793 T
sikdar TP 1 0493 0410 0448 0.828 0.706 0.762 T

Table 5: Performance on development data for participating systems on Task A — Identification of disor-
der mentions.
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in the relaxed case, a span overlapping with
the gold standard span was also considered
correct.

Task B — Accuracy was used as the perfor-
mance measure for Task 1b. It was defined as

follows:
Dy, N Neoyr
Accuracystrict = W 3)
g
Dy, NN,
Accuracyrelazed = w )
tp

Where, Dy, = Number of true positive disor-
der mentions with identical spans as in the
gold standard; N.opreet = Number of cor-
rectly normalized disorder mentions; and T}
= Total number of disorder mentions in the
gold standard. For Task B, the systems were
only evaluated on annotations they identified
in Task A. Relaxed accuracy only measured
the ability to normalize correct spans. There-
fore, it was possible to obtain very high val-
ues for this measure by simply dropping any
mention with a low confidence span.

5 Participants

A total of 21 participants from across the world
participated in Task A and out of them 18 also par-
ticipated in Task B. Unfortunately, although inter-
ested, the ThinkMiners team (Parikh et al., 2014)
could not participate in Task B owing to some
UMLS licensing issues. The participating organi-
zations along with the contact user’s User ID and
their chosen Team ID are mentioned in Table 3.
Eight teams submitted three runs, six submitted
two runs and seven submitted just one run. Out
of these, only 13 submitted system description pa-
pers. We based our analysis on those system de-
scriptions.

6 System Results

Tables 4 and 6 show the performance of the sys-
tems on Tasks A and B. None of the systems used
any additional annotated data so we did not have
to compare them separately. Both tables mention
performance of all the different runs that the sys-
tems submitted. Given the many variables, we de-
liberately left the decision on how many and how
to define these runs to the individual participant.
They used various different ways to differentiate
their runs. Some, for example, UTU (Kaewphan et
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al., 2014), did it based on the composition of train-
ing data, i.e., whether they used just the training
data or both the training and the development data
for training the final system, which highlighted
the fact that adding development data to training
bumped the F;-score on Task A by about 2 percent
points. Some participants, however, did not make
use of the development data in training their sys-
tems. This was partially due to the fact that we had
not explicitly mentioned in the task description
that participants were allowed to use the develop-
ment data for training their final models. In order
to be fair, we allowed some users an opportunity
to submit runs post evaluation where they used the
exact same system that they used for evaluation
but used the development data as well. We added
a column to the results tables showing whether the
participant used only the training data (T) or both
training and development data (T+D) for training
their system. It can be seen that even though the
addition of development data helps, there are still
systems that perform in the lower percentile who
have used both training and development data for
training, indicating that both the features and the
machine learning classifier contribute to the mod-
els. A novel aspect of the SemEval-2014 shared
task that differentiates it from the ShARE/CLEF
task—other than the fact that it used more data and
a new test set—is the fact that SemEval-2014 al-
lowed the use of a much larger set of unlabeled
MIMIC notes to inform the models. Surprisingly,
only two of the systems (ULisboa (Leal et al.,
2014) and UniPi (Attardi et al., 2014)) used the
unlabeled MIMIC corpus to generalize the lexical
features. Another team—UTH_CCB(Zhang et al.,
2014)—used off-the-shelf Brown clusters'? as op-
posed to training them on the unlabeled MIMIC
Il data. For Task B, the accuracy of a system
using the strict metric was positively correlated
with its recall on the disorder mentions that were
input to it (i.e., recall for Task A), and did not
get penalized for lower precision. Therefore one
could essentially gain higher accuracy in Task B
by tuning a system to provide the highest men-
tion recall in Task A potentially at the cost of pre-
cision and the overall F;-score and using those
mentions as input for Task B. This can be seen
from the fact that the run 2 for UTH_CCB (Zhang
et al., 2014) system with the lowest F;-score has

10Personal conversation with the participants as it was not
very clear in the system description paper.



Task B
Strict  Relaxed
Team ID User ID Run Acc. Acc. Data
(%) (%)

UTH-CCB wu 2 74.1 873 T+D
UTH-CCB wu 1 70.8 88.0 T+D
UTH_CCB wu 0 69.4 883 T+D
UWM ghiasvand 0 66.0 909 T+D
RelAgent ramanan 0 63.9 912 T+D
UWM ghiasvand 0 61.7 908 T
IxaMed oronoz 0 60.4 862 T+D
UTU kaewphan 1 60.1 783 T+D
ezDI pathak 1 59.9 878 T
ezDI pathak 0 59.2 874 T
UTU kaewphan 0 57.7 797 T
BioinformaticsUA nunes 1 53.1 85.5 T+D
BioinformaticsUA nunes 0 52.7 87.0 T+D
CLEAR gung 0 52.5 825 T
TMU hjdai 0 48.9 849 T+D
UNT solomon 0 47.0 74.8 T+D
UniPI attardi 0 46.7 683 T+D
BioinformaticsUA nunes 2 46.3 86.1 T+D
MindLab-UNAL riveros 2 46.1 86.3 T
IxaMed oronoz 1 43.9 55.8 T+D
MindLab-UNAL riveros 0 43.5 77.1 T
UniPI attardi 1 42.8 69.9 T+D
UniPI attardi 2 41.7 69.3 T+D
MindLab-UNAL riveros 1 41.1 79.7 T
ULisboa francisco 2 40.5 61.5 T
ULisboa francisco 1 40.4 612 T
ULisboa francisco 0 40.2 60.6 T
ECNU yi 0 36.4 59.5 T+D
TMU hjdai 1 35.8 834 T+D
TP sikdar 0 333 69.6 T+D
TP sikdar 2 332 69.1 T+D
TP sikdar 1 31.9 69.6 T+D
CogComp upadhya 1 253 479 T+D
CogComp upadhya 2 24.8 4777  T+D
CogComp upadhya 0 244 473  T+D
KUL kolomiyets 0 16.5 928 P
UG herrera 0 12.5 534 P

Table 6: Performance on fest data for participat-
ing systems on Task B — Normalization of disorder
mentions to UMLS (SNOMED-CT subset) CUIs.

Task B
Strict  Relaxed
Team ID User ID Run Acc. Acc. Data
(%) (%)
T™MU hjdai 0 0.716 0777 T
TMU hjdai 1 0.716 0.777 T
UTH.CCB  wu 2 0.713 0903 T
UTH.CCB  wu 1 0.680 0910 T
UTH.CCB  wu 0 0.647 0910 T
UWM ghiasvand 0 0.623 0923 T
ezDI pathak 0 0.603 0900 T
ezDI pathak 1 0.600 0.899 T
Best ShARe/CLEF-2013 performance 0.589 0895 T
IxaMed oronoz 0 0.556 0.855 T
IxaMed oronoz 1 0.421 0584 T
ULisboa francisco 2 0.388 0.601 T
ULisboa francisco 1 0.385 059 T
ULisboa francisco 0 0.377 0588 T
IITP sikdar 2 0.318 0724 T
TP sikdar 0 0.312 0725 T
1IITP sikdar 1 0.299 0730 T
Table 7: Performance on development data

for some participating systems on Task B -
Normalization of disorder mentions to UMLS
(SNOMED-CT subset) CUIs.
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the best accuracy for Task B and vice-versa for
run 0 with run 1 in between the two. In order to
fairly compare the performance between two sys-
tems one would have to provide perfect mentions
as input to Task B. One of the systems—UWM
Ghiasvand and Kate (2014)—did run some abla-
tion experiments using gold standard mentions as
input to Task B and obtained a best performance
of 89.5F;-score (Table 5 of Ghiasvand and Kate
(2014)) as opposed to 62.3 F;-score (Table 7) in
the more realistic setting which is a huge differ-
ence. In the upcoming SemEval-2014 where this
same evaluation is going to carried out under Task
14, we plan to perform supplementary evaluation
where gold disorder mentions would be input to
the system while attempting Task B. An inter-
esting outcome of planning a follow-on evalua-
tion to the ShARe/CLEF eHealth 2013 task was
that we could, and did, use the test data from the
ShARe/CLEF eHealth 2013 task as the develop-
ment set for this evaluation. After the main eval-
uation we asked participants to provide the sys-
tem performance on the development set using the
same number and run convention that they submit-
ted for the main evaluation. These results are pre-
sented in Tables 5 and 7. We have inserted the best
performing system score from the ShARe/CLEF
eHealth 2013 task in these tables. For Task A, re-
ferring to Tables 4 and 5, there is a boost of 3.7
absolute percent points for the Fi-score over the
same task (Task la) in the ShARe/CLEF eHealth
2013. For Task B, referring to Tables 6 and 7, there
is a boost of 13.7 percent points for the F;-score
over the same task (Task 1b) in the ShARe/CLEF
eHealth 2013 evaluation. The participants used
various approaches for tackling the tasks, rang-
ing from purely rule-based/unsupervised (RelA-
gent (Ramanan and Nathan, 2014), (Matos et
al., 2014), KUL!") to a hybrid of rules and ma-
chine learning classifiers. The top performing sys-
tems typically used the latter. Various versions
of the IOB formulation were used for tagging the
disorder mentions. None of the standard varia-
tions on the IOB formulation were explicitly de-
signed or used to handle discontiguous mentions.
Some systems used novel variations on this ap-
proach. Probably the simplest variation was ap-
plied by the UWM team (Ghiasvand and Kate,
2014). In this formulation the following labeled
sequence “the/O left/B atrium/I is/O moderately/O

!"'Personal communication with participant.



dilated/I” can be used to represent the discontigu-
ous mention left atrium...dilated, and can be con-
structed as such from the output of the classifica-
tion. The most complex variation was the one used
by the UTH_CCB team (Zhang et al., 2014) where
they used the following set of tags—B, I, O, DB,
DI, HB, HI. This variation encodes discontiguous
mentions by adding four more tags to the I, O and
B tags. These are variations of the B and I tags
with either a D or a H prefix. The prefix H indi-
cates that the word or word sequence is the shared
head, and the prefix D indicates otherwise. An-
other intermediate approach used by the ULisboa
team (Leal et al., 2014) with the tagset—S, B, I,
O, E and N. Here, S represents the single token
entity to be recognized, E represents the end of an
entity (which is part of one of the prior IOB vari-
ations) and an N tag to identify non-contiguous
mentions. They don’t provide an explicit exam-
ple usage of this tag set in their paper. Yet another
variation was used by the SZTE-NLP team (Ka-
tona and Farkas, 2014). This used tags B, I, L, O
and U. Here, L is used for the last token similar to
E earlier, and U is used for a unit-token mention,
similar to S earlier. We believe that the only ap-
proach that can distinguish between discontiguous
disorders that share the same head word/phrase is
the one used by the UTH_CCB team (Zhang et
al., 2014). The participants used various machine
learning classifiers such as MaxEnt, SVM, CRF in
combination with rich syntactic and semantic fea-
tures to capture the disorder mentions. As men-
tioned earlier, a few participants used the avail-
able unlabeled data and also off-the-shelf clusters
to better generalize features. The use of vector
space models such as cosine similarities as well
as continuous distributed word vector representa-
tions was useful in the normalization task. They
also availed of tools such as MetaMap and cTakes
to generate features as well as candidate CUIs dur-
ing normalizations.

7 Conclusion

We have created a reference standard with high
inter-annotator agreement and evaluated systems
on the task of identification and normalization
of diseases and disorders appearing in clinical
reports. The results have demonstrated that an
NLP system can complete this task with reason-
ably high accuracy. We plan to annotate another
evaluation using the same data as part of the in
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the SemEval-2015, Task 1412 adding another task
of template filling where the systems will iden-
tify and normalize ten attributes the identified dis-
ease/disorder mentions.
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Abstract

Task 8 at SemEval 2014 defines Broad-
Coverage Semantic Dependency Pars-
ing (SDP) as the problem of recovering
sentence-internal predicate—argument rela-
tionships for all content words, i.e. the se-
mantic structure constituting the relational
core of sentence meaning. In this task
description, we position the problem in
comparison to other sub-tasks in compu-
tational language analysis, introduce the se-
mantic dependency target representations
used, reflect on high-level commonalities
and differences between these representa-
tions, and summarize the task setup, partic-
ipating systems, and main results.

1 Background and Motivation

Syntactic dependency parsing has seen great ad-
vances in the past decade, in part owing to rela-
tively broad consensus on target representations,
and in part reflecting the successful execution of a
series of shared tasks at the annual Conference for
Natural Language Learning (CoNLL; Buchholz &
Marsi, 2006; Nivre et al., 2007; inter alios). From
this very active research area accurate and efficient
syntactic parsers have developed for a wide range
of natural languages. However, the predominant
data structure in dependency parsing to date are
trees, in the formal sense that every node in the de-
pendency graph is reachable from a distinguished
root node by exactly one directed path.

This work is licenced under a Creative Commons At-
tribution 4.0 International License. Page numbers and the
proceedings footer are added by the organizers: http://
creativecommons.org/licenses/by/4.0/.
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Unfortunately, tree-oriented parsers are ill-suited
for producing meaning representations, i.e. mov-
ing from the analysis of grammatical structure to
sentence semantics. Even if syntactic parsing ar-
guably can be limited to tree structures, this is not
the case in semantic analysis, where a node will
often be the argument of multiple predicates (i.e.
have more than one incoming arc), and it will often
be desirable to leave nodes corresponding to se-
mantically vacuous word classes unattached (with
no incoming arcs).

Thus, Task 8 at SemEval 2014, Broad-Coverage
Semantic Dependency Parsing (SDP 2014),! seeks
to stimulate the dependency parsing community
to move towards more general graph processing,
to thus enable a more direct analysis of Who did
What to Whom? For English, there exist several
independent annotations of sentence meaning over
the venerable Wall Street Journal (WSJ) text of the
Penn Treebank (PTB; Marcus et al., 1993). These
resources constitute parallel semantic annotations
over the same common text, but to date they have
not been related to each other and, in fact, have
hardly been applied for training and testing of data-
driven parsers. In this task, we have used three
different such target representations for bi-lexical
semantic dependencies, as demonstrated in Figure 1
below for the WSJ sentence:

M

A similar technique is almost impossible to apply to
other crops, such as cotton, soybeans, and rice.

Semantically, fechnique arguably is dependent on
the determiner (the quantificational locus), the mod-
ifier similar, and the predicate apply. Conversely,
the predicative copula, infinitival fo, and the vac-

ISee http://alt.qgcri.org/semeval2014/
task8/ for further technical details, information on how to
obtain the data, and official results.

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 6372,
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(d) Parts of the tectogrammatical layer of the Prague Czech-English Dependency Treebank (PCEDT).

Figure 1: Sample semantic dependency graphs for Example (1).

uous preposition marking the deep object of ap-
ply can be argued to not have a semantic contri-
bution of their own. Besides calling for node re-
entrancies and partial connectivity, semantic depen-
dency graphs may also exhibit higher degrees of
non-projectivity than is typical of syntactic depen-
dency trees.

In addition to its relation to syntactic dependency
parsing, the task also has some overlap with Se-
mantic Role Labeling (SRL; Gildea & Jurafsky,
2002). In much previous work, however, target
representations typically draw on resources like
PropBank and NomBank (Palmer et al., 2005; Mey-
ers et al., 2004), which are limited to argument
identification and labeling for verbal and nominal
predicates. A plethora of semantic phenomena—
for example negation and other scopal embedding,
comparatives, possessives, various types of modi-
fication, and even conjunction—typically remain
unanalyzed in SRL. Thus, its target representations
are partial to a degree that can prohibit seman-
tic downstream processing, for example inference-
based techniques. In contrast, we require parsers
to identify all semantic dependencies, i.e. compute
a representation that integrates all content words in
one structure. Another difference to common inter-
pretations of SRL is that the SDP 2014 task defini-

tion does not encompass predicate disambiguation,
a design decision in part owed to our goal to focus
on parsing-oriented, i.e. structural, analysis, and in
part to lacking consensus on sense inventories for
all content words.

Finally, a third closely related area of much cur-
rent interest is often dubbed ‘semantic parsing’,
which Kate and Wong (2010) define as “the task of
mapping natural language sentences into complete
formal meaning representations which a computer
can execute for some domain-specific application.”
In contrast to most work in this tradition, our SDP
target representations aim to be task- and domain-
independent, though at least part of this general-
ity comes at the expense of ‘completeness’ in the
above sense; i.e. there are aspects of sentence mean-
ing that arguably remain implicit.

2 Target Representations

We use three distinct target representations for se-
mantic dependencies. As is evident in our run-
ning example (Figure 1), showing what are called
the DM, PAS, and PCEDT semantic dependencies,
there are contentful differences among these anno-
tations, and there is of course not one obvious (or
even objective) truth. In the following paragraphs,



we provide some background on the ‘pedigree’ and
linguistic characterization of these representations.

DM: DELPH-IN MRS-Derived Bi-Lexical De-
pendencies These semantic dependency graphs
originate in a manual re-annotation of Sections 00—
21 of the WSJ Corpus with syntactico-semantic
analyses derived from the LinGO English Re-
source Grammar (ERG; Flickinger, 2000). Among
other layers of linguistic annotation, this resource—
dubbed DeepBank by Flickinger et al. (2012)—
includes underspecified logical-form meaning rep-
resentations in the framework of Minimal Recur-
sion Semantics (MRS; Copestake et al., 2005).
Our DM target representations are derived through
a two-step ‘lossy’ conversion of MRSs, first to
variable-free Elementary Dependency Structures
(EDS; Oepen & Lgnning, 2006), then to ‘pure’
bi-lexical form—projecting some construction se-
mantics onto word-to-word dependencies (Ivanova
et al., 2012). In preparing our gold-standard
DM graphs from DeepBank, the same conversion
pipeline was used as in the system submission of
Miyao et al. (2014). For this target representa-
tion, top nodes designate the highest-scoping (non-
quantifier) predicate in the graph, e.g. the (scopal)
degree adverb almost in Figure 1.

PAS: Enju Predicate-Argument Structures
The Enju parsing system is an HPSG-based parser
for English.> The grammar and the disambigua-
tion model of this parser are derived from the Enju
HPSG treebank, which is automatically converted
from the phrase structure and predicate—argument
structure annotations of the PTB. The PAS data
set is extracted from the WSJ portion of the Enju
HPSG treebank. While the Enju treebank is an-
notated with full HPSG-style structures, only its
predicate—argument structures are converted into
the SDP data format for use in this task. Top
nodes in this representation denote semantic heads.
Again, the system description of Miyao et al. (2014)
provides more technical detail on the conversion.

PCEDT: Prague Tectogrammatical Bi-Lexical
Dependencies The Prague Czech-English De-
pendency Treebank (PCEDT; Haji¢ et al., 2012)*
is a set of parallel dependency trees over the WSJ

*Note, however, that non-scopal adverbs act as mere in-
tersective modifiers, e.g. loudly is a predicate in DM, but the
main verb provides the top node in structures like Abrams
sang loudly.

3See http://kmcs.nii.ac.jp/enju/.

4See http://ufal.mff.cuni.cz/pcedt2.0/.
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id form lemma pos top pred  argl arg2
#20200002

1 |Ms. Ms. NNP| — | + |_ _

2 |Haag |Haag [NNP| — | — |compound|ARG1
3 |plays |play VBZ| + | + |_ _

4 |Elianti|Elianti [NNP| — | — |_ ARG2
5 — —

Table 1: Tabular SDP data format (showing DM).

texts from the PTB, and their Czech translations.
Similarly to other treebanks in the Prague family,
there are two layers of syntactic annotation: an-
alytical (a-trees) and tectogrammatical (t-trees).
PCEDT bi-lexical dependencies in this task have
been extracted from the t-trees. The specifics of
the PCEDT representations are best observed in the
procedure that converts the original PCEDT data to
the SDP data format; see Miyao et al. (2014). Top
nodes are derived from t-tree roots; i.e. they mostly
correspond to main verbs. In case of coordinate
clauses, there are multiple top nodes per sentence.

3 Graph Representation

The SDP target representations can be character-
ized as labeled, directed graphs. Formally, a se-
mantic dependency graph for a sentence x
x1,...,xpisastructure G = (V, E, by, {g) where
V = {1,...,n} is a set of nodes (which are in
one-to-one correspondence with the tokens of the
sentence); £ C V x V is a set of edges; and {y
and /g are mappings that assign labels (from some
finite alphabet) to nodes and edges, respectively.
More specifically for this task, the label ¢y (i) of a
node ¢ is a tuple consisting of four components: its
word form, lemma, part of speech, and a Boolean
flag indicating whether the corresponding token
represents a top predicate for the specific sentence.
The label /g (i — j) of an edge i — j is a seman-
tic relation that holds between ¢ and j. The exact
definition of what constitutes a top node and what
semantic relations are available differs among our
three target representations, but note that top nodes
can have incoming edges.

All data provided for the task uses a column-
based file format (dubbed the SDP data format)
similar to the one of the 2009 CoNLL Shared Task
(Haji¢ et al., 2009). As in that task, we assume gold-
standard sentence and token segmentation. For
ease of reference, each sentence is prefixed by a
line with just a unique identifier, using the scheme
28SDDIII, with a constant leading 2, two-digit sec-
tion code, two-digit document code (within each



section), and three-digit ifem number (within each
document). For example, identifier 20200002 de-
notes the second sentence in the first file of PTB
Section 02, the classic Ms. Haag plays Elianti. The
annotation of this sentence is shown in Table 1.

With one exception, our fields (i.e. columns in
the tab-separated matrix) are a subset of the CoONLL
2009 inventory: (1) id, (2) form, (3) Lemma, and
(4) pos characterize the current token, with token
identifiers starting from 1 within each sentence. Be-
sides the lemma and part-of-speech information, in
the closed track of our task, there is no explicit
analysis of syntax. Across the three target represen-
tations in the task, fields (1) and (2) are aligned and
uniform, i.e. all representations annotate exactly
the same text. On the other hand, fields (3) and (4)
are representation-specific, i.e. there are different
conventions for lemmatization, and part-of-speech
assignments can vary (but all representations use
the same PTB inventory of PoS tags).

The bi-lexical semantic dependency graph over
tokens is represented by two or more columns start-
ing with the obligatory, binary-valued fields (5)
top and (6) pred. A positive value in the top
column indicates that the node corresponding to
this token is a top node (see Section 2 below). The
pred column is a simplification of the correspond-
ing field in earlier tasks, indicating whether or not
this token represents a predicate, i.e. a node with
outgoing dependency edges. With these minor dif-
ferences to the CoNLL tradition, our file format can
represent general, directed graphs, with designated
top nodes. For example, there can be singleton
nodes not connected to other parts of the graph,
and in principle there can be multiple tops, or a
non-predicate top node.

To designate predicate—argument relations, there
are as many additional columns as there are pred-
icates in the graph (i.e. tokens marked + in the
pred column); these additional columns are called
(7) argl, (8) arg2, etc. These colums contain
argument roles relative to the ¢-th predicate, i.e. a
non-empty value in column argl indicates that
the current token is an argument of the (linearly)
first predicate in the sentence. In this format, graph
reentrancies will lead to a token receiving argument
roles for multiple predicates (i.e. non-empty arg;
values in the same row). All tokens of the same sen-
tence must always have all argument columns filled
in, even on non-predicate words; in other words,
all lines making up one block of tokens will have
the same number n of fields, but n can differ across
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DM PAS PCEDT
(1)  #labels 51 42 68
(2) % singletons 22.62 4.49 35.79
(3)  # edge density 0.96 1.02 0.99
4 % trees 2.35 1.30 56.58
(5) %, projective 3.05 1.71 53.29
6) %, fragmented 6.71 0.23 0.56
(7) %, reentrancies 27.35 29.40 9.27
(8) %, topless 0.28 0.02 0.00
(9)  # top nodes 0.9972 0.9998  1.1237
(10) %, non-top roots  44.71 55.92 4.36

Table 2: Contrastive high-level graph statistics.

sentences, depending on the count of graph nodes.

4 Data Sets

All three target representations are annotations of
the same text, Sections 00-21 of the WSJ Cor-
pus. For this task, we have synchronized these
resources at the sentence and tokenization levels
and excluded from the SDP 2014 training and test-
ing data any sentences for which (a) one or more of
the treebanks lacked a gold-standard analysis; (b) a
one-to-one alignment of tokens could not be estab-
lished across all three representations; or (c) at least
one of the graphs was cyclic. Of the 43,746 sen-
tences in these 22 first sections of WSJ text, Deep-
Bank lacks analyses for close to 15 %, and the Enju
Treebank has gaps for a little more than four per-
cent. Some 500 sentences show tokenization mis-
matches, most owing to DeepBank correcting PTB
idiosyncrasies like (G.m.b, H.), (S.p, A.), and
(U.S., .),and introducing a few new ones (Fares
et al., 2013). Finally, 232 of the graphs obtained
through the above conversions were cyclic. In total,
we were left with 34,004 sentences (or 745,543
tokens) as training data (Sections 00-20), and 1348
testing sentences (29,808 tokens), from Section 21.

Quantitative Comparison As a first attempt at
contrasting our three target representations, Table 2
shows some high-level statistics of the graphs com-
prising the training data.’ In terms of distinctions

SThese statistics are obtained using the ‘official’ SDP
toolkit. We refer to nodes that have neither incoming nor
outgoing edges and are not marked as top nodes as singletons;
these nodes are ignored in subsequent statistics, e.g. when
determining the proportion of edges per node (3) or the per-
centages of rooted trees (4) and fragmented graphs (6). The
notation ‘%, denotes (non-singleton) node percentages, and
‘%, percentages over all graphs. We consider a root node any
(non-singleton) node that has no incoming edges; reentrant
nodes have at least two incoming edges. Following Sagae and
Tsujii (2008), we consider a graph projective when there are
no crossing edges (in a left-to-right rendering of nodes) and no
roots are ‘covered’, i.e. for any root j there is no edge i — k



Directed Undirected
DM PAS PCEDT DM PAS PCEDT
DM —  .6425 2612 —  .6719 5675
PAS .6688 — 2963 .6993  — .5490
PCEDT .2636 .2963 — .5743  .5630 —

Table 3: Pairwise F; similarities, including punctu-
ation (upper right diagonals) or not (lower left).

drawn in dependency labels (1), there are clear dif-
ferences between the representations, with PCEDT
appearing linguistically most fine-grained, and PAS
showing the smallest label inventory. Unattached
singleton nodes (2) in our setup correspond to
tokens analyzed as semantically vacuous, which
(as seen in Figure 1) include most punctuation
marks in PCEDT and DM, but not PAS. Further-
more, PCEDT (unlike the other two) analyzes some
high-frequency determiners as semantically vacu-
ous. Conversely, PAS on average has more edges
per (non-singleton) nodes than the other two (3),
which likely reflects its approach to the analysis of
functional words (see below).

Judging from both the percentage of actual trees
(4), the proportions of projective graphs (5), and the
proportions of reentrant nodes (7), PCEDT is much
more ‘tree-oriented’ than the other two, which at
least in part reflects its approach to the analysis
of modifiers and determiners (again, see below).
We view the small percentages of graphs without
at least one top node (8) and of graphs with at
least two non-singleton components that are not
interconnected (6) as tentative indicators of general
well-formedness. Intuitively, there should always
be a ‘top’ predicate, and the whole graph should
‘hang together’. Only DM exhibits non-trivial (if
small) degrees of topless and fragmented graphs,
and these may indicate imperfections in the Deep-
Bank annotations or room for improvement in the
conversion from full MRSs to bi-lexical dependen-
cies, but possibly also exceptions to our intuitions
about semantic dependency graphs.

Finally, in Table 3 we seek to quantify pairwise
structural similarity between the three representa-
tions in terms of unlabeled dependency F; (dubbed
UF in Section 5 below). We provide four variants
of this metric, (a) taking into account the direc-
tionality of edges or not and (b) including edges
involving punctuation marks or not. On this view,
DM and PAS are structurally much closer to each
other than either of the two is to PCEDT, even more

such that ¢ < j < k.
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so when discarding punctuation. While relaxing
the comparison to ignore edge directionality also
increases similarity scores for this pair, the effect
is much more pronounced when comparing either
to PCEDT. This suggests that directionality of se-
mantic dependencies is a major source of diversion
between DM and PAS on the one hand, and PCEDT
on the other hand.

Linguistic Comparison Among other aspects,
Ivanova et al. (2012) categorize a range of syntac-
tic and semantic dependency annotation schemes
according to the role that functional elements take.
In Figure 1 and the discussion of Table 2 above, we
already observed that PAS differs from the other
representations in integrating into the graph aux-
iliaries, the infinitival marker, the case-marking
preposition introducing the argument of apply (f0),
and most punctuation marks;® while these (and
other functional elements, e.g. complementizers)
are analyzed as semantically vacuous in DM and
PCEDT, they function as predicates in PAS, though
do not always serve as ‘local’ top nodes (i.e. the se-
mantic head of the corresponding sub-graph): For
example, the infinitival marker in Figure 1 takes the
verb as its argument, but the ‘upstairs’ predicate
impossible links directly to the verb, rather than to
the infinitival marker as an intermediate.

At the same time, DM and PAS pattern alike
in their approach to modifiers, e.g. attributive ad-
jectives, adverbs, and prepositional phrases. Un-
like in PCEDT (or common syntactic dependency
schemes), these are analyzed as semantic predi-
cates and, thus, contribute to higher degrees of
node reentrancy and non-top (structural) roots.
Roughly the same holds for determiners, but here
our PCEDT projection of Prague tectogrammatical
trees onto bi-lexical dependencies leaves ‘vanilla’
articles (like a and the) as singleton nodes.

The analysis of coordination is distinct in the
three representations, as also evident in Figure 1.
By design, DM opts for what is often called
the Mel’Cukian analysis of coordinate structures
(Mel’¢uk, 1988), with a chain of dependencies
rooted at the first conjunct (which is thus consid-
ered the head, ‘standing in’ for the structure at
large); in the DM approach, coordinating conjunc-
tions are not integrated with the graph but rather
contribute different types of dependencies. In PAS,
the final coordinating conjunction is the head of the

®In all formats, punctuation marks like dashes, colons, and

sometimes commas can be contentful, i.e. at times occur as
both predicates, arguments, and top nodes.
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Figure 2: Analysis of nominal compounding in DM, PAS, and PCEDT, respectively .

structure and each coordinating conjunction (or in-
tervening punctuation mark that acts like one) is a
two-place predicate, taking left and right conjuncts
as its arguments. Conversely, in PCEDT the last
coordinating conjunction takes all conjuncts as its
arguments (in case there is no overt conjunction, a
punctuation mark is used instead); additional con-
junctions or punctuation marks are not connected
to the graph.’

A linguistic difference between our representa-
tions that highlights variable granularities of anal-
ysis and, relatedly, diverging views on the scope
of the problem can be observed in Figure 2. Much
noun phrase—internal structure is not made explicit
in the PTB, and the Enju Treebank from which
our PAS representation derives predates the brack-
eting work of Vadas and Curran (2007). In the
four-way nominal compounding example of Fig-
ure 2, thus, PAS arrives at a strictly left-branching
tree, and there is no attempt at interpreting seman-
tic roles among the members of the compound ei-
ther; PCEDT, on the other hand, annotates both the
actual compound-internal bracketing and the as-
signment of roles, e.g. making stock the PAT(ient)
of investment. In this spirit, the PCEDT annota-
tions could be directly paraphrased along the lines
of plans by employees for investment in stocks. In
a middle position between the other two, DM dis-
ambiguates the bracketing but, by design, merely
assigns an underspecified, construction-specific de-
pendency type; its compound dependency, then,
is to be interpreted as the most general type of de-
pendency that can hold between the elements of
this construction (i.e. to a first approximation either
an argument role or a relation parallel to a prepo-
sition, as in the above paraphrase). The DM and
PCEDT annotations of this specific example hap-
pen to diverge in their bracketing decisions, where
the DM analysis corresponds to [...] investments
in stock for employees, i.e. grouping the concept

"As detailed by Miyao et al. (2014), individual con-
juncts can be (and usually are) arguments of other predicates,
whereas the topmost conjunction only has incoming edges in
nested coordinate structures. Similarly, a ‘shared” modifier of
the coordinate structure as a whole would take as its argument
the local top node of the coordination in DM or PAS (i.e. the

first conjunct or final conjunction, respectively), whereas it
would depend as an argument on all conjuncts in PCEDT.
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employee stock (in contrast to ‘common stock’).

Without context and expert knowledge, these de-
cisions are hard to call, and indeed there has been
much previous work seeking to identify and anno-
tate the relations that hold between members of a
nominal compound (see Nakov, 2013, for a recent
overview). To what degree the bracketing and role
disambiguation in this example are determined by
the linguistic signal (rather than by context and
world knowledge, say) can be debated, and thus the
observed differences among our representations in
this example relate to the classic contrast between
‘sentence’ (or ‘conventional’) meaning, on the one
hand, and ‘speaker’ (or ‘occasion’) meaning, on
the other hand (Quine, 1960; Grice, 1968). In
turn, we acknowledge different plausible points of
view about which level of semantic representation
should be the target representation for data-driven
parsing (i.e. structural analysis guided by the gram-
matical system), and which refinements like the
above could be construed as part of a subsequent
task of interpretation.

5 Task Setup

Training data for the task, providing all columns in
the file format sketched in Section 3 above, together
with a first version of the SDP toolkit—including
graph input, basic statistics, and scoring—were
released to candidate participants in early Decem-
ber 2013. In mid-January, a minor update to the
training data and optional syntactic ‘companion’
analyses (see below) were provided, and in early
February the description and evaluation of a sim-
ple baseline system (using tree approximations and
the parser of Bohnet, 2010). Towards the end of
March, an input-only version of the test data was
released, with just columns (1) to (4) pre-filled; par-
ticipants then had one week to run their systems on
these inputs, fill in columns (5), (6), and upwards,
and submit their results (from up to two different
runs) for scoring. Upon completion of the testing
phase, we have shared the gold-standard test data,
official scores, and system results for all submis-
sions with participants and are currently preparing
all data for general release through the Linguistic
Data Consortium.



DM PAS PCEDT
IF P LR LF M LP LR LF LM LP LR LF M
Peking 8591 90.27 88.54 89.40 2671 9344 90.69 92.04 38.13 7875 73.96 7628 11.05
Priberam 8524 88.82 87.35 88.08 2240 91.95 89.92 9093 32.64 78.80 7470 76.70 09.42
Coﬁzgﬁ%@“‘ 80.77 84.78 84.04 8441 2033 87.69 8837 88.03 10.16 71.15 68.65 69.88 08.01
Potsdam  77.34 7936 79.34 7935 07.57 88.15 81.60 84.75 0653 69.68 6625 67.92 05.19
Alpage 76.76 7942 7724 7832 09.72 8565 8271 84.16 17.95 70.53 6528 67.81 06.82
Linkoping ~ 72.20 78.54 78.05 7829 06.08 76.16 7555 75.85 01.19 60.66 6435 6245 04.01
DM PAS PCEDT
F LP LR LF LM LP LR LF LM LP LR LF LM
Priberam 8627 9023 88.11 89.16 26.85 9256 90.97 91.76 37.83 80.14 7579 77.90 10.68
CMU 8242 8446 8348 8397 0875 90.78 8851 89.63 2604 7681 7072 73.64 07.12
Turku 8049 8094 82.14 81.53 0823 8733 87.76 87.54 1721 7242 7237 7240 06.82
Potsdam 78.60 81.32 8091 81.11 09.05 89.41 8261 8588 0749 7035 67.33 6880 0542
Alpage  78.54 8346 79.55 8146 1076 8723 82.82 8497 1543 7098 67.51 69.20 06.60
In-House 75.89 92.58 92.34 9246 48.07 92.09 92.02 92.06 43.84 40.89 4567 43.15 00.30

Table 4: Results of the closed (top) and open tracks (bottom). For each system, the second column (LF)
indicates the averaged LF score across all target representations), which was used to rank the systems.

Evaluation Systems participating in the task
were evaluated based on the accuracy with which
they can produce semantic dependency graphs for
previously unseen text, measured relative to the
gold-standard testing data. The key measures for
this evaluation were labeled and unlabeled preci-
sion and recall with respect to predicted dependen-
cies (predicate-role—argument triples) and labeled
and unlabeled exact match with respect to complete
graphs. In both contexts, identification of the top
node(s) of a graph was considered as the identifi-
cation of additional, ‘virtual’ dependencies from
an artificial root node (at position 0). Below we
abbreviate these metrics as (a) labeled precision,
recall, and Fy: LP, LR, LF; (b) unlabeled precision,
recall, and Fy: UP, UR, UF; and (c) labeled and
unlabeled exact match: LM, UM.

The ‘official’ ranking of participating systems, in
both the closed and the open tracks, is determined
based on the arithmetic mean of the labeled depen-
dency F; scores (i.e. the geometric mean of labeled
precision and labeled recall) on the three target rep-
resentations (DM, PAS, and PCEDT). Thus, to be
considered for the final ranking, a system had to
submit semantic dependencies for all three target
representations.

Closed vs. Open Tracks The task was sub-
divided into a closed track and an open track, where
systems in the closed track could only be trained
on the gold-standard semantic dependencies dis-
tributed for the task. Systems in the open track, on
the other hand, could use additional resources, such
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as a syntactic parser, for example—provided that
they make sure to not use any tools or resources
that encompass knowledge of the gold-standard
syntactic or semantic analyses of the SDP 2014
test data, i.e. were directly or indirectly trained or
otherwise derived from WSJ Section 21.

This restriction implies that typical off-the-shelf
syntactic parsers had to be re-trained, as many data-
driven parsers for English include this section of
the PTB in their default training data. To simplify
participation in the open track, the organizers pre-
pared ready-to-use ‘companion’ syntactic analyses,
sentence- and token-aligned to the SDP data, in
two formats, viz. PTB-style phrase structure trees
obtained from the parser of Petrov et al. (2006) and
Stanford Basic syntactic dependencies (de Marn-
effe et al., 2006) produced by the parser of Bohnet
and Nivre (2012).

6 Submissions and Results

From 36 teams who had registered for the task,
test runs were submitted for nine systems. Each
team submitted one or two test runs per track. In
total, there were ten runs submitted to the closed
track and nine runs to the open track. Three teams
submitted to both the closed and the open track.
The main results are summarized and ranked in
Table 4. The ranking is based on the average LF
score across all three target representations, which
is given in the LF column. In cases where a team
submitted two runs to a track, only the highest-
ranked score is included in the table.



Team Track Approach Resources
Link6ping C extension of Eisner’s algorithm for DAGs, edge-factored —
structured perceptron
Potsdam C & O  graph-to-tree transformation, Mate companion
Priberam C & O model with second-order features, decoding with dual decom- companion
position, MIRA
Turku o cascade of SVM classifiers (dependency recognition, label ~ companion,
classification, top recognition) syntactic n-grams,
word2vec
Alpage C & O transition-based parsing for DAGs, logistic regression, struc- companion,
tured perceptron Brown clusters
Peking C transition-based parsing for DAGs, graph-to-tree transforma- —
tion, parser ensemble
CMU O edge classification by logistic regression, edge-factored struc- companion
tured SVM
Copenhagen-Malmo C graph-to-tree transformation, Mate —
In-House O existing parsers developed by the organizers grammars

Table 5: Overview of submitted systems, high-level approaches, and additional resources used (if any).

In the closed track, the average LF scores across
target representations range from 85.91 to 72.20.
Comparing the results for different target represen-
tations, the average LF scores across systems are
85.96 for PAS, 82.97 for DM, and 70.17 for PCEDT.
The scores for labeled exact match show a much
larger variation across both target representations
and systems.®

In the open track, we see very similar trends.
The average LF scores across target representations
range from 86.27 to 75.89 and the corresponding
scores across systems are 88.64 for PAS, 84.95
for DM, and 67.52 for PCEDT. While these scores
are consistently higher than in the closed track,
the differences are small. In fact, for each of the
three teams that submitted to both tracks (Alpage,
Potsdam, and Priberam) improvements due to the
use of additional resources in the open track do not
exceed two points LF.

7 Overview of Approaches

Table 5 shows a summary of the systems that sub-
mitted final results. Most of the systems took
a strategy to use some algorithm to process (re-
stricted types of) graph structures, and apply ma-
chine learning like structured perceptrons. The
methods for processing graph structures are clas-
sified into three types. One is to transform graphs
into trees in the preprocessing stage, and apply con-
ventional dependency parsing systems (e.g. Mate;
Bohnet, 2010) to the converted trees. Some sys-
tems simply output the result of dependency pars-
ing (which means they inherently lose some depen-

8Please see the task web page at the address indicated
above for full labeled and unlabeled scores.
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dencies), while the others apply post-processing
to recover non-tree structures. The second strat-
egy is to use a parsing algorithm that can directly
generate graph structures (in the spirit of Sagae &
Tsujii, 2008; Titov et al., 2009). In many cases
such algorithms generate restricted types of graph
structures, but these restrictions appear feasible for
our target representations. The last approach is
more machine learning—oriented; they apply classi-
fiers or scoring methods (e.g. edge-factored scores),
and find the highest-scoring structures by some de-
coding method.

It is difficult to tell which approach is the best;
actually, the top three systems in the closed and
open tracks selected very different approaches. A
possible conclusion is that exploiting existing sys-
tems or techniques for dependency parsing was
successful; for example, Peking built an ensemble
of existing transition-based and graph-based depen-
dency parsers, and Priberam extended an existing
dependency parser. As we indicated in the task de-
scription, a novel feature of this task is that we have
to compute graph structures, and cannot assume
well-known properties like projectivity and lack of
reentrancies. However, many of the participants
found that our representations are mostly tree-like,
and this fact motivated them to apply methods that
have been well studied in the field of syntactic de-
pendency parsing.

Finally, we observe that three teams participated
in both the closed and open tracks, and all of them
reported that adding external resources improved
accuracy by a little more than one point. Systems
with (only) open submissions extensively use syn-
tactic features (e.g. dependency paths) from exter-
nal resources, and they are shown effective even



with simple machine learning models. Pre-existing,
tree-oriented dependency parsers are relatively ef-
fective, especially when combined with graph-to-
tree transformation. Comparing across our three
target representations, system scores show a ten-
dency PAS > DM > PCEDT, which can be taken as
a tentative indicator of relative levels of ‘parsabil-
ity’. As suggested in Section 4, this variation most
likely correlates at least in part with diverging de-
sign decisions, e.g. the inclusion of relatively local
and deterministic dependencies involving function
words in PAS, or the decision to annotate contex-
tually determined speaker meaning (rather than
‘mere’ sentence meaning) in at least some construc-
tions in PCEDT.

8 Conclusions and Outlook

We have described the motivation, design, and out-
comes of the SDP 2014 task on semantic depen-
dency parsing, i.e. retrieving bi-lexical predicate—
argument relations between all content words
within an English sentence. We have converted to
a common format three existing annotations (DM,
PAS, and PCEDT) over the same text and have put
this to use for the first time in training and testing
data-driven semantic dependency parsers. Building
on strong community interest already to date and
our belief that graph-oriented dependency parsing
will further gain importance in the years to come,
we are preparing a similar (slightly modified) task
for SemEval 2015. Candidate modifications and
extensions will include cross-domain testing and
evaluation at the level of ‘complete’ predications
(in contrast to more lenient per-dependency F; used
this year). As optional new sub-tasks, we plan on
offering cross-linguistic variation and predicate (i.e.
semantic frame) disambiguation for at least some of
the target representations. To further probe the role
of syntax in the recovery of semantic dependency
relations, we will make available to participants
a wider selection of syntactic analyses, as well as
add a third (idealized) ‘gold’ track, where syntactic
dependencies are provided directly from available
syntactic annotations of the underlying treebanks.
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Abstract

We describe the Sentiment Analysis in
Twitter task, ran as part of SemEval-2014.
It is a continuation of the last year’s task
that ran successfully as part of SemEval-
2013. As in 2013, this was the most popu-
lar SemEval task; a total of 46 teams con-
tributed 27 submissions for subtask A (21
teams) and 50 submissions for subtask B
(44 teams). This year, we introduced three
new test sets: (i) regular tweets, (i7) sarcas-
tic tweets, and (iii) LiveJournal sentences.
We further tested on (iv) 2013 tweets, and
(v) 2013 SMS messages. The highest F1-
score on (i) was achieved by NRC-Canada
at 86.63 for subtask A and by TeamX at
70.96 for subtask B.

1 Introduction

In the past decade, new forms of communica-
tion have emerged and have become ubiquitous
through social media. Microblogs (e.g., Twitter),
Weblogs (e.g., LiveJournal) and cell phone mes-
sages (SMS) are often used to share opinions and
sentiments about the surrounding world, and the
availability of social content generated on sites
such as Twitter creates new opportunities to au-
tomatically study public opinion.

Working with these informal text genres
presents new challenges for natural language pro-
cessing beyond those encountered when work-
ing with more traditional text genres such as
newswire. The language in social media is very
informal, with creative spelling and punctuation,
misspellings, slang, new words, URLs, and genre-
specific terminology and abbreviations, e.g., RT
for re-tweet and #hashtags'.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:

http://creativecommons.org/licenses/by/4.0/
"Hashtags are a type of tagging for Twitter messages.
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Moreover, tweets and SMS messages are short:
a sentence or a headline rather than a document.

How to handle such challenges so as to automat-
ically mine and understand people’s opinions and
sentiments has only recently been the subject of
research (Jansen et al., 2009; Barbosa and Feng,
2010; Bifet et al., 2011; Davidov et al., 2010;
O’Connor et al., 2010; Pak and Paroubek, 2010;
Tumasjan et al., 2010; Kouloumpis et al., 2011).

Several corpora with detailed opinion and sen-
timent annotation have been made freely avail-
able, e.g., the MPQA newswire corpus (Wiebe et
al., 2005), the movie reviews corpus (Pang et al.,
2002), or the restaurant and laptop reviews cor-
pora that are part of this year’s SemEval Task 4
(Pontiki et al., 2014). These corpora have proved
very valuable as resources for learning about the
language of sentiment in general, but they do not
focus on tweets. While some Twitter sentiment
datasets were created prior to SemEval-2013, they
were either small and proprietary, such as the i-
sieve corpus (Kouloumpis et al., 2011) or focused
solely on message-level sentiment.

Thus, the primary goal of our SemEval task is
to promote research that will lead to better un-
derstanding of how sentiment is conveyed in So-
cial Media. Toward that goal, we created the Se-
mEval Tweet corpus as part of our inaugural Sen-
timent Analysis in Twitter Task, SemEval-2013
Task 2 (Nakov et al., 2013). It contains tweets
and SMS messages with sentiment expressions an-
notated with contextual phrase-level and message-
level polarity. This year, we extended the corpus
by adding new tweets and LiveJournal sentences.

Another interesting phenomenon that has been
studied in Twitter is the use of the #sarcasm hash-
tag to indicate that a tweet should not be taken lit-
erally (Gonzalez-Ibéfiez et al., 2011; Liebrecht et
al., 2013). In fact, sarcasm indicates that the mes-
sage polarity should be flipped. With this in mind,
this year, we also evaluate on sarcastic tweets.
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In the remainder of this paper, we first describe
the task, the dataset creation process and the eval-
uation methodology. We then summarize the char-
acteristics of the approaches taken by the partici-
pating systems, and we discuss their scores.

2 Task Description

As SemEval-2013 Task 2, we included two sub-
tasks: an expression-level subtask and a message-
level subtask. Participants could choose to partici-
pate in either or both. Below we provide short de-
scriptions of the objectives of these two subtasks.

Subtask A: Contextual Polarity Disambiguation
Given a message containing a marked in-
stance of a word or a phrase, determine
whether that instance is positive, negative or
neutral in that context. The instance bound-
aries were provided: this was a classification
task, not an entity recognition task.

Subtask B: Message Polarity Classification
Given a message, decide whether it is of
positive, negative, or neutral sentiment.
For messages conveying both positive and
negative sentiment, the stronger one is to be
chosen.

Each participating team was allowed to submit
results for two different systems per subtask: one
constrained, and one unconstrained. A constrained
system could only use the provided data for train-
ing, but it could also use other resources such as
lexicons obtained elsewhere. An unconstrained
system could use any additional data as part of
the training process; this could be done in a super-
vised, semi-supervised, or unsupervised fashion.

Note that constrained/unconstrained refers to
the data used to train a classifier. For example,
if other data (excluding the test data) was used to
develop a sentiment lexicon, and the lexicon was
used to generate features, the system would still
be constrained. However, if other data (excluding
the test data) was used to develop a sentiment lexi-
con, and this lexicon was used to automatically la-
bel additional Tweet/SMS messages and then used
with the original data to train the classifier, then
such a system would be considered unconstrained.

3 Datasets

In this section, we describe the process of collect-
ing and annotating the 2014 testing tweets, includ-
ing the sarcastic ones, and LiveJournal sentences.
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Corpus Positive | Negative | Objective

/ Neutral

Twitter2013-train 5,895 3,131 471
Twitter2013-dev 648 430 57
Twitter2013-test 2,734 1,541 160
SMS2013-test 1,071 1,104 159
Twitter2014-test 1,807 578 88
Twitter2014-sarcasm 82 37 5
LiveJournal2014-test 660 511 144

Table 1: Dataset statistics for Subtask A.

3.1 Datasets Used

For training and development, we released the
Twitter train/dev/test datasets from SemEval-2013
task 2, as well as the SMS test set, which uses mes-
sages from the NUS SMS corpus (Chen and Kan,
2013), which we annotated for sentiment in 2013.

We further added a new 2014 Twitter test set,
as well as a small set of tweets that contained
the #sarcasm hashtag to determine how sarcasm
affects the tweet polarity. Finally, we included
sentences from LiveJournal in order to determine
how systems trained on Twitter perform on other
sources. The statistics for each dataset and for
each subtask are shown in Tables 1 and 2.

Corpus Positive | Negative | Objective

/ Neutral

Twitter2013-train 3,662 1,466 4,600
Twitter2013-dev 575 340 739
Twitter2013-test 1,572 601 1,640
SMS2013-test 492 394 1,207
Twitter2014-test 982 202 669
Twitter2014-sarcasm 33 40 13
LiveJournal2014-test 427 304 411

Table 2: Dataset statistics for Subtask B.

3.2 Annotation

We annotated the new tweets as in 2013: by iden-
tifying tweets from popular topics that contain
sentiment-bearing words by using SentiWordNet
(Baccianella et al., 2010) as a filter. We altered the
annotation task for the sarcastic tweets, displaying
them to the Mechanical Turk annotators without
the #sarcasm hashtag; the Turkers had to deter-
mine whether the tweet is sarcastic on their own.
Moreover, we asked Turkers to indicate the degree
of sarcasm as (a) definitely sarcastic, (b) probably
sarcastic, and (c) not sarcastic.

As in 2013, we combined the annotations using
intersection, where a word had to appear in 2/3
of the annotations to be accepted. An annotated
example from each source is shown in Table 3.



Source Example Polarity

Twitter Why would you [still]- wear shorts when it’s this cold?! I [love]+ how Britain see’s a | positive
bit of sun and they’re [like ’OOOH]+ LET’S STRIP!’

SMS [Sorry]- I think tonight [cannot]- and I [not feeling well]- after my rest. negative

LiveJournal [Cool]+ posts , dude ; very [colorful]+ , and [artsy]+ . positive

Twitter Sarcasm | [Thanks]+ manager for putting me on the schedule for Sunday negative

Table 3: Example of polarity for each source of messages. The target phrases are marked in [...], and
are followed by their polarity; the sentence-level polarity is shown in the last column.

3.3 Tweets Delivery

We did not deliver the annotated tweets to the par-
ticipants directly; instead, we released annotation
indexes, a list of corresponding Twitter IDs, and
a download script that extracts the correspond-
ing tweets via the Twitter APL.> We provided the
tweets in this manner in order to ensure that Twit-
ter’s terms of service are not violated. Unfor-
tunately, due to this restriction, the task partici-
pants had access to different number of training
tweets depending on when they did the download-
ing. This varied between a minimum of 5,215
tweets and the full set of 10,882 tweets. On av-
erage the teams were able to collect close to 9,000
tweets; for teams that did not participate in 2013,
this was about 8,500. The difference in training
data size did not seem to have had a major impact.
In fact, the top two teams in subtask B (coooolll
and TeamX) trained on less than 8,500 tweets.

4 Scoring

The participating systems were required to per-
form a three-way classification for both subtasks.
A particular marked phrase (for subtask A) or an
entire message (for subtask B) was to be classi-
fied as positive, negative or objective/neutral. We
scored the systems by computing a score for pre-
dicting positive/negative phrases/messages. For
instance, to compute positive precision, ppos, We
find the number of phrases/messages that a sys-
tem correctly predicted to be positive, and we di-
vide that number by the total number it predicted
to be positive. To compute positive recall, 105,
we find the number of phrases/messages correctly
predicted to be positive and we divide that number
by the total number of positives in the gold stan-
dard. We then calculate F1-score for the positive
class as follows Fj,s % We carry
out a similar computation for Fj,.,, for the nega-
tive phrases/messages. The overall score is then
F = (Fyos + Fueg) /2

“https://dev.twitter.com
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We used the two test sets from 2013 and the
three from 2014, which we combined into one test
set and we shuffled to make it hard to guess which
set a sentence came from. This guaranteed that
participants would submit predictions for all five
test sets. It also allowed us to test how well sys-
tems trained on standard tweets generalize to sar-
castic tweets and to LiveJournal sentences, with-
out the participants putting extra efforts into this.
The participants were also not informed about the
source the extra test sets come from.

We provided the participants with a scorer that
outputs the overall score F' and a confusion matrix
for each of the five test sets.

S Participants and Results

The results are shown in Tables 4 and 5, and the
team affiliations are shown in Table 6. Tables 4
and 5 contain results on the two progress test sets
(tweets and SMS messages), which are the official
test sets from the 2013 edition of the task, and on
the three new official 2014 testsets (tweets, tweets
with sarcasm, and LiveJournal). The tables fur-
ther show macro- and micro-averaged results over
the 2014 datasets. There is an index for each re-
sult showing the relative rank of that result within
the respective column. The participating systems
are ranked by their score on the Twitter-2014 test-
set, which is the official ranking for the task; all
remaining rankings are secondary.

As we mentioned above, the participants were
not told that the 2013 test sets would be included
in the big 2014 test set, so that they do not over-
tune their systems on them. However, the 2013
test sets were made available for development, but
it was explicitly forbidden to use them for training.
Still, some participants did not notice this restric-
tion, which resulted in their unusually high scores
on Twitter2013-test; we did our best to identify
all such cases, and we asked the authors to submit
corrected runs. The tables mark such resubmis-
sions accordingly.



Most of the submissions were constrained, with
just a few unconstrained: 7 out of 27 for subtask
A, and 8 out of 50 for subtask B. In any case, the
best systems were constrained. Some teams par-
ticipated with both a constrained and an uncon-
strained system, but the unconstrained system was
not always better than the constrained one: some-
times it was worse, sometimes it performed the
same. Thus, we decided to produce a single rank-
ing, including both constrained and unconstrained
systems, where we mark the latter accordingly.

5.1 Subtask A

Table 4 shows the results for subtask A, which at-
tracted 27 submissions from 21 teams. There were
seven unconstrained submissions: five teams sub-
mitted both a constrained and an unconstrained
run, and two teams submitted an unconstrained
run only. The best systems were constrained. All
participating systems outperformed the majority
class baseline by a sizable margin.

5.2 Subtask B

The results for subtask B are shown in Table 5.
The subtask attracted 50 submissions from 44
teams. There were eight unconstrained submis-
sions: six teams submitted both a constrained and
an unconstrained run, and two teams submitted an
unconstrained run only. As for subtask A, the best
systems were constrained. Again, all participating
systems outperformed the majority class baseline;
however, some systems were very close to it.

6 Discussion

Overall, we observed similar trends as in
SemEval-2013 Task 2. Almost all systems used
supervised learning. Most systems were con-
strained, including the best ones in all categories.
As in 2013, we observed several cases of a team
submitting a constrained and an unconstrained run
and the constrained run performing better.

It is unclear why unconstrained systems did not
outperform constrained ones. It could be because
participants did not use enough external data or
because the data they used was too different from
Twitter or from our annotation method. Or it could
be due to our definition of unconstrained, which
labels as unconstrained systems that use additional
tweets directly, but considers unconstrained those
that use additional tweets to build sentiment lexi-
cons and then use these lexicons.

76

As in 2013, the most popular classifiers were
SVM, MaxEnt, and Naive Bayes. Moreover, two
submissions used deep learning, coooolll (Harbin
Institute of Technology) and ThinkPositive (IBM
Research, Brazil), which were ranked second and
tenth on subtask B, respectively.

The features used were quite varied, includ-
ing word-based (e.g., word and character n-
grams, word shapes, and lemmata), syntactic, and
Twitter-specific such as emoticons and abbrevia-
tions. The participants still relied heavily on lex-
icons of opinion words, the most popular ones
being the same as in 2013: MPQA, SentiWord-
Net and Bing Liu’s opinion lexicon. Popular this
year was also the NRC lexicon (Mohammad et
al., 2013), created by the best-performing team in
2013, which is top-performing this year as well.

Preprocessing of tweets was still a popular tech-
nique. In addition to standard NLP steps such
as tokenization, stemming, lemmatization, stop-
word removal and POS tagging, most teams ap-
plied some kind of Twitter-specific processing
such as substitution/removal of URLs, substitu-
tion of emoticons, word normalization, abbrevi-
ation lookup, and punctuation removal. Finally,
several of the teams used Twitter-tuned NLP tools
such as part of speech and named entity taggers
(Gimpel et al., 2011; Ritter et al., 2011).

The similarity of preprocessing techniques,
NLP tools, classifiers and features used in 2013
and this year is probably partially due to many
teams participating in both years. As Table 6
shows, 18 out of the 46 teams are returning teams.

Comparing the results on the progress Twit-
ter test in 2013 and 2014, we can see that NRC-
Canada, the 2013 winner for subtask A, have
now improved their F1 score from 88.93 to 90.14,
which is the 2014 best score. The best score on the
Progress SMS in 2014 of 89.31 belongs to ECNU;
this is a big jump compared to their 2013 score of
76.69, but it is less compared to the 2013 best of
88.37 achieved by GU-MLT-LT. For subtask B, on
the Twitter progress testset, the 2013 winner NRC-
Canada improves their 2013 result from 69.02 to
70.75, which is the second best in 2014; the win-
ner in 2014, TeamX, achieves 72.12. On the SMS
progress test, the 2013 winner NRC-Canada im-
proves its F1 score from 68.46 to 70.28. Overall,
we see consistent improvements on the progress
testset for both subtasks: 0-1 and 2-3 points abso-
lute for subtasks A and B, respectively.



Uncon- 2013: Progress 2014: Official 2014: Average
# System strain.? | Tweet SMS Tweet Tweet Live- Macro  Micro
sarcasm  Journal
1 | NRC-Canada 90.144 88.034 86.631 77.135 85.49, 83.082 85.61,
2 | SentiKLUE 90.11- 85.165 84.83, 79.323 85.611 83.25; 85.152
3 | CMUQ-Hybrid* 88.94,4 87.985 84.4053 76.996 84.213 81.873 84.053
4 | CMU-Qatar* 89.853 88.083 83.454 78.074 83.895 81.804 83.564
5 | ECNU v 87.29¢ 89.264 82.935 73.71% 81.697 79.44, 81.856
6 | ECNU 87.287 89.31; 82.676 73.719 81.67s 79.358 81.757
7 | Think_Positive v 88.065 87.656 82.057 76.747 80.9012 | 79.90¢ 81.15¢
8 | Kea” 84.8310 84.1410 | 81.22g 65.94,7  81.1611 | 76.1113  80.7010
9 | Lt3 86.285 85.267 81.029 70.7613  80.4413 | 77.4111  80.3313
10 | senti.ue 84.0511  78.7216 | 80.5410 82.75: 81.906 81.735 81.47s
11 | LyS 85.699  81.4412 | 799211  71.6710 83.954 | 785110 82215
12 | UKPDIPF 80.4515 79.0514 | 79.6712  65.63:8 81.429 | 75.5714 80.331;
13 | UKPDIPF v 80.4516 79.0515 | 79.6713  65.6319  81.4210 | 755715 80.3312
14 | TIP 81.1314 84419 | 79.3014 712012 782715 | 762612  78.3915
15 | SAP-RI 80.3217 80.2613 | 77.2615  70.6414  77.6818 | 75.1917 77.3216
16 | senti.ue™ v 83.8012 82931 | 77.0716 80.022 79.7014 | 78.939  78.8314
17 | SAIL 78.4718 T4.4690 | 76.8917  65.5620  70.6225 | 71.0221  72.5721
18 columbia,nlpo 81.5013 74,5519 76.5418 61 .7622 78.1916 72. 1619 77.1 118
19 IIT-Patna 76.5420 75-9918 76.4319 71.4311 77.9917 75.2816 77.2617
20 | Citius v 76.5919 693121 | 752120 68.4015  75.8220 | 73.1418  75.3819
21 Citius 74.7121 61.4425 73.0321 65.1821 71.6421 69.9522 71.9022
22 IITPatna 70.9123 77.0417 72.2522 66.3216 76,0319 7].5320 74.4520
23 SU-sentilab 74.3422 62.5824 68.2623 53.3125 69.5323 63.7024 68.5923
24 Univ. Warwick* 62.2526 60.1226 67.2824 58.0824 64,8925 63.4225 65.4825
25 Univ. Warwick* / 64.9125 63.0123 67.1725 60.5923 67.4624 65.0723 67.1424
26 | DAEDALUS 67.4224 639292 | 609826 452727  61.0126 | 55.7526 60.502¢
27 | DAEDALUS v 61.9527 559727 | 58.1127  49.1996 58.6527 | 553297  58.1727
Majority baseline 38.1 31.5 422 39.8 334

Table 4: Results for subtask A. The * indicates system resubmissions (because they initially trained on
Twitter2013-test), and the © indicates a system that includes a task co-organizer as a team member. The
systems are sorted by their score on the Twitter2014 test dataset; the rankings on the individual datasets
are indicated with a subscript. The last two columns show macro- and micro-averaged results across the

three 2014 test datasets.

Finally, note that for both subtasks, the best sys-
tems on the Twitter-2014 dataset are those that per-
formed best on the 2013 progress Twitter dataset:
NRC-Canada for subtask A, and TeamX (Fuji Xe-
rox Co., Ltd.) for subtask B.

It is interesting to note that the best results
for Twitter2014-test are lower than those for
Twitter2013-test for both subtask A (86.63 vs.
90.14) and subtask B (70.96 vs 72.12). This is
so despite the baselines for Twitter2014-test be-
ing higher than those for Twitter2013-test: 42.2 vs.
38.1 for subtask A, and 34.6 vs. 29.2 for subtask
B. Most likely, having access to Twitter2013-test
at development time, teams have overfitted on it. It
could be also the case that some of the sentiment
dictionaries that were built in 2013 have become
somewhat outdated by 2014.

Finally, note that while some teams such as
NRC-Canada performed well across all test sets,
other such as 7eamX, which used a weighting
scheme tuned specifically for class imbalances in
tweets, were only strong on Twitter datasets.
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7 Conclusion

We have described the data, the experimental
setup and the results for SemEval-2014 Task 9.
As in 2013, our task was the most popular one at
SemEval-2014, attracting 46 participating teams:
21 in subtask A (27 submissions) and 44 in sub-
task B (50 submissions).

We introduced three new test sets for 2014: an
in-domain Twitter dataset, an out-of-domain Live-
Journal test set, and a dataset of tweets contain-
ing sarcastic content. While the performance on
the LiveJournal test set was mostly comparable
to the in-domain Twitter test set, for most teams
there was a sharp drop in performance for sarcas-
tic tweets, highlighting better handling of sarcas-
tic language as one important direction for future
work in Twitter sentiment analysis.

We plan to run the task again in 2015 with the
inclusion of a new sub-evaluation on detecting sar-
casm with the goal of stimulating research in this
area; we further plan to add one more test domain.



Uncon- 2013: Progress 2014: Official 2014: Average
# System strain.? | Tweet SMS Tweet Tweet Live- Macro  Micro
sarcasm  Journal
1 | TeamX 721217 573626 | 70.961 56.503 69.4415 | 65.633 69.995
2 | coooolll 70.403 67.68- 70.142 46.6624 72905 | 63.23;2  70.512
3 | RTRGO 69.105 67.513 69.953 47.0923 72.20¢ | 63.08:3  70.153
4 | NRC-Canada 70.752 70.284 69.854 58.16¢ 74.84, 67.62, 71.371
5 | TUGAS 65.6413  62.7711 | 69.005 52.8712  69.7913 | 63.89¢ 68.845
6 | CISUCKIS* 67.56g 65.90¢ 67.956 55.495 74.462 65.97, 70.024
7 | SAIL 66.8011 569828 | 67.777 57.26- 69.3417 | 64.794  68.061¢
8 | SWISS-CHOCOLATE 648118 66.435 67.545 49.4616 73254 | 63429  69.15¢
9 Synalp-Empathic 63.6523 62.5412 67.439 51.0615 71.759 63.4111 68.579
10 Think_Positive \/ 68.157 63.209 67.0410 47.8521 66.9624 60.6218 66‘4715
11 | SentiKLUE 69.066 67.404 | 67.02:1  43.3630 73.993 | 614614  68.94;
12 | JOINT_FORCES v 66.6112 622013 | 66.7912 45402  70.0212 | 60.7417  67.3912
13 | AMI_ERIC 70.094  60.2920 | 66.5513 48.1920  65.3296 | 60.0221  65.5829
14 | AUEB 63.9221  64.325 | 66.3814 56.164 70.7511 | 64.435 67.7111
15 CMU-Qatar* 65.1117 62.9510 65.5315 40-5238 65.6325 57.2327 64.8724
16 | Lt3 65.5614 64.787 | 65.4716 47.7622  68.5620 | 60.6019 66.1217
17 columbia,nlpo 64.6019 59.8421 65.4217 40.024() 68.7919 58.0825 65.9619
18 | LyS 66.9219 604519 | 6492185 424033  69.7914 | 59.0422 66.1018
19 | NILC_USP 653915  61.3516 | 63.9419 42.0634 69.0218 | 583424 65.2121
20 | senti.ue 67.349  59.3423 | 63.812 55.316 713910 | 63.507 66.3816
21 | UKPDIPF 60.6529  60.5617 | 63.7721 54.597 71.927 63.43s  66.53:3
22 | UKPDIPF v 60.6530 60.5618 | 63.7722 54.59% 71.92g 63.439  66.5314
23 | SU-FMI*® 60.9628 61.6715 | 63.6223  48.3419 68.2451 | 60.0720 64.9123
24 | ECNU 623127  59.7522 | 63.1724 514314 694446 | 613515 65.1722
25 | ECNU v 63.7222  56.7329 | 63.0425  49.3317;  64.0831 | 58.8223 63.0427
26 Rapanakis 58.5232 54.0235 63.0126 44.6927 59,7]37 55.8031 61.2832
27 | Citius v 63.2524  58.2824 | 62.9497  46.1325 64.5429 | 57.8726 63.0626
28 | CMUQ-Hybrid* 63.2225 61.7514 | 62. 7128  40.9537  65.1427 | 562730  63.0028
29 | Citius 62.5326  57.6925 | 61.9299  41.0036 62.4033 | 55.1133 61.5131
30 | KUNLPLab 58.1233  55.8931 | 61.7230 44.6028  63.7732 | 56.7029  62.0029
31 senti.ue” v 65211() 561650 614731 54099 680822 612116 637125
32 | UPV-ELiRF 63.9720 55.3633 | 59.3332  37.4642  64.1130 | 53.6337  60.4933
33 | USP_Biocom 58.0534 53.5736 | 59.2133  43.5629 67.8023 | 56.8628 61.9630
34 | DAEDALUS v 589431 549634 | 57.6434 352644  60.9935 | 51.3039 58.2635
35 IIT-Patna 52.5840 5 1.9637 57.2535 41 .3335 60.3936 52.9933 57-9736
36 | DejaVu 574336  55.5732 | 57.023¢ 424632  64.6928 | 54.7234  59.4634
37 | GPLSI 574935 46.6342 | 56.0637 539010  57.3241 | 55.7632 56.4737
38 | BUAP 56.8537 442744 | 557638  51.5213  53.9444 | 53.7436 54.9739
39 | SAP-RI 50.1844 49.004; | 55.4739  48.6418  57.8640 | 53.9935 56.1738
40 | UMCC_DLSI_Sem 51.9641 50.0138 | 55.4040 42.7631  53.1245 | 504340 54.2042
41 | IBM_EG 545138 46.6243 | 52.2641  34.1446 59.2438 | 48.5543 54.3441
42 | Alberta 53.8539 49.0540 | 52.0642  40.4039  52.3846 | 48.2844 51.8544
43 | lIsis_lif 46.3846  38.5647 | 52.0243  34.6445 61.0934 | 49.2541  54.9040
44 SU-sentilab 50.1745 49.6039 49.5244 31.4947 55.1142 45.3747 51.0945
45 | SINAI 50.5942 573427 | 49.5045  31.1549  58.3339 | 46.3346 52.2643
46 II'TPatna 50.3243 4—0.5646 48.2246 36.7343 54.6843 46.5445 50-2946
47 UniV. Warwick 39. 1748 29.5049 45.5647 39.7741 39.6049 41 .6448 43. 1948
48 UMCC,DLSLGI'aph 43.24—47 36.6643 45-4948 53.1511 4—7.8147 48.8242 46.5647
49 Univ. Warwick \/ 34.2350 24.6350 45.1 149 31-4048 29.3450 35.2849 38.8849
50 | DAEDALUS 36.5749 40.8645 | 33.0350 289650 40.8348 | 34.2750 35.8150
Majority baseline 29.2 19.0 34.6 27.7 27.2

Table 5: Results for subtask B. The * indicates system resubmissions (because they initially trained on
Twitter2013-test), and the © indicates a system that includes a task co-organizer as a team member. The
systems are sorted by their score on the Twitter2014 test dataset; the rankings on the individual datasets
are indicated with a subscript. The last two columns show macro- and micro-averaged results across the

three 2014 test datasets.

In the 2015 edition of the task, we might also
remove the constrained/unconstrained distinction.

Finally, as there are multiple opinions about a
topic in Twitter, we would like to focus on detect-
ing the sentiment trend towards a topic.
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Subtasks Team Affiliation 20132
B Alberta University of Alberta
B AMI_ERIC AMI Software R&D and Université de Lyon (ERIC LYON 2) yes
B AUEB Athens University of Economics and Business yes
B BUAP Benemérita Universidad Auténoma de Puebla
B CISUC_KIS University of Coimbra
A'B Citius University of Santiago de Compostela
A,B CMU-Qatar Carnegie Mellon University, Qatar
A'B CMUQ-Hybrid Carnegie Mellon University, Qatar (different from the above)
A,B columbia_nlp Columbia University yes
cooolll Harbin Institute of Technology
A,B DAEDALUS Daedalus
DejaVu Indian Institute of Technology, Kanpur
A,B ECNU East China Normal University yes
B GPLSI University of Alicante
B IBM_EG IBM Egypt
A'B IITPatna Indian Institute of Technology, Patna
A,B IIT-Patna Indian Institute of Technology, Patna (different from the above)
B JOINT_FORCES Zurich University of Applied Sciences
A Kea York University, Toronto yes
B KUNLPLab Kog University
B Isis_lif Aix-Marseille University yes
A, B Lt3 Ghent University
A,B LyS Universidade da Coruna
NILC_USP University of Sdo Paulo yes
A,B NRC-Canada National Research Council Canada yes
B Rapanakis Stamatis Rapanakis
B RTRGO Retresco GmbH and University of Gothenburg yes
A, B SAIL Signal Analysis and Interpretation Laboratory yes
A,B SAP-RI SAP Research and Innovation
A,B senti.ue Universidade de Evora yes
A,B SentiKLUE Friedrich-Alexander-Universitidt Erlangen-Niirnberg yes
B SINAI University of Jaén yes
B SU-FMI Sofia University
A,B SU-sentilab Sabanci University yes
B SWISS-CHOCOLATE | ETH Zurich
B Synalp-Empathic University of Lorraine
B TeamX Fuji Xerox Co., Ltd.
A,B Think_Positive IBM Research, Brazil
A TJP University of Northumbria at Newcastle Upon Tyne yes
B TUGAS Instituto de Engenharia de Sistemas e Computadores, yes
Investigacdo e Desenvolvimento em Lisboa
A B UKPDIPF Ubiquitous Knowledge Processing Lab
B UMCC_DLSI_Graph Universidad de Matanzas and Univarsidad de Alicante yes
B UMCC_DLSI_Sem Universidad de Matanzas and Univarsidad de Alicante (different from above) yes
A,B Univ. Warwick University of Warwick
B UPV-ELiRF Universitat Politecnica de Valencia
B USP_Biocom University of S@o Paulo and Federal University of Sao Carlos

Table 6: Participating teams, their affiliations, subtasks they have taken part in, and an indication about
whether the team participated in SemEval-2013 Task 2.
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Abstract

In Semantic Textual Similarity, systems
rate the degree of semantic equivalence
between two text snippets. This year,
the participants were challenged with new
data sets for English, as well as the in-
troduction of Spanish, as a new language
in which to assess semantic similarity.
For the English subtask, we exposed the
systems to a diversity of testing scenar-
ios, by preparing additional OntoNotes-
WordNet sense mappings and news head-
lines, as well as introducing new gen-
res, including image descriptions, DEFT
discussion forums, DEFT newswire, and
tweet-newswire headline mappings. For
Spanish, since, to our knowledge, this is
the first time that official evaluations are
conducted, we used well-formed text, by
featuring sentences extracted from ency-
clopedic content and newswire. The an-
notations for both tasks leveraged crowd-
sourcing. The Spanish subtask engaged 9
teams participating with 22 system runs,
and the English subtask attracted 15 teams
with 38 system runs.

1 Introduction and motivation

Given two snippets of text, Semantic Textual Sim-
ilarity (STS) captures the notion that some texts
are more similar than others, measuring their de-
gree of semantic equivalence. Textual similar-
ity can range from complete unrelatedness to ex-
act semantic equivalence, and a graded similar-
ity intuitively captures the notion of intermediate

*carmennb@umich.edu, mtdiab@gwu.edu
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shades of similarity, as pairs of text may differ
from some minor nuanced aspects of meaning, to
relatively important semantic differences, to shar-
ing only some details, or to simply being related
to the same topic (cf. Section 2).

One of the goals of the STS task is to create a
unified framework for combining several seman-
tic components that otherwise have historically
tended to be evaluated independently and with-
out characterization of impact on NLP applica-
tions. By providing such a framework, STS al-
lows for an extrinsic evaluation of these modules.
Moreover, such an STS framework itself could in
turn be evaluated intrinsically and extrinsically as
a grey/black box within various NLP applications
such as Machine Translation (MT), Summariza-
tion, Generation, Question Answering (QA), etc.

STS is related to both Textual Entailment (TE)
and Paraphrasing, but differs in a number of ways
and it is more directly applicable to a number of
NLP tasks. STS is different from TE inasmuch
as it assumes bidirectional graded equivalence be-
tween the pair of textual snippets. In the case of
TE the equivalence is directional, e.g. a car is a
vehicle, but a vehicle is not necessarily a car. STS
also differs from both TE and Paraphrasing (in as
far as both tasks have been defined to date in the
literature) in that, rather than being a binary yes/no
decision (e.g. a vehicle is not a car), we define
STS to be a graded similarity notion (e.g. a ve-
hicle and a car are more similar than a wave and
a car). A quantifiable graded bidirectional notion
of textual similarity is useful for a myriad of NLP
tasks such as MT evaluation, information extrac-
tion, question answering, summarization, etc.

In 2012 we held the first pilot task at SemEval
2012, as part of the *SEM 2012 conference, with
great success: 35 teams participated with 88 sys-
tem runs (Agirre et al., 2012). In addition, we held
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year | dataset pairs | source

2012 | MSRpar 1500 | newswire

2012 | MSRvid 1500 | videos

2012 | OnWN 750 | glosses

2012 | SMTnews 750 | MT eval.

2012 | SMTeuroparl 750 | MT eval.

2013 | HDL 750 | newswire

2013 | FNWN 189 | glosses

2013 | OnWN 561 | glosses

2013 | SMT 750 | MT eval.

2014 | HDL 750 | newswire headlines
2014 | OnWN 750 | glosses

2014 | Deft-forum 450 | forum posts

2014 | Deft-news 300 | news summary
2014 | Images 750 | image descriptions
2014 | Tweet-news 750 | tweet-news pairs

Table 2: English subtask: Summary of train (2012
and 2013) and test (2014) datasets.

a DARPA sponsored workshop at Columbia Uni-
versity.! In 2013, STS was selected as the offi-
cial Shared Task of the *SEM 2013 conference,
with two subtasks: The Core task, which is sim-
ilar to the 2012 task; and a Pilot task on Typed-
similarity between semi-structured records. The
Core task attracted 34 participants with 89 runs,
and the Typed-similarity task attracted 6 teams
with 14 runs.

For STS 2014 we defined two subtasks: En-
glish and Spanish. For the English subtask we pro-
vided five test datasets: two datasets that extend
already released genres (the OntoNotes-WordNet
sense mappings and news headlines) and three
new genres: image descriptions, DEFT discus-
sion forum data and newswire, as well as tweet-
newswire headline mappings. Participants could
use all datasets released in 2012 and 2013 as train-
ing data. The Spanish subtask introduced two di-
verse datasets on different genres, namely ency-
clopedic descriptions extracted from the Spanish
Wikipedia and contemporary Spanish newswire.
For the Spanish subtask, the participants had ac-
cess to a limited amount of labeled data, consist-
ing of 65 sentence pairs, which they could use for
training.

2 Task Description
2.1 English Subtask

The English dataset comprises pairs of news head-
lines (HDL), pairs of glosses (OnWN), image de-
scriptions (Images), DEFT-related discussion fo-
rums (Deft-forum) and news (Deft-news), and

'nttp://www.cs.columbia.edu/-weiwei/
workshop/
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tweet comments and newswire headline mappings
(Tweets).

For HDL, we used naturally occurring news
headlines gathered by the Europe Media Moni-
tor (EMM) engine (Best et al., 2005) from sev-
eral different news sources. EMM clusters to-
gether related news. Our goal was to generate
a balanced data set across the different similar-
ity ranges, hence we built two sets of headline
pairs: (i) a set where the pairs come from the same
EMM cluster, (ii) and another set where the head-
lines come from a different EMM cluster, then
we computed the string similarity between those
pairs. Accordingly, we sampled 375 headline pairs
of headlines that occur in the same EMM cluster,
aiming for pairs equally distributed between min-
imal and maximal similarity using simple string
similarity. We sampled other 375 pairs from the
different EMM cluster in the same manner.

For OnWN, we used the sense definition pairs
of OntoNotes (Hovy et al., 2006) and WordNet
(Fellbaum, 1998). Different from previous tasks,
the two definition sentences in a pair belong to dif-
ferent senses. We sampled 750 pairs based on a
string similarity ranging from 0.5 to 1.

The Images data set is a subset of the PAS-
CAL VOC-2008 data set (Rashtchian et al., 2010),
which consists of 1,000 images and has been used
by a number of image description systems. It was
also sampled from string similarity values between
0.6 and 1.

Deft-forum and Deft-news are from DEFT
data.”> Deft-forum contains the forum post sen-
tences, and Deft-news are news summaries. We
selected 450 pairs for Deft-forum and 300 pairs for
Deft-news. They are sampled evenly from string
similarities falling in the interval 0.6 to 1.

The Tweets data set contains tweet-news pairs
selected from the corpus released in (Guo et al.,
2013), where each pair contains a sentence that
pertains to the news title, while the other one rep-
resents a Twitter comment on that particular news.
They are evenly sampled from string similarity
values between 0.5 and 1.

Table 1 shows the explanations and values as-
sociated with each score between 5 and 0. As
in prior years, we used Amazon Mechanical Turk
(AMT)? to crowdsource the annotation of the En-
glish pairs.* Annotators are presented with the

’LDC2013E19, LDC2012E54

3www.mturk . com

4For STS 2013, we used CrowdFlower as a front-end to



’ Score ‘ English Spanish

5/4 The two sentences are completely equivalent, as they mean the same thing.
The bird is bathing in the sink. El pdjaro se esta baiando en el lavabo.
Birdie is washing itself in the water basin. El pajaro se estd lavando en el aguamanil.

4 The two sentences are mostly equivalent, but some unimportant details differ.
In May 2010, the troops attempted to invade
Kabul.
The US army invaded Kabul on May 7th last
year, 2010.

3 The two sentences are roughly equivalent, but some important information differs/missing.
John said he is considered a witness but not a | John dijo que él es considerado como testigo, y
suspect. no como sospechoso.
”He is not a suspect anymore.” John said. “El ya no es un sospechoso,” John dijo.

2 The two sentences are not equivalent, but share some details.
They flew out of the nest in groups. Ellos volaron del nido en grupos.
They flew into the nest together. Volaron hacia el nido juntos.

1 The two sentences are not equivalent, but are on the same topic.
The woman is playing the violin. La mujer esta tocando el violin.
The young lady enjoys listening to the guitar. | La joven disfruta escuchar la guitarra.

0 The two sentences are completely dissimilar.
John went horse back riding at dawn with a | Al amanecer, Juan se fue a montar a caballo
whole group of friends. con un grupo de amigos.
Sunrise at dawn is a magnificent view to take | La salida del sol al amanecer es una magnifica
in if you wake up early enough for it. vista que puede presenciar si usted se despierta

lo suficientemente temprano para verla.

Table 1: Similarity scores with explanations and examples for the English and Spanish subtasks, where
the sentences in Spanish are translations of the English ones.

A similarity score of 5 in English is mirrored by a maximum score of 4 in Spanish; the definitions pertaining to scores 3 and 4
in English were collapsed under a score of 3 in Spanish, with the definition "The two sentences are mostly equivalent, but some

details differ.”

detailed instructions provided in Figure 1, and
are asked to label each STS sentence pair on our
six point scale, selecting from a dropdown box.
Five sentence pairs are presented to each annota-
tor at once, per human intelligence task (HIT), at
a payrate of $0.20; we collect five separate anno-
tations per sentence pair. Annotators were only el-
igible to work on the task if they had the Mechan-
ical Turk Master Qualification. This is a special

Amazon Mechanical Turk, since it provides numerous useful
tools to assist in running a successful annotation project using
crowdsourcing, such as support for hidden ’golden’ questions
that can be used both to train annotators and to automatically
stop people who repeatedly make mistakes from contribut-
ing to the task. However, in 2013, CrowdFlower dropped
Amazon Mechanical Turk as an annotation source. When we
tried running pairs for STS 2014 on CrowdFlower using the
same templates that were successfully used for the 2013 task,
we found that we obtained significantly degraded annotation
quality, with an average Pearson (AMT provider vs. rest of
AMT providers) of only 22.8%. In contrast, when we ran the
task for 2014 on AMT, we obtained a one-vs-rest annotation
of 73.6%.
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qualification conferred by AMT (using a priority
statistical model) to annotators who consistently
maintain a very high level of quality across a vari-
ety of tasks from numerous requesters). Access to
these skilled workers entails a 20% surcharge.

To monitor the quality of the annotations, we
use the gold dataset of 105 pairs that were manu-
ally annotated by the task organizers during STS
2013. We include one of these gold pairs in each
set of five sentence pairs, where the gold pairs are
indistinguishable from the rest. Unlike when we
ran on CrowdFlower for STS 2013, the gold pairs
are not used for training purposes, nor are workers
automatically banned from the task if they make
too many mistakes on annotating them. Rather, the
gold pairs are only used to help in identifying and
removing the data associated with poorly perform-
ing annotators. With few exceptions, 90% of the
answers from each individual annotator fall within
+/-1 of the answers selected by the organizers for




Compare the Meaning of Two Statements (v.2.5)

Instructions

Two staterments can mean the same thing even if they use very different words and phrases. Conversely, two statements that are

superficially very similar in their word choice, phrasing and overall composition can have very different meanings.

Your job is to compare two statements and decide the type of relationship that holds between their underlying meanings or messages

(i.e., what they say about or refer to in the world).

To do this task successfully, picture what is being described and contrast exactly what is conveyed by one statement versus what is

being conveyed by the other.

Do the statements refer to the exact same person, action, event, idea or thing? Or, are they similar but differ according to either large or

small details?

Tips:

+ Be precise in your assignments and try to avoid overusing any one of the category labels (e.g., don't just label most of the pairs

as "mostly equivalent” or "roughly equivalent”).

+ Be careful of subtle differences between the pairs that have an important impact on what is being said or described.

+ Ignore grammatical errors and awkward wordings within the statements as long as they do not obscure what a statement is suppose

to convey.

Figure 1: Annotation instructions for English subtask.

the gold dataset.

The distribution of scores obtained from the
AMT providers in the Deft-forum, Deft-news,
OnWN and tweet-news datasets is roughly uni-
form across the different grades of similarity, al-
though the scores are slightly higher for tweet-
news. Compared to the other data sets, the scores
for OnWN, were more bimodal, ranging between
4.6 to 5 and O to 0.4, when compared to middle
values (2.6-3.4).

In order to assess the annotation quality, we
measure the correlation of each annotator with the
average of the rest of the annotators, and then aver-
age the results. This approach to estimate the qual-
ity is identical to the method used for evaluations
(see Section 3), and it can thus be considered as
the upper bound of the systems. The inter-tagger
correlation for each English dataset is as follows:
HDL: 79.4%

OnWN: 67.2%
Deft-forum: 58.6%
Deft-news: 70.7%
Images: 83.6%
Tweets-news: 74.4%

The correlation figures are generally high (over
70%), with the exception of the OnWN and Deft
datasets, which score 67.2% and 58.6%, respec-
tively. The reason for the low inter-tagger correla-
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tion on OnWN compared to the higher correlations
in previous years is that we only used unmapped
sense definitions, i.e., the two sentences in a pair
belong to two different senses. For the Deft-forum
dataset, we found that similarity values tend to be
lower than in the other datasets, and more annota-
tion disagreements happen in these low similarity
values.

2.2 Spanish Subtask

The Spanish subtask follows a setup similar to the
English subtask, except that the similarity scores
were adapted to fit a range from O to 4 (see Table
1). We thought that the distinction between a score
of 3 and 4 for the English task will pose more dif-
ficulty for us in conveying into Spanish, as the sole
difference between the two lies in how the annota-
tors perceive the importance of additional details
or missing information with respect to the core se-
mantic interpretation of the pair. As this aspect en-
tails a subjective judgement, and since it is the first
time that a Spanish STS evaluation is organized,
we casted the annotation guidelines into straight-
forward and unambiguous instructions, and thus
opted to use a similarity range from O to 4.

Prior to the evaluation window, we released 65
Spanish sentence pairs for trial / training. In or-
der to evaluate system performance under differ-



ent scenarios, we developed two test datasets, one
extracted from the Spanish Wikipedia® (December
2013 dump) and one from contemporary news ar-
ticles collected from media in Spanish (February
2014).

2.2.1 Spanish Wikipedia

The Wikipedia dump was processed using the
Parse::MediaWikiDump Perl library. We removed
all titles, html tags, wiki tags and hyperlinks
(keeping only the surface forms). Each article was
split into paragraphs, where the first paragraph
was considered to be the article’s abstract, while
the remaining ones were deemed to be its content.
Each of these were split into sentences using the
Perl library Uplug::PreProcess::SentDetect, and
only the sentences longer than eight words were
used. We iteratively computed the lexical simi-
larity® between every sentence in the abstract and
every sentence in the content, and retained those
pairs whose sentence length ratio was higher than
0.5, and their similarity scored over 0.35.

The final set of sentence pairs was split into five
bins, and their scores normalized to range from
0 to 1. The more interesting and difficult pairs
were found, perhaps not surprisingly, in bins 0 and
1, where synonyms/short paraphrases where more
frequent. An example extracted from those bins,
where the text in italics highlights the differences
between the two sentences:

e “America” es el segundo continente mas

grande del planeta, después de Asia.
“America” is the second largest continent in the world,
following Asia.
America corresponde a la segunda masa de
tierra mas grande del planeta, luego de Asia.
America is the second largest land mass on the planet,
after Asia.

The Spanish verb “Es” maps to (En:’ is), “cor-
responde a” (En: corresponds to), the phrase “el
segundo continente” (En: the second continent) is
equivalent to “la segunda masa de tierra” (the sec-
ond land mass), and “despues” (En: following) to
“luego” (En: after). Despite the difference in vo-
cabulary choice, the two sentences are paraphrases
of each other.

From the candidate pairs, we manually selected
324 sentence pairs, in order to ensure a diverse

Ses. wikipedia.org

SAlgorithm based on the Linux diff command (Algo-
rithm::Diff Perl module).

"“En” stands for English.
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and challenging set. This set was annotated in two
ways, first by two graduate students in Computer
Science who are native speakers of Spanish, and
second by using AMT.

The AMT framework was set up to contain
seven sentence pairs per HIT, where six of them
were part of the test dataset, while one was used
for control. AMT providers were eligible to com-
plete a task if they had more than 500 accepted
HITs, with 90%+ acceptance rate.> We paid $0.30
per HIT, and each HIT was annotated by five AMT
providers. We sought to ensure that only Spanish
speaking annotators would complete the HITs by
providing all the information related to the task (its
title, abstract, description, guidelines and exam-
ples), as well as the control pair in Spanish only.
The participants were instructed to label the pairs
on a scale from 0 to 4 (see Table 1). Each sentence
pair was followed by a comment text box, which
the AMT providers used to provide the topic of the
sentences, corrections, etc.

The two students achieved a Pearson correla-
tion of 0.6974 on the Wikipedia dataset. To see
how their judgement compares to the crowd wis-
dom, we averaged the AMT scores for each pair,
and computed their correlation with our annota-
tors, obtaining 0.824 and 0.742, respectively. Sur-
prisingly enough, both these correlation values are
higher than the correlation among the annotators
themselves. When averaging the annotator scores
and comparing them with the AMT providers’
average score per pair, the correlation becomes
0.8546, indicating that the task is well defined,
and that the annotations contributed by the AMT
providers are of satisfactory quality. Given these
scores, the gold standard was annotated using the
average AMT provider judgement per pair.

2.2.2 Spanish News

The second Spanish dataset was extracted from
news articles published in Spanish language me-
dia from around the world in February 2014. The
hyperlinks to the articles were obtained by pars-
ing the “International” page of Spanish Google
News,’ which aggregates or clusters in real time
articles describing a particular event from a di-
verse pool of news sites, where each grouping

81nitially, Amazon had automatically upgraded our anno-
tation task to require Master level providers (as those partici-
pating in the English annotations), yet after approximately 4
days, no HIT had been completed.

‘news. google.es



is labeled with the title of one of the predomi-
nant articles. By leveraging these clusters of links
pointing to the sites where the articles were orig-
inally published, we are able to gather raw text
that has a high probability of containing seman-
tically similar sentences. We encountered several
difficulties while mining the articles, ranging from
each article having its own formatting depend-
ing on the source site, to advertisements, cookie
requirements, to encoding for Spanish diacritics.
We used the lynx text-based browser,'? which was
able to standardize the raw articles to a degree.
The output of the browser was processed using a
rule based approach taking into account continu-
ous text span length, ratio of symbols and num-
bers to the text, etc., in order to determine when
a paragraph is part of the article content. After
that, a second pass over the predictions corrected
mislabeled paragraphs if they were preceded and
followed by paragraphs identified as content. All
the content pertaining to articles on the same event
was joined, sentence split, and diff pairwise simi-
larities were computed. The set of candidate sen-
tences followed the same requirements as for the
Wikipedia dataset, namely length ratio higher than
0.5 and similarity score over 0.35. From these, we
manually extracted 480 sentence pairs which were
deemed to pose a challenge to an automated sys-
tem.

Due to the high correlations obtained between
the AMT providers’ scores and the annotators’
scores on Wikipedia, the news dataset was only
annotated using AMT, following exactly the same
task setup as for Wikipedia.

3 Evaluation

Evaluation of STS is still an open issue.
STS experiments have traditionally used Pearson
product-moment correlation between the system
scores and the GS scores, or, alternatively, Spear-
man rank order correlation. In addition, we also
need a method to aggregate the results from each
dataset into an overall score. The analysis per-
formed in (Agirre and Amigd, In prep) shows that
Pearson and averaging across datasets are the best
suited combination in general. In particular, Pear-
son is more informative than Spearman, in that
Spearman only takes the rank differences into ac-
count, while Pearson does account for value dif-
ferences as well. The study also showed that other

]Olynx.browser.org
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alternatives need to be considered, depending on
the requirements of the target application.

We leave application-dependent evaluations for
future work, and focus on average Pearson correla-
tion. When averaging, we weight each individual
correlation by the size of the dataset. In order to
compute statistical significance among system re-
sults, we use a one-tailed parametric test based on
Fisher’s z-transformation (Press et al., 2002, equa-
tion 14.5.10). In addition, English subtask partic-
ipants could provide an optional confidence mea-
sure between 0 and 100 for each of their predic-
tions. Team RTM-DCU is the only one who has
provided these, and the evaluation of their runs us-
ing weighted Pearson (Pozzi et al., 2012) is listed
at the end of Table 3.

Participants'! could take part in the shared task
with a maximum of 3 system runs per subtask.

3.1 English Subtask

In order to provide a simple word overlap baseline
(Baseline-tokencos), we tokenize the input sen-
tences splitting on white spaces, and then repre-
sent each sentence as a vector in the multidimen-
sional token space. Each dimension has 1 if the to-
ken is present in the sentence, 0 otherwise. Vector
similarity is computed using the cosine similarity
metric.

We also run the freely available system, Take-
Lab (garié et al., 2012), which yielded state of the
art performance in STS 2012 and strong results
out-of-the-box in 2013."2

15 teams participated in the English subtask,
submitting 38 system runs. One team submitted
the results past the deadline, as explicitly marked
in Table 3. After the submission deadline expired,
the organizers published the gold standard and par-
ticipant submissions on the task website, in order
to ensure a transparent evaluation process.

Table 3 shows the results of the English sub-
task, with runs listed in alphabetical order. The
correlation in each dataset is given, followed

UParticipating teams: Bielefeld SC (McCrae et al.,
2013), BUAP (Vilarifio et al., 2014), DLS@CU (Sultan et
al., 2014b), FBK-TR (Vo et al., 2014), IBM_EG (no in-
formation), LIPN (Buscaldi et al., 2014), Meerkat_Mafia
(Kashyap et al., 2014), NTNU (Lynum et al., 2014), RTM-
DCU (Bigici and Way, 2014), SemantiKLUE (Proisi et al.,
2014), StanfordNLP (Socher et al., 2014), TeamZ (Gupta,
2014), UMCC_DLSI_SemSim (Chavez et al., 2014), UNAL-
NLP (Jimenez et al., 2014), UNED (Martinez-Romo et al.,
2011), UoW (Rios, 2014).

2Code is available at http://ixa2.si.ehu.es/
stswiki



Run Name deft deft Headl images OnWN tweet Weighted mean Rank

forum  news news

Baseline-tokencos 0.353 0.596 0.510 0.513 0.406  0.654 0.507 -
TakeLab 0333 0.716 0.720  0.742 0.793  0.650 0.678 -
Bielefeld_SC-runl 0211 0432 0321 0.368 0367 0415 0.354 32
Bielefeld_SC-run2 0.211 0431 0311 0.356 0361  0.409 0.347 33
BUAP-EN-runl 0456 0.686 0.689  0.697 0.654 0.771 0.671 19
DLS@CU-runl 0483 0.766 0.765  0.821 0.723  0.764 0.734 7
DLS@CU-run2 0483 0.766 0.765  0.821 0.859  0.764 0.761 1
FBK-TR-runl 0.322  0.523 0.547 0.601 0.661  0.462 0.535 25
FBK-TR-run2 0.167 0421 0485 0.521 0.572  0.359 0.441 28
FBK-TR-run3 0.305 0405 0471 0.489 0.551  0.438 0.459 27
IBM_EG-runl 0474 0.743 0.737  0.801 0.760  0.730 0.722 8
IBM_EG-run2 0464 0.641 0.710 0.747 0.732  0.696 0.684 15
LIPN-runl 0454 0.640 0.653  0.809 - 0.551 0.508 26
LIPN-run2 0.084 - - - - - 0.010 35
Meerkat_Mafia-Hulk 0449 0.785 0.757  0.790 0.787  0.757 0.735 6
Meerkat_Mafia-pairingWords ~ 0.471  0.763  0.760  0.801 0.875  0.779 0.761 2
Meerkat_Mafia-SuperSaiyan 0492 0.771 0.767  0.768 0.802  0.765 0.741 5
NTNU-runl 0437 0714 0.722  0.800 0.835 0.411 0.663 20
NTNU-run2 0.508 0.766 0.753  0.813 0.777  0.792 0.749 4
NTNU-run3 0531 0.781 0.784  0.834 0.850  0.675 0.755 3
SemantiKLUE-run1 0.337 0.608 0.728  0.783 0.848  0.632 0.687 14
SemantiKLUE-run2 0349 0.643 0.733  0.773 0.855  0.640 0.694 13
StanfordNLP-runl 0.319 0.635 0.636  0.758 0.627  0.669 0.627 22
StanfordNLP-run2 0304 0.679 0.621 0.715 0.625  0.636 0.610 24
StanfordNLP-run3 0.342 0.650 0.602 0.754 0.609  0.638 0.614 23
UMCC_DLSI_SemSim-runl 0475 0.662 0.632  0.742 0.813  0.675 0.682 16
UMCC_DLSI SemSim-run2 0469 0.662 0.625  0.739 0.814  0.654 0.676 18
UMCC_DLSI_SemSim-run3  0.283 0385 0.267  0.436 0.603  0.278 0.381 30
UNAL-NLP-runl 0.504 0.721 0.762  0.807 0.782  0.614 0.711 12
UNAL-NLP-run2 0.383 0.730 0.765 0.771 0.827  0.403 0.657 21
UNAL-NLP-run3 0461 0.722 0.761  0.778 0.843  0.658 0.721 9
UNED-run22_p_np 0.104 0315 0.037 0.324 0.509  0.490 0.310 34
UNED-runS5K_10_np 0.118 0.506 0.057  0.498 0488  0.579 0.379 31
UNED-runS5K_3_np 0.094 0.564 0.018 0.607 0.577  0.670 0.431 29
UoW-runl 0.342 0.751 0.754 0.776 0.799  0.737 0.714 11
UoW-run2 0342 0.587 0.754  0.788 0.799  0.628 0.682 17
UoW-run3 0342 0.763 0.754  0.788 0.799  0.753 0.721 10
RTM-DCU-runl 0434 0.697 0.620  0.699 0.806  0.688 0.671
tRTM-DCU-run2 0.397 0.681 0.613  0.666 0.799  0.669 0.651
1RTM-DCU-run3 0.308 0.556 0.630  0.647 0.800  0.553 0.608
RTM-DCU-runl 0418 0.685 0.622  0.698 0.833  0.687 0.673
tRTM-DCU-run2 0.383 0.674 0.609  0.663 0.826  0.669 0.653
RTM-DCU-run3 0273 0.553 0.633 0.644 0.825  0.568 0.611

Table 3: English evaluation results. Results at the top correspond to out-of-the-box systems. Results at
the bottom correspond to results using the confidence score.
Notes: “-” for not submitted, “i” for post-deadline submission.
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by the mean correlation (the official measure),
and the rank of the run. The highest correla-
tions are for OnWN (87.5%, by Meerkat_Mafia)
and images (83.4%, by NTNU), followed by
Tweets (79.2%, by NTNU), HEADL (78.4%, by
NTNU) and deft news and forums (78.1% and
53.1%, respectively, by NTNU). Compared to the
inter-annotator agreement correlation, the ranking
among datasets is very similar, with the exception
of OnWN, as it gets the best score but has very low
agreement. One possible reason is that the partic-
ipants used previously available data. The results
of the best 4 top system runs are significantly dif-
ferent (p-value < 0.05) from the 5th top scoring
system run and below. The top 4 systems did not
show statistical significant variation among them.

Only three runs (cf. lower rows in Table 3) in-
cluded non-uniform confidence scores, barely af-
fecting their ranking.

Interestingly, the two top performing systems
on the English STS sub-task are both unsuper-
vised. DLS@CU (Sultan et al., 2014b) presents
an unsupervised algorithm which predicts the STS
score based on the proportion of word alignments
in the two sentences. Two related words are
aligned depending on how similar the two words
are, and also on how similar the contexts of the
words are in the respective sentences (Sultan et al.,
2014a). Meerkat_Mafia_pairingWords (Kashyap
et al., 2014) also follows a fully unsupervised ap-
proach. The authors train LSA on an English cor-
pus of three billion words using a sliding window
approach, resulting in a vocabulary size of 29,000
words associated with 300 dimensions. They ac-
count for named entities and out-of-vocabulary
words by leveraging external resources such as
DBpedia'® and Wordnik.'* In Spanish, the sys-
tem equivalent to this run ranked second following
a cross-lingual approach, by applying the English
system to the translated version of the dataset (see
3.2).

The Table also shows the results of TakeLab,
which was trained with all datasets from previ-
ous years. TakeLLab would rank 18th, ten absolute
points below the best system, a smaller difference
than in 2013.

13dbpedia.org
“wordnick.com
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3.2 Spanish Subtask

The Spanish subtask attracted 9 teams with 22
participating systems, out of which 16 were su-
pervised and 6 unsupervised. The participants
were from both Spanish (Colombia, Cuba, Mex-
ico, Spain), and non-Spanish speaking countries
(two teams from France, Germany, Ireland, UK,
US). The evaluation results appear in Table 4.

The top ranking system is the 2nd run of
UMCC_DLSI_SemSim (Chavez et al., 2014),
which achieves a weighted correlation of 0.807. It
entails a cross-lingual approach, as it leverages a
SVM-based English framework, by mapping the
Spanish words to their English equivalent using
the most common sense in WordNet 3.0. The clas-
sifier uses a combination of features, such as those
derived from traditional knowledge-based ((Lea-
cock and Chodorow, 1998; Wu and Palmer, 1994,
Lin, 1998), and others) and corpus-based metrics
(LSA (Landauer et al., 1997)), paired with lexi-
cal features (such as Dice-Similarity, Euclidean-
distance, etc.). It is trained on a cumulative En-
glish STS dataset comprising train and test data
released as part of tasks in SemEval2012 (Agirre
et al., 2012) and *Sem 2013 (Agirre et al., 2013),
as well as training data available from tasks 1 and
10 in SemEval 2014. Interestingly enough, run 2
of the system performs better than run 1, despite
the fact that it uses half the features, and focuses
on string based similarity measures only. This dif-
ference between runs is noticed on the Wikipedia
dataset only, and it amounts to 4% Pearson corre-
lation. While the system had a robust performance
on the Spanish subtask, for English, its overall
rank was 16, 18, and 33, respectively.

Coming in close at only 0.3% difference, is
Meerkat-Mafia PairingAvg (run 2) (Kashyap et
al., 2014), which also follows a cross-lingual ap-
proach, by applying the system the team devel-
oped for the English subtask to the translated ver-
sion of the datasets (see 3.1). The interesting as-
pect of their work is that in their first submission
(run 1), they only consider the similarity result-
ing from the sentence pair translation through the
Google Translate service.”> In the second run,
they expand each sentence to 20 possible combi-
nations by accounting for the multiple translation
meanings of a given word, and considering the av-
erage similarity of all resulting pairs. While the
first run achieves a weighted correlation of 73.8%,

15translate.google.com



Run Name System type Wikipedia News Weighted mean Rank
Bielefeld-SC-runl unsupervised* 0.263 0.554 0.437 22
Bielefeld-SC-run2 unsupervised* 0.265 0.555 0.438 21
BUAP-runl supervised 0.550 0.679 0.627 17
BUAP-run2 unsupervised 0.640 0.764 0.714 14
RTM-DCU-runl supervised 0.422 0.700 0.588 18
RTM-DCU-run2 supervised 0.369 0.625 0.522 20
RTM-DCU-run3 supervised 0.424 0.641 0.554 19
LIPN-runl supervised 0.652 0.826 0.756 11
LIPN-run2 supervised 0.716 0.832 0.785 6
LIPN-run3 supervised 0.716 0.809 0.771 10
Meerkat-Mafia-runl  unsupervised 0.668 0.785 0.738 13
Meerkat-Mafia-run2  unsupervised 0.743 0.845 0.804 2
Meerkat-Mafia-run3  supervised 0.738 0.822 0.788 5
TeamZ-runl supervised 0.610 0.717 0.674 15
TeamZ-run2 supervised 0.604 0.710 0.667 16
UMCC-DLSI-runl supervised 0.741 0.825 0.791 4
UMCC-DLSI-run2 supervised 0.7802 0.825 0.807 1
UNAL-NLP-runl weakly supervised 0.7803 0.815 0.801 3
UNAL-NLP-run2 supervised 0.757 0.783 0.772 9
UNAL-NLP-run3 supervised 0.689 0.796 0.753 12
UoW-runl supervised 0.748 0.800 0.779 7
UoW-run2 supervised 0.748 0.800 0.779 8

Table 4: Spanish evaluation results in terms of Pearson correlation.

the second one performs significantly better at
80.4%, indicating that the additional context may
also include multiple instances of accurate trans-
lations, hence significantly impacting the overall
similarity score. In English, the system equiva-
lent to run 2 in Spanish, namely Meerkat Mafia-
pairingWords, achieves a competitive ranked per-
formance across all six datasets, ranking second,
at an order of 10~* distance from the top sys-
tem. This supports the claim that, despite its unsu-
pervised nature, the system is quite versatile and
highly competitive with the top performing super-
vised frameworks, and that it may achieve an even
higher performance in Spanish if accurate sen-
tence translations were provided.

Overall, most systems were cross-lingual, rely-
ing on different translation approaches, such as 1)
translating the test data into English (as the two
systems above), and then exporting the score ob-
tained for the English sentences back to Spanish,
or 2) performing automatic translation of the En-
glish training data, and learning a classifier di-
rectly in Spanish. (Buscaldi et al., 2014) supple-
mented their training dataset with human annota-
tions conducted in Spanish, using definition pairs
extracted from a Spanish dictionary. A different
angle was explored by (Rios, 2014), who proposed
a multilingual framework using transfer learning
across English and Spanish by training on tradi-
tional lexical, knowledge-based and corpus-based
features. The semantic similarity task was ap-

proached from a monolingual perspective as well
(Gupta, 2014), by focusing on Spanish resources,
such as the trial data we released as part of the
subtask, and the Spanish WordNet;! these were
leveraged using meta-learning over variations of
overlap-based metrics. Following the same line,
(Bigici and Way, 2014) pursued language inde-
pendent methods, who avoided relying on task or
domain specific information through the usage of
referential translation machines. This approach
models textual semantic similarity as a decision in
terms of translation quality between two datasets
(in our case Spanish STS trial and test data) given
relevant examples from an in-language reference
corpus.

In comparison to the correlations obtained in the
English subtask, where the highest weighted mean
was 76.1%, for Spanish, we obtained 80.7%, prob-
ably due to the more formal nature of the datasets,
since Wikipedia and news articles employ mostly
well formed and grammatically correct sentences,
and we selected all snippets to be longer than 8
words. The overall correlation scores obtained for
English were hurt by the deft-forum data, which
scored significantly lower (at a maximum corre-
lation of 50.8%), when compared to all the other
datasets whose correlation was higher than 70%.
The OnWN data was most similar to our test sets,
and it attained a maximum of 85.9%.

16grj_al .uab.es/descarregues.php
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4 Conclusion

This year’s STS task comprised a multilingual
flair, by introducing Spanish datasets alongside the
English ones. In English, the datasets sought to ex-
pose the participating teams to more diverse sce-
narios compared to the previous years, by intro-
ducing image descriptions, forum and newswire
genre, and tweet-newswire headline mappings.
For Spanish, two datasets were developed consist-
ing of encyclopedic and newswire text acquired
from Spanish sources. Overall, the English sub-
task attracted 15 teams (with 38 system varia-
tions), while the Spanish subtask had 9 teams
(with 22 system runs). Most teams from the Span-
ish subtask have also submitted runs for the En-
glish evaluations.
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Abstract

In this paper, we describe our unsupervised
method submitted to the Cross-Level Se-
mantic Similarity task in Semeval 2014 that
computes semantic similarity between two
different sized text fragments. Our method
models each text fragment by using the co-
occurrence statistics of either occurred words
or their substitutes. The co-occurrence mod-
eling step provides dense, low-dimensional
embedding for each fragment which allows
us to calculate semantic similarity using
various similarity metrics. Although our
current model avoids the syntactic infor-
mation, we achieved promising results and
outperformed all baselines.

1 Introduction

Semantic similarity is a measure that specifies the
similarity of one text’s meaning to another’s. Se-
mantic similarity plays an important role in vari-
ous Natural Language Processing (NLP) tasks such
as textual entailment (Berant et al., 2012), summa-
rization (Lin and Hovy, 2003), question answering
(Surdeanu et al., 2011), text classification (Sebas-
tiani, 2002), word sense disambiguation (Schiitze,
1998) and information retrieval (Park et al., 2005).

There are three main approaches to computing

the semantic similarity between two text fragments.

The first approach uses Vector Space Models (see
Turney & Pantel (2010) for an overview) where
each text is represented as a bag-of-word model.
The similarity between two text fragments can then
be computed with various metrics such as cosine
similarity. Sparseness in the input nature is the
key problem for these models. Therefore, later
works such as Latent Semantic Indexing (?) and

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-

ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

Topic Models (Blei et al., 2003) overcome spar-
sity problems via reducing the dimensionality of
the model by introducing latent variables. The sec-
ond approach blends various lexical and syntactic
features and attacks the problem through machine
learning models. The third approach is based on
word-to-word similarity alignment (Pilehvar et al.,
2013; Islam and Inkpen, 2008).

The Cross-Level Semantic Similarity (CLSS) task
in SemEval 2014! (Jurgens et al., 2014) provides
an evaluation framework to assess similarity meth-
ods for texts in different volumes (i.e., lexical lev-
els). Unlike previous SemEval and *SEM tasks
that were interested in comparing texts with simi-
lar volume, this task consists of four subtasks (para-
graph2sentence, sentence2phrase, phrase2word and
word2sense) that investigate the performance of
systems based on pairs of texts of different sizes.
A system should report the similarity score of a
given pair, ranging from 4 (two items have very
similar meanings and the most important ideas,
concepts, or actions in the larger text are repre-
sented in the smaller text) to O (two items do not
mean the same thing and are not on the same topic).

In this paper, we describe our two unsupervised
systems that are based on co-occurrence statistics
of words. The only difference between the sys-
tems is the input they use. The first system uses the
words directly (after lemmatization, stop-word re-
moval and excluding the non-alphanumeric char-
acters) in text while the second system utilizes the
most likely substitutes consulted by a 4-gram lan-
guage model for each observed word position (i.e.,
context). Note that we participated two subtasks
which are paragraph2sentence and sentence2phrase.

The remainder of the paper proceeds as follows.
Section 2 explains the preprocessing part, the dif-
ference between the systems, co-occurrence mod-
eling, and how we calculate the similarity between

"http://alt.qcri.org/semeval2014/
task3/
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Type-ID | Lemma
Sent-33 | choose
Sent-33 buy
Sent-33 gift
Sent-33 card
Sent-33 hard
Sent-33 | decision

Table 1: Instance id-word pairs for a given sen-
tence.

two texts after co-occurrence modeling has been
done. Section 3 discusses the results of our sys-
tems and compares them to other participants’. Sec-
tion 4 discusses the findings and concludes with
plans for future work.

2 Algorithm

This section explains preprocessing steps of the
data and the details of our two systems’. Both
systems rely on the co-occurrence statistics. The
slight difference between the two is that the first
one uses the words that occur in the given text
fragment (e.g., paragraph, sentence), whereas the
latter employs co-occurrence statistics on 100 sub-
stitute samples for each word within the given text
fragment.

2.1 Data Preprocessing

Two AI-KU systems can be distinguished by their
inputs. One uses the raw input words, whereas the
other uses words’ likely substitutes according to a
language model.

AI-KU;: This system uses the words that were
in the text. All words are transformed into lower-
case equivalents. Lemmatization® and stop-word
removal were performed, and non-alphanumeric
characters were excluded. Table 1 displays the
pairs for the following sentence which is an in-
stance from paragraph2sentence test set:

“Choosing what to buy with a $35 gift
card is a hard decision.”

Note that the input that we used to model co-
occurrence statistics consists of all such pairs for
each fragment in a given subtask.

>The code to replicate our work can be found
at https://github.com/osmanbaskaya/
semevalld-task3.

3Lemmatization is carried out with Stanford CoreNLP
and transforms a word into its canonical or base form.
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AI-KU,: Previously, the utilization of high prob-
ability substitutes and their co-occurrence statis-
tics achieved notable performance on Word Sense
Induction (WSI) (Baskaya et al., 2013) and Part-
of-Speech Induction (Yatbaz et al., 2012) prob-
lems. AI-KUs represents each context of a word
by finding the most likely 100 substitutes suggested
by the 4-gram language model we built from ukWaC*
(Ferraresi et al., 2008), a 2-billion word web-gathered
corpus. Since S-CODE algorithm works with dis-
crete input, for each context we sample 100 substi-
tute words with replacement using their probabili-
ties. Table 2 illustrates the context and substitutes
of each context using a bigram language model.
No lemmatization, stop-word removal and lower-
case transformation were performed.

2.2 Co-Occurrence Modeling

This subsection will explain the unsupervised method
we employed to model co-occurrence statistics: the
Co-occurrence data Embedding (CODE) method
(Globerson et al., 2007) and its spherical exten-
sion (S-CODE) proposed by Maron et al. (2010).
Unlike in our WSI work, where we ended up with
an embedding for each word in the co-occurrence
modeling step in this task, we model each text unit
such as a paragraph, a sentence or a phrase, to ob-
tain embeddings for each instance.

Input data for S-CODE algorithm consist of instance-

id and each word in the text unit for the first sys-
tem (Table 1 illustrates the pairs for only one text
fragment) instance-ids and 100 substitute samples
of each word in text for the second system. In
the initial step, S-CODE puts all instance-ids and
words (or substitutes, depending on the system)
randomly on an n-dimensional sphere. If two dif-
ferent instances have the same word or substitute,
then these two instances attract one another — oth-
erwise they repel each other. When S-CODE con-
verges, instances that have similar words or sub-
stitutes will be closely located or else, they will be
distant from each other.

AI-KU;: According to the training set perfor-
mances for various n (i.e., number of dimensions
for S-CODE algorithm), we picked 100 for both
tasks.

AI-KU,: We picked n to be 200 and 100 for
paragraph2sentence and sentence2phrase subtasks,
respectively.

* Available here: http://wacky.sslmit.unibo.it



Word | Context || Substitutes
the || <s> ___dog || The (0.12), A (0.11), If (0.02), As (0.07), Stray (0.001),..., wy, (0.02)
dog the ___ cat (0.007), dog (0.005), animal (0.002), wolve (0.001), ..., w,, (0.01)
bites dog ___. runs (0.14), bites (0.13), catches (0.04), barks (0.001), ..., w, (0.01)

Table 2: Contexts and substitute distributions when a bigram language model is used. w and n denote an
arbitrary word in the vocabulary and the vocabulary size, respectively.

System | Pearson | Spearman System | Pearson | Spearman
S | AI-KKU; | 0.671 0.676 » | AI-KU; | 0.607 0.568
2 | ALKU, | 0.542 0.531 £| AI-KUs | 0.620 0.579
2| LCS 0.499 0.602 & | LCS 0.500 0.582
< | Ich 0.584 0.596 8| Ich 0.484 0.491
5| lin 0.568 0.562 2| lin 0.492 0.470
g 11 0.613 0.644 7 J1 0.465 0.465

Table 3: Paragraph-2-Sentence subtask scores for
the training data. Subscripts in AI-KU systems
specify the run number.

Since this step is unsupervised, we tried to en-
rich the data with ukWaC, however, enrichment
with ukWaC did not work well on the training data.
To this end, proposed scores were obtained using
only the training and the test data provided by or-
ganizers.

2.3 Similarity Calculation

When the S-CODE converges, there is an n-dimen-
sional embedding for each textual level (e.g., para-
graph, sentence, phrase) instance. We can use a

similarity metric to calculate the similarity between

these embeddings. For this task, systems should

report only the similarity between two specific cross

level instances. Note that we used cosine simi-
larity to calculate similarity between two textual
units. This similarity is the eventual similarity for
two instances; no further processing (e.g., scaling)
has been done.

In this task, two correlation metrics were used
to evaluate the systems: Pearson correlation and
Spearman’s rank correlation. Pearson correlation
tests the degree of similarity between the system’s

similarity ratings and the gold standard ratings. Spear-

man’s rank correlation measures the degree of sim-

ilarity between two rankings; similarity ratings pro-

vided by a system and the gold standard ratings.

Table 4: Sentence2phrase subtask scores for the
training data.

3 Evaluation Results

Tables 3 and 4 show the scores for Paragraph-2-
Sentence and Sentence-2-Phrase subtasks on the
training data, respectively. These tables contain
the best individual scores for the performance met-
rics, Normalized Longest Common Substring (LCS)
baseline, which was given by task organizers, and
three additional baselines: lin (Lin, 1998), Ich (Lea-
cock and Chodorow, 1998), and the Jaccard In-
dex (JI) baseline. lin uses the information content
(Resnik, 1995) of the least common subsumer of
concepts A and B. Information content (IC) indi-
cates the specificity of a concept; the least com-
mon subsumer of a concept A and B is the most
specific concept from which A and B are inherited.
lin similarity’ returns the difference between two
times of the IC of the least common subsumer of
A and B, and the sum of IC of both concepts. On
the other hand, Ich is a score denoting how similar
two concepts are, calculated by using the shortest
path that connects the concept and the maximum
depth of the taxonomy in which the concepts oc-
cur® (please see Pedersen et al. (2004) for further
details of these measures). These two baselines
were calculated as follows. First, using the Stan-

>lin similarity = 2 * IC(lcs)/(IC(A) + IC(B)) where
lcs indicates the least common subsumer of concepts A and
B

The exact formulation is —log(L/2d) where L is the
shortest path length and d is the taxonomy depth.



Table 5: Paragraph-2-Sentence subtask scores for
the test data. Best indicates the best correlation
score for the subtask. LCS stands for Normalized
Longest Common Substring. Subscripts in AI-KU
systems specify the run number.

ford Part-of-Speech Tagger (Toutanova and Man-
ning, 2000) we tagged words across all textual lev-
els. After tagging, we found the synsets of each
word matched with its part-of-speech using Word-
Net 3.0 (Miller and Fellbaum, 1998). For each
synset of a word in the shorter textual unit (e.g.,
sentence is shorter than paragraph), we calculated
the lin/Ich measure of each synset of all words
in the longer textual unit and picked the highest
score. When we found the scores for all words,
we calculated the mean to find out the similarity
between one pair in the test set. Finally, Jaccard
Index baseline was used to simply calculate the
number of words in common (intersection) with
two cross textual levels, normalized by the total
number of words (union). Table 5 and 6 demon-
strate the AI-KU runs on the test data. Next, we
present our results pertaining to the test data.

Paragraph2Sentence:
all the baselines for both metrics. The best score
for this subtask was .837 and our systems achieved
.732 and .698 on Pearson and did similar on Spear-
man metric. These scores are promising since our
current unsupervised systems are based on bag-of-
words approach — they do not utilize any syntac-
tic information.

Sentence2Phrase: In this subtask, AI-KU sys-
tems outperformed all baselines with the excep-
tion of the AI-KU¢ system which performed slightly
worse than LCS on Spearman metric. Performances
of systems and baselines were lower than Para-
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System | Pearson | Spearman System | Pearson | Spearman

Best 0.837 0.821 Best 0.777 0.642

g | 2" Best | 0.834 0.820 274 Best | 0.771 0.760
g | 37" Best | 0.826 0.817 Z|3Best | 0.760 0.757
3 | AI-KU; | 0.732 0.727 & | AI-KKU; | 0.680 0.646
% | ALKU; | 0.698 0.700 % | ALKU, | 0.617 0.612
= | LCS 0.527 0.613 s| Les 0.562 0.626
£ Ich 0.629 0.627 S| Ich 0.526 0.544
. lin 0.612 0.601 lin 0.501 0.498
11 0.640 0.687 J1 0.540 0.555

Both systems outperformed

Table 6: Sentence2phrase subtask scores for the
test data.

graph2Sentence subtask, since smaller textual units
(such as phrases) make the problem more difficult.

4 Conclusion

In this work, we introduced two unsupervised sys-
tems that utilize co-occurrence statistics and rep-
resent textual units as dense, low dimensional em-
beddings. Although current systems are based on
bag-of-word approach and discard the syntactic in-
formation, they achieved promising results in both
paragraph2sentence and sentence2phrase subtasks.
For future work, we will extend our algorithm by
adding syntactic information (e.g, dependency pars-
ing output) into the co-occurrence modeling step.
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Abstract

This paper describes the systems deployed
by the ALPAGE team to participate to the
SemEval-2014 Task on Broad-Coverage
Semantic Dependency Parsing. We de-
veloped two transition-based dependency
parsers with extended sets of actions to
handle non-planar acyclic graphs. For the
open track, we worked over two orthog-
onal axes — lexical and syntactic — in or-
der to provide our models with lexical and
syntactic features such as word clusters,
lemmas and tree fragments of different

types.

1 Introduction

In recent years, we have seen the emergence
of semantic parsing, relying on various tech-
niques ranging from graph grammars (Chiang et
al., 2013) to transitions-based dependency parsers
(Sagae and Tsujii, 2008). Assuming that obtain-
ing predicate argument structures is a necessary
goal to move from syntax to accurate surface se-
mantics, the question of the representation of such
structures arises. Regardless of the annotation
scheme that should be used, one of the main is-
sues of semantic representation is the construction
of graph structures, that are inherently harder to
generate than the classical tree structures.

In that aspect, the shared task’s proposal (Oepen
et al., 2014), to evaluate different syntactic-
semantic schemes (Ivanova et al., 2012; Hajic et
al., 2006; Miyao and Tsujii, 2004) could not ar-
rive at a more timely moment when state-of-the-art
surface syntactic parsers regularly reach, or cross,
a 90% labeled dependency recovery plateau for a

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-

ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/.
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wide range of languages (Nivre et al., 2007a; Sed-
dah et al., 2013).

The two systems we present both extend
transition-based parsers in order to be able to gen-
erate acyclic dependency graphs. The first one
follows the standard greedy search mechanism of
(Nivre et al., 2007b), while the second one fol-
lows a slightly more global search strategy (Huang
and Sagae, 2010; Goldberg et al., 2013) by rely-
ing on dynamic programming techniques. In addi-
tion to building graphs directly, the main original-
ity of our work lies in the use of different kinds of
syntactic features, showing that using syntax for
pure deep semantic parsing improves global per-
formance by more than two points.

Although not state-of-the-art, our systems per-
form very honorably compared with other single
systems in this shared task and pave quite an in-
teresting way for further work. In the remainder
of this paper, we present the parsers and their ex-
tensions for building graphs; we then present our
syntactic features and discuss our results.

2 Systems Description

Shift-reduce transition-based parsers essentially
rely on configurations formed of a stack and a
buffer, with stack transitions used to go from a
configuration to the next one, until reaching a fi-
nal configuration. Following Kiibler et al. (2009),
we define a configuration by ¢ = (o, 3, A) where
o denotes a stack of words w;, (8 a buffer of
words, and A a set of dependency arcs of the form
(wj,r,w;), with w; the head, w; the dependent,
and r a label in some set R.

However, despite their overall similarities,
transition-based systems may differ on many as-
pects, such as the exact definition of the configura-
tions, the set of transitions extracted from the con-
figurations, the way the search space is explored
(at parsing and training time), the set of features,
the way the transition weights are learned and ap-

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 97-103,
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(U Wi ‘/37 ) F (U Wi, ﬂv A) (Shlft) BOTH
(olwjlws, B, A)  F  (o|ws, B, AU (ws,r,w;)) (left-reduce) S&T PARSER
(olwjlws, B,A) F  (olwy, B, AU (wj,r,w;)) (right-reduce)  S&T PARSER
(olwjlws, B,A) =  (o|lwjlwi, B, AU (wi, r,w;)) (left-attach) BOTH
(o|lwjlws, B,A) = (o|lw;,w:|B, AU (wj,r,w;) (right-attach) BOTH
(olwi, B, A) o (0,8,A (pop0) BOTH
(o|lwjlw;, B,A) F  (o|ws,B,A) (popl) DYALOG-SR
(olwjlwi, B,A)  F  (o|lwi|w;, B, A) (swap) DYALOG-SR

Figure 1: An extended set of transitions for building dependency graphs.

plied, etc.

For various reasons, we started our experiments
with two rather different transition-based parsers,
which have finally converged on several aspects.
In particular, the main convergence concerns the
set of transitions needed to parse the three pro-
posed annotation schemes. To be able to attach
zero, one, or more heads to a word, it is necessary
to clearly dissociate the addition of a dependency
from the reduction of a word (i.e. its removal from
the stack). Following Sagae and Tsujii (2008), as
shown in Figure 1, beside the usual shift and re-
duce transitions of the arc-standard strategy, we
introduced the new left and right attach actions for
adding new dependencies (while keeping the de-
pendent on the stack) and two reduce pop0 and
pop1l actions to remove a word from the stack af-
ter attachement of its dependents. All transitions
adding an edge should also satisfy the condition
that the new edge does not create a cycle or mul-
tiple edges between the same pair of nodes. It is
worth noting that the pop actions may also be used
to remove words with no heads.

2.1 Sagae & Tsujii’s DAG Parser

Our first parsing system is a partial rewrite, with
several extensions, of the Sagae and Tsujii (2008)
DAG parser (henceforth S&T PARSER). We mod-
ified it to handle dependency graphs, in particu-
lar non-governed words using popO transitions.
This new transition removes the topmost stack el-
ement when all its dependents have been attached
(through attach or reduce transitions). Thus, we
can handle partially connected graphs, since a
word can be discarded when it has no incoming
arc.

We used two different learning algorithms:
(i) the averaged perceptron because of its good
balance between training time and performance
(Daume, 2006), (ii) the logistic regression model
(maximum entropy (Ratnaparkhi, 1997)). For the
latter, we used the truncated gradient optimiza-

98

tion (Langford et al., 2009), implemented in Clas-
sias (Okazaki, 2009), in order to estimate the pa-
rameters. These algorithms have been used inter-
changeably to test their performance in terms of F-
score. But the difference was negligeable in gen-
eral.

2.2 DYALOG-SR

Our second parsing system is DYALOG-SR
(Villemonte De La Clergerie, 2013), which has
been developed to participate to the SPMRL’ 13
shared task. Coded on top of tabular logic
programming system DYALOG, it implements
a transition-based parser relying on dynamic
programming techniques, beams, and an aver-
aged structured perceptron, following ideas from
(Huang and Sagae, 2010; Goldberg et al., 2013).

It was initially designed to follow an arc-
standard parsing strategy, relying on shift and
left/right reduce transitions. To deal with depen-
dency graphs and non governed words, we first
added the two attach transitions and the pop0
transition. But because there exist some overlap
between the reduce and attach transitions leading
to some spurious ambiguities, we finally decided
to remove the left/right reduce transitions and to
complete with the popl transition. In order to
handle some cases of non-projectivty with mini-
mal modifications of the system, we also added
a swap transition. The parsing strategy is now
closer to the arc-eager one, with an oracle sug-
gesting to attach as soon as possible.

2.3 Tree Approximations

In order to stack several dependency parsers, we
needed to transform our graphs into trees. We re-
port here the algorithms we used.

The first one uses a simple strategy. For nodes
with multiple incoming edges, we keep the longest
incoming edge. Singleton nodes (with no head)
are attached with a _void_-labeled edge (by
decreasing priority) to the immediately adjacent



Word,, Lemma,, POS,,
leftPOS,, rightPOS | leftLabel,,
rightLabel | . Word,, Lemma,,
POS,, leftPOS,, rightPOS
leftLabel,, i ghtLabelU2 Word,,
POS,, Wordg, Lemmag,
POSg, Wordg, Lemmag,
POSg2 POSQ3 a d12 dlu

Table 1: Baseline features for S&T PARSER.

node NV, or the virtual root node (token 0). This
strategy already improves over the baseline, pro-
vided by the task organisers, on the PCEDT by 5
points.

The second algorithm tries to preserve more
edges: when it is possible, the deletion of a re-
entrant edge is replaced by reversing its direction
and changing its label [ into <. We do this for
nodes with no incoming edges by reversing the
longest edge only if this action does not create cy-
cles. The number of labels increases, but many
more edges are kept, leading to better results on
DM and PAS corpora.

3 Feature Engineering

3.1 Closed Track

For S&T PARSER we define Wordg, (resp.
Lemmag, and POSg,) as the word (resp. lemma
and part-of-speech) at position 7 in the queue. The
same goes for o;, which is the position ¢ in the
stack. Let d;; be the distance between Word,,
and Wordgj. We also define d;} o the distance be-
tween Wordg, and Wordc,j. In addition, we define
leftPOS,; (resp. leftLabel,;,) the part-of-speech
(resp. the label if any) of the word immediately
at the left handside of o;, and the same goes for
rightPOS,, (resp. rightLabel ). Finally, a is the
previous predicted action by the parser. Table 1
reports our baseline features.

For DYALOG-SR we have the following lexi-
cal features 1ex, lemma, cat, and morphosyn-
tactic mstag. They apply to next unread word
(I, say lemmal), the three next lookahead
words (xI2 to «I4), and (when present) to the
3 stack elements (*0 to *x2), their two leftmost
and rightmost children (before b[01]%[012]
and after a[01]1+[012]). We have dependency
features such as the labels of the two leftmost
and rightmost edges ([ab] [01]1label [012]),
the left and right valency (number of depen-
dency, [ab]lv[012]) and domains (set of de-
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pendency labels, [ab]d[012]). Finally, we
have 3 (discretized) distance features between the
next word and the stack elements (delta[01])
and between the two topmost stack elements
(delta01). Most feature values are atomic (ei-
ther numerical or symbolic), but they can also be
(recursively) a list of values, for instance for the
mstag and domain features. For dealing with
graphs, features were added about the incoming
edges to the 3 topmost stack elements, similar to
valency (ngov[012]) and domain (gov[012]).
For the PCEDT scheme, because of the high num-
ber of dependency labels, the 30 most unfrequent
ones were replaced by a generic label when used
as feature value.

Besides, for the PCEDT and DM corpora, static
and dynamic guiding features have been tried
for DYALOG-SR, provided by MATE (Bohnet,
2010) (trained on versions of these corpora pro-
jected to trees, using a 10-fold cross valida-
tion). The two static features mate_label and
mate_distance are attached to each token h,
indicating the label and the relative distance to its
governor d (if any). At runtime, dynamic features
are also added relative to the current configuration:
if a semantic dependency (h,[,d) has been pre-
dicted by MATE, and the topmost 2 stack elements
are either (h,d) or (d,h), a feature suggesting a
left or right attachment for [ is added.

We did the same for S&T PARSER, except that
we used a simple but efficient hack: instead of
keeping the labels predicted by our parser, we re-
placed them by MATE predictions whenever it was
possible.

3.2 Open Track

For this track, we combined the previously de-
scribed features (but the MATE-related ones) with
various lexical and syntactic features, our intu-
ition being that syntax and semantic are inter-
dependent, and that syntactic features should
therefore help semantic parsing. In particular, we
have considered the following bits of information.

Unsupervized Brown clusters To reduce lexi-
cal sparsity, we extracted 1,000 clusters from the
BNC (Leech, 1992) preprocessed following Wag-
ner et al. (2007). We extended them with capi-
talization, digit features and 3 letters suffix signa-
tures, leading to a vocabulary size reduced by half.

Constituent tree fragments They were part of
the companion data provided by the organizers.



They consist of fragments of the syntactic trees
and can be used either as enhanced parts of speech
or as features.

Spinal elementary trees A full set of parses was
reconstructed from the tree fragments. Then we
extracted a spine grammar (Seddah, 2010), us-
ing the head percolation table of the Bikel (2002)
parser, slightly modified to avoid determiners to be
marked as head in some configurations.

Predicted MATE dependencies Also provided
in the companion data, they consist in the parses
built by the MATE parsers, trained on the Stanford
dependency version of the PTB. We combined the
labels with a distance § = t — h where t is the
token number and / the head number.

Constituent head paths Inspired by Bjorkelund
et al. (2013), we used the MATE dependencies to
extract the shortest path between a token and its
lexical head and included the path length (in terms
of traversed nodes) as feature.

Tree frag. MATE labels+5 Spines trees Head Paths
Train 648 1305 637 27,670
Dev 272 742 265 3,320
Test 273 731 268 2,389

Table 2: Syntactic features statistics.

4 Results and Discussion

We present here the results on section 21 (test set)!
for both systems. We report in Table 3, the differ-
ent runs we submitted for the final evaluation of
the shared task. We also report improvements be-
tween the two tracks.

Both systems show relatively close F-measures,
with correct results on every corpus. If we com-
pare the results more precisely, we observe that in
general, DYALOG-SR tends to behave better for
the unlabeled metrics. Its main weakness is on
MRS scheme, for both tracks.>

"Dev  set  results available  online at
http://goo.gl/w3XcpW.

>The main and still unexplained problem of DYALOG-
SR was that using larger beams has no impact, and often a
negative one, when using the attach and pop transitions. Ex-
cept for PAS and PCEDT where a beam of size 4 worked
best for the open track, all other results were obtained for
beams of size 1. This situation is in total contradiction with
the large impact of beam previously observed for the arc stan-
dard strategy during the SPMRL’13 shared task and during
experiments led on the French TreeBank (Abeillé et al., 2003)
(FTB). Late experiments on the FTB using the attach and

pop actions (but delaying attachments as long as possible) has

are

100

On the other hand, it is worth noting that syn-
tactic features greatly improve semantic parsing.
In fact, we report in Figure 2(a) the improvement
of the five most frequent labels and, in Figure 2(b),
the five best improved labels with a frequency over
0.5% in the training set, which represent 95% of
the edges in the DM Corpus. As we can see, syn-
tactic information allow the systems to perform
better on coordination structures and to reduce am-
biguity between modifiers and verbal arguments
(such as the ARG3 label).

We observed the same behaviour on the PAS
corpus, which contains also predicate-argument
structures. For PCEDT, the results show that syn-
tactic features give only small improvements, but
the corpus is harder because of a large set of labels
and is closer to syntactic structures than the two
others.

Of course, we only scratched the surface with
our experiments and we plan to further investigate
the impact of syntactic information during seman-
tic parsing. We especially plan to explore the deep
parsing of French, thanks to the recent release of
the Deep Sequoia Treebank (Candito et al., 2014).

5 Conclusion

In this paper, we presented our results on the task
8 of the SemEval-2014 Task on Broad-Coverage
Semantic Dependency Parsing. Even though the
results do not reach state-of-the-art, they compare
favorably with other single systems and show that
syntactic features can be efficiently used for se-
mantic parsing.

In future work, we will continue to investigate
this idea, by combining with more complex sys-
tems and more efficient machine learning tech-
niques, we are convinced that we can come closer
to state of the art results. and that syntax is the key
for better semantic parsing.
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Closed track Open track

PCEDT LF UF PCEDT LF UF

PEKING - BEST 76.28  89.19 PRIBERAM - BEST 77.90 89.03

S&T PARSER b5 67.83  80.86 S&T PARSER b5 69.20 +1.37 82.68 +1.86

DYALOG-SR bl 67.81 81.23 DYALOG-SR b4 69.58 +1.77 84.80 +3.77
DM (MRS) DM (MRS)

PEKING - BEST 89.40  90.82 PRIBERAM - BEST 89.16 90.32

S&T PARSER b5 78.44  80.88 S&T PARSER b5 8146 +3.02 83.68 +2.80

DYALOG-SR bl 78.32  81.85 DYALOG-SR bl 7971  +1.39 8197 +0.12
PAS (ENJU) PAS (ENJU)

PEKING - BEST 92.04 93.13 PRIBERAM - BEST 91.76 92.81

S&T PARSER b5 82.44  84.41 S&T PARSER b5 84.97 +2.53 86.64 +2.23

DYALOG-SR bl 84.16  86.09 DYALOG-SR b4 85.58 +1.42 86.98 +0.87

Table 3: Results on section 21 (test) of the PTB for closed and open track.

poss l , poss 2:4%
BV . BV 0%
compound ]l compound ] | 11.7%
7 . o)
ARG2 1| = With Syntax ARG2 s 5%
=
ARG1 7;| ‘ No Syntax ARG1 7;| 40.2% ‘
60 70 80 90 100 60 70 80 90 100
F-score S&T PARSER (%) F-score DYALOG-SR (%)

(a) the 5 most frequent labels

conj =ty conj Foy 0.6%
appos . appos L 0.8%
ARG3 ———4 ARG3 =l 1:3%
loc = | = With Syntax loc [ e 1 5%
—and-c = No Syntax -and-c —— 12:1%
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Abstract

In this paper we describe the ASAP sys-
tem (Automatic Semantic Alignment for
Phrases)' which participated on the Task
1 at the SemEval-2014 contest (Marelli et
al., 2014a). Our assumption is that STS
(Semantic Text Similarity) follows a func-
tion considering lexical, syntactic, seman-
tic and distributional features. We demon-
strate the learning process of this function
without any deep preprocessing achieving
an acceptable correlation.

1 Introduction

Evaluation of compositional semantic models on
full sentences through semantic relatedness and
textual entailment, title of this task on SemEval,
aims to collect systems and approaches able
to predict the difference of meaning between
phrases and sentences based on their included
words (Baroni and Zamparelli, 2010; Grefenstette
and Sadrzadeh, 2011; Mitchell and Lapata, 2010;
Socher et al., 2012).

Our contribution is in the use of complemen-
tary features in order to learn the function STS,
a part of this challenge. Rather than specifying
rules, constraints and lexicons manually, we advo-
cate a system for automatically acquiring linguis-
tic knowledge using machine learning (ML) meth-
ods. For this we apply some preprocessing tech-
niques over the training set in order to find differ-
ent types of features. Related to the semantic as-
pect, we make use of known semantic relatedness
and similarity measures on WordNet, in this case,
applied to see the relatedness/similarity between
phrases from sentences.
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Considering the problem of modeling a text cor-
pus to find short descriptions of documents, we
aim an efficient processing of large collections
while preserving the essential statistical relation-
ships that are useful for, in this case, similarity
judgment. Therefore we also apply topic model-
ing in order to get topic distribution over each sen-
tence set. These features are then used to feed an
ensemble algorithm to learn the STS function.

2 Background

2.1 WordNet

WordNet (Miller, 1995) is a computational lexicon
of English created and maintained at Princeton
University. It encodes concepts in terms of sets of
synonyms (called synsets). A synset can be seen
as a set of word senses all expressing the same
meaning. Each word sense uniquely identifies
a single synset. For instance, car#n#1 uses
the notation followed by WordNet and subscript
word#p#n where p denotes the part-of-speech
tag and n the word’s sense identifier, respec-
tively. In this case, the corresponding synset
car#n#l, auto#n#l, automobile#FHFnF1,
machine#n#6, motorcar#n#1 is uniquely
determined. As words are not always so ambigu-
ous, a word w+#p is said to be monosemous when
it can convey only one meaning. Alternatively,
wH#p is polysemous if it can convey more mean-
ings each one represented by a sense number s in
wH#p#s. For each synset, WordNet provides the
following information: A gloss, that is, a textual
definition of the synset; Semantic relations, which
connect pairs of synsets. In this context we focus
our attention on the Hypernym/Hyponym relation
which refers to inheritance between nouns, also
known as an is-a, or kind-of relation and their
respective inverses. Y is a hypernym of X if
every X is a (kind of) Y (motor_vehicle#n#l is a
hypernym of car#n#1 and, conversely, car#n#1 is

104

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 104—108,
Dublin, Ireland, August 23-24, 2014.



a hyponym of vehicle#n#1).

2.2 Semantic similarity

There are mainly two approaches to semantic sim-
ilarity. First approach is making use of a large cor-
pus and gathering statistical data from this corpus
to estimate a score of semantic similarity. Second
approach makes use of the relations and the en-
tries of a thesaurus (Lesk, 1986), which is gener-
ally a hand-crafted lexical database such as Word-
Net (Banerjee and Pedersen, 2003). Hybrid ap-
proaches combines both methods (Jiang and Con-
rath, 1997). Semantic similarity can be seen
as a different measure from semantic related-
ness since the former compute the proximity be-
tween concepts in a given concept hierarchy (e.g.
car#n+#1 is similar to motorcyclen); while the
later the common use of both concepts together
(e.g. car#n+1 is related to tire#n).

The Lesk algorithm (Lesk, 1986) uses dictio-
nary definitions (glosses) to disambiguate a poly-
semous word in a sentence context. The major ob-
jective of his idea is to count the number of words
that are shared between two glosses, but, some-
times, dictionary glosses are often quite brief, and
may not include sufficient vocabulary to identify
related sense. In this sense, Banerjee and Peder-
sen (Banerjee and Pedersen, 2003) adapted this al-
gorithm to use WordNet as the dictionary for the
word definitions and extended this metric to use
the rich network of relationships between concepts
present in WordNet.

The Jiang and Conrath similarity measure
(Jiang and Conrath, 1997) computes the informa-
tion shared between two concepts. The shared
information is determined by Information content
of the most specific subsume of the two concepts
in the hierarchy. Furthermore this measure com-
bines the distance between this subsuming concept
and the other two concepts, counting the edge-
based distance from them in the WordNet Hyper-
nym/Hyponym hierarchy.

2.3 Topic Modeling

Topic models are based upon the idea that docu-
ments are mixtures of topics, where a topic is a
probability distribution over words. A topic model
is a generative model for documents: it specifies
a simple probabilistic procedure by which docu-
ments can be generated. To make a new document,
one chooses a distribution over topics. Then, for
each word in that document, one chooses a topic at
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random according to this distribution, and draws a
word from that topic.

Latent Dirichilet allocation (LDA) is a genera-
tive probabilistic topic model of a corpus (Blei et
al., 2003). The basic idea is that documents are
represented as random mixtures over latent top-
ics, where each topic is characterized by a distri-
bution over words. This process does not make
any assumptions about the order of words as they
appear in documents. The only information rel-
evant to the model is the number of times words
are produced. This is known as the bag-of-words
assumption. The main variables of interest in the
model are the topic-word distributions ® and the
topic distributions 6 for each document.

3 Proposed Approach

Our approach to STS is mainly founded on the
idea of learning a regression function that com-
putes that similarity using other variable/features
as components. Before obtaining those features,
sentences are preprocessed trough known state-of-
the-art Natural Language techniques. The result-
ing preprocessed sentences are then lexically, syn-
tactically and semantically decomposed in order to
obtain different partial similarities. These partial
similarities are the features used in the supervised
learning. These specific stages in our system are
explained in detail in the following sections.

3.1 Natural Language Preprocessing

Before computing partial similarities considering
different properties of sentences, we need to apply
some known Natural Language techniques. For
this purpose, we chose OpenNLP? as an open-
source tool suite which contains a variety of Java-
based NLP components. Our focus is here on three
core NLP components: tokenization, POS tagging
and chunking. Besides the fact OpenNLP also of-
fers a stemmer for English we adopted other im-
plementation self-contained in the specific frame-
work for Topic Modeling (detailed in section 3.3).

OpenNLP is a homogeneous package based on
a single machine learning approach, maximum en-
tropy (ME) (Berger et al., 1996). Each OpenNLP
tool requires an ME model that contains statis-
tics about the components default features com-
bining diverse contextual information. OpenNLP
offers the possibility of both create component or
use pre-built models create for different languages.

*http://opennlp.sourceforge.net



On one side, components can be trained and cus-
tomizable models are built for the language and/or
domain in study. On the other, the availability
of pre-trained models allows the immediate appli-
cation of such tools on a new problem. We fol-
lowed the second approach since the sentences are
of common-sense and not about a specific domain
and are in English’.

3.2 Feature Engineering

Features, sometimes called attributes, encode in-
formation from raw data that allows machine
learning algorithms estimate an unknown value.
We focus on, what we call, light features since
they are completely automatic and unsupervised
computed, non-requiring a specific labeled dataset
for this phase. Each feature is computed as a par-
tial similarity metric, which will later feed the pos-
terior regression analysis. This process is fully
automatized, being all features extracted using a
pipeline from OpenNLP and other tools that will
be introduced in the specific stage where they are
used. For convenience and an easier identification
in the later machine learning process, we set for
each feature an id in the form f#n,n € {1..65}.

3.2.1 Lexical Features

Some basic similarity metrics are used as features
related exclusively with word forms. In this set
we include: number of negative words* for each
sentence (f1 and f2 respectively), and the abso-
lute value of the difference of these counts (f3 =
|f1 — f2]); the absolute value of the difference of
overlapping words for each sentence pair (f4..7)°.

3.2.2 Syntactic Features

OpenNLP tokenization, POS (Part-of-Speech)
tagging® and text chunking applied on a pipeline
fashion allows the identification of (NPs) Noun
Phrases, VPs (Verbal Phrases) and (Prepositional
Phrases) in sentences. Heuristically, these NPs are

OpenNLP offers, for the vast majority of components, at
least one pre-trained model for this language.

“The Snowball stop word list(Porter, 2001) was used and
those words expressing negation were identified (such as:
never, not, neither, no, nobody, aren’t, isn’t, don’t, doesn’t,
hasn’t, hadn’t, haven’t)

SThanks to the SemEval organizers in making avail-
able the python script which computes baselines com-
pute_overlap_baseline.py which was applied using different
setting for stop word removal, from O to 3.

®As alternative models are available, the Maxent
model with tag dictionary was used on this compo-
nent. Available at http://opennlp.sourceforge.net/models-
1.5/en-pos-maxent.bin

further identified as subjects if they are in the be-
ginning of sentences. This kind of shallow parser
will be useful to identify the syntactic structure of
sentences. Considering only this property, differ-
ent features were computed as the absolute value
of the difference of the number of NPs (f8), VPs
(f9) and PPs(f10) for each sentence pair.

3.2.3 Semantic Features

WordNet::Similarity (Pedersen et al., 2004) is a
freely available software package for measuring
the semantic similarity or relatedness between a
pair of concepts (or word senses). At this stage we
have for each sentence the subject identified as the
first NP beginning a sentence.

This NP can be composed of a simple or com-
pound noun, in a root form (lemma) or in a
inflected form (plural) (e.g. electrics or eco-
nomic electric cars). WorNet::Similarity pack-
age also contains a lemmatizer, in the mod-
ule WordNet::QueryData, which compare a in-
flected word form and return all WordNet entries
which can be the root form of this word. This
search is made in all four morphological cate-
gories in WordNet (Adjectives, Adverbs, Nouns
and Verbs), except when indicated the POS in
the end of the queried word, the lemmatizer only
see in that specific category (e.g. flies#n re-
turns flies#n, fly#n, while flies returns more
entries: flies#n, fly#n, fly#v). Therefore, a
lemmatized is successively applied over the Sub-
jects found for each pair of sentences. The com-
pound subjects are reduced from left to right until
a head noun been found as a valid WordNet en-
try (e.g. the subject economicelectriccars is re-
duced until the valid entry electriccar which is
present on WordNet).

After all the subjects been found and a valid
WordNet entry has been matched semantic simi-
larity (f11) (Jiang and Conrath, 1997) and seman-
tic relatedness (f12) (Lesk, 1986) is computed
for each sentence pair. In the case where pair
word#n has multiple senses, the one that maxi-
mizes partial similarity is selected.

3.3 Distributional Features

The distribution of topics over documents (in our
case, sentences) may contribute to model Distri-
butional Semantic in texts since in the way that
the model is defined, there is no notion of mu-
tual exclusivity that restricts words to be part of
one topic only. This allows topic models to cap-
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ture polysemy, where the same word has multiple
meanings. In this sense we can see topics as nat-
ural word sense contexts where words appear in
different topics with distinct senses.

Gensim (Rehtfek and Sojka, 2010) is a machine
learning framework for Topic Modeling which
includes several preprocessing techniques such
as stop-word removal and TF-IDF. TF-IDF is a
standard statistical method that combines the fre-
quency of a term in a particular document with its
inverse document frequency in general use (Salton
and Buckley, 1988). This score is high for rare
terms that appear frequently in a document and are
therefore more likely to be significant. In a prag-
matic view, t f-idf; 4 assigns to term ¢ a weight in
document d that is: highest when ¢ occurs many
times within a small number of documents; lower
when the term occurs fewer times in a document,
or occurs in many documents; lowest when the
term occurs in virtually all documents.

Gensim computes a distribution of 25 topics
over sentences not and using TF-IDF (f13...37
and f38...63). Each feature is the absolute value
of the difference of topic; (i.e. topicli]
[topicli]s1 — topic|i]s2|). Euclidean distance over
the difference of topic distribution between sen-
tence pairs in each case (without and with TF-IDF)
was also considered as a feature (f64 and f65).

3.4 Supervised Learning

WEKA(Hall et al., 2009) is a large collection of
state-of-the-art machine learning algorithms writ-
ten in Java. WEKA contains tools for classifica-
tion, regression, classifier ensemble, and others.
Considering the developer version 3.7.117 we used
the following experiment setup considering the 65
features previously computed for both sentence
dataset (train and test) (Marelli et al., 2014b).

One of four approaches is commonly adopted
for building classifier ensembles each one focus-
ing a different level of action. Approach A con-
cerns the different ways of combining the results
from the classifiers, but there is no evidence that
this strategy is better than using different mod-
els (Approach B). At feature level (Approach C)
different feature subsets can be used for the clas-
sifiers, either if they use the same classification
model or not. Finally, the data sets can be modified
so that each classifier in the ensemble is trained on
its own data set (Approach D).

"http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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Different methods for generating and combin-
ing models exist, like Stacking (Seewald, 2002)
(Approach B). These combined models share
sometimes however the disadvantage of being dif-
ficult to analyse, once they can comprise dozens of
individual classifiers. Stacking is used to combine
different types of classifiers and it demands the use
of another learner algorithm to predict which of
the models would be the most reliable for each
case. This combination is done using a meta-
learner, another learner scheme that combines the
output of the base learners. The base learners
are generally called level-0 models, and the meta-
learner is a level-1 model. The predictions of the
base learners are input to the meta-learner.

In WEKA, there is a meta classifier called
”Stacking””.We use this stacking ensemble com-
bining two level-0 models: a K-Nearest Neigh-
bour classifier (K = 1) (Aha et al., 1991); and
a Linear Regression model without any attribute
selection method (—S1) and the ridge parameter
by default (1.0 exp —8). The meta-classifier was
MS5P which implements base routines for gener-
ating M5 Model trees and rules (Quinlan, 1992;
Wang and Witten, 1997).

4 Conclusions and Future Work

Our contribution is in the use of complementary
features in order to learn the function of STS, a
part of the challenge of building Compositional
Distributional Semantic Models. For this we ap-
plied some preprocessing tasks over the sentence
set in order to find lexical, syntactic, semantic and
distributional features. On the semantic aspect, we
made use of known semantic relatedness and sim-
ilarity measures on WordNet, in this case, applied
to see the relatedness/similarity between phrases
from sentences. We also applied topic modeling
in order to get topic distributions over set of sen-
tences. These features were then used to feed an
ensemble learning algorithm in order to learn the
STS function. This was achieved with a Pearson’s
r of 0.62780. One direction to follow is to find
where the ensemble is failing and try to comple-
ment the feature set with more semantic features.
Indeed, we plan to explore different topic distribu-
tion varying number of topics in order to maximize
the log likelihood. Also we would like to select the
most relevant feature from this set. We are moti-
vated after this first participation in continuing to
improve the system here proposed.
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Abstract

The Tag&Parse approach to semantic
parsing first assigns semantic tags to each
word in a sentence and then parses the
tag sequence into a semantic tree. We
use statistical approach for tagging, pars-
ing, and reference resolution stages. Each
stage produces multiple hypotheses which
are re-ranked using spatial validation. We
evaluate the Tag & Parse approach on a cor-
pus of Robotic Spatial Commands as part
of the SemEval Task6 exercise. Our sys-
tem accuracy is 87.35% and 60.84% with
and without spatial validation.

1

In this paper we describe a system participating
in the SemEval2014 Task-6 on Supervised Seman-
tic Parsing of Robotic Spatial Commands. It pro-
duces a semantic parse of natural language com-
mands addressed to a robot arm designed to move
objects on a grid surface. Each command directs
a robot to change position of an object given a
current configuration. A command uniquely iden-
tifies an object and its destination, for example
“Move the turquoise pyramid above the yellow
cube”. System output is a Robot Control Lan-
guage (RCL) parse (see Figure 1) which is pro-
cessed by the robot arm simulator. The Robot Spa-
tial Commands dataset (Dukes, 2013) is used for

training and testing.
Our system uses a Tag&Parse approach which

separates semantic tagging and semantic parsing
stages. It has four components: 1) semantic tag-
ging, 2) parsing, 3) reference resolution, and 4)
spatial validation. The first three are trained using
LLAMA (Haffner, 2006), a supervised machine
learning toolkit, on the RCL-parsed sentences.

Introduction

This work is licensed under a Creative Commons Attribution
4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http:
//creativecommons.org/licenses/by/4.0/
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For semantic tagging, we train a maximum en-
tropy sequence tagger for assigning a semantic la-
bel and value to each word in a sentence, such as
type_cube or color_blue. For parsing, we train a
constituency parser on non-lexical RCL semantic
trees. For reference resolution, we train a maxi-
mum entropy model that identifies entities for ref-
erence tags found by previous components. All of
these components can generate multiple hypothe-
ses. Spatial validation re-ranks these hypotheses
by validating them against the input spatial con-
figuration. The top hypothesis after re-ranking is
returned by the system.

Separating tagging and parsing stages has sev-
eral advantages. A tagging stage allows the system
flexibility to abstract from possible grammatical or
spelling errors in a command. It assigns a seman-
tic category to each word in a sentence. Words not
contributing to the semantic meaning are assigned
‘O’ label by the tagger and are ignored in the fur-
ther processing. Words that are misspelled can po-
tentially receive a correct tag when a word simi-
larity feature is used in building a tagging model.
This will be especially important when process-
ing output of spoken commands that may contain

recognition errors.
The remainder of the paper is organized thusly.

In Section 2 we describe each of the components
used in our system. In Section 3 we describe the
results reported for SemEval2014 and evaluation
of each system component. We summarize our
findings and present future work in Section 4.

2  System
2.1 Sequence Tagging

A sequence tagging approach is used for condi-
tional inference of tags given a word sequence.
It is used for many natural language tasks, such
as part of speech (POS) and named entity tag-
ging (Toutanova and others, 2003; Carreras et al.,
2003). We train a sequence tagger for assign-

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 109-113,
Dublin, Ireland, August 23-24, 2014.



event:

action: entity:
move token: color: type:
1 cyan token: prism token:

3 4

above

destination:
spatial-relation:

relation: entity:

token: color:

type:

5 token: cube token:

7 8

yellow

Figure 1: RCL tree for a sentence Move the turquoise pyramid above the yellow cube.

Word \ index \ tag \ label ‘
Move 1 action | move
the 2 0 -
turquoise | 3 color cyan
pyramid | 4 type prism
above 5 relation | above
the 6 O -
yellow 7 color yellow
cube 8 type cube

Table 1: Tagging labels for a sentence Move the
turquoise pyramid above the yellow cube.

ing a combined semantic tag and label (such as
type_cube) to each word in a command. The tags
used for training are extracted from the leaf-level
nodes of the RCL trees. Table 2 shows tags and
labels for a sample sentence “Move the turquoise
pyramid above the yellow cube” extracted from
the RCL parse tree (see Figure 1). In some cases,
a label is the same as a word (yellow, cube) while
in other cases, it differs (turquoise - cyan, pyramid
- prism).

We train a sequence tagger using LLAMA max-
imum entropy (maxent) classification (Haffner,
2006) to predict the combined semantic tag and
label of each word. Neighboring words, immedi-
ately neighboring semantic tags, and POS tags are
used as features, where the POS tagger is another
sequence tagging model trained on the Penn Tree-
bank (Marcus et al., 1993). We also experimented
with a tagger that assigns tags and labels in sep-
arate sequence tagging models, but it performed
poorly.

2.2 Parsing

We use a constituency parser for building RCL
trees. The input to the parser is a sequence of
tags assigned by a sequence tagger, such as “ac-
tion color type relation color type” for the exam-
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ple in Figure 1.
The parser generates multiple RCL parse tree

hypotheses sorted in the order of their likelihood.
The likelihood of a tree 1" given a sequence of tags
T is determined using a probabilistic context free
grammar (PCFG) G:

P(118) = [] Pal(r) (1)

rel

The n-best parses are obtained using the CKY
algorithm, recording the n-best hyperedge back-
pointers per constituent along the lines of (Huang
and Chiang, 2005). GG was obtained and Py was
estimated from a corpus of non-lexical RCL trees
generated by removing all nodes descendant from
the tag nodes (action, color, etc.). Parses may con-
tain empty nodes not corresponding to any tag in
the input sequence. These are hypothesized by the
parser at positions in between input tags and in-
serted as edges according to the PCFG, which has
probabilistic rules for generating empty nodes.

2.3 Reference Resolution

Reference resolution identifies the most prob-
able antecedent for each anaphor within a
text (Hirschman and Chinchor, 1997). It applies
when multiple candidates antecedents are present.
For example, in a sentence “Pick up the red cube
standing on a grey cube and place it on top of
the yellow one”, the anaphor it has two candidate
antecedents corresponding to entity segments the
red cube and a grey cube. In our system, anaphor
and antecedents are represented by reference tags
occurring in one sentence. A reference tag is ei-
ther assigned by a sequence tagger to one of the
words (e.g. to a pronoun) or is inserted into a
tree by the parser (e.g. ellipsis). We train a bi-
nary maxent model for this task using LLAMA.
The input is a pair consisting of an anaphor and
a candidate antecedent, along with their features.



Features that are used include the preceding and
following words as well as the tags/labels of both
the anaphor and candidate antecedent. The refer-
ence resolution component selects the antecedent
for which the model returns the highest score.

2.4 Spatial Validation

SemEval2014 Task6 provided a spatial planner
which takes an RCL command as an input and
determines if that command is executable in the
given spatial context. At each step described in
2.1~2.3, due to the statistical nature of our ap-
proach, multiple hypotheses can be easily com-
puted with different confidence values. We used
the spatial planner to validate the final output RCL
commands from the three steps by checking if the
RCLs are executable or not. We generate multi-
ple tagger output hypotheses. For each tagger out-
put hypothesis, we generate multiple parser out-
put hypotheses. For each parser output hypothe-
sis, we generate multiple reference resolution out-
put hypotheses. The resulting output hypotheses
are ranked in the order of confidence scores with
the highest tagging output scores ranked first, fol-
lowed by the parsing output scores, and, finally,
reference resolution output scores. The system re-
turns the result of the top scored command that is

valid according to the spatial validator.
In many applications, there can be a tool or

method to validate tag/parse/reference outputs
fully or partially. Note that in our system the val-
idation is performed after all output is generated.
Tightly coupled validation, such as checking va-
lidity of a tagged entity or a parse constituent,
could help in computing hypotheses at each step
(e.g., feature values based on possible entities or
actions) and it remains as future work.

3 Results

In this section, we present evaluation results on the
three subsets of the data summarized in Table 3. In
the TEST2500 data set, the models are trained on
the initial 2500 sentences of the Robot Commands
Treebank and evaluated on the last 909 sentences
(this corresponds to the data split of the SemEval
task). In TEST500 data set, the models are trained
on the initial 500 sentences of the training set and
evaluated on the last 909 test sentences. We re-
port these results to analyze the models’ perfor-
mance on a reduced training size. In DEV2500
data set, models are trained on 90% of the initial
2500 sentences and evaluated on 10% of the 2500
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] # \ Dataset Avg #hyp | Accuracy
1 | TEST2500 1-best 1 86.0%
2 | TEST2500 max-5 3.34 95.2%
3 | TEST500 1-best 1 67.9%
4 | TEST500 max-5 4.25 83.8%
5 | DEV2500 1-best 1 90.8%
6 | DEV2500 max-5 2.9 98.0%

Table 3: Tagger accuracy for 1-best and maximum
of 5-best hypotheses (max-5).

sentences using a random data split. We observe
that sentence length and standard deviation of test
sentences in the TEST2500 data set is higher than
on the training sentences while in the DEV2500
data set training and test sentence length and stan-
dard deviation are comparable.

3.1 Semantic Tagging

Table 3 presents sentence accuracy of the seman-
tic tagging stage. Tagging accuracy is evaluated
on 1-best and on max-5 best tagger outputs. In
the max-5 setting the number of hypotheses gen-
erated by the tagger varies for each input with the
average numbers reported in Table 3. Tagging ac-
curacy on TEST2500 using 1-best is 86.0%. Con-
sidering max-5 best tagging sequences, the accu-
racy is 95.2%. On the TEST500 data set tagging
accuracy is 67.9% and 83.8% on 1-best and max-
5 best sequences respectively, approximately 8%
points lower than on TEST2500 data set. On the
DEV2500 data set tagging accuracy is 90.8% and
98.0% on 1-best and max-5 best sequences, 4.8%
and 2.8% points higher than on the TEST2500
data set. The higher performance on DEV2500 in
comparison to the TEST2500 can be explained by
the higher complexity of the test sentences in com-
parison to the training sentences in the TEST2500
data set.

3.2 RCL Parsing

Parsing was evaluated using the EVALB scoring
metric (Collins, 1997). Its 1-best F-measure accu-
racy on gold standard TEST2500 and DEV2500
semantic tag sequences was 96.17% and 95.20%,
respectively. On TESTS00, its accuracy remained
95.20%. On TEST2500 with system provided in-
put sequences, its accuracy was 94.79% for 869
out of 909 sentences that were tagged correctly.

3.3 System Accuracy

Table 4 presents string accuracy of automatically
generated RCL parse trees on each data set. The



Name Train #sent | Train Sent. len. (stdev) | Test #sent | Test Sent. Len. (stdev)
TEST2500 2500 13.44 (5.50) 909 13.96 (5.59)
TEST500 500 14.62(5.66) 909 13.96 (5.59)
DEV2500 2250 13.43 (5.53) 250 13.57 (5.27)

Table 2: Number of sentences, average length and standard deviation of the data sets.

results are obtained by comparing system output
RCL parse string with the reference RCL parse
string. For each data set, we ran the system
with and without spatial validation. We ran RCL
parser and reference resolution on automatically
assigned semantic tags (Auto) and oracle tagging
(Orcl). We observed that some tag labels can be
verified systematically and corrected them with
simple rules: e.g., change “front” to “forward”
because relation specification in (Dukes, 2013)
doesn’t have “front” even though annotations in-

cluded cases with “front” as relation.
The system performance on TEST2500 data

set using automatically assigned tags and no spa-
tial validation is 60.84%. In this mode, the sys-
tem uses 1-best parser and 1-best tagger output.
With spatial validation, which allows the system to
re-rank parser and tagger hypotheses, the perfor-
mance increases by 27% points to 87.35%. This
indicates that the parser and the tagger component
often produce a correct output which is not ranked
first. Using oracle tags without / with spatial vali-
dation on TEST2500 data set the system accuracy
18 67.55% / 94.83%, 7% points above the accuracy

using predicted tags.
The system performance on TESTS500 data set

using automatically assigned tags with / with-
out spatial validation is 48.95% / 74.92%, ap-
proximately 12% points below the performance
on TEST2500 (Row 1). Using oracle tags with-
out / with spatial validation the performance on
TESTS500 data set is 63.89% / 94.94%. The per-
formance without spatial validation is only 4% be-
low TEST2500, while with spatial validation the
performance on TEST2500 and TESTS500 is the
same. These results indicate that most perfor-
mance degradation on a smaller data set is due to

the semantic tagger.
The system performance on DEV2500 data set

using automatically assigned tags without / with
spatial validation is 68.0% / 96.80% (Row 5), 8%
points above the performance on TEST2500 (Row
1). With oracle tags, the performance is 69.60%
/ 98.0%, which is 2-3% points above TEST2500
(Row 2). These results indicate that most perfor-
mance improvement on a better balanced data set
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# | Dataset Tag | Accuracy without / with
spatial validation
1 | TEST2500 | Auto 60.84 /87.35
2 | TEST2500 | Orcl 67.55/94.83
3 | TEST500 | Auto 48.95/74.92
4 | TEST500 | Orcl 63.89/94.94
5 | DEV2500 | Auto 68.00 /96.80
6 | DEV2500 | Orcl 69.60 / 98.00

Table 4: System accuracy with and without spatial
validation using automatically assigned tags and
oracle tags (OT).

DEV2500 is due to better semantic tagging.

4 Summary and Future Work

In this paper, we present the results of semantic
processing for natural language robot commands
using Tag&Parse approach. The system first tags
the input sentence and then applies non-lexical
parsing to the tag sequence. Reference resolution
is applied to the resulting parse trees. We com-
pare the results of the models trained on the data
sets of size 500 (TEST500) and 2500 (TEST2500)
sentences. We observe that sequence tagging
model degrades significantly on a smaller data set.
Parsing and reference resolution models, on the
other hand, perform nearly as well on both train-
ing sizes. We compare the results of the models
trained on more (DEV2500) and less (TEST2500)
homogeneous training/testing data sets. We ob-
serve that a semantic tagging model is more sen-
sitive to the difference between training and test
set than parsing model degrading significantly a
less homogeneous data set. Our results show that
1) both tagging and parsing models will benefit
from an improved re-ranking, and 2) our parsing
model is robust to a data size reduction while tag-

ging model requires a larger training data set.
In future work we plan to explore how

Tag&Parse approach will generalize in other do-
mains. In particular, we are interested in using
a combination of domain-specific tagging models
and generic semantic parsing (Das et al., 2010) for
processing spoken commands in a dialogue sys-
tem.
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Abstract

This paper describes the system submit-
ted for the Sentiment Analysis in Twitter
Task of SEMEVAL 2014 and specifically
the Message Polarity Classification sub-
task. We used a 2—stage pipeline approach
employing a linear SVM classifier at each
stage and several features including mor-
phological features, POS tags based fea-
tures and lexicon based features.

1 Introduction

Recently, Twitter has gained significant popularity
among the social network services. Lots of users
often use Twitter to express feelings or opinions
about a variety of subjects. Analysing this kind of
content can lead to useful information for fields,
such as personalized marketing or social profiling.
However such a task is not trivial, because the lan-
guage used in Twitter is often informal presenting
new challenges to text analysis.

In this paper we focus on sentiment analysis,
the field of study that analyzes people’s sentiment
and opinions from written language (Liu, 2012).
Given some text (e.g., tweet), sentiment analysis
systems return a sentiment label, which most often
is positive, negative, or neutral. This classification
can be performed directly or in two stages; in the
first stage the system examines whether the text
carries sentiment and in the second stage, the sys-
tem decides for the sentiment’s polarity (i.e., posi-
tive or negative).! This decomposition is based on
the assumption that subjectivity detection and sen-
timent polarity detection are different problems.

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details:
http://creativecommons.org/licenses/by/4.0/

"For instance a 2—stage approach is better suited to sys-
tems that focus on subjectivity detection; e.g., aspect based

sentiment analysis systems which extract aspect terms only
from evaluative texts.
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We choose to follow the 2-stage approach, be-
cause it allows us to focus on each of the two prob-
lems separately (e.g., features, tuning, etc.). In the
following we will describe the system with which
we participated in the Message Polarity Classi-
fication subtask of Sentiment Analysis in Twit-
ter (Task 9) of SEMEVAL 2014 (Rosenthal et al.,
2014). Specifically Section 2 describes the data
provided by the organizers of the task. Sections 3
and 4 present our system and its performance re-
spectively. Finally, Section 5 concludes and pro-
vides hints for future work.

2 Data

At first, we describe the data used for this year’s
task. For system tuning the organizers released the
training and development data of SEMEVAL 2013
Task 2 (Wilson et al., 2013). Both these sets are
allowed to be used for training. The organizers
also provided the test data of the same Task to be
used for development only. As argued in (Malaka-
siotis et al., 2013) these data suffer from class im-
balance. Concerning the test data, they contained
8987 messages broken down in the following 5
datasets:

— LJ14: 2000 sentences from LIVEJOURNAL.
— SMSi3: SMS test data from last year.

— TW3: Twitter test data from last year.

— TWiy4: 2000 new tweets.

— TWSARC14: 100 tweets containing sarcasm.

The details of the test data were made available to
the participants only after the end of the Task. Re-
call that SMS;3 and TW;3 were also provided as
development data. In this way the organizers were
able to check, i) the progress of the systems since
last year’s task, and ii) the generalization capabil-
ity of the participating systems.

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 114118,
Dublin, Ireland, August 23-24, 2014.



3 System Overview

The main objective of our system is to detect
whether a message M expresses positive, negative
or no sentiment. To achieve that we follow a 2—
stage approach. During the first stage we detect
whether M expresses sentiment (“subjective”) or
not; this process is called subjectivity detection.
In the second stage we classify the “subjective”
messages of the first stage as “positive” or “neg-
ative”. Both stages utilize a Support Vector Ma-
chine (SVM (Vapnik, 1998)) classifier with lin-
ear kernel.” Similar approaches have also been
proposed in (Pang and Lee, 2004; Wilson et al.,
2005; Barbosa and Feng, 2010; Malakasiotis et al.,
2013). Finally, we note that the 2—stage approach,
in datasets such the one here (Malakasiotis et al.,
2013), alleviates the class imbalance problem.

3.1 Data preprocessing

A very essential part of our system is data pre-
processing. At first, each message M is passed
through a twitter specific tokenizer and part-of-
speech (POS) tagger (Owoputi et al., 2013) to ob-
tain the tokens and the corresponding POS tags,
which are necessary for some sets of features.?
We then use a dictionary to replace any slang with
the actual text.* We also normalize the text of
each message by combining a trie data structure
(De La Briandais, 1959) with an English dictio-
nary.’ In more detail, we replace every token of M
not in the dictionary with the most similar word of
the dictionary. Finally, we obtain POS tags of all
the new tokens.

3.2 Sentiment lexicons

Another key attribute of our system is the use of

sentiment lexicons. We have used the following:
— HL (Hu and Liu, 2004).

— SENTIWORDNET (Baccianella et al., 2010).

— SENTIWORDNET lexicon with POS tags
(Baccianella et al., 2010).

— AFINN (Nielsen, 2011).

— MPQA (Wilson et al., 2005).

*We used the LIBLINEAR distribution (Fan et al., 2008)

3Tokens could be words, emoticons, hashtags, etc. No
lemmatization or stemming has been applied

4See http://www.noslang.com/dictionary/.

>We used the OPENOFFICE dictionary

— NRC Emotion lexicon (Mohammad and Tur-
ney, 2013).

— NRC S140 lexicon (Mohammad et al.,
2013).

— NRC Hashtag lexicon (Mohammad et al.,
2013).

— The three lexicons created from the training
data in (Malakasiotis et al., 2013).

Note that concerning the MPQA Lexicon we
applied preprocessing similar to Malakasiotis et al.
(2013) to obtain the following sub—lexicons:

Sy : Contains strong subjective expressions with
positive prior polarity.

S_ : Contains strong subjective expressions with
negative prior polarity.

Sy : Contains strong subjective expressions with
either positive or negative prior polarity.

Sp : Contains strong subjective expressions with
neutral prior polarity.

W, : Contains weak subjective expressions with
positive prior polarity.

W_ : Contains weak subjective expressions with
negative prior polarity.

Wy : Contains weak subjective expressions with
either positive or negative prior polarity.

Wy : Contains weak subjective expressions with
neutral prior polarity.
3.3 Feature engineering

Our system employs several types of features
based on morphological attributes of the mes-
sages, POS tags, and lexicons of section 3.2.°

3.3.1 Morphological features

— The existence of elongated tokens (e.g.,
“baaad”).

— The number of elongated tokens.
— The existence of date references.

— The existence of time references.

S All the features are normalized to [—1, 1]



— The number of tokens that contain only upper
case letters.

The number of tokens that contain both upper
and lower case letters.

The number of tokens that start with an upper
case letter.

The number of exclamation marks.
The number of question marks.
The sum of exclamation and question marks.

The number of tokens containing only excla-
mation marks.

The number of tokens containing only ques-
tion marks.

The number of tokens containing only excla-
mation or question marks.

The number of tokens containing only ellip-
sis (...).

The existence of a subjective (i.e., positive or
negative) emoticon at the message’s end.

The existence of an ellipsis and a link at the
message’s end.

The existence of an exclamation mark at the
message’s end.

The existence of a question mark at the mes-
sage’s end.

The existence of a question or an exclamation
mark at the message’s end.

— The existence of slang.

3.3.2 POS based features
— The number of adjectives.

— The number of adverbs.

— The number of interjections.
— The number of verbs.

— The number of nouns.

— The number of proper nouns.

— The number of urls.
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— The number of subjective emoticons.’

— The number of positive emoticons.®

— The number of negative emoticons.’

— The average, maximum and minimum F}
scores of the message’s POS bigrams for the
subjective and the neutral classes.!?

— The average, maximum and minimum F}
scores of the message’s POS bigrams for the
positive and the negative classes.'!

For a bigram b and a class ¢, F7 is calculated as:

2 Pre(b,c) - Rec(b, c)

Fi(b,c) = .
1(b, ) Pre(b, ¢) + Rec(b, c) (1
where:
Pre(b, c) = #messages of ¢ con.ta.lmng b @
#messages containing b
Rec(b, ¢) = #messages of ¢ containing b 3

#messages of ¢

3.3.3 Sentiment lexicon based features

For each lexicon we use seven different features
based on the scores provided by the lexicon for
each word present in the message.!?

— Sum of scores.

— Maximum of scores.

— Minimum of scores.

— Average of scores.

— The count of words with scores.

— The score of the last word of the message that
appears in the lexicon.

— The score of the last word of the message.

"This feature is used only for subjectivity detection.

8This feature is used only for polarity detection.

This feature is used only for polarity detection.

10This feature is used only for subjectivity detection.

"This feature is used only for polarity detection.

2If a word does not appear in the lexicon it is assigned
with a score of 0 and it is not considered in the calculation of
the average, maximum, minimum and count scores. Also, we
have removed from SENTIWORDNET any instances having
positive and negative scores that sum to zero. Moreover, the
MPQA lexicon does not provide scores, so, for each word in
the lexicon we assume a score equal to 1.



We also created features based on the Pre and
F scores of MPQA and the train data generated
lexicons in a similar manner to that described in
(Malakasiotis et al., 2013), with the difference that
the features are stage dependent. Thus, for subjec-
tivity detection we use the subjective and neutral
classes and for polarity detection we use the posi-
tive and negative classes to compute the scores.

3.3.4 Miscellaneous features

Negation. Negation not only is a good subjec-
tivity indicator but it also may change the
polarity of a message. We therefore add 7
more features, one indicating the existence
of negation, and the remaining six indicat-
ing the existence of negation that precedes
words from lexicons Sy, Sy, S_, Wi, W,
and WW_.!3 Each feature is used in the appro-
priate stage.'* We have not implement this
type of feature for other lexicons but it might
be a good addition to the system.

Carnegie Mellon University’s Twitter clusters.

Owoputi et al. (2013) released a dataset of
938 clusters containing words coming from
tweets. Words of the same clusters share
similar attributes. We try to exploit this
observation by adding 938 features, each of
which indicates if a message’s token appears
or not in the corresponding attributes.

3.4 Feature Selection

To allow our model to better scale on unseen data
we have performed feature selection. More specif-
ically, we first merged training and development
data of SEMEVAL 2013 Task 2. Then, we ranked
the features with respect to their information gain
(Quinlan, 1986) on this dataset. To obtain the best
set of features we started with a set containing the
top 50 features and we kept adding batches of 50
features until we have added all of them. At each
step we evaluated the corresponding feature set on
the TW13 and SMS 3 datasets and chose the fea-
ture set with the best performance. This resulted in
a system which used the top 900 features for Stage
1 and the top 1150 features for Stage 2.

3We use a list of words with negation. We assume that a
token precedes a word if it is in a distance of at most 5 tokens.

"“The features concerning S+ and W are used in subjec-
tivity detection and the remaining four in polarity detection.
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Test Set AUEB | Median | Best
LJ4 70.75 65.48 | 74.84
SMS3 64.32 57.53 | 70.28
TWi3 63.92 62.88 | 72.12
TWiy 66.38 63.03 | 70.96
TWSARCy4 | 56.16 4577 | 58.16
AVG,y 64.31 56.56 | 68.78
AVGyy 64.43 5797 | 67.62

Table 1: F(+£) scores per dataset.

Test Set Ranking
LJi4 9/50
SMSi3 8/50
TWi3 21/50
TWyy 14/50
TWSARCy4 4/50
AVGyy 6/50
AVGyy 5/50

Table 2: Rankings of our system.

4 Experimental Results

The official measure of the Task is the average F}
score of the positive and negative classes (F(%)).
Table 1 illustrates the F(+) score per evaluation
dataset achieved by our system along with the me-
dian and best Fj(%). In the same table AVGyy
corresponds to the average F) (=) across the five
datasets while AVGy4 corresponds to the average
Fi(+£) across LJ;4, TW14 and TWSARC14. We
observe that in all cases our results are above the
median. Table 2 illustrates the ranking of our sys-
tem according to F(+£). Our system ranked 6th
according to AVGy;; and 5th according to AVGy4
among the 50 participating systems. Note that our
best results were achieved on the new test sets
(LJ14, TW14, TWSARC14) meaning that our sys-
tem has a good generalization ability.

5 Conclusion and future work

In this paper we presented our approach for the
Message Polarity Classification subtask of the
Sentiment Analysis in Twitter Task of SEMEVAL
2014. We proposed a 2—stage pipeline approach,
which first detects sentiment and then decides
about its polarity. The results indicate that our sys-
tem handles well the class imbalance problem and
has a good generalization ability. A possible ex-
planation is that we do not use bag-of-words fea-



tures which often suffer from over—fitting. Never-
theless, there is still some room for improvement.
A promising direction would be to improve the
1st stage (subjectivity detection) either by adding
more data or by adding more features, mostly be-
cause the performance of stage 1 greatly affects
that of stage 2. Finally, the addition of more data
for the negative class on stage 2 might be a good
improvement because it would further reduce the
class imbalance of the training data for this stage.
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Abstract

In this paper, we consider the application
of topic modelling to the task of induct-
ing grammar rules. In particular, we look
at the use of a recently developed method
called orthonormal explicit topic analysis,
which combines explicit and latent models
of semantics. Although, it remains unclear
how topic model may be applied to the
case of grammar induction, we show that
it is not impossible and that this may allow
the capture of subtle semantic distinctions
that are not captured by other methods.

1 Introduction

Grammar induction is the task of inducing high-
level rules for application of grammars in spoken
dialogue systems. In practice, we can extract rel-
evant rules and the task of grammar induction re-
duces to finding similar rules between two strings.
As these strings are not necessarily similar in sur-
face form, what we really wish to calculate is
the semantic similarity between these strings. As
such, we could think of applying a semantic anal-
ysis method. As such we attempt to apply topic
modelling, that is methods such as Latent Dirich-
let Allocation (Blei et al., 2003), Latent Seman-
tic Analysis (Deerwester et al., 1990) or Explicit
Semantic Analysis (Gabrilovich and Markovitch,
2007). In particular we build on the recent work
to unify latent and explicit methods by means of
orthonormal explicit topics.

In topic modelling the key choice is the docu-
ment space that will act as the corpus and hence
topic space. The standard choice is to regard all
articles from a background document collection
— Wikipedia articles are a typical choice — as the

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
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topic space. However, it is crucial to ensure that
these topics cover the semantic space evenly and
completely. Following McCrae et al. (McCrae et
al., 2013) we remap the semantic space defined by
the topics in such a manner that it is orthonormal.
In this way, each document is mapped to a topic
that is distinct from all other topics.

The structure of the paper is as follows: we de-
scribe our method in three parts, first the method
in section 2, followed by approximation method in
section 3, the normalization methods in section 4
and finally the application to grammar induction
in section 5, we finish with some conclusions in
section 6.

2 Orthonormal explicit topic analysis

ONETA (McCrae et al., 2013, Orthonormal ex-
plicit topic analysis) follows Explicit Semantic
Analysis in the sense that it assumes the avail-
ability of a background document collection B =
{b1,ba,...,bx} consisting of textual representa-
tions. The mapping into the explicit topic space
is defined by a language-specific function ® that
maps documents into R such that the j® value in
the vector is given by some association measure
¢;(d) for each background document b;. Typical
choices for this association measure ¢ are the sum
of the TF-IDF scores or an information retrieval
relevance scoring function such as BM-25 (Sorg
and Cimiano, 2010).

For the case of TF-IDF, the value of the j-th
element of the topic vector is given by:

¢;(d) = tf-idf (p;)" tf-idf(d)

Thus, the mapping function can be represented
as the product of a TF-IDF vector of document d
multiplied by a word-by-document (W x N) TF-
IDF matrix, which we denote as a X:!

T denotes the matrix transpose as usual
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thidf (b)) ™
d(d) = : tf-idf (d) = X" - tf-idf (d)
thidf(by)"

For simplicity, we shall assume from this point
on that all vectors are already converted to a TF-
IDF or similar numeric vector form.

In order to compute the similarity between two
documents d; and d;, typically the cosine-function
(or the normalized dot product) between the vec-
tors ®(d;) and ®(d;) is computed as follows:

O(di) " P(d;)

sim{ds, d;) = cos(®(ds). ®(d;)) = @ T, ]

T T

sim(d;, d;) = cos(X"d;, X" d;) = %

The key challenge with topic modelling is
choosing a good background document collection
B = {by,...,by}. A simple minimal criterion
for a good background document collection is that
each document in this collection should be maxi-
mally similar to itself and less similar to any other
document:

Vi # j 1 =sim(b;,b;) > sim(b;,b;) > 0

As shown in McCrae et al. (2013), this property
is satisfied by the following projection:

Ponera(d) = (XTX)1XTq

And hence the similarity between two docu-
ments can be calculated as:

sim(d;, dj) = cos(®onrTa(di), PoneTa(d;))
3 Approximations

ONETA relies on the computation of a matrix in-
verse, which has a complexity that, using current
practical algorithms, is approximately cubic and
as such the time spent calculating the inverse can
grow very quickly.

We notice that X is typically very sparse and
moreover some rows of X have significantly fewer
non-zeroes than others (these rows are for terms
with low frequency). Thus, if we take the first V;
columns (documents) in X, it is possible to re-
arrange the rows of X with the result that there
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is some W such that rows with index greater
than W) have only zeroes in the columns up to
Ni. In other words, we take a subset of Ny doc-
uments and enumerate the words in such a way
that the terms occurring in the first N7 documents
are enumerated 1,...,W;. Let No = N — Ny,
Wy = W — Wi. The result of this row permuta-
tion does not affect the value of XX and we can
write the matrix X as:

|

where A is a W7 x Nj matrix representing
term frequencies in the first N; documents, B is a
W1 x No matrix containing term frequencies in the
remaining documents for terms that are also found
in the first Ny documents, and C is a Wy x Ny
containing the frequency of all terms not found in
the first Ny documents.

Application of the well-known divide-and-
conquer formula (Bernstein, 2005, p. 159) for ma-
trix inversion yields the following easily verifiable
matrix identity, given that we can find C’ such that
cc=1

( )(

The inverse C’ is approximated by the Jacobi
Preconditioner, J, of CTC:

A B
0 C

(ATA)—lAT
0

—(ATA)TATBC

A
c’ 0

)=t

@

Jct
[Jex ]2

c’ 2

0
CT

0 llen, |72

4 Normalization

A key factor in the effectiveness of topic-based
methods is the appropriate normalization of the el-
ements of the document matrix X. This is even
more relevant for orthonormal topics as the matrix
inversion procedure can be very sensitive to small
changes in the matrix. In this context, we con-
sider two forms of normalization, term and docu-
ment normalization, which can also be considered
as row/column normalizations of X.

A straightforward approach to normalization is
to normalize each column of X to obtain a matrix
as follows:



T1

lzaf[

TN
[zl

(G 2

If we calculate X’ X’ =Y then we get that the
(i,7)-th element of Y is:

T, T

Yii = 11, .
[l [[|; ]

Thus, the diagonal of 'Y consists of ones only and
due to the Cauchy-Schwarz inequality we have
that |y;;| < 1, with the result that the matrix Y
is already close to I. Formally, we can use this
to state a bound on ||X'TX’ — ||, but in prac-
tice it means that the orthonormalizing matrix has
more small or zero values. Previous experiments
have indicated that in general term normalization
such as TF-IDF is not as effective as using the di-
rect term frequency in ONETA, so we do not apply
term normalization.

S Application to grammar induction

The application to grammar induction is simply
carried out by taking the rules and creating a sin-
gle ground instance. That is if we have a rule of
the form

LEAVING FROM <CITY>

We would replace the instance of <CITY> with
a known terminal for this rule, e.g.,

leaving from Berlin

This reduces the task to that of string simi-
larity which can be processed by means of any
string similarity function, for example such as the
ONETA function described above. As such the
procedure is as follows:

1. Ground the input grammar rule to an English
string d

2. Ground each candidate matching rule to an
English string d;

3. Calculate for the

simongTa (d, di)

each d;, similarity

4. Add the rule to the grammar class with the
highest similarity
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This approach has the obvious drawback that it
removes all information about the valence of the
rule, however the effect of this loss of information
remains unclear.

For application, we used 20,000 Wikipedia ar-
ticles, filtered to contain only those of over 100
words, giving us a corpus of 15.6 million tokens.
We applied ONETA using document normaliza-
tion but no term normalization and the value N| =
5000. These parameters were chosen based on the
best results in previous experiments.

6 Conclusions

The results show that such a naive approach is
not directly applicable to the case of grammar in-
duction, however we believe that it is possible
that the subtle semantic similarities captured by
topic modelling may yet prove useful for gram-
mar induction. However it is clear from the pre-
sented results that the use of a topic model alone
does not suffice to solve this task. We notice that
from the data many of the distinctions rely on
antonyms and stop words, especially distinctions
such as ‘to’/‘from’, which are not captured by a
topic model as topic models generally ignore stop
words, and generally consider antonyms to be in
the same topic, as they frequently occur together
in text. The question of when semantic similarity
such as provided by topic modelling is applicable
remains an open question.
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Abstract

We describe our approach for the
SemEval-2014 task 9: Sentiment Analy-
sis in Twitter. We make use of an en-
semble learning method for sentiment
classification of tweets that relies on
varied features such as feature hash-
ing, part-of-speech, and lexical fea-
tures. Our system was evaluated in
the Twitter message-level task.

1 Introduction

The sentiment analysis is a field of study that
investigates feelings present in texts. This
tield of study has become important, espe-
cially due to the internet growth, the content
generated by its users, and the emergence of
the social networks. In the social networks
such as Twitter people post their opinions in a
colloquial and compact language, and it is be-
coming a large dataset, which can be used as
a source of information for various automatic
tools of sentiment inference. There is an enor-
mous interest in sentiment analysis of Twit-
ter messages, known as tweets, with applica-
tions in several segments, such as (i) directing
marketing campaigns, extracting consumer re-
views of services and products (Jansen et al.,
2009); (ii) identifying manifestations of bully-
ing (Xu et al., 2012); (iii) predicting to fore-
cast box-office revenues for movies (Asur and
Huberman, 2010); and (iv) predicting accep-
tance or rejection of presidential candidates
(Diakopoulos and Shamma, 2010; O’Connor

et al., 2010).
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One of the problems encountered by re-
searchers in tweet sentiment analysis is the
scarcity of public datasets. Although Twit-
ter sentiment datasets have already been cre-
ated, they are either small — such as Obama-
McCain Debate corpus (Shamma et al., 2009)
and Health Care Reform corpus (Speriosu et
al., 2011) or big and proprietary such as in
(Lin and Kolcz, 2012). Others rely on noisy
labels obtained from emoticons and hashtags
(Go et al., 2009). The SemEval-2014 task 9: Sen-
timent Analysis in Twitter (Nakov et al., 2013)
provides a public dataset to be used to com-
pare the accuracy of different approaches.

In this paper, we propose to analyse tweet
sentiment with the use of Adaptive Boost-
ing (Freund and Schapire, 1997), making
use of the well-known Multinomial Classi-
fier. Boosting is an approach to machine
learning that is based on the idea of creat-
ing a highly accurate prediction rule by com-
bining many relatively weak and inaccurate
rules. The AdaBoost algorithm (Freund and
Schapire, 1997) was the first practical boost-
ing algorithm, and remains one of the most
widely used and studied, with applications in
numerous fields. Therefore, it has potential to
be very useful for tweet sentiment analysis, as
we address in this paper.

2 Related Work

Classifier ensembles for tweet sentiment anal-
ysis have been underexplored in the literature
— a few exceptions are (Lin and Kolcz, 2012;
Clark and Wicentwoski, 2013; Rodriguez et
al., 2013; Hassan et al., 2013).

Lin and Kolcz (2012) used logistic regres-
sion classifiers learned from hashed byte 4-
grams as features — The feature extractor con-
siders the tweet as a raw byte array. It moves
a four-byte sliding window along the array,
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and hashes the contents of the bytes, the value
of which was taken as the feature id. Here the
4-grams refers to four characters (and not to
four words). They made no attempt to per-
form any linguistic processing, not even word
tokenization. For each of the (proprietary)
datasets, they experimented with ensembles
of different sizes. The ensembles were formed
by different models, obtained from different
training sets, but with the same learning algo-
rithm (logistic regression). Their results show
that the ensembles lead to more accurate clas-
sifiers.

Rodrigues et al. (2013) and Clark et al.
(2013) proposed the use of classifier ensem-
bles at the expression-level, which is related
to Contextual Polarity Disambiguation. In this
perspective, the sentiment label (positive,
negative, or neutral) is applied to a specific
phrase or word within the tweet and does not
necessarily match the sentiment of the entire
tweet.

Finally, another type of ensemble frame-
work has been recently proposed by Hassan
et al. (2013), who deal with class imbalance,
sparsity, and representational issues. The au-
thors propose to enrich the corpus using mul-
tiple additional datasets related to the task of
sentiment classification. Differently from pre-
vious works, the authors use a combination of
unigrams and bigrams of simple words, part-
of-speech, and semantic features.

None of the previous works used AdaBoost
(Freund and Schapire, 1996). Also, lexicons
and/or part-of-speech in combination with
feature hashing, like in (Lin and Kolcz, 2012)
have not been addressed in the literature.

3 AdaBoost Ensemble

Boosting is a relatively young, yet extremely
powerful, machine learning technique. The
main idea behind boosting algorithms is to
combine multiple weak learners — classifi-
cation algorithms that perform only slightly
better than random guessing — into a power-
ful composite classifier. Our focus is on the
well known AdaBoost algorithm (Freund and
Schapire, 1997) based on Multinomial Naive
Bayes as base classifiers (Figure 1).

AdaBoost and its variants have been ap-
plied to diverse domains with great success,
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owing to their solid theoretical foundation,
accurate prediction, and great simplicity (Fre-
und and Schapire, 1997). For example, Viola
and Jones (2001) used AdaBoost to face de-
tection, Hao and Luo (2006) dealt with im-
age segmentation, recognition of handwritten
digits, and outdoor scene classification prob-
lems. In (Bloehdorn and Hotho, 2004) text
classification is explored.

Training Set >

Strong Classifier
Weak Classifiersb >

AdaBoost

Figure 1: AdaBoost Approach
4 Feature Engineering

The most commonly used text representation
method adopted in the literature is known as
Bag of Words (BOW) technique, where a doc-
ument is considered as a BOW, and is repre-
sented by a feature vector containing all the
words appearing in the corpus. In spite of
BOW being simple and very effective in text
classification, a large amount of information
from the original document is not considered,
word order is ruptured, and syntactic struc-
tures are broken. Therefore, sophisticated fea-
ture extraction methods with a deeper under-
standing of the documents are required for
sentiment classification tasks. Instead of us-
ing only BOW, alternative ways to represent
text, including Part of Speech (PoS) based fea-
tures, feature hashing, and lexicons have been
addressed in the literature.

We implemented an ensemble of classifiers
that receive as input data a combination of
three features sets: i) lexicon features that cap-
tures the semantic aspect of a tweet; ii) fea-
ture hashing that captures the surface-form as
abbreviations, slang terms from this type of
social network, elongated words (for exam-
ple, loveeeee), sentences with words without
a space between them (for instance, Ilovveap-
ple!), and so on; iii) and a specific syntactic fea-
tures for tweets. Technical details of each fea-
ture set are provided in the sequel.

Lexicon Features

We use the sentimental lexicon provided by
(Thelwall et al., 2010) and (Hu and Liu, 2004).
The former is known as SentiStrength and



provides: an emotion vocabulary, an emoti-
cons list (with positive, negative, and neutral
icons), a negation list, and a booster word list.
We use the negative list in cases where the
next term in a sentence is an opinion word
(either positive or negative). In such cases
we have polarity inversion. For example, in
the sentence “The house is not beautiful”, the
negative word “not” invert the polarity of the
opinion word beautiful. The booster word list
is composed by adverbs that suggest more or
less emphasis in the sentiment. For exam-
ple, in the sentence “He was incredibly rude.”
the term “incredibly” is an adverb that lay em-
phasis on the opinion word “rude”. Besides
using SentiStrength, we use the lexicon ap-
proach proposed by (Hu and Liu, 2004). In
their approach, a list of words and associa-
tions with positive and negative sentiments
has been provided that are very useful for
sentiment analysis.

These two lexicons were used to build the
first feature set according to Table 1, where it
is presented an example of tweet representa-
tion for the tweet;: “The soccer team didn’t
play extremely bad last Wednesday.” The
word “bad” exists in the lexicon list of (Hu
and Liu, 2004), and it is a negative word.
The word “bad” also exists in the negation
list provided by (Thelwall et al., 2010). The
term “didn’t” is a negative word according to
SentiStrength (Thelwall et al., 2010) and there
is a polarity inversion of the opinion words
ahead. Finally, the term “extremely” belongs
the booster word list and this word suggests
more emphasis to the opinion words existing
ahead.

as input to a learning algorithm. The origi-
nal high-dimensional space is “reduced” by
hashing the features into a lower-dimensional
space, i.e., mapping features to hash keys.
Thus, multiple features can be mapped to the
same hash key, thereby “aggregating” their
counts.

We used the MurmurHash3 function
(SMHasher, 2010), that is a non-cryptographic
hash function suitable for general hash-based
lookup tables. It has been used for many
purposes, and a recent approach that has
emerged is its use for feature hashing or
hashing trick. Instead of building and storing
an explicit traditional bag-of-words with
n-grams, the feature hashing uses a hash
function to reduce the dimensionality of the
output space and the length of this space
(features) is explicitly fixed in advance. For
this paper, we used this code (in Python):

Code Listing 1: Murmurhash:

from sklearn.utils.murmurhash
import murmurhash3_bytes_u32

for w in "i loveee apple".split():
print ("{0} => {1}".format (
w, murmurhash3_bytes_u32 (w, 0) $2xx10))

positive | negative | neutral | class

tweet; 3 0 0 positive

Table 1: Representing Twitter messages with
lexicons.

Feature hashing

Feature hashing has been introduced for text
classification in (Shi et al.,, 2009), (Wein-
berger et al., 2009), (Forman and Kirshen-
baum, 2008), (Langford et al., 2007), (Caragea
et al., 2011). In the context of tweet classi-
fication, feature hashing offers an approach
to reducing the number of features provided
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The dimensionality is 2 x 10, i.e 219 fea-
tures. In this code the output is a hash code
for each word “w” in the phrase “i loveee
apple”, ie. i => 43, loveee => 381 and
apple => 144. Table 2 shows an example of
feature hashing representation.

11234 1024 class
tweet; | 0|0 |11 0 positive
tweety | 0|10 |3 0 negative
tweet3 | 2|10 [(0|0 0 positive
tweet, | 0|0 |21 0 neutral

Table 2: Representing Twitter messages with
feature hashing.

Specific syntactic (PoS) features

We used the Part of Speech (PoS) tagged for
tweets with the Twitter NLP tool (Gimpel et
al., 2011). It encompasses 25 tags including
Nominal, Nominal plus Verbal, Other open-
class words like adjectives, adverbs and in-
terjection, Twitter specific tags such as hash-
tags, mention, discourse marker, just to name



. Set Algorithm F-Measure | F-Measure | Average
a few. Table 3 shows an example of syntactic Positive | Negative

features representation. Irain MNB 63.40 4940 56040
Train SVM 64.00 4450 5420
Train | AdaBoost w/SVM | 62.50 44.50 53.50
tag) | tagy | tags | tagu tagos class Train | AdaBoostw/ MNB | 65.10 49.60 57.35

tweet, 0 0 3 1 0 positive . .
fweety; | 0 2 0 1 0 | negative | 1able 5: Results from 10-fold cross validation
tweet; | 1 | 0 | 0 | 0 0 | positive | in the training set with default parameters of
: : : : : : : Weka. MNB and SVM stand for Multinomial
tweet, | 0 | 0 | 1 1 0 [ neutral | Naive Bayes and Support Vector Machine, re-

Table 3: Representing Twitter messages with
syntactic features.

A combination of lexicons, feature hashing,
and part-of-speech is used to train the ensem-
ble classifiers, thereby resulting in 1024 fea-
tures from feature hashing, 3 features from
lexicons, and 25 features from PPoS.

5 Experimental Setup and Results

We conducted experiments by using the
WEKA platform!. Table 4 shows the class dis-
tributions in training, development, and test-
ing sets. Table 5 presents the results for posi-
tive and negative classes with the classifiers
used in training set, and Table 6 shows the
computed results by SemEval organizers in

the test sets.
Training Set
Set | Positive Negative | Neutral | Total
Train | 3,640 (37%) | 1,458 (15%) | 4,586 (48%) | 9,684
Development Set
Set | Positive [ Negative [ Neutral | Total
Dev | 575 @35%) | 340(20%) | 739 (45%) | 1,654
Testing Sets
Set Positive Negative Neutral Total
LiveJournal 427 (37%) 304 (27%) 411 (36%) 1,142
SMS2013 192 (23%) | 394(19%) | 1,207 (58%) | 2,093
Twitter2013 1,572 (41%) | 601 (16%) | 1,640 (43%) | 3,813
Twitter2014 | 982 (53%) | 202 (11%) | 669 (36%) | 1,853
Twitter2014Sar | 33 (38%) 20 @7%) 13 (15%) 36

Table 4: Class distributions in the training set
(Train), development set (Dev) and testing set

(Test).

6 Concluding Remarks

From our results, we conclude that the use of
AdaBoost provides good performance in the
sentiment analysis (message-level subtask).
In the cross-validation process, Multinomial
Naive Bayes (MNB) has shown better results
than Support Vector Machines (SVM) as a
component for AdaBoost. However, we feel

Mttp://www.cs.waikato.ac.nz/ml/weka/
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spectively.

Scoring LiveJournal2014

class precision | recall | F-measure
positive 69.79 64.92 67.27
negative 76.64 61.64 68.33
neutral 51.82 69.84 59.50
overall score : 67.80

Scoring SMS2013
positive 61.99 46.78 53.32
negative 72.34 42.86 53.82
neutral 53.85 83.76 65.56
overall score : 53.57
Scoring Twitter2013
positive 68.07 66.13 67.08
negative 48.09 50.00 49.02
neutral 67.20 68.15 67.67
overall score : 58.05
Scoring Twitter2014
positive 65.17 70.48 67.72
negative 53.47 48.21 50.70
neutral 59.94 55.62 57.70
overall score : 59.21
Scoring Twitter2014Sarcasm
positive 63.64 44.68 52.50
negative 22.50 75.00, 34.62
neutral 76.92 37.04 50.00
overall score : 43.56

Table 6: Results in the test sets — AdaBoost
plus Multinomial Naive Bayes, which was the
best algorithm in cross validation.

that further investigations are necessary be-
fore making strong claims about this result.

Overall, the SemEval Tasks have make evi-
dent the usual challenges when mining opin-
ions from Social Media channels: noisy text,
irregular grammar and orthography, highly
specific lingo, and others. Moreover, tempo-
ral dependencies can affect the performance if
the training and test data have been gathered
at different.
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Abstract

We describe our approach for the
SemEval-2014 task 9: Sentiment Analy-
sis in Twitter. We make use of an en-
semble learning method for sentiment
classification of tweets that relies on
varied features such as feature hash-
ing, part-of-speech, and lexical fea-
tures. Our system was evaluated in
the Twitter message-level task.

1 Introduction

The sentiment analysis is a field of study that
investigates feelings present in texts. This
tield of study has become important, espe-
cially due to the internet growth, the content
generated by its users, and the emergence of
the social networks. In the social networks
such as Twitter people post their opinions in a
colloquial and compact language, and it is be-
coming a large dataset, which can be used as
a source of information for various automatic
tools of sentiment inference. There is an enor-
mous interest in sentiment analysis of Twit-
ter messages, known as tweets, with applica-
tions in several segments, such as (i) directing
marketing campaigns, extracting consumer re-
views of services and products (Jansen et al.,
2009); (ii) identifying manifestations of bully-
ing (Xu et al., 2012); (iii) predicting to fore-
cast box-office revenues for movies (Asur and
Huberman, 2010); and (iv) predicting accep-
tance or rejection of presidential candidates
(Diakopoulos and Shamma, 2010; O’Connor

et al., 2010).
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Commons  Attribution 4.0 International  Li-
cence. Page numbers and proceedings footer
are added by the organisers. Licence details:
http:/ /creativecommons.org/licenses /by /4.0/

129

Estevam Rafael Hruschka Jr.
Department of Computer Science
Federal University of Sao Carlos.

Sao Carlos, SP, Brazil
estevam@dc.ufscar.br

One of the problems encountered by re-
searchers in tweet sentiment analysis is the
scarcity of public datasets. Although Twit-
ter sentiment datasets have already been cre-
ated, they are either small — such as Obama-
McCain Debate corpus (Shamma et al., 2009)
and Health Care Reform corpus (Speriosu et
al., 2011) or big and proprietary such as in
(Lin and Kolcz, 2012). Others rely on noisy
labels obtained from emoticons and hashtags
(Go et al., 2009). The SemEval-2014 task 9: Sen-
timent Analysis in Twitter (Nakov et al., 2013)
provides a public dataset to be used to com-
pare the accuracy of different approaches.

In this paper, we propose to analyse tweet
sentiment with the use of Adaptive Boost-
ing (Freund and Schapire, 1997), making
use of the well-known Multinomial Classi-
fier. Boosting is an approach to machine
learning that is based on the idea of creat-
ing a highly accurate prediction rule by com-
bining many relatively weak and inaccurate
rules. The AdaBoost algorithm (Freund and
Schapire, 1997) was the first practical boost-
ing algorithm, and remains one of the most
widely used and studied, with applications in
numerous fields. Therefore, it has potential to
be very useful for tweet sentiment analysis, as
we address in this paper.

2 Related Work

Classifier ensembles for tweet sentiment anal-
ysis have been underexplored in the literature
— a few exceptions are (Lin and Kolcz, 2012;
Clark and Wicentwoski, 2013; Rodriguez et
al., 2013; Hassan et al., 2013).

Lin and Kolcz (2012) used logistic regres-
sion classifiers learned from hashed byte 4-
grams as features — The feature extractor con-
siders the tweet as a raw byte array. It moves
a four-byte sliding window along the array,

Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 129-134,
Dublin, Ireland, August 23-24, 2014.



and hashes the contents of the bytes, the value
of which was taken as the feature id. Here the
4-grams refers to four characters (and not to
four words). They made no attempt to per-
form any linguistic processing, not even word
tokenization. For each of the (proprietary)
datasets, they experimented with ensembles
of different sizes. The ensembles were formed
by different models, obtained from different
training sets, but with the same learning algo-
rithm (logistic regression). Their results show
that the ensembles lead to more accurate clas-
sifiers.

Rodrigues et al. (2013) and Clark et al.
(2013) proposed the use of classifier ensem-
bles at the expression-level, which is related
to Contextual Polarity Disambiguation. In this
perspective, the sentiment label (positive,
negative, or neutral) is applied to a specific
phrase or word within the tweet and does not
necessarily match the sentiment of the entire
tweet.

Finally, another type of ensemble frame-
work has been recently proposed by Hassan
et al. (2013), who deal with class imbalance,
sparsity, and representational issues. The au-
thors propose to enrich the corpus using mul-
tiple additional datasets related to the task of
sentiment classification. Differently from pre-
vious works, the authors use a combination of
unigrams and bigrams of simple words, part-
of-speech, and semantic features.

None of the previous works used AdaBoost
(Freund and Schapire, 1996). Also, lexicons
and/or part-of-speech in combination with
feature hashing, like in (Lin and Kolcz, 2012)
have not been addressed in the literature.

3 AdaBoost Ensemble

Boosting is a relatively young, yet extremely
powerful, machine learning technique. The
main idea behind boosting algorithms is to
combine multiple weak learners — classifi-
cation algorithms that perform only slightly
better than random guessing — into a power-
ful composite classifier. Our focus is on the
well known AdaBoost algorithm (Freund and
Schapire, 1997) based on Multinomial Naive
Bayes as base classifiers (Figure 1).

AdaBoost and its variants have been ap-
plied to diverse domains with great success,
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owing to their solid theoretical foundation,
accurate prediction, and great simplicity (Fre-
und and Schapire, 1997). For example, Viola
and Jones (2001) used AdaBoost to face de-
tection, Hao and Luo (2006) dealt with im-
age segmentation, recognition of handwritten
digits, and outdoor scene classification prob-
lems. In (Bloehdorn and Hotho, 2004) text
classification is explored.

Training Set >

Strong Classifier
Weak Classifiersb >

AdaBoost

Figure 1: AdaBoost Approach
4 Feature Engineering

The most commonly used text representation
method adopted in the literature is known as
Bag of Words (BOW) technique, where a doc-
ument is considered as a BOW, and is repre-
sented by a feature vector containing all the
words appearing in the corpus. In spite of
BOW being simple and very effective in text
classification, a large amount of information
from the original document is not considered,
word order is ruptured, and syntactic struc-
tures are broken. Therefore, sophisticated fea-
ture extraction methods with a deeper under-
standing of the documents are required for
sentiment classification tasks. Instead of us-
ing only BOW, alternative ways to represent
text, including Part of Speech (PoS) based fea-
tures, feature hashing, and lexicons have been
addressed in the literature.

We implemented an ensemble of classifiers
that receive as input data a combination of
three features sets: i) lexicon features that cap-
tures the semantic aspect of a tweet; ii) fea-
ture hashing that captures the surface-form as
abbreviations, slang terms from this type of
social network, elongated words (for exam-
ple, loveeeee), sentences with words without
a space between them (for instance, Ilovveap-
ple!), and so on; iii) and a specific syntactic fea-
tures for tweets. Technical details of each fea-
ture set are provided in the sequel.

Lexicon Features

We use the sentimental lexicon provided by
(Thelwall et al., 2010) and (Hu and Liu, 2004).
The former is known as SentiStrength and



provides: an emotion vocabulary, an emoti-
cons list (with positive, negative, and neutral
icons), a negation list, and a booster word list.
We use the negative list in cases where the
next term in a sentence is an opinion word
(either positive or negative). In such cases
we have polarity inversion. For example, in
the sentence “The house is not beautiful”, the
negative word “not” invert the polarity of the
opinion word beautiful. The booster word list
is composed by adverbs that suggest more or
less emphasis in the sentiment. For exam-
ple, in the sentence “He was incredibly rude.”
the term “incredibly” is an adverb that lay em-
phasis on the opinion word “rude”. Besides
using SentiStrength, we use the lexicon ap-
proach proposed by (Hu and Liu, 2004). In
their approach, a list of words and associa-
tions with positive and negative sentiments
has been provided that are very useful for
sentiment analysis.

These two lexicons were used to build the
first feature set according to Table 1, where it
is presented an example of tweet representa-
tion for the tweet;: “The soccer team didn’t
play extremely bad last Wednesday.” The
word “bad” exists in the lexicon list of (Hu
and Liu, 2004), and it is a negative word.
The word “bad” also exists in the negation
list provided by (Thelwall et al., 2010). The
term “didn’t” is a negative word according to
SentiStrength (Thelwall et al., 2010) and there
is a polarity inversion of the opinion words
ahead. Finally, the term “extremely” belongs
the booster word list and this word suggests
more emphasis to the opinion words existing
ahead.

as input to a learning algorithm. The origi-
nal high-dimensional space is “reduced” by
hashing the features into a lower-dimensional
space, i.e., mapping features to hash keys.
Thus, multiple features can be mapped to the
same hash key, thereby “aggregating” their
counts.

We used the MurmurHash3 function
(SMHasher, 2010), that is a non-cryptographic
hash function suitable for general hash-based
lookup tables. It has been used for many
purposes, and a recent approach that has
emerged is its use for feature hashing or
hashing trick. Instead of building and storing
an explicit traditional bag-of-words with
n-grams, the feature hashing uses a hash
function to reduce the dimensionality of the
output space and the length of this space
(features) is explicitly fixed in advance. For
this paper, we used this code (in Python):

Code Listing 1: Murmurhash:

from sklearn.utils.murmurhash
import murmurhash3_bytes_u32

for w in "i loveee apple".split():
print ("{0} => {1}".format (
w, murmurhash3_bytes_u32 (w, 0) $2xx10))

positive | negative | neutral | class

tweet; 3 0 0 positive

Table 1: Representing Twitter messages with
lexicons.

Feature hashing

Feature hashing has been introduced for text
classification in (Shi et al.,, 2009), (Wein-
berger et al., 2009), (Forman and Kirshen-
baum, 2008), (Langford et al., 2007), (Caragea
et al., 2011). In the context of tweet classi-
fication, feature hashing offers an approach
to reducing the number of features provided
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The dimensionality is 2 x 10, i.e 219 fea-
tures. In this code the output is a hash code
for each word “w” in the phrase “i loveee
apple”, ie. i => 43, loveee => 381 and
apple => 144. Table 2 shows an example of
feature hashing representation.

11234 1024 class
tweet; | 0|0 |11 0 positive
tweety | 0|10 |3 0 negative
tweet3 | 2|10 [(0|0 0 positive
tweet, | 0|0 |21 0 neutral

Table 2: Representing Twitter messages with
feature hashing.

Specific syntactic (PoS) features

We used the Part of Speech (PoS) tagged for
tweets with the Twitter NLP tool (Gimpel et
al., 2011). It encompasses 25 tags including
Nominal, Nominal plus Verbal, Other open-
class words like adjectives, adverbs and in-
terjection, Twitter specific tags such as hash-
tags, mention, discourse marker, just to name



. Set Algorithm F-Measure | F-Measure | Average
a few. Table 3 shows an example of syntactic Positive | Negative

features representation. Irain MNB 63.40 4940 56040
Train SVM 64.00 4450 5420
Train | AdaBoost w/SVM | 62.50 44.50 53.50
tag) | tagy | tags | tagu tagos class Train | AdaBoostw/ MNB | 65.10 49.60 57.35

tweet, 0 0 3 1 0 positive . .
fweety; | 0 2 0 1 0 | negative | 1able 5: Results from 10-fold cross validation
tweet; | 1 | 0 | 0 | 0 0 | positive | in the training set with default parameters of
: : : : : : : Weka. MNB and SVM stand for Multinomial
tweet, | 0 | 0 | 1 1 0 [ neutral | Naive Bayes and Support Vector Machine, re-

Table 3: Representing Twitter messages with
syntactic features.

A combination of lexicons, feature hashing,
and part-of-speech is used to train the ensem-
ble classifiers, thereby resulting in 1024 fea-
tures from feature hashing, 3 features from
lexicons, and 25 features from PPoS.

5 Experimental Setup and Results

We conducted experiments by using the
WEKA platform!. Table 4 shows the class dis-
tributions in training, development, and test-
ing sets. Table 5 presents the results for posi-
tive and negative classes with the classifiers
used in training set, and Table 6 shows the
computed results by SemEval organizers in

the test sets.
Training Set
Set | Positive Negative | Neutral | Total
Train | 3,640 (37%) | 1,458 (15%) | 4,586 (48%) | 9,684
Development Set
Set | Positive [ Negative [ Neutral | Total
Dev | 575 @35%) | 340(20%) | 739 (45%) | 1,654
Testing Sets
Set Positive Negative Neutral Total
LiveJournal 427 (37%) 304 (27%) 411 (36%) 1,142
SMS2013 192 (23%) | 394(19%) | 1,207 (58%) | 2,093
Twitter2013 1,572 (41%) | 601 (16%) | 1,640 (43%) | 3,813
Twitter2014 | 982 (53%) | 202 (11%) | 669 (36%) | 1,853
Twitter2014Sar | 33 (38%) 20 @7%) 13 (15%) 36

Table 4: Class distributions in the training set
(Train), development set (Dev) and testing set

(Test).

6 Concluding Remarks

From our results, we conclude that the use of
AdaBoost provides good performance in the
sentiment analysis (message-level subtask).
In the cross-validation process, Multinomial
Naive Bayes (MNB) has shown better results
than Support Vector Machines (SVM) as a
component for AdaBoost. However, we feel

Mttp://www.cs.waikato.ac.nz/ml/weka/
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spectively.

Scoring LiveJournal2014

class precision | recall | F-measure
positive 69.79 64.92 67.27
negative 76.64 61.64 68.33
neutral 51.82 69.84 59.50
overall score : 67.80

Scoring SMS2013
positive 61.99 46.78 53.32
negative 72.34 42.86 53.82
neutral 53.85 83.76 65.56
overall score : 53.57
Scoring Twitter2013
positive 68.07 66.13 67.08
negative 48.09 50.00 49.02
neutral 67.20 68.15 67.67
overall score : 58.05
Scoring Twitter2014
positive 65.17 70.48 67.72
negative 53.47 48.21 50.70
neutral 59.94 55.62 57.70
overall score : 59.21
Scoring Twitter2014Sarcasm
positive 63.64 44.68 52.50
negative 22.50 75.00, 34.62
neutral 76.92 37.04 50.00
overall score : 43.56

Table 6: Results in the test sets — AdaBoost
plus Multinomial Naive Bayes, which was the
best algorithm in cross validation.

that further investigations are necessary be-
fore making strong claims about this result.

Overall, the SemEval Tasks have make evi-
dent the usual challenges when mining opin-
ions from Social Media channels: noisy text,
irregular grammar and orthography, highly
specific lingo, and others. Moreover, tempo-
ral dependencies can affect the performance if
the training and test data have been gathered
at different.
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Abstract

Clinical texts, such as discharge sum-
maries or test reports, contain a valuable
amount of information that, if efficiently
and effectively mined, could be used to
infer new knowledge, possibly leading to
better diagnosis and therapeutics. With
this in mind, the SemEval-2014 Analysis
of Clinical Text task aimed at assessing
and improving current methods for identi-
fication and normalization of concepts oc-
curring in clinical narrative. This paper
describes our approach in this task, which
was based on a fully modular architec-
ture for text mining. We followed a pure
dictionary-based approach, after perform-
ing error analysis to refine our dictionaries.

We obtained an F-measure of 69.4% in
the entity recognition task, achieving the
second best precision over all submitted
runs (81.3%), with above average recall
(60.5%). In the normalization task, we
achieved a strict accuracy of 53.1% and a
relaxed accuracy of 87.0%.

1 Introduction

Named entity recognition (NER) is an information
extraction task where the aim is to identify men-
tions of specific types of entities in text. This task
has been one of the main focus in the biomedi-
cal text mining research field, specially when ap-
plied to the scientific literature. Such efforts have
led to the development of various tools for the
recognition of diverse entities, including species
names, genes and proteins, chemicals and drugs,
anatomical concepts and diseases. These tools use
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methods based on dictionaries, rules, and machine
learning, or a combination of those depending on
the specificities and requirements of each concept
type (Campos et al., 2013b). After identifying en-
tities occurring in texts, it is also relevant to dis-
ambiguate those entities and associate each occur-
rence to a specific concept, using an univocal iden-
tifier from a reference database such as Uniprot!
for proteins, or OMIM? for genetic disorders. This
is usually performed by matching the identified
entities against a knowledge-base, possibly eval-
uating the textual context in which the entity oc-
curred to identify the best matching concept.

The SemEval-2014 Analysis of Clinical Text
task aimed at the identification and normalization
of concepts in clinical narrative. Two subtasks
were defined, where Task A was focused on the
recognition of entities belonging to the ‘disorders’
semantic group of the Unified Medical Language
System (UMLS), and Task B was focused on nor-
malization of these entities to a specific UMLS
Concept Unique Identifier (CUI). Specifically, the
task definition required that concepts should only
be normalized to CUISs that could be mapped to the
SNOMED CT? terminology.

In this paper, we present a dictionary-based ap-
proach for the recognition of these concepts, sup-
ported by a modular text analysis and annotation
pipeline.

2 Methods

2.1 Data

The task made use of the ShARe corpus (Pradhan
et al., 2013), which contains manually annotated
clinical notes from the MIMIC II database* (Saced
et al., 2011). The corpus contains 298 documents,

"http://www.uniprot.org/
Zhttp://www.omim.org/
3http://www.ihtsdo.org/snomed-ct/
*http://mimic.physionet.org/database.html
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Figure 1: Neji’s processing pipeline used for annotating the documents. Boxes with dotted lines indicate
optional processing modules. Machine-learning models were not used.

with a total of 11156 annotations of disorder men-
tions. These annotations include a UMLS concept
identifier when such normalization was possible
according to the annotation guidelines.

Besides this manually annotated corpus, a larger
unannotated data set was also made available to
task participants, in order to allow the application
of unsupervised methods.

2.2 Processing Pipeline

We used Neji, an open source framework for
biomedical concept recognition based on an au-
tomated processing pipeline that supports the
combined application of machine learning and
dictionary-based approaches (Campos et al.,
2013a). Apart from offering a flexible frame-
work for developing different text mining sys-
tems, Neji includes various built-in methods, from
text loading and pre-processing, to natural lan-
guage parsing and entity tagging, all optimized
for processing biomedical text. Namely, it in-
cludes a sentence splitting module adapted from
the Lingpipe library® and a customized version
of GDep (Sagae and Tsujii, 2007) for tokeniza-
tion, part-of-speech tagging, and other natural lan-
guage processing tasks. Figure 1 shows the com-
plete Neji text processing pipeline, illustrating its
module based architecture built on top of a com-
mon data structure. The dictionary module per-
forms exact, case-insensitive matching using De-
terministic Finite Automatons (DFAs), allowing

>http://alias-i.com/lingpipe/index.html
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very efficient processing of documents and match-
ing against dozens of dictionaries containing mil-
lions of terms.

Neji has been validated against different
biomedical literature corpora, using specifically
created machine learning models and dictionar-
ies. Regarding the recognition of disorder con-
cepts, Neji achieved an F-measure of 68% on ex-
act mathing and 83% on approximate matching
against the NCBI disease corpus, using a pure
dictionary-based approach (Dogan and Lu, 2012).

2.3 Dictionaries

Following the task description and the corpus an-
notation guidelines, we compiled dictionaries for
the following UMLS semantic types, using the
2012AB version of the UMLS Metathesaurus:

e Congenital Abnormality
Acquired Abnormality

Injury or Poisoning

Pathologic Function

Disease or Syndrome

Mental or Behavioral Dysfunction
Cell or Molecular Dysfunction
Anatomical Abnormality
Neoplastic Process

Signs and Symptoms

Additionally, although the semantic type ‘Find-
ings’ was not considered as part of the ‘Disorders’
group, we created a customized dictionary includ-
ing only those concepts of this semantic type that
occurred as an annotation in the training data. If



a synonym of a given concept was present in the
training data annotations, we added all the syn-
onyms of that concept to this dictionary. This
allowed including some concepts that occur very
frequently (e.g. ’fever’), while filtering out many
concepts of this semantic type that are not relevant
for this task. In total, these dictionaries contain
almost 1.5 million terms, of which 525 thousand
(36%) were distinct terms, for nearly 293 thousand
distinct concept identifiers.

Refining the dictionaries

In order to expand the dictionaries, we pre-
processed the UMLS terms to find certain patterns
indicating acronyms. For example, if a term such
as ‘Miocardial infarction (MI)’ or ‘Miocardial in-
farction - MI” appeared as a synonym for a given
UMLS concept, we checked if the acronym (in this
example, ‘MI’) was also a synonym for that con-
cept, and added it to a separate dictionary if this
was not the case. This resulted in the addition of
10430 terms, for which only 1459 (14%) were dis-
tinct, for 2086 concepts. These numbers reflect the
expected ambiguity in the acronyms, which repre-
sents one of the main challenges in the annotation
of clinical texts.

Furthermore, in order to improve the baseline
results obtained with the initial dictionaries, we
performed error analysis to identify frequent er-
rors in the automatic annotations. Using the man-
ual annotations as reference, we counted the num-
ber of times a term was correctly annotated in the
documents (true positives) and compared it to the
number of times that same term caused an annota-
tion to be incorrectly added (a false positive). We
then defined an exclusion list containing 817 terms
for which the ratio of these two counts was 0.25 or
less.

Following the same approach, we created a sec-
ond exclusion list by comparing the number of
FNs to the number of FPs, and selecting those
terms for which this ratio was lower than 0.5. This
resulted in an exclusion list containing 623 terms.

We also processed the unannotated data set, in
order to identify frequently occurring terms that
could be removed from the dictionaries to avoid
large numbers of false positives. This dataset in-
cludes over 92 thousand documents, which were
processed in around 23 minutes (an average of
67 documents per second) and produced almost
4 million annotations. Examples of terms from
our dictionaries that occur very frequently in this
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data set are: ‘sinus rhythm’, which occurred al-
most 35 thousand times across all documents, and
‘past medical history’, ‘allergies’ and ‘abnormal-
ities’, all occurring more than 15 thousand times.
In fact, most of the highly frequent terms belonged
to the ‘Findings’ semantic type. Although this
analysis gave some insights regarding the content
of the data, its results were not directly used to
refine the dictionaries, since the filtering steps de-
scribed above led to better overall results.

2.4 Concept Normalization

According to the task description, only those
UMLS concepts that could be mapped to a
SNOMED CT identifier should be considered in
the normalization step, while all other entities
should be added to the results without a concept
identifier. We followed a straightforward normal-
ization strategy, by assigning the corresponding
UMLS CUIs to each identified entity, during the
dictionary-matching phase. We then filtered out
any CUIs that did not have a SNOMED CT map-
ping in the UMLS data. In the cases when multi-
ple idenfiers were still left, we naively selected the
first one, according the dictionary ordering defined
above, followed in the end by the filtered ‘Find-
ings’ dictionary and the additional acronyms dic-
tionary.

3 Results and Discussion

3.1 Evaluation Metrics

The common evaluation metrics were used to
evaluate the entity recognition task, namely
Precision = TP/(TP + FP) and Recall =
TP/(TP+FN), where TP, FP and FN are respec-
tively the number of true positive, false positive,
and false negative annotations, and F'measure =
2 X Precision x Recall/(Precision + Recall),
the harmonic mean of precision and recall. Addi-
tionally, the performance was evaluated consider-
ing both strict and relaxed, or overlap, matching of
the gold standard annotations.

For the normalization task, the metric used to
evaluate performance was accuracy. Again, two
matching methods were considered: strict accu-
racy was defined as the ratio between the number
of correct identifiers assigned to the predicted en-
tities, and the total number of entities manually
annotated in the corpus; while relaxed accuracy
measured the ratio between the number of correct



Task A Task B
Strict Relaxed Strict | Relaxed

Run P R F P R F Acc Acc

Best 0,843 0,786 0,813 | 0,936 0,866 0,900 | 0,741 | 0,873
Average | 0,648 0,574 0,599 | 0,842 0,731 0,770 | 0,461 | 0,753
0 0,813 0,605 0,694 | 0,929 0,693 0,794 | 0,527 | 0,870
1 0,600 0,621 0,610 | 0,698 0,723 0,710 | 0,531 | 0,855
2 0,753 0,538 0,628 | 0,865 0,621 0,723 | 0,463 | 0,861

Table 1: Official results on the test dataset. The best results for each task and matching strategy are
identified in bold. The best run from all participating teams as well as the overall average are shown for

comparison.

identifiers and the number of entities correctly pre-
dicted by the system.

3.2 Test Results

We submitted three runs of annotations for the
documents in the test set, as described below:

e Run 0: Resulting annotations were filtered
using the first exclusion list (817 terms,
TP/FP ratio 0.25 or lower). The ex-
tra acronyms dictionary was not used, and
matches up to 3 characters long were filtered
out, except if they were 3 characters long and
appeared as uppercase in the original text.

Run 1: The extra acronyms dictionary was
included. The same exclusion list as in Run
0 was used, but short annotations were not
removed.

Run 2: The extra acronyms dictionary was
included. The second exclusion list was used,
and short annotations were not removed.

Table 1 shows the official results obtained on
the test set for each submitted run.

Overall, the best results were obtained with the
more stringent dictionaries and filtering, leading
to a precision of 81.3% and and F-measure of
69.4%. This results was achieved without the use
of the additional acronyms list, and also by re-
moving short annotations. This filtering does not
discard annotations with three characters if they
appeared in uppercase in the original text, as this
more clearly indicates the use of an acronym. Pre-
liminary evaluation on the training data showed
that this choice had a small, but positive contri-
bution to the overall results.
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We achieved the second-best precision results
with this first run, considering both strict and re-
laxed matching. Although this level of precision
was not associated to a total loss in recall, we
were only able to identify 70% of the disorder
entities, even when considering relaxed match-
ing. To overcome this limitation, we will evalu-
ate the combined use of dictionaries and machine-
learning models, taking advantage of the Neji
framework. Another possible limitation has to
do with the recognition and disambiguation of
acronyms, which we will also evaluate further.

Regarding the normalization results (Task B),
we achieved the 12th and 10th best overall results,
considering strict and relaxed accuracies respec-
tively, corresponding to the 7th and 6th best team.
For relaxed matching, our results are 5,8% lower
than the best team, which is a positive result given
the naive approach taken. These performances
may be improved as a result of enhancements in
the entity recognition step, and by applying a bet-
ter normalization strategy.

4 Conclusions

We present results for the recognition and normal-
ization of disorder mentions in clinical texts, us-
ing a dictionary-based approach . The dictionaries
were iteratively filtered following error-analysis,
in order to better tailor the dictionaries according
to the task annotation guidelines. In the end, a
precision of 81.3% was achieved, for a recall of
60.5% and a F-measure of 69.4%. The use of
a machine-learning based approach and a better
acronym resolution method are being studied with
the aim of improving the recall rate.

In the normalization task, using the refined dic-
tionaries directly, we achieved a strict accuracy of
53.1% and a relaxed accuracy of 87.0%. Strict



normalization results, as given by the metric de-
fined for this task, are dependent on the enti